1
|
Qadeer A, Wajid A, Rafey HA, Nawaz S, Khan S, Rahman SU, Alzahrani KJ, Khan MZ, Alsabi MNS, Ullah H, Safi SZ, Xia Z, Zahoor M. Exploring extracellular vesicles in zoonotic helminth biology: implications for diagnosis, therapeutic and delivery. Front Cell Infect Microbiol 2024; 14:1424838. [PMID: 39165921 PMCID: PMC11333462 DOI: 10.3389/fcimb.2024.1424838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as key intercellular communication and pathogenesis mediators. Parasitic organisms' helminths, cause widespread infections with significant health impacts worldwide. Recent research has shed light on the role of EVs in the lifecycle, immune evasion, and disease progression of these parasitic organisms. These tiny membrane-bound organelles including microvesicles and exosomes, facilitate the transfer of proteins, lipids, mRNAs, and microRNAs between cells. EVs have been isolated from various bodily fluids, offering a potential diagnostic and therapeutic avenue for combating infectious agents. According to recent research, EVs from helminths hold great promise in the diagnosis of parasitic infections due to their specificity, early detection capabilities, accessibility, and the potential for staging and monitoring infections, promote intercellular communication, and are a viable therapeutic tool for the treatment of infectious agents. Exploring host-parasite interactions has identified promising new targets for diagnostic, therapy, and vaccine development against helminths. This literature review delves into EVS's origin, nature, biogenesis, and composition in these parasitic organisms. It also highlights the proteins and miRNAs involved in EV release, providing a comprehensive summary of the latest findings on the significance of EVs in the biology of helminths, promising targets for therapeutic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Abdul Wajid
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Hafiz Abdul Rafey
- Shifa College of Pharmaceutical Sciences, Faculty of Pharmaceutical and Allied Health Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sajid Ur Rahman
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Muhammad Zahoor Khan
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Mohammad Nafi Solaiman Alsabi
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hanif Ullah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Quintieri L, Fanelli F, Monaci L, Fusco V. Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods 2024; 13:601. [PMID: 38397577 PMCID: PMC10888271 DOI: 10.3390/foods13040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is a source of many valuable nutrients, including minerals, vitamins and proteins, with an important role in adult health. Milk and dairy products naturally containing or with added probiotics have healthy functional food properties. Indeed, probiotic microorganisms, which beneficially affect the host by improving the intestinal microbial balance, are recognized to affect the immune response and other important biological functions. In addition to macronutrients and micronutrients, biologically active peptides (BPAs) have been identified within the amino acid sequences of native milk proteins; hydrolytic reactions, such as those catalyzed by digestive enzymes, result in their release. BPAs directly influence numerous biological pathways evoking behavioral, gastrointestinal, hormonal, immunological, neurological, and nutritional responses. The addition of BPAs to food products or application in drug development could improve consumer health and provide therapeutic strategies for the treatment or prevention of diseases. Herein, we review the scientific literature on probiotics, BPAs in milk and dairy products, with special attention to milk from minor species (buffalo, sheep, camel, yak, donkey, etc.); safety assessment will be also taken into consideration. Finally, recent advances in foodomics to unveil the probiotic role in human health and discover novel active peptide sequences will also be provided.
Collapse
Affiliation(s)
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (L.Q.); (L.M.); (V.F.)
| | | | | |
Collapse
|
3
|
Rinaldi G, Loukas A, Sotillo J. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:507-539. [PMID: 39008274 DOI: 10.1007/978-3-031-60121-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Trematode infections stand out as one of the frequently overlooked tropical diseases, despite their wide global prevalence and remarkable capacity to parasitize diverse host species and tissues. Furthermore, these parasites hold significant socio-economic, medical, veterinary and agricultural implications. Over the past decades, substantial strides have been taken to bridge the information gap concerning various "omic" tools, such as proteomics and genomics, in this field. In this edition of the book, we highlight recent progress in genomics and proteomics concerning trematodes with a particular focus on the advances made in the past 5 years. Additionally, we present insights into cutting-edge technologies employed in studying trematode biology and shed light on the available resources for exploring the molecular facets of this particular group of parasitic helminths.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Javier Sotillo
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.
| |
Collapse
|
4
|
Toledo R, Conciancic P, Fiallos E, Esteban JG, Muñoz-Antoli C. Echinostomes and Other Intestinal Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:285-322. [PMID: 39008269 DOI: 10.1007/978-3-031-60121-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Intestinal trematodes are among the most common types of parasitic worms. About 76 species belonging to 14 families have been recorded infecting humans. Infection commonly occurs when humans eat raw or undercooked foods that contain the infective metacercariae. These parasites are diverse in regard to their morphology, geographical distribution and life cycle, which make it difficult to study the parasitic diseases that they cause. Many of these intestinal trematodes have been considered as endemic parasites in the past. However, the geographical limits and the population at risk are currently expanding and changing in relation to factors such as growing international markets, improved transportation systems, new eating habits in developed countries and demographic changes. These factors make it necessary to better understand intestinal trematode infections. This chapter describes the main features of human intestinal trematodes in relation to their biology, epidemiology, host-parasite relationships, pathogenicity, clinical aspects, diagnosis, treatment and control.
Collapse
Affiliation(s)
- Rafael Toledo
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain.
| | - Paola Conciancic
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Emma Fiallos
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - J Guillermo Esteban
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Carla Muñoz-Antoli
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
5
|
Saijuntha W, Sithithaworn P, Wangboon C, Andrews RH, Petney TN. Liver Flukes: Clonorchis and Opisthorchis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:239-284. [PMID: 39008268 DOI: 10.1007/978-3-031-60121-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Clonorchis sinensis, Opisthorchis viverrini and O. felineus are liver flukes of human and animal pathogens occurring across much of Europe and Asia. Nevertheless, they are often underestimated compared to other, better known neglected diseases in spite of the fact that many millions of people are infected and hundreds of millions are at risk. This is possibly because of the chronic nature of the infection and disease and that it takes several decades prior to a life-threatening pathology to develop. Several studies in the past decade have provided more information on the molecular biology of the liver flukes which clearly lead to better understanding of parasite biology, systematics and population genetics. Clonorchiasis and opisthorchiasis are characterized by a chronic infection that induces hepatobiliary inflammation, especially periductal fibrosis, which can be detected by ultrasonography. These chronic inflammations eventually lead to cholangiocarcinoma (CCA), a usually fatal bile duct cancer that develops in some infected individuals. In Thailand alone, opisthorchiasis-associated CCA kills up to 20,000 people every year and is therefore of substantial public health importance. Its socioeconomic impacts on impoverished families and communities are considerable. To reduce hepatobiliary morbidity and CCA, the primary intervention measures focus on control and elimination of the liver fluke. Accurate diagnosis of liver fluke infections in both human and other mammalian, snail and fish intermediate hosts is important for achieving these goals. While the short-term goal of liver fluke control can be achieved by praziquantel chemotherapy, a comprehensive health education package targeting school children is believed to be more beneficial for a long-term goal/solution. It is recommended that transdisciplinary research or multisectoral control approach including one health and/or eco health intervention strategy should be applied to combat the liver flukes and hence contribute to reduction of CCA in endemic areas.
Collapse
Affiliation(s)
| | - Paiboon Sithithaworn
- Department of Parasitology and Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| | - Chompunoot Wangboon
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Ross H Andrews
- CASCAP, Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, St Mary's Campus, Imperial College London, London, UK
| | - Trevor N Petney
- CASCAP, Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Paleontology and Evolution, State Museum of Natural History, Karlsruhe, Germany
| |
Collapse
|
6
|
Udonsom R, Reamtong O, Adisakwattana P, Popruk S, Jirapattharasate C, Nishikawa Y, Inpankaew T, Toompong J, Kotepui M, Mahittikorn A. Immunoproteomics to identify species-specific antigens in Neospora caninum recognised by infected bovine sera. Parasite 2022; 29:60. [PMID: 36562441 PMCID: PMC9879140 DOI: 10.1051/parasite/2022059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Bovine neosporosis is a disease of concern due to its global distribution and significant economic impact through massive losses in the dairy and meat industries. To date, there is no effective chemotherapeutic drug or vaccine to prevent neosporosis. Control of this disease is therefore dependent on efficient detection tests that may affect treatment management strategies. This study was conducted to identify the specific immunoreactive proteins of Neospora caninum tachyzoites recognised by sera from cattle infected with N. caninum, Toxoplasma gondii, Cryptosporidium parvum, Babesia bovis and B. bigemina, and by sera from uninfected cattle using two-DE dimensional gel electrophoresis (2-DE) combined with immunoblot and mass spectrometry (LC-MS/MS). Among 70 protein spots that reacted with all infected sera, 20 specific antigenic spots corresponding to 14 different antigenic proteins were recognised by N. caninum-positive sera. Of these immunoreactive antigens, proteins involved in cell proliferation and invasion process were highly immunogenic, including HSP90-like protein, putative microneme 4 (MIC4), actin, elongation factor 1-alpha and armadillo/beta-catenin-like repeat-containing protein. Interestingly, we discovered an unnamed protein product, rhoptry protein (ROP1), possessing strong immunoreactivity against N. caninum but with no data on function available. Moreover, we identified cross-reactive antigens among these apicomplexan parasites, especially N. caninum, T. gondii and C. parvum. Neospora caninum-specific immunodominant proteins were identified for immunodiagnosis and vaccine development. The cross-reactive antigens could be evaluated as potential common vaccine candidates or drug targets to control the diseases caused by these apicomplexan protozoan parasites.
Collapse
Affiliation(s)
- Ruenruetai Udonsom
-
Department of Protozoology, Faculty of Tropical Medicine, Mahidol University Bangkok 10400 Thailand
| | - Onrapak Reamtong
-
Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University Bangkok 10400 Thailand
| | - Poom Adisakwattana
-
Department of Helminthology, Faculty of Tropical Medicine, Mahidol University Bangkok 10400 Thailand
| | - Supaluk Popruk
-
Department of Protozoology, Faculty of Tropical Medicine, Mahidol University Bangkok 10400 Thailand
| | - Charoonluk Jirapattharasate
-
Department of Pre-clinic and Animal Science, Faculty of Veterinary Science, Mahidol University Salaya Nakhon Pathom 73170 Thailand
| | - Yoshifumi Nishikawa
-
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine Obihiro Hokkaido 080-8555 Japan
| | - Tawin Inpankaew
-
Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University Bangkok 10900 Thailand
| | - Jitbanjong Toompong
-
Department of Parasitology, Faculty of Veterinary Medicine, Mahanakorn University of Technology Bangkok 10530 Thailand
| | - Manas Kotepui
-
Medical Technology, School of Allied Health Sciences, Walailak University Tha Sala Nakhon Si Thammarat 80160 Thailand
| | - Aongart Mahittikorn
-
Department of Protozoology, Faculty of Tropical Medicine, Mahidol University Bangkok 10400 Thailand
,Corresponding author:
| |
Collapse
|
7
|
Balkir P, Kemahlioglu K, Yucel U. Foodomics: A new approach in food quality and safety. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Stryiński R, Łopieńska-Biernat E, Carrera M. Proteomic Insights into the Biology of the Most Important Foodborne Parasites in Europe. Foods 2020; 9:E1403. [PMID: 33022912 PMCID: PMC7601233 DOI: 10.3390/foods9101403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Foodborne parasitoses compared with bacterial and viral-caused diseases seem to be neglected, and their unrecognition is a serious issue. Parasitic diseases transmitted by food are currently becoming more common. Constantly changing eating habits, new culinary trends, and easier access to food make foodborne parasites' transmission effortless, and the increase in the diagnosis of foodborne parasitic diseases in noted worldwide. This work presents the applications of numerous proteomic methods into the studies on foodborne parasites and their possible use in targeted diagnostics. Potential directions for the future are also provided.
Collapse
Affiliation(s)
- Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), 36-208 Vigo, Spain
| |
Collapse
|
9
|
Kosanović M, Cvetković J, Gruden-Movsesijan A, Vasilev S, Svetlana M, Ilić N, Sofronić-Milosavljević L. Trichinella spiralis muscle larvae release extracellular vesicles with immunomodulatory properties. Parasite Immunol 2019; 41:e12665. [PMID: 31356691 DOI: 10.1111/pim.12665] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022]
Abstract
AIMS Extracellular vesicles (EVs) represent a newly discovered but universal communication tool between cells or organisms. However, few data exist on nematode EVs and none for Trichinella spiralis. Here, we aimed to investigate whether T spiralis muscle larvae produce EVs, whether they carry immunomodulatory proteins and whether they have a role in immunomodulation as a component of excretory-secretory muscle larvae products (ES L1). METHODS AND RESULTS EVs were enriched from conditioned medium of T spiralis muscle larvae. Transmission electron microscopy images showed T spiralis EVs to be 30-80 nm in size, and Western blot confirmed the presence of two out of three glycoproteins with the immunodominant epitope characteristic for muscle larvae of the genus Trichinella. Using a peripheral blood mononuclear cell (PBMC) stimulation assay, it was shown that these EVs elevated production of IL10 and IL6. CONCLUSION T spiralis muscle larvae produce EVs. Those EVs carry immunomodulatory proteins and have the capacity independently to induce regulatory responses in the same way as the T spiralis excretory-secretory muscle larvae products from which they were isolated.
Collapse
Affiliation(s)
- Maja Kosanović
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Belgrade, Serbia
| | - Jelena Cvetković
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Belgrade, Serbia
| | - Alisa Gruden-Movsesijan
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Belgrade, Serbia
| | - Saša Vasilev
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Belgrade, Serbia
| | - Milanović Svetlana
- Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Nataša Ilić
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
10
|
Molecular Characterization and Immunodiagnostic Potential of Various Antigenic Proteins of Fasciola Gigantica Species Isolated from Sheep of North West Himalayan Region. Helminthologia 2019; 56:93-107. [PMID: 31662680 PMCID: PMC6799565 DOI: 10.2478/helm-2019-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/17/2018] [Indexed: 12/07/2022] Open
Abstract
The control of the digenetic trematode Fasciola gigantica has been the major challenge in both cattle and small ruminants as there is a paucity of an effective and commercial vaccine. Thus, the accurate identification and prepatent diagnosis of F. gigantica is an essential prerequisite for its successful prevention and control. In the present study, the morphologically identified specimens isolated from the liver and bile ducts of sheep (Ovis aries) were validated through molecular data. The sequence analysis of ITS2 of our isolates showed high degree of similarity with F. gigantica and F. hepatica using BLAST function of NCBI. The phylogenetic analysis of our isolates showed a close relationship with previously described F. gigantica and F. hepatica isolates from different countries. The antigenic profile of somatic and E/S antigens of F. gigantica were revealed by SDS-PAGE and immunoblotting using sera from sheep naturally infected with F. gigantica. By SDS-PAGE, 20 distinct bands were revealed from crude somatic fraction. Immunoblotting analysis of these proteins with positive sera exhibited 8 sero-reactive bands ranging from 14 to 97 kDa. Among these 38 and 44 kDa bands were quite specific with high diagnostic specificity and sensitivity. The E/S fraction comprised 7 distinct bands, as revealed by SDS-PAGE analysis. Immunoblotting analysis of these proteins with positive sera exhibited 6 antigenic bands ranging from 23 - 54 kDa. Among these 27 and 33 kDa were found to be quite specific with high diagnostic specificity and sensitivity. The present study concludes that the protein bands of 38 and 44 kDa in somatic fraction and 27 and 33 kDa in E/S fraction can be used for the immunodiagnostic purpose for this economically important parasite, which may also entice further studies regarding their vaccine potential.
Collapse
|
11
|
Sotillo J, Pearson MS, Loukas A. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:411-436. [PMID: 31297769 DOI: 10.1007/978-3-030-18616-6_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Trematode infections are among the most neglected tropical diseases despite their worldwide distribution and extraordinary ability to parasitise many different host species and host tissues. Furthermore, these parasites are of great socioeconomic, medical, veterinary and agricultural importance. During the last 10 years, there have been increasing efforts to overcome the lack of information on different "omic" resources such as proteomics and genomics. Herein, we focus on the recent advances in genomics and proteomics from trematodes of human importance, including liver, blood, intestinal and lung flukes. We also provide information on the latest technologies applied to study the biology of trematodes as well as on the resources available for the study of the molecular aspects of this group of helminths.
Collapse
Affiliation(s)
- Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| | - Mark S Pearson
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
12
|
Toledo R, Alvárez-Izquierdo M, Muñoz-Antoli C, Esteban JG. Intestinal Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:181-213. [DOI: 10.1007/978-3-030-18616-6_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Saijuntha W, Sithithaworn P, Kiatsopit N, Andrews RH, Petney TN. Liver Flukes: Clonorchis and Opisthorchis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:139-180. [PMID: 31297762 DOI: 10.1007/978-3-030-18616-6_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Clonorchis sinensis, Opisthorchis viverrini, and O. felineus are liver flukes of human and animal pathogens occurring across much of Europe and Asia. Nevertheless, they are often underestimated compared to other, better known neglected diseases in spite of the fact that many millions of people are infected and hundreds of millions are at risk. This is possibly because of the chronic nature of the infection and disease and that it takes several decades prior to a life-threatening pathology to develop. Several studies in the past decade have provided more information on the molecular biology of the liver flukes which clearly lead to better understanding of parasite biology, systematics, and population genetics. Clonorchiasis and opisthorchiasis are characterized by a chronic infection that induces hepatobiliary inflammation, especially periductal fibrosis, which can be detected by ultrasonography. These chronic inflammations eventually lead to cholangiocarcinoma (CCA), a usually fatal bile duct cancer that develops in some infected individuals. In Thailand alone, opisthorchiasis-associated CCA kills up to 20,000 people every year and is therefore of substantial public health importance. Its socioeconomic impacts on impoverished families and communities are considerable. To reduce hepatobiliary morbidity and CCA, the primary intervention measures focus on control and elimination of the liver fluke. Accurate diagnosis of liver fluke infections in both human and other mammalian, snail and fish intermediate hosts, are important for achieving these goals. While the short-term goal of liver fluke control can be achieved by praziquantel chemotherapy, a comprehensive health education package targeting school children is believed to be more beneficial for a long-term goal/solution. It is recommended that a transdisciplinary research or multisectoral control approach including one health and/or eco health intervention strategy should be applied to combat the liver flukes, and hence contribute to reduction of cholangiocarcinoma in endemic areas.
Collapse
Affiliation(s)
- Weerachai Saijuntha
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham, Thailand
| | - Paiboon Sithithaworn
- Department of Parasitology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
| | - Nadda Kiatsopit
- Department of Parasitology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Ross H Andrews
- CASCAP, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Faculty of Medicine, St Mary's Campus, Imperial College London, London, UK
| | - Trevor N Petney
- CASCAP, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Paleontology and Evolution, State Museum of Natural History, Karlsruhe, Germany
| |
Collapse
|
14
|
Mekonnen GG, Pearson M, Loukas A, Sotillo J. Extracellular vesicles from parasitic helminths and their potential utility as vaccines. Expert Rev Vaccines 2018; 17:197-205. [PMID: 29353519 DOI: 10.1080/14760584.2018.1431125] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Helminths are multicellular parasites affecting nearly three billion people worldwide. To orchestrate a parasitic existence, helminths secrete different molecules, either in soluble form or contained within extracellular vesicles (EVs). EVs are secreted by most cell types and organisms, and have varied roles in intercellular communication, including immune modulation and pathogenesis. AREAS COVERED In this review, we describe the nucleic acid and proteomic composition of EVs from helminths, with a focus on the protein vaccine candidates present on the EV surface membrane, and discuss the potential utility of helminth EVs and their constituent proteins in the fight against helminth infections. EXPERT COMMENTARY A significant number of proteins present in helminth-secreted EVs are known vaccine candidates. The characterization of helminth EV proteomes will shed light on host-pathogen interactions, facilitate the discovery of new diagnostic biomarkers, and provide a novel approach for the development of new control measures against helminth infections.
Collapse
Affiliation(s)
- Gebeyaw Getnet Mekonnen
- a Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia.,b Department of Medical Parasitology , School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar , Gondar , Ethiopia
| | - Mark Pearson
- a Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| | - Alex Loukas
- a Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| | - Javier Sotillo
- a Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| |
Collapse
|
15
|
Trematoda (flukes). Emerg Top Life Sci 2017; 1:651-657. [PMID: 33525842 DOI: 10.1042/etls20170111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/26/2022]
Abstract
The class Trematoda is the largest group of Platyhelminths and includes two subclasses: Aspidogastrea and Digenea. Trematodes, and particularly Digeneans, is a large group of organisms with significant medical and veterinary interest. Over 100 species of digenetic trematodes have been reported infecting humans. Although the significant mortality and morbidity that some of these infections cause, they are among the most neglected tropical diseases. Apart from their impact in public and animal health, the Digenea constitutes an intriguing group of organisms that has a vast interest in experimental biology. Systematics and taxonomy of this group constitute a challenge for biologists in relation to the difficulty entailed in the establishment of phylogenetic relationships between trematodes and the determination of valid diagnostic features. Moreover, their complex life cycles, using at least two hosts and alternating free-living and parasitic stages or sexual and asexual multiplication, constitute a paradigm of how organisms can evolve to become adapted to different biotic and abiotic environments to enhance survival. In this review, we briefly summarize the major features of trematodes in relation to both biological and medical areas.
Collapse
|
16
|
Fromm B, Ovchinnikov V, Høye E, Bernal D, Hackenberg M, Marcilla A. On the presence and immunoregulatory functions of extracellular microRNAs in the trematode Fasciola hepatica. Parasite Immunol 2017; 39. [PMID: 27809346 DOI: 10.1111/pim.12399] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/28/2016] [Indexed: 12/16/2022]
Abstract
Liver flukes represent a paraphyletic group of endoparasitic flatworms that significantly affect man either indirectly due to economic damage on livestock or directly as pathogens. A range of studies have focussed on how these macroscopic organisms can evade the immune system and live inside a hostile environment such as the mammalian liver and bile ducts. Recently, microRNAs, a class of short noncoding gene regulators, have been proposed as likely candidates to play roles in this scenario. MicroRNAs (miRNAs) are key players in development and pathogenicity and are highly conserved between metazoans: identical miRNAs can be found in flatworms and mammalians. Interestingly, miRNAs are enriched in extracellular vesicles (EVs) which are secreted by most cells. EVs constitute an important mode of parasite/host interaction, and recent data illustrate that miRNAs play a vital part. We have demonstrated the presence of miRNAs in the EVs of the trematode species Dicrocoelium dendriticum and Fasciola hepatica (Fhe) and identified potential immune-regulatory miRNAs with targets in the host. After our initial identification of miRNAs expressed by F. hepatica, an assembled genome and additional miRNA data became available. This has enabled us to update the known complement of miRNAs in EVs and speculate on potential immune-regulatory functions that we review here.
Collapse
Affiliation(s)
- B Fromm
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, Oslo, Norway
| | - V Ovchinnikov
- Department of Human and Animal Genetics, The Federal Research Center, Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - E Høye
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, Oslo, Norway
| | - D Bernal
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - M Hackenberg
- Facultad de Ciencias, Departamento de Genética, Universidad de Granada, Granada, Spain.,Laboratorio de Bioinformática, Instituto de Biotecnología, Centro de Investigación Biomédica, Granada, Spain
| | - A Marcilla
- Área de Parasitología, Departamento de Farmacia y Tecnologia Farmacéutica y Parasitología, Universitat de València, Burjassot, Valencia, Spain.,Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute-La Fe, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
17
|
The omic approach to parasitic trematode research—a review of techniques and developments within the past 5 years. Parasitol Res 2016; 115:2523-43. [DOI: 10.1007/s00436-016-5079-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/26/2022]
|
18
|
Cortés A, Sotillo J, Muñoz-Antolí C, Trelis M, Esteban JG, Toledo R. Definitive host influences the proteomic profile of excretory/secretory products of the trematode Echinostoma caproni. Parasit Vectors 2016; 9:185. [PMID: 27036527 PMCID: PMC4815245 DOI: 10.1186/s13071-016-1465-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/21/2016] [Indexed: 12/18/2022] Open
Abstract
Background Echinostoma caproni is an intestinal trematode extensively used as experimental model for the study of factors that determine the course of intestinal helminth infections, since this markedly depends on the host species. Although the host-dependent mechanisms for either chronic establishment or early parasite rejection have been broadly studied, little is known regarding the parasite response against different host environments. Methods To identify host-dependent differentially expressed proteins, a comparative proteomic analysis of the excretory/secretory products released from E. caproni adults, isolated from hosts displaying different compatibility with this trematode, was performed. Results A total of 19 differential protein spots were identified (14 overexpressed in mice and 5 overexpressed in rats). The establishment of chronic infections in mice is mainly associated with the overexpression by adult worms of antioxidant and detoxifying enzymes (e.g. glutathione S-transferase, hydroxyacylglutathione hydrolase, thiopurine S-transferase, etc.) and metabolic enzymes like enolase, leucine aminopeptidase or malate dehydrogenase. However, the overexpression of cathepsin L and the structural protein actin observed in worms isolated from rats seems not to be effective for the colonization of the intestinal mucosa of this host. Conclusions The observed differences suggest that protein expression and/or release is modulated by the local environment generated inside the host and provide useful insights in regards to the resistance mechanisms developed by parasites to ensure their long-term survival. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1465-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alba Cortés
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Javier Sotillo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.,Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Carla Muñoz-Antolí
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - María Trelis
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - J Guillermo Esteban
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Rafael Toledo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
19
|
Gonçalves JP, Oliveira-Menezes A, Maldonado A, Carvalho TM, de Souza W. Ultrastructural and cytochemical characterization of T1 and T2 secretory bodies from the tegument of Echinostoma paraensei. Micron 2016; 80:59-65. [DOI: 10.1016/j.micron.2015.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 11/26/2022]
|
20
|
Liu GH, Xu MJ, Song HQ, Wang CR, Zhu XQ. De novo assembly and characterization of the transcriptome of the pancreatic fluke Eurytrema pancreaticum (trematoda: Dicrocoeliidae) using Illumina paired-end sequencing. Gene 2015; 576:333-8. [PMID: 26494161 DOI: 10.1016/j.gene.2015.10.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 10/04/2015] [Accepted: 10/16/2015] [Indexed: 11/27/2022]
Abstract
Eurytrema pancreaticum is one of the most common trematodes living in the pancreatic and bile ducts of ruminants and also occasionally infects humans, causing eurytremiasis. In spite of its economic and medical importance, very little is known about the genomic resources of this parasite. Herein, we performed de novo sequencing, assembly and characterization of the transcriptome of adult E. pancreaticum. Approximately 36.4 million high-quality clean reads were obtained, and the length of the transcript contigs ranged from 66 to 19,968 nt with mean length of 479 nt and N50 length of 1094 nt, and then 23,573 unigenes were assembled. Of these unigenes, 15,353 (65.1%) were annotated by blast searches against the NCBI non-redundant protein database. Among these, 15,267 (64.8%), 2732 (11.6%) and 10,354 (43.9%) of the unigenes had significant similarity with proteins in the NR, NT and Swiss-Prot databases, respectively. 5510 (23.4%) and 4567 (19.4%) unigenes were assigned to GO and COG, respectively. 8886 (37.7%) unigenes were identified and mapped onto 254 pathways in the KEGG Pathway database. Furthermore, we found that 105 (1.18%) unigenes were related to pancreatic secretion and 61 (0.7%) to pancreatic cancer. The present study represents the first transcriptome of any members of the family Dicrocoeliidae, which has little genomic information available in the public databases. The novel transcriptome of E. pancreaticum should provide a useful resource for designing new strategies against pancreatic flukes and other trematodes of human and animal health significance.
Collapse
Affiliation(s)
- Guo-Hua Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Min-Jun Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Hui-Qun Song
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Chun-Ren Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, PR China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, PR China.
| |
Collapse
|
21
|
The revised microRNA complement of Fasciola hepatica reveals a plethora of overlooked microRNAs and evidence for enrichment of immuno-regulatory microRNAs in extracellular vesicles. Int J Parasitol 2015; 45:697-702. [DOI: 10.1016/j.ijpara.2015.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 01/06/2023]
|
22
|
Marcilla A, Martin-Jaular L, Trelis M, de Menezes-Neto A, Osuna A, Bernal D, Fernandez-Becerra C, Almeida IC, Del Portillo HA. Extracellular vesicles in parasitic diseases. J Extracell Vesicles 2014; 3:25040. [PMID: 25536932 PMCID: PMC4275648 DOI: 10.3402/jev.v3.25040] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/29/2014] [Accepted: 10/21/2014] [Indexed: 12/31/2022] Open
Abstract
Parasitic diseases affect billions of people and are considered a major public health issue. Close to 400 species are estimated to parasitize humans, of which around 90 are responsible for great clinical burden and mortality rates. Unfortunately, they are largely neglected as they are mainly endemic to poor regions. Of relevance to this review, there is accumulating evidence of the release of extracellular vesicles (EVs) in parasitic diseases, acting both in parasite–parasite inter-communication as well as in parasite–host interactions. EVs participate in the dissemination of the pathogen and play a role in the regulation of the host immune systems. Production of EVs from parasites or parasitized cells has been described for a number of parasitic infections. In this review, we provide the most relevant findings of the involvement of EVs in intercellular communication, modulation of immune responses, involvement in pathology, and their potential as new diagnostic tools and therapeutic agents in some of the major human parasitic pathogens.
Collapse
Affiliation(s)
- Antonio Marcilla
- Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Valencia, Spain;
| | - Lorena Martin-Jaular
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Maria Trelis
- Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Valencia, Spain
| | - Armando de Menezes-Neto
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Antonio Osuna
- Institute of Biotechnology, Biochemistry and Molecular Parasitology, University of Granada, Granada, Spain
| | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Valencia, Spain
| | - Carmen Fernandez-Becerra
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Igor C Almeida
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Hernando A Del Portillo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
23
|
Muñoz-Antoli C, Cortés A, Sotillo J, Fried B, Esteban JG, Toledo R. Differential expression and glycosylation of proteins in the rat ileal epithelium in response to Echinostoma caproni infection. J Proteomics 2014; 101:169-78. [DOI: 10.1016/j.jprot.2014.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/10/2014] [Accepted: 02/15/2014] [Indexed: 12/29/2022]
|
24
|
Bernal D, Trelis M, Montaner S, Cantalapiedra F, Galiano A, Hackenberg M, Marcilla A. Surface analysis of Dicrocoelium dendriticum. The molecular characterization of exosomes reveals the presence of miRNAs. J Proteomics 2014; 105:232-41. [PMID: 24561797 DOI: 10.1016/j.jprot.2014.02.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/08/2014] [Accepted: 02/12/2014] [Indexed: 12/31/2022]
Abstract
UNLABELLED With the aim of characterizing the molecules involved in the interaction of Dicrocoelium dendriticum adults and the host, we have performed proteomic analyses of the external surface of the parasite using the currently available datasets including the transcriptome of the related species Echinostoma caproni. We have identified 182 parasite proteins on the outermost surface of D. dendriticum. The presence of exosome-like vesicles in the ESP of D. dendriticum and their components has also been characterized. Using proteomic approaches, we have characterized 84 proteins in these vesicles. Interestingly, we have detected miRNA in D. dendriticum exosomes, thus representing the first report of miRNA in helminth exosomes. BIOLOGICAL SIGNIFICANCE In order to identify potential targets for intervention against parasitic helminths, we have analyzed the surface of the parasitic helminth Dicrocoelium dendriticum. Along with the proteomic analyses of the outermost layer of the parasite, our work describes the molecular characterization of the exosomes of D. dendriticum. Our proteomic data confirm the improvement of protein identification from "non-model organisms" like helminths, when using different search engines against a combination of available databases. In addition, this work represents the first report of miRNAs in parasitic helminth exosomes. These vesicles can pack specific proteins and RNAs providing stability and resistance to RNAse digestion in body fluids, and provide a way to regulate host-parasite interplay. The present data should provide a solid foundation for the development of novel methods to control this non-model organism and related parasites. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
- Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Maria Trelis
- Àrea de Parasitologia, Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Av. V.A. Estellès, s/n, 46100 Burjassot, Valencia, Spain
| | - Sergio Montaner
- Àrea de Parasitologia, Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Av. V.A. Estellès, s/n, 46100 Burjassot, Valencia, Spain
| | - Fernando Cantalapiedra
- Àrea de Parasitologia, Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Av. V.A. Estellès, s/n, 46100 Burjassot, Valencia, Spain
| | - Alicia Galiano
- Àrea de Parasitologia, Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Av. V.A. Estellès, s/n, 46100 Burjassot, Valencia, Spain
| | - Michael Hackenberg
- Facultad de Ciencias, Departamento de Genética, Universidad de Granada, 18071 Granada, Spain; Laboratorio de Bioinformática, Instituto de Biotecnología, Centro de Investigación Biomédica, 18100 Granada, Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Av. V.A. Estellès, s/n, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
25
|
Abstract
Paragonimiasis is a zoonotic disease caused by lung flukes of the genus Paragonimus. Humans usually become infected by eating freshwater crabs or crayfish containing encysted metacercariae of these worms. However, an alternative route of infection exists: ingestion of raw meat from a mammalian paratenic host. Adult worms normally occur in pairs in cysts in the lungs from which they void their eggs via air passages. The pulmonary form is typical in cases of human infection due to P. westermani, P. heterotremus, and a few other species (Table 5.1). Worms may occupy other sites in the body, notably the brain, but lung flukes have made their presence felt in almost every organ. Ectopic paragonimiasis is particularly common when infection is due to members of the P. skrjabini complex (Table 5.1). Human paragonimiasis occurs primarily in the tropics and subtropics of Asia, Africa, and the Americas, with different species being responsible in different areas (Table 5.1).
Collapse
Affiliation(s)
- David Blair
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia.
| |
Collapse
|
26
|
Toledo R, Muñoz-Antoli C, Esteban JG. Intestinal Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 766:201-40. [DOI: 10.1007/978-1-4939-0915-5_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Saijuntha W, Sithithaworn P, Kaitsopit N, Andrews RH, Petney TN. Liver flukes: Clonorchis and Opisthorchis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 766:153-99. [PMID: 24903366 DOI: 10.1007/978-1-4939-0915-5_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Weerachai Saijuntha
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham, Thailand,
| | | | | | | | | |
Collapse
|
28
|
Martínez-Sernández V, Mezo M, González-Warleta M, Perteguer MJ, Muiño L, Guitián E, Gárate T, Ubeira FM. The MF6p/FhHDM-1 major antigen secreted by the trematode parasite Fasciola hepatica is a heme-binding protein. J Biol Chem 2013; 289:1441-56. [PMID: 24280214 DOI: 10.1074/jbc.m113.499517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Blood-feeding parasites have developed biochemical mechanisms to control heme intake and detoxification. Here we show that a major antigen secreted by Fasciola hepatica, previously reported as MF6p, of unknown function (gb|CCA61804.1), and as FhHDM-1, considered to be a helminth defense molecule belonging to the family of cathelicidin-like proteins (gb|ADZ24001.1), is in fact a heme-binding protein. The heme-binding nature of the MF6p/FhHDM-1 protein was revealed in two independent experiments: (i) immunopurification of the secreted protein·heme complexes with mAb MF6 and subsequent analysis by C8 reversed-phase HPLC and MS/MS spectrometry and (ii) analysis of the binding ability of the synthetic protein to hemin in vitro. By immunohistochemistry analysis, we have observed that MF6p/FhHDM-1 is produced by parenchymal cells and transported to other tissues (e.g. vitellaria and testis). Interestingly, MF6p/FhHDM-1 is absent both in the intestinal cells and in the lumen of cecum, but it can be released through the tegumental surface to the external medium, where it binds to free heme molecules regurgitated by the parasite after hemoglobin digestion. Proteins that are close analogs of the Fasciola MF6p/FhHDM-1 are present in other trematodes, including Clonorchis, Opistorchis, Paragonimus, Schistosoma, and Dicrocoelium. Using UV-visible spectroscopy and immunoprecipitation techniques, we observed that synthetic MF6p/FhHDM-1 binds to hemin with 1:1 stoichiometry and an apparent Kd of 1.14 × 10(-6) M(-1). We also demonstrated that formation of synthetic MF6p/FhHDM-1·hemin complexes inhibited hemin degradation by hydrogen peroxide and hemin peroxidase-like activity in vitro. Our results suggest that MF6p/FhHDM-1 may be involved in heme homeostasis in trematodes.
Collapse
Affiliation(s)
- Victoria Martínez-Sernández
- From the Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Garg G, Bernal D, Trelis M, Forment J, Ortiz J, Valero ML, Pedrola L, Martinez-Blanch J, Esteban JG, Ranganathan S, Toledo R, Marcilla A. The transcriptome of Echinostoma caproni adults: Further characterization of the secretome and identification of new potential drug targets. J Proteomics 2013; 89:202-14. [DOI: 10.1016/j.jprot.2013.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/04/2013] [Accepted: 06/09/2013] [Indexed: 02/01/2023]
|
30
|
Martínez-Ibeas A, González-Lanza C, Manga-González M. Proteomic analysis of the tegument and excretory–secretory products of Dicrocoelium dendriticum (Digenea) adult worms. Exp Parasitol 2013; 133:411-20. [DOI: 10.1016/j.exppara.2013.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/20/2012] [Accepted: 01/10/2013] [Indexed: 11/29/2022]
|
31
|
Extracellular vesicles from parasitic helminths contain specific excretory/secretory proteins and are internalized in intestinal host cells. PLoS One 2012; 7:e45974. [PMID: 23029346 PMCID: PMC3454434 DOI: 10.1371/journal.pone.0045974] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/23/2012] [Indexed: 11/30/2022] Open
Abstract
The study of host-parasite interactions has increased considerably in the last decades, with many studies focusing on the identification of parasite molecules (i.e. surface or excretory/secretory proteins (ESP)) as potential targets for new specific treatments and/or diagnostic tools. In parallel, in the last few years there have been significant advances in the field of extracellular vesicles research. Among these vesicles, exosomes of endocytic origin, with a characteristic size ranging from 30–100 nm, carry several atypical secreted proteins in different organisms, including parasitic protozoa. Here, we present experimental evidence for the existence of exosome-like vesicles in parasitic helminths, specifically the trematodes Echinostoma caproni and Fasciola hepatica. These microvesicles are actively released by the parasites and are taken up by host cells. Trematode extracellular vesicles contain most of the proteins previously identified as components of ESP, as confirmed by proteomic, immunogold labeling and electron microscopy studies. In addition to parasitic proteins, we also identify host proteins in these structures. The existence of extracellular vesicles explains the secretion of atypical proteins in trematodes, and the demonstration of their uptake by host cells suggests an important role for these structures in host-parasite communication, as described for other infectious agents.
Collapse
|
32
|
Wang X, Chen W, Lv X, Tian Y, Men J, Zhang X, Lei H, Zhou C, Lu F, Liang C, Hu X, Xu J, Wu Z, Li X, Yu X. Identification and characterization of paramyosin from cyst wall of metacercariae implicated protective efficacy against Clonorchis sinensis infection. PLoS One 2012; 7:e33703. [PMID: 22470461 PMCID: PMC3312334 DOI: 10.1371/journal.pone.0033703] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/20/2012] [Indexed: 12/14/2022] Open
Abstract
Human clonorchiasis has been increasingly prevalent in recent years and results in a threat to the public health in epidemic regions, motivating current strategies of vaccines to combat Clonorchis sinensis (C. sinensis). In this study, we identified C. sinensis paramyosin (CsPmy) from the cyst wall proteins of metacercariae by proteomic approaches and characterized the expressed recombinant pET-26b-CsPmy protein (101 kDa). Bioinformatics analysis indicated that full-length sequences of paramyosin are conserved in helminthes and numerous B-cell/T-cell epitopes were predicted in amino acid sequence of CsPmy. Western blot analysis showed that CsPmy was expressed at four life stages of C. sinensis, both cyst wall proteins and soluble tegumental components could be probed by anti-CsPmy serum. Moreover, immunolocalization results revealed that CsPmy was specifically localized at cyst wall and excretory bladder of metacercaria, as well as the tegument, oral sucker and vitellarium of adult worm. Both immunoblot and immunolocalization results demonstrated that CsPmy was highly expressed at the stage of adult worm, metacercariae and cercaria, which could be supported by real-time PCR analysis. Both recombinant protein and nucleic acid of CsPmy showed strong immunogenicity in rats and induced combined Th1/Th2 immune responses, which were reflected by continuous high level of antibody titers and increased level of IgG1/IgG2a subtypes in serum. In vaccine trials, comparing with control groups, both CsPmy protein and DNA vaccine exhibited protective effect with significant worm reduction rate of 54.3% (p<0.05) and 36.1% (p<0.05), respectively. In consistence with immune responses in sera, elevated level of cytokines IFN-γ and IL-4 in splenocytes suggested that CsPmy could induce combined cellular immunity and humoral immunity in host. Taken together, CsPmy could be a promising vaccine candidate in the prevention of C. sinensis regarding its high immunogenicity and surface localization.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wenjun Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoli Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yanli Tian
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jingtao Men
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xifeng Zhang
- Department of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, People's Republic of China
| | - Huali Lei
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Chenhui Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Chi Liang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xuchu Hu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jin Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- * E-mail: (XL); (XY)
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- * E-mail: (XL); (XY)
| |
Collapse
|
33
|
Toledo R, Esteban JG, Fried B. Current status of food-borne trematode infections. Eur J Clin Microbiol Infect Dis 2012; 31:1705-18. [PMID: 22228314 DOI: 10.1007/s10096-011-1515-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/07/2011] [Indexed: 02/01/2023]
Abstract
Food-borne trematodiases constitute an important group of the most neglected tropical diseases, not only in terms of research funding, but also in the public media. The Trematoda class contains a great number of species that infect humans and are recognized as the causative agents of disease. The biological cycle, geographical distribution, and epidemiology of most of these trematode species have been well characterized. Traditionally, these infections were limited, for the most part, in populations living in low-income countries, particularly in Southeast Asia, and were associated with poverty. However, the geographical limits and the population at risk are currently expanding and changing in relation to factors such as growing international markets, improved transportation systems, and demographic changes. The diagnosis of these diseases is based on parasitological techniques and only a limited number of drugs are currently available for treatment, most of which are unspecific. Therefore, in-depth studies are urgently needed in order to clarify the current epidemiology of these helminth infections and to identify new and specific targets for both effective diagnosis and treatment. In this review, we describe the biology, medical and epidemiological features, and current treatment and diagnostic tools of the main groups of flukes and the corresponding diseases.
Collapse
Affiliation(s)
- R Toledo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | | | | |
Collapse
|