1
|
Wu H, Li A, Zhang H, Li S, Yang C, Lv H, Yao Y. Microbial mechanisms for higher hydrogen production in anaerobic digestion at constant temperature versus gradient heating. MICROBIOME 2024; 12:170. [PMID: 39252128 PMCID: PMC11386108 DOI: 10.1186/s40168-024-01908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Clean energy hydrogen (H2) produced from abundant lignocellulose is an alternative to fossil energy. As an essential influencing factor, there is a lack of comparison between constant temperatures (35, 55 and 65 °C) and gradient heating temperature (35 to 65 °C) on the H2 production regulation potential from lignocellulose-rich straw via high-solid anaerobic digestion (HS-AD). More importantly, the microbial mechanism of temperature regulating H2 accumulation needs to be investigated. RESULTS Constant 65 °C led to the lowest lignin residue (1.93%) and the maximum release of cellulose and hemicellulose, and the highest H2 production (26.01 mL/g VS). H2 production at 35 and 55 °C was only 14.56 and 24.13 mL/g VS, respectively. In order to further explore the potential of ultra-high temperature (65 °C), HS-AD was performed by gradient heating conditions (35 to 65 °C). However, compared to constant 65 °C, gradient heating conditions led to higher lignin residue (2.49%) and lower H2 production (13.53 mL/g VS) than gradient heating conditions (47.98%). In addition, metagenomic analysis showed the cellulose/hemicellulose hydrolyzing bacteria and genes (mainly Thermoclostridium, and xynA, xynB, abfA, bglB and xynD), H2-producing bacteria and related genes (mainly Thermoclostridium, and nifD, nifH and nifK), and microbial movement and metabolic functions were enriched at 65 °C. However, the enrichment of two-component systems under gradient heating conditions resulted in a lack of highly-enriched ultra-high-temperature cellulose/hemicellulose hydrolyzing genera and related genes but rather enriched H2 consumption genera and genes (mainly Acetivibrio, and hyaB and hyaA) resulting in a weaker H2 production. CONCLUSIONS The lignin degradation process does not directly determine H2 accumulation, which was actually regulated by bacteria/genes contributing to H2 production/consumption. In addition, it is temperature that enhances the hydrolysis process of lignin rather than lignin-degrading enzymes, bacteria and genes by promoting microbial material transfer and metabolism. In terms of temperature, one of the key parameters of HS-AD for H2 production, we developed an important regulatory strategy, enriched the theoretical basis of temperature regulation for H2 production to further expanded the research horizon in this field. Video Abstract.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Huaiwen Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Suqi Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Caiyun Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Hongyi Lv
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yiqing Yao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
2
|
Dixit M, Shukla P. Analysis of endoglucanases production using metatranscriptomics and proteomics approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:211-231. [PMID: 38220425 DOI: 10.1016/bs.apcsb.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The cellulases are among the most used enzyme in industries for various purposes. They add up to the green economy perspective and cost-effective production of enterprises. Biorefineries, paper industries, and textile industries are foremost in their usage. The production of endoglucanases from microorganisms is a valuable resource and can be exploited with the help of biotechnology. The present review provides some insight into the uses of endoglucanases in different industries and the potent fungal source of these enzymes. The advances in the enzyme technology has helped towards understanding some pathways to increase the production of industrial enzymes from microorganisms. The proteomics analysis and systems biology tools also help to identify these pathways for the enhanced production of such enzymes. This review deciphers the use of proteomics tools to analyze the potent microorganisms and identify suitable culture conditions to increase the output of endoglucanases. The review also includes the role of quantitative proteomics which is a powerful technique to get results faster and more timely. The role of metatranscriptomic approaches are also described which are helpful in the enzyme engineering for their efficient use under industrial conditions. Conclusively, this review helps to understand the challenges faced in the industrial use of endoglucanases and their further improvement.
Collapse
Affiliation(s)
- Mandeep Dixit
- Department of Botany, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
3
|
García-Calvo L, Rodríguez-Castro R, Ullán RV, Albillos SM, Fernández-Aguado M, Vicente CM, Degnes KF, Sletta H, Barreiro C. Penicillium chrysogenum as a fungal factory for feruloyl esterases. Appl Microbiol Biotechnol 2023; 107:691-717. [PMID: 36595038 DOI: 10.1007/s00253-022-12335-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 01/04/2023]
Abstract
Plant biomass is a promising substrate for biorefinery, as well as a source of bioactive compounds, platform chemicals, and precursors with multiple industrial applications. These applications depend on the hydrolysis of its recalcitrant structure. However, the effective biological degradation of plant cell walls requires several enzymatic groups acting synergistically, and novel enzymes are needed in order to achieve profitable industrial hydrolysis processes. In the present work, a feruloyl esterase (FAE) activity screening of Penicillium spp. strains revealed a promising candidate (Penicillium rubens Wisconsin 54-1255; previously Penicillium chrysogenum), where two FAE-ORFs were identified and subsequently overexpressed. Enzyme extracts were analyzed, confirming the presence of FAE activity in the respective gene products (PrFaeA and PrFaeB). PrFaeB-enriched enzyme extracts were used to determine the FAE activity optima (pH 5.0 and 50-55 °C) and perform proteome analysis by means of MALDI-TOF/TOF mass spectrometry. The studies were completed with the determination of other lignocellulolytic activities, an untargeted metabolite analysis, and upscaled FAE production in stirred tank reactors. The findings described in this work present P. rubens as a promising lignocellulolytic enzyme producer. KEY POINTS: • Two Penicillium rubens ORFs were first confirmed to have feruloyl esterase activity. • Overexpression of the ORFs produced a novel P. rubens strain with improved activity. • The first in-depth proteomic study of a P. rubens lignocellulolytic extract is shown.
Collapse
Affiliation(s)
- Laura García-Calvo
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Raquel Rodríguez-Castro
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
| | - Ricardo V Ullán
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain.
- mAbxience, Upstream Production, Parque Tecnológico de León, Julia Morros, S/N, Armunia, 24009, León, Spain.
| | - Silvia M Albillos
- Área de Bioquímica Y Biología Molecular, Departamento de Biotecnología Y Ciencia de los Alimentos, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Marta Fernández-Aguado
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
| | - Cláudia M Vicente
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077, Toulouse, France
| | - Kristin F Degnes
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands Vei 3 B, 7034, Trondheim, Norway
| | - Håvard Sletta
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands Vei 3 B, 7034, Trondheim, Norway
| | - Carlos Barreiro
- Área de Bioquímica Y Biología Molecular, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24007, León, Spain.
| |
Collapse
|
4
|
Bhalla A, Arce J, Ubanwa B, Singh G, Sani RK, Balan V. Thermophilic Geobacillus WSUCF1 Secretome for Saccharification of Ammonia Fiber Expansion and Extractive Ammonia Pretreated Corn Stover. Front Microbiol 2022; 13:844287. [PMID: 35694290 PMCID: PMC9176393 DOI: 10.3389/fmicb.2022.844287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
A thermophilic Geobacillus bacterial strain, WSUCF1 contains different carbohydrate-active enzymes (CAZymes) capable of hydrolyzing hemicellulose in lignocellulosic biomass. We used proteomic, genomic, and bioinformatic tools, and genomic data to analyze the relative abundance of cellulolytic, hemicellulolytic, and lignin modifying enzymes present in the secretomes. Results showed that CAZyme profiles of secretomes varied based on the substrate type and complexity, composition, and pretreatment conditions. The enzyme activity of secretomes also changed depending on the substrate used. The secretomes were used in combination with commercial and purified enzymes to carry out saccharification of ammonia fiber expansion (AFEX)-pretreated corn stover and extractive ammonia (EA)-pretreated corn stover. When WSUCF1 bacterial secretome produced at different conditions was combined with a small percentage of commercial enzymes, we observed efficient saccharification of EA-CS, and the results were comparable to using a commercial enzyme cocktail (87% glucan and 70% xylan conversion). It also opens the possibility of producing CAZymes in a biorefinery using inexpensive substrates, such as AFEX-pretreated corn stover and Avicel, and eliminates expensive enzyme processing steps that are used in enzyme manufacturing. Implementing in-house enzyme production is expected to significantly reduce the cost of enzymes and biofuel processing cost.
Collapse
Affiliation(s)
- Aditya Bhalla
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
- Department of Chemistry, Biology and Health Science, South Dakota School of Mines and Technology, Rapid City, SD, United States
- Great Lakes Bioenergy Center, Michigan State University, East Lansing, MI, United States
| | - Jessie Arce
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, United States
| | - Bryan Ubanwa
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, United States
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, India
| | - Rajesh K. Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
- Department of Chemistry, Biology and Health Science, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Venkatesh Balan
- Great Lakes Bioenergy Center, Michigan State University, East Lansing, MI, United States
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, United States
- *Correspondence: Venkatesh Balan,
| |
Collapse
|
5
|
Rice Industry By-Products as Adsorbent Materials for Removing Fluoride and Arsenic from Drinking Water—A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In drinking water, high concentrations of fluoride and arsenic can have adverse effects on human health. Waste deriving from the rice industry (rice husk, rice straw, rice bran) can be promising adsorbent materials, because they are (i) produced in large quantities in many parts of the world, (ii) recoverable in a circular economy perspective, (iii) at low cost if compared to expensive conventional activated carbon, and (iv) easily manageable even in developing countries. For the removal of fluoride, rice husk and rice straw allowed to obtain adsorption capacities in the range of 7.9–15.2 mg/g. Using rice husk for arsenic adsorption, excellent results were achieved with adsorption capacities above 19 mg/g. The best results both for fluorides and arsenic (>50 mg/g) were found with metal- or chemical-modified rice straw and rice husk. Identifying the next steps of future research to ensure the upscaling of biochar from recovered by-products, it is fundamental to perform: (i) tests on real waters for multicomponent adsorption; (ii) experiments with pilot plants in continuous operation; (iii) cost analysis/real applicability of modification treatments such as metal coupling or chemical synthesis; (iv) more studies on the biochar stability and on its regeneration or recovery after use.
Collapse
|
6
|
Hegde GM, Aditya S, Wangdi D, Chetri BK. Mycoremediation: A Natural Solution for Unnatural Problems. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Wendt LM, Wahlen BD, Walton MR, Nguyen JA, Lin Y, Brown RM, Zhao H. Exploring filamentous fungi depolymerization of corn stover in the context bioenergy queuing operations. Food Energy Secur 2021. [DOI: 10.1002/fes3.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lynn M. Wendt
- Idaho National Laboratory Idaho Falls Idaho USA
- University of Idaho Idaho Falls Idaho USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Khalil H, Legin E, Kurek B, Perre P, Taidi B. Morphological growth pattern of Phanerochaete chrysosporium cultivated on different Miscanthus x giganteus biomass fractions. BMC Microbiol 2021; 21:318. [PMID: 34784888 PMCID: PMC8597199 DOI: 10.1186/s12866-021-02350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Solid-state fermentation is a fungal culture technique used to produce compounds and products of industrial interest. The growth behaviour of filamentous fungi on solid media is challenging to study due to the intermixity of the substrate and the growing organism. Several strategies are available to measure indirectly the fungal biomass during the fermentation such as following the biochemical production of mycelium-specific components or microscopic observation. The microscopic observation of the development of the mycelium, on lignocellulosic substrate, has not been reported. In this study, we set up an experimental protocol based on microscopy and image processing through which we investigated the growth pattern of Phanerochaete chrysosporium on different Miscanthus x giganteus biomass fractions. RESULTS Object coalescence, the occupied surface area, and radial expansion of the colony were measured in time. The substrate was sterilized by autoclaving, which could be considered a type of pre-treatment. The fastest growth rate was measured on the unfractionated biomass, followed by the soluble fraction of the biomass, then the residual solid fractions. The growth rate on the different fractions of the substrate was additive, suggesting that both the solid and soluble fractions were used by the fungus. Based on the FTIR analysis, there were differences in composition between the solid and soluble fractions of the substrate, but the main components for growth were always present. We propose using this novel method for measuring the very initial fungal growth by following the variation of the number of objects over time. Once growth is established, the growth can be followed by measurement of the occupied surface by the mycelium. CONCLUSION Our data showed that the growth was affected from the very beginning by the nature of the substrate. The most extensive colonization of the surface was observed with the unfractionated substrate containing both soluble and solid components. The methodology was practical and may be applied to investigate the growth of other fungi, including the influence of environmental parameters on the fungal growth.
Collapse
Affiliation(s)
- Hassan Khalil
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110, Pomacle, France
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| | - Estelle Legin
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| | - Bernard Kurek
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| | - Patrick Perre
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110, Pomacle, France
- LGPM, CentraleSupélec, Université Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France
| | - Behnam Taidi
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110, Pomacle, France.
- LGPM, CentraleSupélec, Université Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
9
|
Daou M, Bisotto A, Haon M, Oliveira Correia L, Cottyn B, Drula E, Garajová S, Bertrand E, Record E, Navarro D, Raouche S, Baumberger S, Faulds CB. A Putative Lignin Copper Oxidase from Trichoderma reesei. J Fungi (Basel) 2021; 7:jof7080643. [PMID: 34436182 PMCID: PMC8400822 DOI: 10.3390/jof7080643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
The ability of Trichoderma reesei, a fungus widely used for the commercial production of hemicellulases and cellulases, to grow and modify technical soda lignin was investigated. By quantifying fungal genomic DNA, T. reesei showed growth and sporulation in solid and liquid cultures containing lignin alone. The analysis of released soluble lignin and residual insoluble lignin was indicative of enzymatic oxidative conversion of phenolic lignin side chains and the modification of lignin structure by cleaving the β-O-4 linkages. The results also showed that polymerization reactions were taking place. A proteomic analysis conducted to investigate secreted proteins at days 3, 7, and 14 of growth revealed the presence of five auxiliary activity (AA) enzymes in the secretome: AA6, AA9, two AA3 enzymes), and the only copper radical oxidase encoded in the genome of T. reesei. This enzyme was heterologously produced and characterized, and its activity on lignin-derived molecules was investigated. Phylogenetic characterization demonstrated that this enzyme belonged to the AA5_1 family, which includes characterized glyoxal oxidases. However, the enzyme displayed overlapping physicochemical and catalytic properties across the AA5 family. The enzyme was remarkably stable at high pH and oxidized both, alcohols and aldehydes with preference to the alcohol group. It was also active on lignin-derived phenolic molecules as well as simple carbohydrates. HPSEC and LC-MS analyses on the reactions of the produced protein on lignin dimers (SS ββ, SS βO4 and GG β5) uncovered the polymerizing activity of this enzyme, which was accordingly named lignin copper oxidase (TrLOx). Polymers of up 10 units were formed by hydroxy group oxidation and radical formation. The activations of lignin molecules by TrLOx along with the co-secretion of this enzyme with reductases and FAD flavoproteins oxidoreductases during growth on lignin suggest a synergistic mechanism for lignin breakdown.
Collapse
Affiliation(s)
- Mariane Daou
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Alexandra Bisotto
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Mireille Haon
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Lydie Oliveira Correia
- PAPPSO Platform, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| | - Betty Cottyn
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (B.C.); (S.B.)
| | - Elodie Drula
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Soňa Garajová
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Emmanuel Bertrand
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Eric Record
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - David Navarro
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
- CIRM-CF BBF, INRAE, Aix Marseille University, 13288 Marseille, France
| | - Sana Raouche
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Stéphanie Baumberger
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (B.C.); (S.B.)
| | - Craig B. Faulds
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
- Correspondence:
| |
Collapse
|
10
|
Li M, Yu L, Zhao J, Zhang H, Chen W, Zhai Q, Tian F. Role of dietary edible mushrooms in the modulation of gut microbiota. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104538] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
11
|
Fungal Treatment for the Valorization of Technical Soda Lignin. J Fungi (Basel) 2021; 7:jof7010039. [PMID: 33435491 PMCID: PMC7827817 DOI: 10.3390/jof7010039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/21/2022] Open
Abstract
Technical lignins produced as a by-product in biorefinery processes represent a potential source of renewable carbon. In consideration of the possibilities of the industrial transformation of this substrate into various valuable bio-based molecules, the biological deconstruction of a technical soda lignin by filamentous fungi was investigated. The ability of three basidiomycetes (Polyporus brumalis, Pycnoporus sanguineus and Leiotrametes menziesii) to modify this material, the resultant structural and chemical changes, and the secreted proteins during growth on this substrate were investigated. The three fungi could grow on the technical lignin alone, and the growth rate increased when the media were supplemented with glucose or maltose. The proteomic analysis of the culture supernatants after three days of growth revealed the secretion of numerous Carbohydrate-Active Enzymes (CAZymes). The secretomic profiles varied widely between the strains and the presence of technical lignin alone triggered the early secretion of many lignin-acting oxidoreductases. The secretomes were notably rich in glycoside hydrolases and H2O2-producing auxiliary activity enzymes with copper radical oxidases being induced on lignin for all strains. The lignin treatment by fungi modified both the soluble and insoluble lignin fractions. A significant decrease in the amount of soluble higher molar mass compounds was observed in the case of P. sanguineus. This strain was also responsible for the modification of the lower molar mass compounds of the lignin insoluble fraction and a 40% decrease in the thioacidolysis yield. The similarity in the activities of P. sanguineus and P. brumalis in modifying the functional groups of the technical lignin were observed, the results suggest that the lignin has undergone structural changes, or at least changes in its composition, and pave the route for the utilization of filamentous fungi to functionalize technical lignins and produce the enzymes of interest for biorefinery applications.
Collapse
|
12
|
Arntzen MØ, Bengtsson O, Várnai A, Delogu F, Mathiesen G, Eijsink VGH. Quantitative comparison of the biomass-degrading enzyme repertoires of five filamentous fungi. Sci Rep 2020; 10:20267. [PMID: 33219291 PMCID: PMC7679414 DOI: 10.1038/s41598-020-75217-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 10/07/2020] [Indexed: 12/26/2022] Open
Abstract
The efficiency of microorganisms to degrade lignified plants is of great importance in the Earth's carbon cycle, but also in industrial biorefinery processes, such as for biofuel production. Here, we present a large-scale proteomics approach to investigate and compare the enzymatic response of five filamentous fungi when grown on five very different substrates: grass (sugarcane bagasse), hardwood (birch), softwood (spruce), cellulose and glucose. The five fungi included the ascomycetes Aspergillus terreus, Trichoderma reesei, Myceliophthora thermophila, Neurospora crassa and the white-rot basidiomycete Phanerochaete chrysosporium, all expressing a diverse repertoire of enzymes. In this study, we present comparable quantitative protein abundance values across five species and five diverse substrates. The results allow for direct comparison of fungal adaptation to the different substrates, give indications as to the substrate specificity of individual carbohydrate-active enzymes (CAZymes), and reveal proteins of unknown function that are co-expressed with CAZymes. Based on the results, we present a quantitative comparison of 34 lytic polysaccharide monooxygenases (LPMOs), which are crucial enzymes in biomass deconstruction.
Collapse
Affiliation(s)
- Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| | - Oskar Bengtsson
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Francesco Delogu
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| |
Collapse
|
13
|
Ruiz-Lara A, Fierro F, Carrasco U, Oria J, Tomasini A. Proteomic analysis of the response of Rhizopus oryzae ENHE to pentachlorophenol: Understanding the mechanisms for tolerance and degradation of this toxic compound. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Machado AS, Valadares F, Silva TF, Milagres AMF, Segato F, Ferraz A. The Secretome of Phanerochaete chrysosporium and Trametes versicolor Grown in Microcrystalline Cellulose and Use of the Enzymes for Hydrolysis of Lignocellulosic Materials. Front Bioeng Biotechnol 2020; 8:826. [PMID: 32766234 PMCID: PMC7379840 DOI: 10.3389/fbioe.2020.00826] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/29/2020] [Indexed: 12/26/2022] Open
Abstract
The ability of white-rot fungi to degrade polysaccharides in lignified plant cell walls makes them a suitable reservoir for CAZyme prospects. However, to date, CAZymes from these species are barely studied, which limits their use in the set of choices for biomass conversion in modern biorefineries. The current work joined secretome studies of two representative white-rot fungi, Phanerochaete chrysosporium and Trametes versicolor, with expression analysis of cellobiohydrolase (CBH) genes, and use of the secretomes to evaluate enzymatic conversion of simple and complex sugarcane-derived substrates. Avicel was used to induce secretion of high levels of CBHs in the extracellular medium. A total of 56 and 58 proteins were identified in cultures of P. chrysosporium and T. versicolor, respectively, with 78-86% of these proteins corresponding to plant cell wall degrading enzymes (cellulolytic, hemicellulolytic, pectinolytic, esterase, and auxiliary activity). CBHI predominated among the plant cell wall degrading enzymes, corresponding to 47 and 34% of the detected proteins in P. chrysosporium and T. versicolor, respectively, which confirms that Avicel is an efficient CBH inducer in white-rot fungi. The induction by Avicel of genes encoding CBHs (cel) was supported by high expression levels of cel7D and cel7C in P. chrysosporium and T. versicolor, respectively. Both white-rot fungi secretomes enabled hydrolysis experiments at 10 FPU/g substrate, despite the varied proportions of CBHs and other enzymes present in each case. When low recalcitrance sugarcane pith was used as a substrate, P. chrysosporium and T. versicolor secretomes performed similarly to Cellic® CTec2. However, the white-rot fungi secretomes were less efficient than Cellic® CTec2 during hydrolysis of more recalcitrant substrates, such as acid or alkaline sulfite-pretreated sugarcane bagasse, likely because Cellic® CTec2 contains an excess of CBHs compared with the white-rot fungi secretomes. General comparison of the white-rot fungi secretomes highlighted T. versicolor enzymes for providing high glucan conversions, even at lower proportion of CBHs, probably because the other enzymes present in this secretome and CBHs lacking carbohydrate-binding modules compensate for problems associated with unproductive binding to lignin.
Collapse
Affiliation(s)
| | | | | | | | | | - André Ferraz
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, Brazil
| |
Collapse
|
15
|
Liu J, Yang J, Wang R, Liu L, Zhang Y, Bao H, Jang JM, Wang E, Yuan H. Comparative characterization of extracellular enzymes secreted by Phanerochaete chrysosporium during solid-state and submerged fermentation. Int J Biol Macromol 2020; 152:288-294. [DOI: 10.1016/j.ijbiomac.2020.02.256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 01/22/2023]
|
16
|
Naidu Y, Siddiqui Y, Idris AS. Comprehensive studies on optimization of ligno-hemicellulolytic enzymes by indigenous white rot hymenomycetes under solid-state cultivation using agro-industrial wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 259:110056. [PMID: 31929034 DOI: 10.1016/j.jenvman.2019.110056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/11/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
The disposal of oil palm biomass is a huge challenge in Malaysian oil palm plantations. The aim of this study was to develop efficient solid-state cultivated (SSC) ligno-hemicellulolytic bio-degrader formulations of indigenous white-rot hymenomycetes (Trametes lactinea FBW and Pycnoporus sanguineus FBR) utilizing oil palm empty fruit bunches (EFB), rubber wood sawdust (SD) and vermiculite (V) either alone or in combination as substrates. Based on significant laccase (849.40 U mg-1 protein), xylanase (42.26 U g-1 protein) and amylase (157.49 U g-1 protein) production, SD+V (T5) and V (T3) were the optimum substrates for SSC of T. lactinea FBW. Whereas, utilizing EFB (T1) substrate for SSC of P. sanguineus FBR enhanced the production of MnP (42.51 U mg-1 protein), LiP (103.20 U mg-1 protein) and CMCase (34.39 U g-1 protein), enzymes. Apparently, this is the first study reporting on the protein profiles by T. lactinea FBW, producing two isoforms of un-purified laccase (~55 and 70 kDa) and MnP (~40 and 60 kDa) and a CMCase band (~60 kDa) during SSC on SD+V (T5) substrate. Interestingly, this is also the first report to document a single isoform of un-purified laccase (~50 kDa), MnP (~45 kDa), CMCase (~60 kDa) and xylanase (~55 kDa) by P. sanguineus FBR during SSC on empty fruit bunches substrate. The computed Principal Component Analysis (PCA) Biplot analysis elucidated the relationship between the solid substrate compositions, the hymenomycete strain, ligno-hemicellulolytic enzyme profiles, and cultivation time. Therefore, it is suggested to use PCA as a tool for multivariate analysis method for comprehensive selection and optimization of ligno-hemicellulolytic enzyme cocktails by the indigenous white rot hymenomycetes. These non-toxic (acute oral toxicity) formulations are safe to be used in field applications to efficiently degrade oil palm trunks and root mass that had been felled, chipped or pulverized under zero burning waste management program. This study could also serve as an alternative method for efficient utilization of agro-industrial waste as substrates for the development of cost-effective bio-degraders formulations for agro-waste management.
Collapse
Affiliation(s)
- Yuvarani Naidu
- Biology Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Yasmeen Siddiqui
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Abu Seman Idris
- Biology Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
17
|
Valadares F, Gonçalves TA, Damasio A, Milagres AM, Squina FM, Segato F, Ferraz A. The secretome of two representative lignocellulose-decay basidiomycetes growing on sugarcane bagasse solid-state cultures. Enzyme Microb Technol 2019; 130:109370. [PMID: 31421724 DOI: 10.1016/j.enzmictec.2019.109370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022]
Abstract
Secretome evaluations of lignocellulose-decay basidiomycetes can reveal new enzymes in selected fungal species that degrade specific substrates. Proteins discovered in such studies can support biorefinery development. Brown-rot (Gloeophyllum trabeum) and white-rot (Pleurotus ostreatus) fungi growing in sugarcane bagasse solid-state cultures produced 119 and 63 different extracellular proteins, respectively. Several of the identified enzymes are suitable for in vitro biomass conversion, including a range of cellulases (endoglucanases, cellobiohydrolases and β-glucosidases), hemicellulases (endoxylanases, α-arabinofuranosidases, α-glucuronidases and acetylxylan esterases) and carbohydrate-active auxiliary proteins, such as AA9 lytic polysaccharide monooxygenase, AA1 laccase and AA2 versatile peroxidase. Extracellular oxalate decarboxylase was also detected in both fungal species, exclusively in media containing sugarcane bagasse. Interestingly, intracellular AA6 quinone oxidoreductases were also exclusively produced under sugarcane bagasse induction in both fungi. These enzymes promote quinone redox cycling, which is used to produce Fenton's reagents by lignocellulose-decay fungi. Hitherto undiscovered hypothetical proteins that are predicted in lignocellulose-decay fungi genomes appeared in high relative abundance in the cultures containing sugarcane bagasse, which suggests undisclosed, new biochemical mechanisms that are used by lignocellulose-decay fungi to degrade sugarcane biomass. In general, lignocellulose-decay fungi produce a number of canonical hydrolases, as well as some newly observed enzymes, that are suitable for in vitro biomass digestion in a biorefinery context.
Collapse
Affiliation(s)
- Fernanda Valadares
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810, Lorena, SP, Brazil
| | - Thiago A Gonçalves
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, 18023-000 Sorocaba, SP, Brazil; Institute of Biology, University of Campinas (UNICAMP), 13080-655, Campinas, SP, Brazil
| | - André Damasio
- Institute of Biology, University of Campinas (UNICAMP), 13080-655, Campinas, SP, Brazil
| | - Adriane Mf Milagres
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810, Lorena, SP, Brazil
| | - Fabio M Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - Fernando Segato
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810, Lorena, SP, Brazil
| | - André Ferraz
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810, Lorena, SP, Brazil.
| |
Collapse
|
18
|
Adav SS, Park JE, Sze SK. Quantitative profiling brain proteomes revealed mitochondrial dysfunction in Alzheimer's disease. Mol Brain 2019; 12:8. [PMID: 30691479 PMCID: PMC6350377 DOI: 10.1186/s13041-019-0430-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/22/2019] [Indexed: 11/10/2022] Open
Abstract
Mitochondrial dysfunction is a key feature in both aging and neurodegenerative diseases including Alzheimer’s disease (AD), but the molecular signature that distinguishes pathological changes in the AD from healthy aging in the brain mitochondria remain poorly understood. In order to unveil AD specific mitochondrial dysfunctions, this study adopted a discovery-driven approach with isobaric tag for relative and absolute quantitation (iTRAQ) and label-free quantitative proteomics, and profiled the mitochondrial proteomes in human brain tissues of healthy and AD individuals. LC-MS/MS-based iTRAQ quantitative proteomics approach revealed differentially altered mitochondriomes that distinguished the AD’s pathophysiology-induced from aging-associated changes. Our results showed that dysregulated mitochondrial complexes including electron transport chain (ETC) and ATP-synthase are the potential driver for pathology of the AD. The iTRAQ results were cross-validated with independent label-free quantitative proteomics experiments to confirm that the subunit of electron transport chain complex I, particularly NDUFA4 and NDUFA9 were altered in AD patients, suggesting destabilization of the junction between membrane and matrix arms of mitochondrial complex I impacted the mitochondrial functions in the AD. iTRAQ quantitative proteomics of brain mitochondriomes revealed disparity in healthy aging and age-dependent AD.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Biological Sciences, Division of Structural Biology and Biochemistry, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore. .,Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore.
| | - Jung Eun Park
- School of Biological Sciences, Division of Structural Biology and Biochemistry, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Division of Structural Biology and Biochemistry, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
19
|
Cellulose as Potential Feedstock for Cellulase Enzyme Production: Versatility and Properties of Various Cellulosic Biomass – Part II. Fungal Biol 2019. [DOI: 10.1007/978-3-030-14726-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Role of the antioxidant defense system during the production of lignocellulolytic enzymes by fungi. Int Microbiol 2018; 22:255-264. [PMID: 30810986 DOI: 10.1007/s10123-018-00045-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022]
Abstract
Fungi are used for the production of several compounds and the efficiency of biotechnological processes is directly related to the metabolic activity of these microorganisms. The reactions catalyzed by lignocellulolytic enzymes are oxidative and generate reactive oxygen species (ROS). Excess of ROS can cause serious damages to cells, including cell death. Thus, the objective of this work was to evaluate the lignocellulolytic enzymes produced by Pleurotus sajor-caju CCB020, Phanerochaete chrysosporium ATCC 28326, Trichoderma reesei RUT-C30, and Aspergillus niger IZ-9 grown in sugarcane bagasse and two yeast extract (YE) concentrations and characterize the antioxidant defense system of fungal cells by the activities of superoxide dismutase (SOD) and catalase (CAT). Pleurotus sajor-caju exhibited the highest activities of laccase and peroxidase in sugarcane bagasse with 2.6 g of YE and an increased activity of manganese peroxidase in sugarcane bagasse with 1.3 g of YE was observed. However, P. chrysosporium showed the highest activities of exoglucanase and endoglucanase in sugarcane bagasse with 1.3 g of YE. Lipid peroxidation and variations in SOD and CAT activities were observed during the production of lignocellulolytic enzymes and depending on the YE concentrations. The antioxidant defense system was induced in response to the oxidative stress caused by imbalances between the production and the detoxification of ROS.
Collapse
|
21
|
Guo H, Wang XD, Lee DJ. Proteomic researches for lignocellulose-degrading enzymes: A mini-review. BIORESOURCE TECHNOLOGY 2018; 265:532-541. [PMID: 29884341 DOI: 10.1016/j.biortech.2018.05.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 05/14/2023]
Abstract
Protective action of lignin/hemicellulose networks and crystalline structures of embedded cellulose render lignocellulose material resistant to external enzymatic attack. To eliminate this bottleneck, research has been conducted in which advanced proteomic techniques are applied to identify effective commercial hydrolytic enzymes. This mini-review summarizes researches on lignocellulose-degrading enzymes, the mechanisms of the responses of various lignocellulose-degrading strains and microbial communities to various carbon sources and various biomass substrates, post-translational modifications of lignocellulose-degrading enzymes, new lignocellulose-degrading strains, new lignocellulose-degrading enzymes and a new method of secretome analysis. The challenges in the practical use of enzymatic hydrolysis process to realize lignocellulose biorefineries are discussed, along with the prospects for the same.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xiao-Dong Wang
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China; School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
22
|
Identification of Key Components for the Optimization of Cellulase Mixtures Using a Proteomic Strategy. Methods Mol Biol 2018. [PMID: 29856050 DOI: 10.1007/978-1-4939-7877-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Efficient degradation of complex lignocellulosic materials requires the synergistic action of different types of enzymes. Characterizing the compositions of lignocellulolytic enzyme mixtures could provide comprehensive understandings about the enzymatic degradation of lignocelluloses. In this chapter, we present a proteomic strategy for the analysis of enzyme mixtures produced by lignocellulolytic fungi. The described method is easy to carry out and is suitable to determine the composition of lignocellulolytic enzyme mixtures in a semiquantitative manner. Comparison of the compositions of enzyme mixtures with different degrading efficiencies allows for the identification of candidate targets for the optimization of lignocellulolytic enzyme mixtures.
Collapse
|
23
|
Jiang F, Ma L, Cai R, Ma Q, Guo G, Du L, Xiao D. Efficient crude multi-enzyme produced by Trichoderma reesei using corncob for hydrolysis of lignocellulose. 3 Biotech 2017; 7:339. [PMID: 28955636 DOI: 10.1007/s13205-017-0982-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/15/2017] [Indexed: 01/02/2023] Open
Abstract
To improve the efficiency of enzymatic saccharification for lignocellulose, an efficient crude multi-enzyme was produced by Trichoderma reesei using corncob, a low cost inducer. Expression of cbh1, bgl1, egl1, xyn1 and positive regulator xyr1 induced by corncob increased significantly compared to that by cellulose. After 120 h induction by corncob, enzymatic activities on filter, CMC, β-glucose and xylan increased 86.5, 46.9, 120.9 and 291.2% compared to those induced by cellulose, and the concentration of secreted protein increased by 120.8%. FPase:β-glucosidase and FPase:xylanase values in crude multi-enzyme I (ECI, induced by corncob) were higher than that in crude multi-enzyme II (ECII, induced by cellulose). Under the same hydrolysis conditions, the volume dosage of ECI was only half of ECII, but ECI still showed a maximum of 12.5 and 33.4% higher than ECII in the total reducing sugar and glucose yield in lignocellulose hydrolysis. Corncob could be a candidate for low cost production of multi-enzyme for efficient lignocellulose degradation, and this work could guide the genetic modification of T. reesei to obtain efficient multi-enzyme for lignocellulose hydrolysis.
Collapse
Affiliation(s)
- Fengchao Jiang
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| | - Lijuan Ma
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| | - Rui Cai
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| | - Qing Ma
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| | - Gaojie Guo
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| | - Liping Du
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| | - Dongguang Xiao
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| |
Collapse
|
24
|
Diling C, Chaoqun Z, Jian Y, Jian L, Jiyan S, Yizhen X, Guoxiao L. Immunomodulatory Activities of a Fungal Protein Extracted from Hericium erinaceus through Regulating the Gut Microbiota. Front Immunol 2017; 8:666. [PMID: 28713364 PMCID: PMC5492111 DOI: 10.3389/fimmu.2017.00666] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/22/2017] [Indexed: 12/22/2022] Open
Abstract
A single-band protein (HEP3) was isolated from Hericium erinaceus using a chemical separation combined with pharmacodynamic evaluation methods. This protein exhibited immunomodulatory activity in lipopolysaccharide-activated RAW 264.7 macrophages by decreasing the overproduction of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, and downregulating the expression of inducible nitric oxide synthase and nuclear factor-κB p65. Further researches revealed that HEP3 could improve the immune system via regulating the composition and metabolism of gut microbiota to activate the proliferation and differentiation of T cells, stimulate the intestinal antigen-presenting cells in high-dose cyclophosphamide-induced immunotoxicity in mice, and play a prebiotic role in the case of excessive antibiotics in inflammatory bowel disease model mice. Aided experiments also showed that HEP3 could be used as an antitumor immune inhibitor in tumor-burdened mice. The results of the present study suggested that fungal protein from H. erinaceus could be used as a drug or functional food ingredient for immunotherapy because of its immunomodulatory activities.
Collapse
Affiliation(s)
- Chen Diling
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Zheng Chaoqun
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,College of Chinese Materia Medica, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yang Jian
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Li Jian
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,College of Chinese Materia Medica, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Su Jiyan
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Xie Yizhen
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, China
| | - Lai Guoxiao
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,College of Chinese Materia Medica, Guangxi University of Traditional Chinese Medicine, Nanning, China
| |
Collapse
|
25
|
Cai Y, Gong Y, Liu W, Hu Y, Chen L, Yan L, Zhou Y, Bian Y. Comparative secretomic analysis of lignocellulose degradation by Lentinula edodes grown on microcrystalline cellulose, lignosulfonate and glucose. J Proteomics 2017; 163:92-101. [PMID: 28483534 DOI: 10.1016/j.jprot.2017.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/13/2017] [Accepted: 04/26/2017] [Indexed: 11/18/2022]
Abstract
Lentinula edodes has the potential to degrade woody and nonwoody lignocellulosic biomass. However, the mechanism of lignocellulose degradation by L. edodes is unclear. The aim of this work is to explore the profiling of soluble secreted proteins involved in lignocellulose degradation in L. edodes. For that, we compared the secretomes of L. edodes grown on microcrystalline cellulose, cellulose with lignosulfonate and glucose. Based on nanoliquid chromatography coupled with tandem mass spectrometry of whole-protein hydrolysate, 230 proteins were identified. Label-free proteomic analysis showed that the most abundant carbohydrate-active enzymes involved in polysaccharide hydrolysis were endo-β-1,4-glucanase, α-galactosidase, polygalacturonase and glucoamylase in both cellulosic secretomes. In contrast, enzymes involved in lignin degradation were most abundant in glucose culture, with laccase 1 being the predominant protein (13.13%). When the cellulose and cellulose with lignosulfonate secretomes were compared, the abundance of cellulases and hemicellulases was higher in cellulose with lignosulfonate cultures, which was confirmed by enzyme activity assays. In addition, qRT-PCR analysis demonstrated that the expression levels of genes encoding cellulases and hemicellulases were significantly increased (by 32.2- to 1166.7-fold) when L. edodes was grown in cellulose with lignosulfonate medium. BIOLOGICAL SIGNIFICANCE In this article, the secretomes of L. edodes grown on three different carbon sources were compared. The presented results revealed the profiling of extracellular enzymes involved in lignocellulose degradation, which is helpful to further explore the mechanism of biomass bioconversion by L. edodes.
Collapse
Affiliation(s)
- Yingli Cai
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University,Wuhan, Hubei, China; Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuhua Gong
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University,Wuhan, Hubei, China; Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Liu
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University,Wuhan, Hubei, China; Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yue Hu
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University,Wuhan, Hubei, China; Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lianfu Chen
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University,Wuhan, Hubei, China; Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lianlian Yan
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University,Wuhan, Hubei, China; Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yan Zhou
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University,Wuhan, Hubei, China; Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yinbing Bian
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University,Wuhan, Hubei, China; Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
26
|
Mukherjee S, Khowala S. Unraveling the secretome of Termitomyces clypeatus grown on agroresidues as a potential source for bioethanol production. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Vasina DV, Pavlov AR, Koroleva OV. Extracellular proteins of Trametes hirsuta st. 072 induced by copper ions and a lignocellulose substrate. BMC Microbiol 2016; 16:106. [PMID: 27296712 PMCID: PMC4906887 DOI: 10.1186/s12866-016-0729-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 06/06/2016] [Indexed: 11/10/2022] Open
Abstract
Background Fungi are organisms with the highest natural capacity to degrade lignocellulose substrates, which is enabled by complex systems of extracellular enzymes, whose expression and secretion depend on the characteristics of substrates and the environment. Results This study reports a secretome analysis for white-rot basidiomycete Trametes hirsuta cultivated on a synthetic media and a lignocellulose substrate. We demonstrate that T. hirsuta st. 072 produces multiple extracellular ligninolytic, cellulolytic, hemicellulolytic, peroxide generating, and proteolytic enzymes, as well as cerato-platanins. In contrast to other white rot species described earlier, which mostly secreted glucanases and mannosidases in response to the presence of the lignocellulose substrate, T. hirsuta expressed a spectrum of extracellular cellulolytic enzymes containing predominantly cellobiases and xylanases. As proteomic analysis could not detect lignin peroxidase (LiP) among the secreted lignin degrading enzymes, we attributed the observed extracellular LiP - like activity to the expressed versatile peroxidase (VP). An accessory enzyme, glyoxal oxidase, was found among the proteins secreted in the media during submerged cultivation of T. hirsuta both in the presence and in the absence of copper. However, aryl-alcohol oxidase (AAO) was not identified, despite the presence of AAO enzymatic activity secreted by the fungus. The spectra of the expressed enzymes dramatically changed depending on the growth conditions. Transfer from submerged cultivation to surface cultivation with the lignocellulose substrate switched off expression of exo-β-1,3-glucanase and α-amylase and turned on secretion of endo-β-1,3-glucanase and a range of glycosidases. In addition, an aspartic peptidase started being expressed instead of family S53 protease. For the first time, we report production of cerato-platanin proteins by Trametes species. The secretion of cerato-platanins was observed only in response to contact with lignocellulose, thus indicating a specific role of these proteins in degradation of the lignocellulose substrates. Conclusions Our results suggest a sequential mechanism of natural substrate degradation by T. hirsuta, in which the fungus produces different sets of enzymes to digest all main components of the substrate during cultivation. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0729-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daria V Vasina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, Moscow, 119071, Russia.
| | - Andrey R Pavlov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, Moscow, 119071, Russia
| | - Olga V Koroleva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, Moscow, 119071, Russia
| |
Collapse
|
28
|
Valadares F, Gonçalves TA, Gonçalves DSPO, Segato F, Romanel E, Milagres AMF, Squina FM, Ferraz A. Exploring glycoside hydrolases and accessory proteins from wood decay fungi to enhance sugarcane bagasse saccharification. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:110. [PMID: 27222665 PMCID: PMC4877993 DOI: 10.1186/s13068-016-0525-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/10/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND Glycoside hydrolases (GHs) and accessory proteins are key components for efficient and cost-effective enzymatic hydrolysis of polysaccharides in modern, biochemically based biorefineries. Currently, commercialized GHs and accessory proteins are produced by ascomycetes. However, the role of wood decay basidiomycetes proteins in biomass saccharification has not been extensively pursued. Wood decay fungi degrade polysaccharides in highly lignified tissues in natural environments, and are a promising enzyme source for improving enzymatic cocktails that are designed for in vitro lignocellulose conversion. RESULTS GHs and accessory proteins were produced by representative brown- and white-rot fungi, Laetiporus sulphureus and Pleurotus ostreatus, respectively. Concentrated protein extracts were then used to amend commercial enzymatic cocktails for saccharification of alkaline-sulfite pretreated sugarcane bagasse. The main enzymatic activities found in the wood decay fungal protein extracts were attributed to endoglucanases, xylanases and β-glucosidases. Cellobiohydrolase (CBH) activities in the L. sulphureus and P. ostreatus extracts were low and nonexistent, respectively. The initial glucan conversion rates were boosted when the wood decay fungal proteins were used to replace half of the enzymes from the commercial cocktails. L. sulphureus proteins increased the glucan conversion levels, with values above those observed for the full load of commercial enzymes. Wood decay fungal proteins also enhanced the xylan conversion efficiency due to their high xylanase activities. Proteomic studies revealed 104 and 45 different proteins in the P. ostreatus and L. sulphureus extracts, respectively. The enhancement of the saccharification of alkaline-pretreated substrates by the modified enzymatic cocktails was attributed to the following protein families: GH5- and GH45-endoglucanases, GH3-β-glucosidases, and GH10-xylanases. CONCLUSIONS The extracellular proteins produced by wood decay fungi provide useful tools to improve commercial enzyme cocktails that are currently used for the saccharification of alkaline-pretreated lignocellulosic substrates. The relevant proteins encompass multiple glycoside hydrolase families, including the GH5- and GH45-endoglucanases, GH3-β-glucosidases, and GH10-xylanases.
Collapse
Affiliation(s)
- Fernanda Valadares
- />Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP 12602-810 Brazil
| | - Thiago A. Gonçalves
- />Laboratório Nacional de Ciência & Tecnolologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970 Brazil
- />Departamento de Bioquímica, Instituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862 Brazil
| | - Dayelle S. P. O. Gonçalves
- />Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP 12602-810 Brazil
| | - Fernando Segato
- />Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP 12602-810 Brazil
| | - Elisson Romanel
- />Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP 12602-810 Brazil
| | - Adriane M. F. Milagres
- />Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP 12602-810 Brazil
| | - Fabio M. Squina
- />Laboratório Nacional de Ciência & Tecnolologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970 Brazil
| | - André Ferraz
- />Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP 12602-810 Brazil
| |
Collapse
|
29
|
Schneider WDH, Gonçalves TA, Uchima CA, Couger MB, Prade R, Squina FM, Dillon AJP, Camassola M. Penicillium echinulatum secretome analysis reveals the fungi potential for degradation of lignocellulosic biomass. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:66. [PMID: 26989443 PMCID: PMC4794826 DOI: 10.1186/s13068-016-0476-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/02/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND The enzymatic degradation of lignocellulosic materials by fungal enzyme systems has been extensively studied due to its effectiveness in the liberation of fermentable sugars for bioethanol production. Recently, variants of the fungus Penicillium echinulatum have been described as a great producer of cellulases and considered a promising strain for the bioethanol industry. RESULTS Penicillium echinulatum, wild-type 2HH and its mutant strain S1M29, were grown on four different carbon sources: cellulose, sugar cane bagasse pretreated by steam explosion (SCB), glucose, and glycerol for 120 h. Samples collected at 24, 96, and 120 h were used for enzymatic measurement, and the 96-h one was also used for secretome analysis by 1D-PAGE LC-MS/MS. A total of 165 proteins were identified, and more than one-third of these proteins belong to CAZy families. Glycosyl hydrolases (GH) are the most abundant group, being represented in larger quantities by GH3, 5, 17, 43, and 72. Cellobiohydrolases, endoglucanases, β-glycosidases, xylanases, β-xylosidases, and mannanases were found, and in minor quantities, pectinases, ligninases, and amylases were also found. Swollenin and esterases were also identified. CONCLUSIONS Our study revealed differences in the two strains of P. echinulatum in several aspects in which the mutation improved the production of enzymes related to lignocellulosic biomass deconstruction. Considering the spectral counting analysis, the mutant strain S1M29 was more efficient in the production of enzymes involved in cellulose and hemicellulose degradation, despite having a nearly identical CAZy enzymatic repertoire. Moreover, S1M29 secretes more quantities of protein on SCB than on cellulose, relevant information when considering the production of cellulases using raw materials at low cost. Glucose, and especially glycerol, were used mainly for the production of amylases and ligninases.
Collapse
Affiliation(s)
- Willian Daniel Hahn Schneider
- />Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Francisco Getúlio Vargas Street 1130, Caxias Do Sul, RS 95070-560 Brazil
| | - Thiago Augusto Gonçalves
- />Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Giuseppe Maximo Scolfaro 10.000, Campinas, São Paulo 13083-970 Brazil
- />Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo Brazil
| | - Cristiane Akemi Uchima
- />Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Giuseppe Maximo Scolfaro 10.000, Campinas, São Paulo 13083-970 Brazil
| | - Matthew Brian Couger
- />Department of Microbiology and Molecular Genetics, Oklahoma State University, 1110 South Innovation Way, Stillwater, OK 74078 USA
| | - Rolf Prade
- />Department of Microbiology and Molecular Genetics, Oklahoma State University, 1110 South Innovation Way, Stillwater, OK 74078 USA
| | - Fabio Marcio Squina
- />Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Giuseppe Maximo Scolfaro 10.000, Campinas, São Paulo 13083-970 Brazil
| | - Aldo José Pinheiro Dillon
- />Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Francisco Getúlio Vargas Street 1130, Caxias Do Sul, RS 95070-560 Brazil
| | - Marli Camassola
- />Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Francisco Getúlio Vargas Street 1130, Caxias Do Sul, RS 95070-560 Brazil
| |
Collapse
|
30
|
Fernández-Fueyo E, Ruiz-Dueñas FJ, López-Lucendo MF, Pérez-Boada M, Rencoret J, Gutiérrez A, Pisabarro AG, Ramírez L, Martínez AT. A secretomic view of woody and nonwoody lignocellulose degradation by Pleurotus ostreatus. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:49. [PMID: 26933449 PMCID: PMC4772462 DOI: 10.1186/s13068-016-0462-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/11/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Pleurotus ostreatus is the second edible mushroom worldwide, and a model fungus for delignification applications, with the advantage of growing on woody and nonwoody feedstocks. Its sequenced genome is available, and this gave us the opportunity to perform proteomic studies to identify the enzymes overproduced in lignocellulose cultures. RESULTS Monokaryotic P. ostreatus (PC9) was grown with poplar wood or wheat straw as the sole C/N source and the extracellular proteins were analyzed, together with those from glucose medium. Using nano-liquid chromatography coupled to tandem mass spectrometry of whole-protein hydrolyzate, over five-hundred proteins were identified. Thirty-four percent were unique of the straw cultures, while only 15 and 6 % were unique of the glucose and poplar cultures, respectively (20 % were produced under the three conditions, and additional 19 % were shared by the two lignocellulose cultures). Semi-quantitative analysis showed oxidoreductases as the main protein type both in the poplar (39 % total abundance) and straw (31 %) secretomes, while carbohydrate-active enzymes (CAZys) were only slightly overproduced (14-16 %). Laccase 10 (LACC10) was the main protein in the two lignocellulose secretomes (10-14 %) and, together with LACC2, LACC9, LACC6, versatile peroxidase 1 (VP1), and manganese peroxidase 3 (MnP3), were strongly overproduced in the lignocellulose cultures. Seven CAZys were also among the top-50 proteins, but only CE16 acetylesterase was overproduced on lignocellulose. When the woody and nonwoody secretomes were compared, GH1 and GH3 β-glycosidases were more abundant on poplar and straw, respectively and, among less abundant proteins, VP2 was overproduced on straw, while VP3 was only found on poplar. The treated lignocellulosic substrates were analyzed by two-dimensional nuclear magnetic resonance (2D NMR), and a decrease of lignin relative to carbohydrate signals was observed, together with the disappearance of some minor lignin substructures, and an increase of sugar reducing ends. CONCLUSIONS Oxidoreductases are strongly induced when P. ostreatus grows on woody and nonwoody lignocellulosic substrates. One laccase occupied the first position in both secretomes, and three more were overproduced together with one VP and one MnP, suggesting an important role in lignocellulose degradation. Preferential removal of lignin vs carbohydrates was shown by 2D NMR, in agreement with the above secretomic results.
Collapse
Affiliation(s)
- Elena Fernández-Fueyo
- />Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | | | | | - Marta Pérez-Boada
- />Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jorge Rencoret
- />Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, PO Box 1052, 41080 Seville, Spain
| | - Ana Gutiérrez
- />Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, PO Box 1052, 41080 Seville, Spain
| | - Antonio G. Pisabarro
- />Department of Agrarian Production, Universidad Pública de Navarra, 31006, Pamplona, Spain
| | - Lucía Ramírez
- />Department of Agrarian Production, Universidad Pública de Navarra, 31006, Pamplona, Spain
| | - Angel T. Martínez
- />Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
31
|
Kaupert Neto AA, Borin GP, Goldman GH, Damásio ARDL, Oliveira JVDC. Insights into the plant polysaccharide degradation potential of the xylanolytic yeast Pseudozyma brasiliensis. FEMS Yeast Res 2015; 16:fov117. [PMID: 26712719 DOI: 10.1093/femsyr/fov117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2015] [Indexed: 12/13/2022] Open
Abstract
In second-generation (2G) bioethanol production, plant cell-wall polysaccharides are broken down to release fermentable sugars. The enzymes of this process are classified as carbohydrate-active enzymes (CAZymes) and contribute substantially to the cost of biofuel production. A novel basidiomycete yeast species, Pseudozyma brasiliensis, was recently discovered. It produces an endo-β-1,4-xylanase with a higher specific activity than other xylanases. This enzyme is essential for the hydrolysis of biomass-derived xylan and has an important role in 2G bioethanol production. In spite of the P. brasiliensis biotechnological potential, there is no information about how it breaks down polysaccharides. For the first time, we characterized the secretome of P. brasiliensis grown on different carbon sources (xylose, xylan, cellobiose and glucose) and also under starvation conditions. The growth and consumption of each carbohydrate and the activity of the CAZymes of culture supernatants were analyzed. The CAZymes found in its secretomes, validated by enzymatic assays, have the potential to hydrolyze xylan, mannan, cellobiose and other polysaccharides. The data show that this yeast is a potential source of hydrolases, which can be used for biomass saccharification.
Collapse
Affiliation(s)
- Antonio Adalberto Kaupert Neto
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Caixa Postal 6192, CEP 13083-970, Campinas, São Paulo, Brasil
| | - Gustavo Pagotto Borin
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Caixa Postal 6192, CEP 13083-970, Campinas, São Paulo, Brasil
| | - Gustavo Henrique Goldman
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Caixa Postal 6192, CEP 13083-970, Campinas, São Paulo, Brasil Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brasil
| | - André Ricardo de Lima Damásio
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Caixa Postal 6192, CEP 13083-970, Campinas, São Paulo, Brasil Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade de Campinas, Rua Monteiro Lobato, 255, Caixa Postal 6109, CEP 13083-970, São Paulo, Brasil
| | - Juliana Velasco de Castro Oliveira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Caixa Postal 6192, CEP 13083-970, Campinas, São Paulo, Brasil
| |
Collapse
|
32
|
Xie C, Luo W, Li Z, Yan L, Zhu Z, Wang J, Hu Z, Peng Y. Secretome analysis of Pleurotus eryngii reveals enzymatic composition for ramie stalk degradation. Electrophoresis 2015; 37:310-20. [PMID: 26525014 DOI: 10.1002/elps.201500312] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/27/2015] [Accepted: 10/18/2015] [Indexed: 11/07/2022]
Abstract
Pleurotus eryngii (P. eryngii) can secrete large amount of hydrolytic and oxidative enzymes to degrade lignocellulosic biomass. In spite of several researches on the individual lignolytic enzymes, a direct deconstruction of lignocellulose by enzyme mixture is not yet possible. Identifying more high-performance enzymes or enzyme complexes will lead to efficient in vitro lignocelluloses degradation. In this report, secretomic analysis was used to search for the new or interesting enzymes for lignocellulose degradation. Besides, the utilization ability of P. eryngii to ramie stalk substrate was evaluated from the degradation of cellulose, hemicellulose, and lignin in medium and six extracellular enzymes activities during different growth stages were discussed. The results showed that a high biological efficiency of 71% was obtained; cellulose, hemicelluloses, and lignin decomposition rates of P. eryngii were 29.2, 26.0, and 51.2%, respectively. Enzyme activity showed that carboxymethyl cellulase, xylanase, laccase, and peroxidase activity peaks appeared at the primordial initiation stage. In addition, we profiled a global view of the secretome of P. eryngii cultivated in ramie stalk media to understand the mechanism behind lignocellulosic biomass hydrolysis. Eighty-seven nonredundant proteins were identified and a diverse group of enzymes, including cellulases, hemicellulases, pectinase, ligninase, protease, peptidases, and phosphatase implicated in lignocellulose degradation were found. In conclusion, the information in this report will be helpful to better understand the lignocelluloses degradation mechanisms of P. eryngii.
Collapse
Affiliation(s)
- Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, P. R. China
| | - Wei Luo
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, P. R. China
| | - Zhimin Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, P. R. China
| | - Li Yan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, P. R. China
| | - Zuohua Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, P. R. China
| | - Jing Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, P. R. China
| | - Zhenxiu Hu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, P. R. China
| | - Yuande Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, P. R. China
| |
Collapse
|
33
|
Munir RI, Spicer V, Shamshurin D, Krokhin OV, Wilkins J, Ramachandran U, Sparling R, Levin DB. Quantitative proteomic analysis of the cellulolytic system of Clostridium termitidis CT1112 reveals distinct protein expression profiles upon growth on α-cellulose and cellobiose. J Proteomics 2015; 125:41-53. [DOI: 10.1016/j.jprot.2015.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/13/2015] [Accepted: 04/25/2015] [Indexed: 10/23/2022]
|
34
|
Guerriero G, Hausman JF, Strauss J, Ertan H, Siddiqui KS. Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:180-93. [PMID: 25804821 PMCID: PMC4937988 DOI: 10.1016/j.plantsci.2015.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 05/05/2023]
Abstract
The use of plant biomass as feedstock for biomaterial and biofuel production is relevant in the current bio-based economy scenario of valorizing renewable resources. Fungi, which degrade complex and recalcitrant plant polymers, secrete different enzymes that hydrolyze plant cell wall polysaccharides. The present review discusses the current research trends on fungal, as well as extremophilic cell wall hydrolases that can withstand extreme physico-chemical conditions required in efficient industrial processes. Secretomes of fungi from the phyla Ascomycota, Basidiomycota, Zygomycota and Neocallimastigomycota are presented along with metabolic cues (nutrient sensing, coordination of carbon and nitrogen metabolism) affecting their composition. We conclude the review by suggesting further research avenues focused on the one hand on a comprehensive analysis of the physiology and epigenetics underlying cell wall degrading enzyme production in fungi and on the other hand on the analysis of proteins with unknown function and metagenomics of extremophilic consortia. The current advances in consolidated bioprocessing, altered secretory pathways and creation of designer plants are also examined. Furthermore, recent developments in enhancing the activity, stability and reusability of enzymes based on synergistic, proximity and entropic effects, fusion enzymes, structure-guided recombination between homologous enzymes and magnetic enzymes are considered with a view to improving saccharification.
Collapse
Affiliation(s)
- Gea Guerriero
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg.
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Fungal Genetics and Genomics Unit, University of Natural Resources and Life Sciences Vienna (BOKU), University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria; Health and Environment Department, Austrian Institute of Technology GmbH - AIT, University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria
| | - Haluk Ertan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia; Department of Molecular Biology and Genetics, Istanbul University, Turkey
| | - Khawar Sohail Siddiqui
- Biology Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia.
| |
Collapse
|
35
|
Quantitative proteomic study of Aspergillus Fumigatus secretome revealed deamidation of secretory enzymes. J Proteomics 2015; 119:154-68. [DOI: 10.1016/j.jprot.2015.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/07/2015] [Accepted: 02/15/2015] [Indexed: 01/30/2023]
|
36
|
Bianco L, Perrotta G. Methodologies and perspectives of proteomics applied to filamentous fungi: from sample preparation to secretome analysis. Int J Mol Sci 2015; 16:5803-29. [PMID: 25775160 PMCID: PMC4394507 DOI: 10.3390/ijms16035803] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/17/2015] [Accepted: 03/03/2015] [Indexed: 11/17/2022] Open
Abstract
Filamentous fungi possess the extraordinary ability to digest complex biomasses and mineralize numerous xenobiotics, as consequence of their aptitude to sensing the environment and regulating their intra and extra cellular proteins, producing drastic changes in proteome and secretome composition. Recent advancement in proteomic technologies offers an exciting opportunity to reveal the fluctuations of fungal proteins and enzymes, responsible for their metabolic adaptation to a large variety of environmental conditions. Here, an overview of the most commonly used proteomic strategies will be provided; this paper will range from sample preparation to gel-free and gel-based proteomics, discussing pros and cons of each mentioned state-of-the-art technique. The main focus will be kept on filamentous fungi. Due to the biotechnological relevance of lignocellulose degrading fungi, special attention will be finally given to their extracellular proteome, or secretome. Secreted proteins and enzymes will be discussed in relation to their involvement in bio-based processes, such as biomass deconstruction and mycoremediation.
Collapse
Affiliation(s)
- Linda Bianco
- UTTRI-GENER Genetics and Genomics for Energy and Environment Laboratory-ENEA TRISAIA Research Center, 75025 Rotondella (Matera), Italy.
| | - Gaetano Perrotta
- UTTRI-GENER Genetics and Genomics for Energy and Environment Laboratory-ENEA TRISAIA Research Center, 75025 Rotondella (Matera), Italy.
| |
Collapse
|
37
|
Characterization of Lignocellulolytic Enzymes from White-Rot Fungi. Curr Microbiol 2014; 70:485-98. [DOI: 10.1007/s00284-014-0743-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/27/2014] [Indexed: 12/26/2022]
|
38
|
Zeng J, Singh D, Gao D, Chen S. Effects of lignin modification on wheat straw cell wall deconstruction by Phanerochaete chrysosporium. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:161. [PMID: 25516769 PMCID: PMC4266972 DOI: 10.1186/s13068-014-0161-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 10/16/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND A key focus in sustainable biofuel research is to develop cost-effective and energy-saving approaches to increase saccharification of lignocellulosic biomass. Numerous efforts have been made to identify critical issues in cellulose hydrolysis. Aerobic fungal species are an integral part of the carbon cycle, equip the hydrolytic enzyme consortium, and provide a gateway for understanding the systematic degradation of lignin, hemicelluloses, and cellulose. This study attempts to reveal the complex biological degradation process of lignocellulosic biomass by Phanerochaete chrysosporium in order to provide new knowledge for the development of energy-efficient biorefineries. RESULTS In this study, we evaluated the performance of a fungal biodegradation model, Phanerochaete chrysosporium, in wheat straw through comprehensive analysis. We isolated milled straw lignin and cellulase enzyme-treated lignin from fungal-spent wheat straw to determine structural integrity and cellulase absorption isotherms. The results indicated that P. chrysosporium increased the total lignin content in residual biomass and also increased the cellulase adsorption kinetics in the resulting lignin. The binding strength increased from 117.4 mL/g to 208.7 mL/g in milled wood lignin and from 65.3 mL/g to 102.4 mL/g in cellulase enzyme lignin. A detailed structural dissection showed a reduction in the syringyl lignin/guaiacyl lignin ratio and the hydroxycinnamate/lignin ratio as predominant changes in fungi-spent lignin by heteronuclear single quantum coherence spectroscopy. CONCLUSION P. chrysosporium shows a preference for degradation of phenolic terminals without significantly destroying other lignin components to unzip carbohydrate polymers. This is an important step in fungal growth on wheat straw. The phenolics presumably locate at the terminal region of the lignin moiety and/or link with hemicellulose to form the lignin-carbohydrate complex. Findings may inform the development of a biomass hydrolytic enzyme combination to enhance lignocellulosic biomass hydrolysis and modify the targets in plant cell walls.
Collapse
Affiliation(s)
- Jijiao Zeng
- Department of Biological Systems Engineering, Bioprocessing and Bioproduct Engineering Laboratory (BBEL), Washington State University, L.J. Smith 213, Pullman, Washington 99163 USA
| | - Deepak Singh
- Department of Biological Systems Engineering, Bioprocessing and Bioproduct Engineering Laboratory (BBEL), Washington State University, L.J. Smith 213, Pullman, Washington 99163 USA
| | - Difeng Gao
- Department of Biological Systems Engineering, Bioprocessing and Bioproduct Engineering Laboratory (BBEL), Washington State University, L.J. Smith 213, Pullman, Washington 99163 USA
| | - Shulin Chen
- Department of Biological Systems Engineering, Bioprocessing and Bioproduct Engineering Laboratory (BBEL), Washington State University, L.J. Smith 213, Pullman, Washington 99163 USA
| |
Collapse
|
39
|
Adav SS, Ravindran A, Sze SK. Study of Phanerochaete chrysosporium Secretome Revealed Protein Glycosylation as a Substrate-Dependent Post-Translational Modification. J Proteome Res 2014; 13:4272-80. [DOI: 10.1021/pr500385y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sunil S. Adav
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551
| | - Anita Ravindran
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551
| | - Siu Kwan Sze
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551
| |
Collapse
|
40
|
Comparative analysis of secretomes in basidiomycete fungi. J Proteomics 2014; 102:28-43. [DOI: 10.1016/j.jprot.2014.03.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/19/2014] [Accepted: 03/03/2014] [Indexed: 12/29/2022]
|
41
|
Temporal alterations in the secretome of the selective ligninolytic fungus Ceriporiopsis subvermispora during growth on aspen wood reveal this organism's strategy for degrading lignocellulose. Appl Environ Microbiol 2014; 80:2062-70. [PMID: 24441164 DOI: 10.1128/aem.03652-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The white-rot basidiomycetes efficiently degrade all wood cell wall polymers. Generally, these fungi simultaneously degrade cellulose and lignin, but certain organisms, such as Ceriporiopsis subvermispora, selectively remove lignin in advance of cellulose degradation. However, relatively little is known about the mechanism of selective ligninolysis. To address this issue, C. subvermispora was grown in liquid medium containing ball-milled aspen, and nano-liquid chromatography-tandem mass spectrometry was used to identify and estimate extracellular protein abundance over time. Several manganese peroxidases and an aryl alcohol oxidase, both associated with lignin degradation, were identified after 3 days of incubation. A glycoside hydrolase (GH) family 51 arabinofuranosidase was also identified after 3 days but then successively decreased in later samples. Several enzymes related to cellulose and xylan degradation, such as GH10 endoxylanase, GH5_5 endoglucanase, and GH7 cellobiohydrolase, were detected after 5 days. Peptides corresponding to potential cellulose-degrading enzymes GH12, GH45, lytic polysaccharide monooxygenase, and cellobiose dehydrogenase were most abundant after 7 days. This sequential production of enzymes provides a mechanism consistent with selective ligninolysis by C. subvermispora.
Collapse
|
42
|
Baldrian P, López-Mondéjar R. Microbial genomics, transcriptomics and proteomics: new discoveries in decomposition research using complementary methods. Appl Microbiol Biotechnol 2014; 98:1531-7. [PMID: 24384749 DOI: 10.1007/s00253-013-5457-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/30/2013] [Accepted: 12/05/2013] [Indexed: 11/28/2022]
Abstract
Molecular methods for the analysis of biomolecules have undergone rapid technological development in the last decade. The advent of next-generation sequencing methods and improvements in instrumental resolution enabled the analysis of complex transcriptome, proteome and metabolome data, as well as a detailed annotation of microbial genomes. The mechanisms of decomposition by model fungi have been described in unprecedented detail by the combination of genome sequencing, transcriptomics and proteomics. The increasing number of available genomes for fungi and bacteria shows that the genetic potential for decomposition of organic matter is widespread among taxonomically diverse microbial taxa, while expression studies document the importance of the regulation of expression in decomposition efficiency. Importantly, high-throughput methods of nucleic acid analysis used for the analysis of metagenomes and metatranscriptomes indicate the high diversity of decomposer communities in natural habitats and their taxonomic composition. Today, the metaproteomics of natural habitats is of interest. In combination with advanced analytical techniques to explore the products of decomposition and the accumulation of information on the genomes of environmentally relevant microorganisms, advanced methods in microbial ecophysiology should increase our understanding of the complex processes of organic matter transformation.
Collapse
Affiliation(s)
- Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, Vídeňská 1083, 14220, Prague 4, Czech Republic,
| | | |
Collapse
|
43
|
Ni J, Tokuda G. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol Adv 2013; 31:838-50. [DOI: 10.1016/j.biotechadv.2013.04.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/10/2013] [Accepted: 04/15/2013] [Indexed: 01/17/2023]
|
44
|
Liu D, Li J, Zhao S, Zhang R, Wang M, Miao Y, Shen Y, Shen Q. Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatus Z5 in the presence of different carbon sources. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:149. [PMID: 24131596 PMCID: PMC3853031 DOI: 10.1186/1754-6834-6-149] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/01/2013] [Indexed: 05/07/2023]
Abstract
BACKGROUND Aspergillus fumigatus Z5 has a strong ability to decompose lignocellulose biomass, and its extracellular protein secretion has been reported in earlier studies employing traditional techniques. However, a comprehensive analysis of its secretion in the presence of different carbon sources is still lacking. The goal of this work was to identify, quantify and compare the secretome of A. fumigatus Z5 in the presence of different carbon sources to understand in more details the mechanisms of lignocellulose decomposition by Aspergillus fumigatus Z5. RESULTS Cellulolytic A. fumigatus Z5 was grown in the presence of glucose (Gl), Avicel (Av) and rice straw (RS), and the activities of several lignocellulosic enzymes were determined with chromatometry method. The maximum activities of endoglucanase, exoglucanase, β-glucosidase, laminarinase, lichenase, xylanase and pectin lyase were 12.52, 0.59, 2.30, 2.37, 1.68, 15.02 and 11.40 U·ml-1, respectively. A total of 152, 125 and 61 different proteins were identified in the presence of RS, Av and Gl, respectively, and the proteins were functionally divided into glycoside hydrolases, lipases, peptidases, peroxidases, esterases, protein translocating transporters and hypothetical proteins. A total of 49 proteins were iTRAQ-quantified in all the treatments, and the quantification results indicated that most of the cellulases, hemicellulases and glycoside hydrolases were highly upregulated when rice straw and Avicel were used as carbon sources (compared with glucose). CONCLUSIONS The proteins secreted from A. fumigatus Z5 in the present of different carbon source conditions were identified by LC-MS/MS and quantified by iTRAQ-based quantitative proteomics. The results indicated that A. fumigatus Z5 could produce considerable cellulose-, hemicellulose-, pectin- and lignin-degrading enzymes that are valuable for the lignocellulosic bioenergy industry.
Collapse
Affiliation(s)
- Dongyang Liu
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Li
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang Zhao
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruifu Zhang
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengmeng Wang
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Youzhi Miao
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifei Shen
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
45
|
Agrawal GK, Sarkar A, Righetti PG, Pedreschi R, Carpentier S, Wang T, Barkla BJ, Kohli A, Ndimba BK, Bykova NV, Rampitsch C, Zolla L, Rafudeen MS, Cramer R, Bindschedler LV, Tsakirpaloglou N, Ndimba RJ, Farrant JM, Renaut J, Job D, Kikuchi S, Rakwal R. A decade of plant proteomics and mass spectrometry: translation of technical advancements to food security and safety issues. MASS SPECTROMETRY REVIEWS 2013; 32:335-65. [PMID: 23315723 DOI: 10.1002/mas.21365] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/10/2012] [Accepted: 09/10/2012] [Indexed: 05/21/2023]
Abstract
Tremendous progress in plant proteomics driven by mass spectrometry (MS) techniques has been made since 2000 when few proteomics reports were published and plant proteomics was in its infancy. These achievements include the refinement of existing techniques and the search for new techniques to address food security, safety, and health issues. It is projected that in 2050, the world's population will reach 9-12 billion people demanding a food production increase of 34-70% (FAO, 2009) from today's food production. Provision of food in a sustainable and environmentally committed manner for such a demand without threatening natural resources, requires that agricultural production increases significantly and that postharvest handling and food manufacturing systems become more efficient requiring lower energy expenditure, a decrease in postharvest losses, less waste generation and food with longer shelf life. There is also a need to look for alternative protein sources to animal based (i.e., plant based) to be able to fulfill the increase in protein demands by 2050. Thus, plant biology has a critical role to play as a science capable of addressing such challenges. In this review, we discuss proteomics especially MS, as a platform, being utilized in plant biology research for the past 10 years having the potential to expedite the process of understanding plant biology for human benefits. The increasing application of proteomics technologies in food security, analysis, and safety is emphasized in this review. But, we are aware that no unique approach/technology is capable to address the global food issues. Proteomics-generated information/resources must be integrated and correlated with other omics-based approaches, information, and conventional programs to ensure sufficient food and resources for human development now and in the future.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry, PO Box 13265, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hori C, Gaskell J, Igarashi K, Samejima M, Hibbett D, Henrissat B, Cullen D. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay. Mycologia 2013; 105:1412-27. [PMID: 23935027 DOI: 10.3852/13-072] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To degrade the polysaccharides, wood-decay fungi secrete a variety of glycoside hydrolases (GHs) and carbohydrate esterases (CEs) classified into various sequence-based families of carbohydrate-active enzymes (CAZys) and their appended carbohydrate-binding modules (CBM). Oxidative enzymes, such as cellobiose dehydrogenase (CDH) and lytic polysaccharide monooxygenase (LPMO, formerly GH61), also have been implicated in cellulose degradation. To examine polysaccharide-degrading potential between white- and brown-rot fungi, we performed genomewide analysis of CAZys and these oxidative enzymes in 11 Polyporales, including recently sequenced monokaryotic strains of Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora. Furthermore, we conducted comparative secretome analysis of seven Polyporales grown on wood culture. As a result, it was found that genes encoding cellulases belonging to families GH6, GH7, GH9 and carbohydrate-binding module family CBM1 are lacking in genomes of brown-rot polyporales. In addition, the presence of CDH and the expansion of LPMO were observed only in white-rot genomes. Indeed, GH6, GH7, CDH and LPMO peptides were identified only in white-rot polypores. Genes encoding aldose 1-epimerase (ALE), previously detected with CDH and cellulases in the culture filtrates, also were identified in white-rot genomes, suggesting a physiological connection between ALE, CDH, cellulase and possibly LPMO. For hemicellulose degradation, genes and peptides corresponding to GH74 xyloglucanase, GH10 endo-xylanase, GH79 β-glucuronidase, CE1 acetyl xylan esterase and CE15 glucuronoyl methylesterase were significantly increased in white-rot genomes compared to brown-rot genomes. Overall, relative to brown-rot Polyporales, white-rot Polyporales maintain greater enzymatic diversity supporting lignocellulose attack.
Collapse
Affiliation(s)
- Chiaki Hori
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, l-l-l, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, and Institute for Microbial and Biochemical Technology, Forest Products Laboratory, 1 Gifford Pinchot Drive, Madison, Wisconsin 53726
| | | | | | | | | | | | | |
Collapse
|
47
|
Adav SS, Ravindran A, Sze SK. Proteomic analysis of temperature dependent extracellular proteins from Aspergillus fumigatus grown under solid-state culture condition. J Proteome Res 2013; 12:2715-31. [PMID: 23647126 DOI: 10.1021/pr4000762] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fungal species of the genus Aspergillus are filamentous ubiquitous saprophytes that play a major role in lignocellulosic biomass recycling and also are considered as cell factories for the production of organic acids, pharmaceuticals, and industrially important enzymes. Analysis of extracellular secreted biomass degrading enzymes using complex lignocellulosic biomass as a substrate by solid-state fermentation could be a more practical approach to evaluate application of the enzymes for lignocellulosic biorefinery. This study isolated a fungal strain from compost, identified as Aspergillus fumigatus, and further analyzed it for lignocellulolytic enzymes at different temperatures using label free quantitative proteomics. The profile of secretome composition discovered cellulases, hemicellulases, lignin degrading proteins, peptidases and proteases, and transport and hypothetical proteins; while protein abundances and further their hierarchical clustering analysis revealed temperature dependent expression of these enzymes during solid-state fermentation of sawdust. The enzyme activities and protein abundances as determined by exponentially modified protein abundance index (emPAI) indicated the maximum activities at the range of 40-50 °C, demonstrating the thermophilic nature of the isolate A. fumigatus LF9. Characterization of the thermostability of secretome suggested the potential of the isolated fungal strain in the production of thermophilic biomass degrading enzymes for industrial application.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.
| | | | | |
Collapse
|
48
|
Wu M, Beckham GT, Larsson AM, Ishida T, Kim S, Payne CM, Himmel ME, Crowley MF, Horn SJ, Westereng B, Igarashi K, Samejima M, Ståhlberg J, Eijsink VGH, Sandgren M. Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium. J Biol Chem 2013; 288:12828-39. [PMID: 23525113 PMCID: PMC3642327 DOI: 10.1074/jbc.m113.459396] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/15/2013] [Indexed: 01/11/2023] Open
Abstract
Carbohydrate structures are modified and degraded in the biosphere by a myriad of mostly hydrolytic enzymes. Recently, lytic polysaccharide mono-oxygenases (LPMOs) were discovered as a new class of enzymes for cleavage of recalcitrant polysaccharides that instead employ an oxidative mechanism. LPMOs employ copper as the catalytic metal and are dependent on oxygen and reducing agents for activity. LPMOs are found in many fungi and bacteria, but to date no basidiomycete LPMO has been structurally characterized. Here we present the three-dimensional crystal structure of the basidiomycete Phanerochaete chrysosporium GH61D LPMO, and, for the first time, measure the product distribution of LPMO action on a lignocellulosic substrate. The structure reveals a copper-bound active site common to LPMOs, a collection of aromatic and polar residues near the binding surface that may be responsible for regio-selectivity, and substantial differences in loop structures near the binding face compared with other LPMO structures. The activity assays indicate that this LPMO primarily produces aldonic acids. Last, molecular simulations reveal conformational changes, including the binding of several regions to the cellulose surface, leading to alignment of three tyrosine residues on the binding face of the enzyme with individual cellulose chains, similar to what has been observed for family 1 carbohydrate-binding modules. A calculated potential energy surface for surface translation indicates that P. chrysosporium GH61D exhibits energy wells whose spacing seems adapted to the spacing of cellobiose units along a cellulose chain.
Collapse
Affiliation(s)
- Miao Wu
- From the Department of Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| | - Gregg T. Beckham
- the National Bioenergy Center and
- the Department of Chemical Engineering, Colorado School of Mines, Golden, Colorado 80401
| | - Anna M. Larsson
- From the Department of Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| | - Takuya Ishida
- the Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Christina M. Payne
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
- the Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, and
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Michael F. Crowley
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Svein J. Horn
- the Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Bjørge Westereng
- the Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Kiyohiko Igarashi
- the Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masahiro Samejima
- the Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jerry Ståhlberg
- From the Department of Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| | - Vincent G. H. Eijsink
- From the Department of Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| | - Mats Sandgren
- From the Department of Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| |
Collapse
|
49
|
Adav SS, Chao LT, Sze SK. Protein abundance in multiplexed samples (PAMUS) for quantitation of Trichoderma reesei secretome. J Proteomics 2013; 83:180-96. [DOI: 10.1016/j.jprot.2013.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/20/2013] [Accepted: 03/23/2013] [Indexed: 11/27/2022]
|
50
|
Huy ND, Thiyagarajan S, Choi YE, Kim DH, Park SM. Cloning and characterization of a thermostable endo-arabinanase from Phanerochaete chrysosporium and its synergistic action with endo-xylanase. Bioprocess Biosyst Eng 2013; 36:677-85. [PMID: 23361183 DOI: 10.1007/s00449-013-0891-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 01/10/2013] [Indexed: 11/29/2022]
Abstract
Putative arabinanase (PcARA) was cloned from cDNA of Phanerochaete chrysosporium. The gene sequencing indicated that PcARA consisted of 939 nucleotides that encodes for 312 amino acid arabinanase-polypeptide chain, including a signal peptide of 19 amino acids. Three-dimensional homology indicated that this enzyme is a five-bladed β-propeller, belonging to glycosidase family 43 and its secondary structure is consisted of 24 β-sheets. The PcARA-cDNA was expressed in Pichia pastoris using pPICZαC. SDS-PAGE of purified arabinanase showed a single band of 33 kDa that is very close to theoretical molecular mass of 33.9 kDa calculated by its amino acid content. Recombinant arabinanase (rPcARA) exhibited maximum activity at pH and temperature of 5.0 and 60 °C, respectively. End-product analysis of debranched arabinan hydrolysis by thin-layer chromatography indicated that rPcARA acted as endo-type. The synergistic action of rPcARA with recombinant xylanase resulted in 72 and 9.3 % release of total soluble sugar of arabinoxylan and NaOH-pretreated barley straw, respectively.
Collapse
Affiliation(s)
- Nguyen Duc Huy
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk, 570-752, Korea
| | | | | | | | | |
Collapse
|