1
|
Stastna M. Post-translational modifications of proteins in cardiovascular diseases examined by proteomic approaches. FEBS J 2025; 292:28-46. [PMID: 38440918 PMCID: PMC11705224 DOI: 10.1111/febs.17108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024]
Abstract
Over 400 different types of post-translational modifications (PTMs) have been reported and over 200 various types of PTMs have been discovered using mass spectrometry (MS)-based proteomics. MS-based proteomics has proven to be a powerful method capable of global PTM mapping with the identification of modified proteins/peptides, the localization of PTM sites and PTM quantitation. PTMs play regulatory roles in protein functions, activities and interactions in various heart related diseases, such as ischemia/reperfusion injury, cardiomyopathy and heart failure. The recognition of PTMs that are specific to cardiovascular pathology and the clarification of the mechanisms underlying these PTMs at molecular levels are crucial for discovery of novel biomarkers and application in a clinical setting. With sensitive MS instrumentation and novel biostatistical methods for precise processing of the data, low-abundance PTMs can be successfully detected and the beneficial or unfavorable effects of specific PTMs on cardiac function can be determined. Moreover, computational proteomic strategies that can predict PTM sites based on MS data have gained an increasing interest and can contribute to characterization of PTM profiles in cardiovascular disorders. More recently, machine learning- and deep learning-based methods have been employed to predict the locations of PTMs and explore PTM crosstalk. In this review article, the types of PTMs are briefly overviewed, approaches for PTM identification/quantitation in MS-based proteomics are discussed and recently published proteomic studies on PTMs associated with cardiovascular diseases are included.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of SciencesBrnoCzech Republic
| |
Collapse
|
2
|
Karpov OA, Stotland A, Raedschelders K, Chazarin B, Ai L, Murray CI, Van Eyk JE. Proteomics of the heart. Physiol Rev 2024; 104:931-982. [PMID: 38300522 PMCID: PMC11381016 DOI: 10.1152/physrev.00026.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Mass spectrometry-based proteomics is a sophisticated identification tool specializing in portraying protein dynamics at a molecular level. Proteomics provides biologists with a snapshot of context-dependent protein and proteoform expression, structural conformations, dynamic turnover, and protein-protein interactions. Cardiac proteomics can offer a broader and deeper understanding of the molecular mechanisms that underscore cardiovascular disease, and it is foundational to the development of future therapeutic interventions. This review encapsulates the evolution, current technologies, and future perspectives of proteomic-based mass spectrometry as it applies to the study of the heart. Key technological advancements have allowed researchers to study proteomes at a single-cell level and employ robot-assisted automation systems for enhanced sample preparation techniques, and the increase in fidelity of the mass spectrometers has allowed for the unambiguous identification of numerous dynamic posttranslational modifications. Animal models of cardiovascular disease, ranging from early animal experiments to current sophisticated models of heart failure with preserved ejection fraction, have provided the tools to study a challenging organ in the laboratory. Further technological development will pave the way for the implementation of proteomics even closer within the clinical setting, allowing not only scientists but also patients to benefit from an understanding of protein interplay as it relates to cardiac disease physiology.
Collapse
Affiliation(s)
- Oleg A Karpov
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Aleksandr Stotland
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Koen Raedschelders
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Blandine Chazarin
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Lizhuo Ai
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Christopher I Murray
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
3
|
Proteomics as a Tool for the Study of Mitochondrial Proteome, Its Dysfunctionality and Pathological Consequences in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24054692. [PMID: 36902123 PMCID: PMC10003354 DOI: 10.3390/ijms24054692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The focus of this review is on the proteomic approaches applied to the study of the qualitative/quantitative changes in mitochondrial proteins that are related to impaired mitochondrial function and consequently different types of pathologies. Proteomic techniques developed in recent years have created a powerful tool for the characterization of both static and dynamic proteomes. They can detect protein-protein interactions and a broad repertoire of post-translation modifications that play pivotal roles in mitochondrial regulation, maintenance and proper function. Based on accumulated proteomic data, conclusions can be derived on how to proceed in disease prevention and treatment. In addition, this article will present an overview of the recently published proteomic papers that deal with the regulatory roles of post-translational modifications of mitochondrial proteins and specifically with cardiovascular diseases connected to mitochondrial dysfunction.
Collapse
|
4
|
Srinivasan A, Sing JC, Gingras AC, Röst HL. Improving Phosphoproteomics Profiling Using Data-Independent Mass Spectrometry. J Proteome Res 2022; 21:1789-1799. [PMID: 35877786 DOI: 10.1021/acs.jproteome.2c00172] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry-based profiling of the phosphoproteome is a powerful method of identifying phosphorylation events at a systems level. Most phosphoproteomics studies have used data-dependent acquisition (DDA) mass spectrometry as their method of choice. In this Perspective, we review some recent studies benchmarking DDA and DIA methods for phosphoproteomics and discuss data analysis options for DIA phosphoproteomics. In order to evaluate the impact of data-dependent and data-independent acquisition (DIA) on identification and quantification, we analyze a previously published phosphopeptide-enriched data set consisting of 10 replicates acquired by DDA and DIA each. We find that though more unique identifications are made in DDA data, phosphopeptides are identified more consistently across replicates in DIA. We further discuss the challenges of identifying chromatographically coeluting phosphopeptide isomers and investigate the impact on reproducibility of identifying high-confidence site-localized phosphopeptides in replicates.
Collapse
Affiliation(s)
- Aparna Srinivasan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Justin C Sing
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Hannes L Röst
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
5
|
Moro L. The Mitochondrial Proteome of Tumor Cells: A SnapShot on Methodological Approaches and New Biomarkers. BIOLOGY 2020; 9:biology9120479. [PMID: 33353059 PMCID: PMC7766083 DOI: 10.3390/biology9120479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Simple Summary Mitochondria are central hubs of cellular signaling, energy metabolism, and redox balance. The plasticity of these cellular organelles is an essential requisite for the cells to cope with different stimuli and stress conditions. Cancer cells are characterized by changes in energy metabolism, mitochondrial signaling, and dynamics. These changes are driven by alterations in the mitochondrial proteome. For this reason, in the last years a focus of basic and cancer research has been the implementation and optimization of technologies to investigate changes in the mitochondrial proteome during cancer initiation and progression. This review presents an overview of the most used technologies to investigate the mitochondrial proteome and recent evidence on changes in the expression levels and delocalization of certain proteins in and out the mitochondria for shaping the functional properties of tumor cells. Abstract Mitochondria are highly dynamic and regulated organelles implicated in a variety of important functions in the cell, including energy production, fatty acid metabolism, iron homeostasis, programmed cell death, and cell signaling. Changes in mitochondrial metabolism, signaling and dynamics are hallmarks of cancer. Understanding whether these modifications are associated with alterations of the mitochondrial proteome is particularly relevant from a translational point of view because it may contribute to better understanding the molecular bases of cancer development and progression and may provide new potential prognostic and diagnostic biomarkers as well as novel molecular targets for anti-cancer treatment. Making an inventory of the mitochondrial proteins has been particularly challenging given that there is no unique consensus targeting sequence that directs protein import into mitochondria, some proteins are present at very low levels, while other proteins are expressed only in some cell types, in a particular developmental stage or under specific stress conditions. This review aims at providing the state-of-the-art on methodologies used to characterize the mitochondrial proteome in tumors and highlighting the biological relevance of changes in expression and delocalization of proteins in and out the mitochondria in cancer biology.
Collapse
Affiliation(s)
- Loredana Moro
- Institute of Biomembranes, Bioenergetic and Molecular Biotechnologies, National Research Council, Via Amendola 122/O, 70125 Bari, Italy
| |
Collapse
|
6
|
A systematic review of post-translational modifications in the mitochondrial permeability transition pore complex associated with cardiac diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165992. [PMID: 33091565 DOI: 10.1016/j.bbadis.2020.165992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022]
Abstract
The mitochondrial permeability transition pore (mPTP) opening is involved in the pathophysiology of multiple cardiac diseases, such as ischemia/reperfusion injury and heart failure. A growing number of evidence provided by proteomic screening techniques has demonstrated the role of post-translational modifications (PTMs) in several key components of the pore in response to changes in the extra/intracellular environment and bioenergetic demand. This could lead to a fine, complex regulatory mechanism that, under pathological conditions, can shift the state of mitochondrial functions and, thus, the cell's fate. Understanding the complex relationship between these PTMs is still under investigation and can provide new, promising therapeutic targets and treatment approaches. This review, using a systematic review of the literature, presents the current knowledge on PTMs of the mPTP and their role in health and cardiac disease.
Collapse
|
7
|
Kruse R, Sahebekhtiari N, Højlund K. The Mitochondrial Proteomic Signatures of Human Skeletal Muscle Linked to Insulin Resistance. Int J Mol Sci 2020; 21:ijms21155374. [PMID: 32731645 PMCID: PMC7432338 DOI: 10.3390/ijms21155374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: Mitochondria are essential in energy metabolism and cellular survival, and there is growing evidence that insulin resistance in chronic metabolic disorders, such as obesity, type 2 diabetes (T2D), and aging, is linked to mitochondrial dysfunction in skeletal muscle. Protein profiling by proteomics is a powerful tool to investigate mechanisms underlying complex disorders. However, despite significant advances in proteomics within the past two decades, the technologies have not yet been fully exploited in the field of skeletal muscle proteome. Area covered: Here, we review the currently available studies characterizing the mitochondrial proteome in human skeletal muscle in insulin-resistant conditions, such as obesity, T2D, and aging, as well as exercise-mediated changes in the mitochondrial proteome. Furthermore, we outline technical challenges and limitations and methodological aspects that should be considered when planning future large-scale proteomics studies of mitochondria from human skeletal muscle. Authors’ view: At present, most proteomic studies of skeletal muscle or isolated muscle mitochondria have demonstrated a reduced abundance of proteins in several mitochondrial biological processes in obesity, T2D, and aging, whereas the beneficial effects of exercise involve an increased content of muscle proteins involved in mitochondrial metabolism. Powerful mass-spectrometry-based proteomics now provides unprecedented opportunities to perform in-depth proteomics of muscle mitochondria, which in the near future is expected to increase our understanding of the complex molecular mechanisms underlying the link between mitochondrial dysfunction and insulin resistance in chronic metabolic disorders.
Collapse
Affiliation(s)
- Rikke Kruse
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Navid Sahebekhtiari
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
- Correspondence: ; Tel.: +45-2532-06-48
| |
Collapse
|
8
|
Mapping signalling perturbations in myocardial fibrosis via the integrative phosphoproteomic profiling of tissue from diverse sources. Nat Biomed Eng 2020; 4:889-900. [PMID: 32661320 DOI: 10.1038/s41551-020-0585-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/14/2020] [Indexed: 12/13/2022]
Abstract
Study of the molecular basis of myocardial fibrosis is hampered by limited access to tissues from human patients and by confounding variables associated with sample accessibility, collection, processing and storage. Here, we report an integrative strategy based on mass spectrometry for the phosphoproteomic profiling of normal and fibrotic cardiac tissue obtained from surgical explants from patients with hypertrophic cardiomyopathy, from a transaortic-constriction mouse model of cardiac hypertrophy and fibrosis, and from a heart-on-a-chip model of cardiac fibrosis. We used the integrative approach to map the relative abundance of thousands of proteins, phosphoproteins and phosphorylation sites specific to each tissue source, to identify key signalling pathways driving fibrosis and to screen for anti-fibrotic compounds targeting glycogen synthase kinase 3, which has a consistent role as a key mediator of fibrosis in all three types of tissue specimen. The integrative disease-modelling strategy may reveal new insights into mechanisms of cardiac disease and serve as a test bed for drug screening.
Collapse
|
9
|
Stotland AB, Spivia W, Orosco A, Andres AM, Gottlieb RA, Van Eyk JE, Parker SJ. MitoPlex: A targeted multiple reaction monitoring assay for quantification of a curated set of mitochondrial proteins. J Mol Cell Cardiol 2020; 142:1-13. [PMID: 32234390 PMCID: PMC7347090 DOI: 10.1016/j.yjmcc.2020.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022]
Abstract
Mitochondria are the major source of cellular energy (ATP), as well as critical mediators of widespread functions such as cellular redox balance, apoptosis, and metabolic flux. The organelles play an especially important role in the maintenance of cardiac homeostasis; their inability to generate ATP following impairment due to ischemic damage has been directly linked to organ failure. Methods to quantify mitochondrial content are limited to low throughput immunoassays, measurement of mitochondrial DNA, or relative quantification by untargeted mass spectrometry. Here, we present a high throughput, reproducible and quantitative mass spectrometry multiple reaction monitoring based assay of 37 proteins critical to central carbon chain metabolism and overall mitochondrial function termed 'MitoPlex'. We coupled this protein multiplex with a parallel analysis of the central carbon chain metabolites (219 metabolite assay) extracted in tandem from the same sample, be it cells or tissue. In tests of its biological applicability in cells and tissues, "MitoPlex plus metabolites" indicated profound effects of HMG-CoA Reductase inhibition (e.g., statin treatment) on mitochondria of i) differentiating C2C12 skeletal myoblasts, as well as a clear opposite trend of statins to promote mitochondrial protein expression and metabolism in heart and liver, while suppressing mitochondrial protein and ii) aspects of metabolism in the skeletal muscle obtained from C57Bl6 mice. Our results not only reveal new insights into the metabolic effect of statins in skeletal muscle, but present a new high throughput, reliable MS-based tool to study mitochondrial dynamics in both cell culture and in vivo models.
Collapse
Affiliation(s)
- Aleksandr B Stotland
- Molecular Cardiobiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Weston Spivia
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Amanda Orosco
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Allen M Andres
- Molecular Cardiobiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Roberta A Gottlieb
- Molecular Cardiobiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Sarah J Parker
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America.
| |
Collapse
|
10
|
Kappler L, Kollipara L, Lehmann R, Sickmann A. Investigating the Role of Mitochondria in Type 2 Diabetes - Lessons from Lipidomics and Proteomics Studies of Skeletal Muscle and Liver. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:143-182. [PMID: 31452140 DOI: 10.1007/978-981-13-8367-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction is discussed as a key player in the pathogenesis of type 2 diabetes mellitus (T2Dm), a highly prevalent disease rapidly developing as one of the greatest global health challenges of this century. Data however about the involvement of mitochondria, central hubs in bioenergetic processes, in the disease development are still controversial. Lipid and protein homeostasis are under intense discussion to be crucial for proper mitochondrial function. Consequently proteomics and lipidomics analyses might help to understand how molecular changes in mitochondria translate to alterations in energy transduction as observed in the healthy and metabolic diseases such as T2Dm and other related disorders. Mitochondrial lipids integrated in a tool covering proteomic and functional analyses were up to now rarely investigated, although mitochondrial lipids might provide a possible lynchpin in the understanding of type 2 diabetes development and thereby prevention. In this chapter state-of-the-art analytical strategies, pre-analytical aspects, potential pitfalls as well as current proteomics and lipidomics-based knowledge about the pathophysiological role of mitochondria in the pathogenesis of type 2 diabetes will be discussed.
Collapse
Affiliation(s)
- Lisa Kappler
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tuebingen, Tuebingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tuebingen, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany. .,Medical Proteome Centre, Ruhr Universität Bochum, Bochum, Germany. .,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
11
|
Mitoproteomics: Tackling Mitochondrial Dysfunction in Human Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1435934. [PMID: 30533169 PMCID: PMC6250043 DOI: 10.1155/2018/1435934] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
Mitochondria are highly dynamic and regulated organelles that historically have been defined based on their crucial role in cell metabolism. However, they are implicated in a variety of other important functions, making mitochondrial dysfunction an important axis in several pathological contexts. Despite that conventional biochemical and molecular biology approaches have provided significant insight into mitochondrial functionality, innovative techniques that provide a global view of the mitochondrion are still necessary. Proteomics fulfils this need by enabling accurate, systems-wide quantitative analysis of protein abundance. More importantly, redox proteomics approaches offer unique opportunities to tackle oxidative stress, a phenomenon that is intimately linked to aging, cardiovascular disease, and cancer. In addition, cutting-edge proteomics approaches reveal how proteins exert their functions in complex interaction networks where even subtle alterations stemming from early pathological states can be monitored. Here, we describe the proteomics approaches that will help to deepen the role of mitochondria in health and disease by assessing not only changes to mitochondrial protein composition but also alterations to their redox state and how protein interaction networks regulate mitochondrial function and dynamics. This review is aimed at showing the reader how the application of proteomics approaches during the last 20 years has revealed crucial mitochondrial roles in the context of aging, neurodegenerative disorders, metabolic disease, and cancer.
Collapse
|
12
|
Eremina L, Pashintseva N, Kovalev L, Kovaleva M, Shishkin S. Proteomics of mammalian mitochondria in health and malignancy: From protein identification to function. Anal Biochem 2018; 552:4-18. [DOI: 10.1016/j.ab.2017.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/07/2017] [Accepted: 03/23/2017] [Indexed: 12/28/2022]
|
13
|
Manes NP, Nita-Lazar A. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. J Proteomics 2018; 189:75-90. [PMID: 29452276 DOI: 10.1016/j.jprot.2018.02.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 02/08/2023]
Abstract
The enormous diversity of proteoforms produces tremendous complexity within cellular proteomes, facilitates intricate networks of molecular interactions, and constitutes a formidable analytical challenge for biomedical researchers. Currently, quantitative whole-proteome profiling often relies on non-targeted liquid chromatography-mass spectrometry (LC-MS), which samples proteoforms broadly, but can suffer from lower accuracy, sensitivity, and reproducibility compared with targeted LC-MS. Recent advances in bottom-up proteomics using targeted LC-MS have enabled previously unachievable identification and quantification of target proteins and posttranslational modifications within complex samples. Consequently, targeted LC-MS is rapidly advancing biomedical research, especially systems biology research in diverse areas that include proteogenomics, interactomics, kinomics, and biological pathway modeling. With the recent development of targeted LC-MS assays for nearly the entire human proteome, targeted LC-MS is positioned to enable quantitative proteomic profiling of unprecedented quality and accessibility to support fundamental and clinical research. Here we review recent applications of bottom-up proteomics using targeted LC-MS for systems biology research. SIGNIFICANCE: Advances in targeted proteomics are rapidly advancing systems biology research. Recent applications include systems-level investigations focused on posttranslational modifications (such as phosphoproteomics), protein conformation, protein-protein interaction, kinomics, proteogenomics, and metabolic and signaling pathways. Notably, absolute quantification of metabolic and signaling pathway proteins has enabled accurate pathway modeling and engineering. Integration of targeted proteomics with other technologies, such as RNA-seq, has facilitated diverse research such as the identification of hundreds of "missing" human proteins (genes and transcripts that appear to encode proteins but direct experimental evidence was lacking).
Collapse
Affiliation(s)
- Nathan P Manes
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Zorov DB, Popkov VA, Zorova LD, Vorobjev IA, Pevzner IB, Silachev DN, Zorov SD, Jankauskas SS, Babenko VA, Plotnikov EY. Mitochondrial Aging: Is There a Mitochondrial Clock? J Gerontol A Biol Sci Med Sci 2017; 72:1171-1179. [PMID: 27927758 DOI: 10.1093/gerona/glw184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/23/2016] [Indexed: 01/16/2023] Open
Abstract
Fragmentation (fission) of mitochondria, occurring in response to oxidative challenge, leads to heterogeneity in the mitochondrial population. It is assumed that fission provides a way to segregate mitochondrial content between the "young" and "old" phenotype, with the formation of mitochondrial "garbage," which later will be disposed. Fidelity of this process is the basis of mitochondrial homeostasis, which is disrupted in pathological conditions and aging. The asymmetry of the mitochondrial fission is similar to that of their evolutionary ancestors, bacteria, which also undergo an aging process. It is assumed that mitochondrial markers of aging are recognized by the mitochondrial quality control system, preventing the accumulation of dysfunctional mitochondria, which normally are subjected to disposal. Possibly, oncocytoma, with its abnormal proliferation of mitochondria occupying the entire cytoplasm, represents the case when segregation of damaged mitochondria is impaired during mitochondrial division. It is plausible that mitochondria contain a "clock" which counts the degree of mitochondrial senescence as the extent of flagging (by ubiquitination) of damaged mitochondria. Mitochondrial aging captures the essence of the systemic aging which must be analyzed. We assume that the mitochondrial aging mechanism is similar to the mechanism of aging of the immune system which we discuss in detail.
Collapse
Affiliation(s)
| | | | | | - Ivan A Vorobjev
- Biological Faculty, Lomonosov Moscow State University, Russia
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang Y, Zhang J, Li B, He QY. Proteomic analysis of mitochondria: biological and clinical progresses in cancer. Expert Rev Proteomics 2017; 14:891-903. [DOI: 10.1080/14789450.2017.1374180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yang Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Bin Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Das S, Kohr M, Dunkerly-Eyring B, Lee DI, Bedja D, Kent OA, Leung AKL, Henao-Mejia J, Flavell RA, Steenbergen C. Divergent Effects of miR-181 Family Members on Myocardial Function Through Protective Cytosolic and Detrimental Mitochondrial microRNA Targets. J Am Heart Assoc 2017; 6:JAHA.116.004694. [PMID: 28242633 PMCID: PMC5524005 DOI: 10.1161/jaha.116.004694] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background MicroRNA (miRNA) is a type of noncoding RNA that can repress the expression of target genes through posttranscriptional regulation. In addition to numerous physiologic roles for miRNAs, they play an important role in pathophysiologic processes affecting cardiovascular health. Previously, we reported that nuclear encoded microRNA (miR‐181c) is present in heart mitochondria, and importantly, its overexpression affects mitochondrial function by regulating mitochondrial gene expression. Methods and Results To investigate further how the miR‐181 family affects the heart, we suppressed miR‐181 using a miR‐181‐sponge containing 10 repeated complementary miR‐181 “seed” sequences and generated a set of H9c2 cells, a cell line derived from rat myoblast, by stably expressing either a scrambled or miR‐181‐sponge sequence. Sponge‐H9c2 cells showed a decrease in reactive oxygen species production and reduced basal mitochondrial respiration and protection against doxorubicin‐induced oxidative stress. We also found that miR‐181a/b targets phosphatase and tensin homolog (PTEN), and the sponge‐expressing stable cells had increased PTEN activity and decreased PI3K signaling. In addition, we have used miR‐181a/b−/− and miR‐181c/d−/− knockout mice and subjected them to ischemia‐reperfusion injury. Our results suggest divergent effects of different miR‐181 family members: miR‐181a/b targets PTEN in the cytosol, resulting in an increase in infarct size in miR‐181a/b−/− mice due to increased PTEN signaling, whereas miR‐181c targets mt‐COX1 in the mitochondria, resulting in decreased infarct size in miR‐181c/d−/− mice. Conclusions The miR‐181 family alters the myocardial response to oxidative stress, notably with detrimental effects by targeting mt‐COX1 (miR‐181c) or with protection by targeting PTEN (miR‐181a/b).
Collapse
Affiliation(s)
- Samarjit Das
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Mark Kohr
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | | | - Dong I Lee
- Department of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Djahida Bedja
- Department of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Oliver A Kent
- Princess Margaret Cancer Centre, University of Toronto, Ontario, Canada
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA.,Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, Philadelphia, PA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | | |
Collapse
|
17
|
Renvoisé M, Bonhomme L, Davanture M, Zivy M, Lemaire C. Phosphoproteomic Analysis of Isolated Mitochondria in Yeast. Methods Mol Biol 2017; 1636:283-299. [PMID: 28730486 DOI: 10.1007/978-1-4939-7154-1_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mitochondria play a central role in cellular energy metabolism and cell death. Deregulation of mitochondrial functions is associated with several human pathologies (neurodegenerative diseases, neuromuscular diseases, type II diabetes, obesity, cancer). The steadily increasing number of identified mitochondrial phosphoproteins, kinases, and phosphatases in recent years suggests that reversible protein phosphorylation plays an important part in the control of mitochondrial processes. In addition, many mitochondrial phosphoproteins probably still remain to be identified, considering that 30% of proteins are expected to be phosphorylated in eukaryotes. In this chapter, we describe two procedures for the analysis of the mitochondrial phosphoproteome. The first one is a qualitative method that combines blue native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (2D-BN/SDS-PAGE) and specific phosphoprotein staining. The second one is a quantitative approach that associates mitochondrial peptide labeling, phosphopeptide enrichment, and mass spectrometry.
Collapse
Affiliation(s)
- Margaux Renvoisé
- UMR 9198 CNRS, Institute for Integrative Biology of the Cell (I2BC), B3S, LPSM-CEA Saclay, 91191, Gif-sur-Yvette cedex, France
| | - Ludovic Bonhomme
- INRA/UCA UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', 63039, Clermont-Ferrand, France
| | - Marlène Davanture
- GQE- Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, UniversitÕ Paris-Saclay, Ferme du Moulon, 91191, Gif-sur-Yvette, France
| | - Michel Zivy
- GQE- Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, UniversitÕ Paris-Saclay, Ferme du Moulon, 91191, Gif-sur-Yvette, France
| | - Claire Lemaire
- UMR 9198 CNRS, Institute for Integrative Biology of the Cell (I2BC), B3S, LPSM-CEA Saclay, 91191, Gif-sur-Yvette cedex, France.
| |
Collapse
|
18
|
Multiplexed Liquid Chromatography-Multiple Reaction Monitoring Mass Spectrometry Quantification of Cancer Signaling Proteins. Methods Mol Biol 2017; 1647:19-45. [PMID: 28808993 DOI: 10.1007/978-1-4939-7201-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Quantitative evaluation of protein expression across multiple cancer-related signaling pathways (e.g., Wnt/β-catenin, TGF-β, receptor tyrosine kinases (RTK), MAP kinases, NF-κB, and apoptosis) in tumor tissues may enable the development of a molecular profile for each individual tumor that can aid in the selection of appropriate targeted cancer therapies. Here, we describe the development of a broadly applicable protocol to develop and implement quantitative mass spectrometry assays using cell line models and frozen tissue specimens from colon cancer patients. Cell lines are used to develop peptide-based assays for protein quantification, which are incorporated into a method based on SDS-PAGE protein fractionation, in-gel digestion, and liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM/MS). This analytical platform is then applied to frozen tumor tissues. This protocol can be broadly applied to the study of human disease using multiplexed LC-MRM assays.
Collapse
|
19
|
Gottlieb RA, Bernstein D. Mitochondrial remodeling: Rearranging, recycling, and reprogramming. Cell Calcium 2016; 60:88-101. [PMID: 27130902 PMCID: PMC4996709 DOI: 10.1016/j.ceca.2016.04.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 12/26/2022]
Abstract
Mitochondria are highly dynamic and responsive organelles that respond to environmental cues with fission and fusion. They undergo mitophagy and biogenesis, and are subject to extensive post-translational modifications. Calcium plays an important role in regulating mitochondrial functions. Mitochondria play a central role in metabolism of glucose, fatty acids, and amino acids, and generate ATP with effects on redox poise, oxidative stress, pH, and other metabolites including acetyl-CoA and NAD(+) which in turn have effects on chromatin remodeling. The complex interplay of mitochondria, cytosolic factors, and the nucleus ensure a well-coordinated response to environmental stresses.
Collapse
Affiliation(s)
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology) and the Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
20
|
Proteomics of human mitochondria. Mitochondrion 2016; 33:2-14. [PMID: 27444749 DOI: 10.1016/j.mito.2016.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 12/25/2022]
Abstract
Proteomics have passed through a tremendous development in the recent years by the development of ever more sensitive, fast and precise mass spectrometry methods. The dramatically increased research in the biology of mitochondria and their prominent involvement in all kinds of diseases and ageing has benefitted from mitochondrial proteomics. We here review substantial findings and progress of proteomic analyses of human cells and tissues in the recent past. One challenge for investigations of human samples is the ethically and medically founded limited access to human material. The increased sensitivity of mass spectrometry technology aids in lowering this hurdle and new approaches like generation of induced pluripotent cells from somatic cells allow to produce patient-specific cellular disease models with great potential. We describe which human sample types are accessible, review the status of the catalog of human mitochondrial proteins and discuss proteins with dual localization in mitochondria and other cellular compartments. We describe the status and developments of pertinent mass spectrometric strategies, and the use of databases and bioinformatics. Using selected illustrative examples, we draw a picture of the role of proteomic analyses for the many disease contexts from inherited disorders caused by mutation in mitochondrial proteins to complex diseases like cancer, type 2 diabetes and neurodegenerative diseases. Finally, we speculate on the future role of proteomics in research on human mitochondria and pinpoint fields where the evolving technologies will be exploited.
Collapse
|
21
|
Yue Q, Feng L, Cao B, Liu M, Zhang D, Wu W, Jiang B, Yang M, Liu X, Guo D. Proteomic Analysis Revealed the Important Role of Vimentin in Human Cervical Carcinoma HeLa Cells Treated With Gambogic Acid. Mol Cell Proteomics 2015; 15:26-44. [PMID: 26499837 DOI: 10.1074/mcp.m115.053272] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 12/20/2022] Open
Abstract
Gambogic acid (GA) is an anticancer agent in phase IIb clinical trial in China. In HeLa cells, GA inhibited cell proliferation, induced cell cycle arrest at G2/M phase and apoptosis, as showed by results of MTT assay and flow cytometric analysis. Possible target-related proteins of GA were searched using comparative proteomic analysis (2-DE) and nine proteins at early (3 h) stage together with nine proteins at late (24 h) stage were found. Vimentin was the only target-related protein found at both early and late stage. Results of both 2-DE analysis and Western blotting assay suggested cleavage of vimentin induced by GA. MS/MS analysis of cleaved vimentin peptides indicated possible cleavage sites of vimentin at or near ser51 and glu425. Results of targeted proteomic analysis showed that GA induced change in phosphorylation state of the vimentin head domain (aa51-64). Caspase inhibitors could not abrogate GA-induced cleavage of vimentin. Over-expression of vimentin ameliorated cytotoxicity of GA in HeLa cells. The GA-activated signal transduction, from p38 MAPK, heat shock protein 27 (HSP27), vimentin, dysfunction of cytoskeleton, to cell death, was predicted and then confirmed. Results of animal study showed that GA treatment inhibited tumor growth in HeLa tumor-bearing mice and cleavage of vimentin could be observed in tumor xenografts of GA-treated animals. Results of immunohistochemical staining also showed down-regulated vimentin level in tumor xenografts of GA-treated animals. Furthermore, compared with cytotoxicity of GA in HeLa cells, cytotoxicity of GA in MCF-7 cells with low level of vimentin was weaker whereas cytotoxicity of GA in MG-63 cells with high level of vimentin was stronger. These results indicated the important role of vimentin in the cytotoxicity of GA. The effects of GA on vimentin and other epithelial-to-mesenchymal transition (EMT) markers provided suggestion for better usage of GA in clinic.
Collapse
Affiliation(s)
- Qingxi Yue
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; §Institute of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; ¶College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China;
| | - Lixing Feng
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Biyin Cao
- ‖College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Miao Liu
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dongmei Zhang
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wanying Wu
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Baohong Jiang
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Min Yang
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xuan Liu
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dean Guo
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; ¶College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
22
|
Parker BL, Yang G, Humphrey SJ, Chaudhuri R, Ma X, Peterman S, James DE. Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 2015; 8:rs6. [DOI: 10.1126/scisignal.aaa3139] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
Minkoff BB, Stecker KE, Sussman MR. Rapid Phosphoproteomic Effects of Abscisic Acid (ABA) on Wild-Type and ABA Receptor-Deficient A. thaliana Mutants. Mol Cell Proteomics 2015; 14:1169-82. [PMID: 25693798 DOI: 10.1074/mcp.m114.043307] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Indexed: 11/06/2022] Open
Abstract
Abscisic acid (ABA)¹ is a plant hormone that controls many aspects of plant growth, including seed germination, stomatal aperture size, and cellular drought response. ABA interacts with a unique family of 14 receptor proteins. This interaction leads to the activation of a family of protein kinases, SnRK2s, which in turn phosphorylate substrates involved in many cellular processes. The family of receptors appears functionally redundant. To observe a measurable phenotype, four of the fourteen receptors have to be mutated to create a multilocus loss-of-function quadruple receptor (QR) mutant, which is much less sensitive to ABA than wild-type (WT) plants. Given these phenotypes, we asked whether or not a difference in ABA response between the WT and QR backgrounds would manifest on a phosphorylation level as well. We tested WT and QR mutant ABA response using isotope-assisted quantitative phosphoproteomics to determine what ABA-induced phosphorylation changes occur in WT plants within 5 min of ABA treatment and how that phosphorylation pattern is altered in the QR mutant. We found multiple ABA-induced phosphorylation changes that occur within 5 min of treatment, including three SnRK2 autophosphorylation events and phosphorylation on SnRK2 substrates. The majority of robust ABA-dependent phosphorylation changes observed were partially diminished in the QR mutant, whereas many smaller ABA-dependent phosphorylation changes observed in the WT were not responsive to ABA in the mutant. A single phosphorylation event was increased in response to ABA treatment in both the WT and QR mutant. A portion of the discovery data was validated using selected reaction monitoring-based targeted measurements on a triple quadrupole mass spectrometer. These data suggest that different subsets of phosphorylation events depend upon different subsets of the ABA receptor family to occur. Altogether, these data expand our understanding of the model by which the family of ABA receptors directs rapid phosphoproteomic changes.
Collapse
Affiliation(s)
- Benjamin B Minkoff
- Department of Biochemistry and Biotechnology Center, University of Wisconsin, Madison, Wisconsin, 53706
| | - Kelly E Stecker
- Department of Biochemistry and Biotechnology Center, University of Wisconsin, Madison, Wisconsin, 53706
| | - Michael R Sussman
- Department of Biochemistry and Biotechnology Center, University of Wisconsin, Madison, Wisconsin, 53706
| |
Collapse
|
24
|
Xu L, Wang F, Xu Y, Wang Y, Zhang C, Qin X, Yu H, Yang P. An MRM-based workflow for absolute quantitation of lysine-acetylated metabolic enzymes in mouse liver. Analyst 2015; 140:7868-75. [PMID: 26524672 DOI: 10.1039/c5an01832c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a key post-translational modification mechanism, protein acetylation plays critical roles in regulating and/or coordinating cell metabolism.
Collapse
Affiliation(s)
- Leilei Xu
- Minhang Hospital and Institutes of Biomedical Sciences
- Fudan University
- Shanghai
- China
- Department of Systems Biology for Medicine
| | - Fang Wang
- Minhang Hospital and Institutes of Biomedical Sciences
- Fudan University
- Shanghai
- China
- Department of Systems Biology for Medicine
| | - Ying Xu
- Minhang Hospital and Institutes of Biomedical Sciences
- Fudan University
- Shanghai
- China
| | - Yi Wang
- Minhang Hospital and Institutes of Biomedical Sciences
- Fudan University
- Shanghai
- China
| | - Cuiping Zhang
- Department of Clinical Laboratory
- The First Affiliated Hospital of Guangxi Medical University
- Nanning
- China
| | - Xue Qin
- Department of Clinical Laboratory
- The First Affiliated Hospital of Guangxi Medical University
- Nanning
- China
| | - Hongxiu Yu
- Minhang Hospital and Institutes of Biomedical Sciences
- Fudan University
- Shanghai
- China
- Department of Systems Biology for Medicine
| | - Pengyuan Yang
- Minhang Hospital and Institutes of Biomedical Sciences
- Fudan University
- Shanghai
- China
- Department of Systems Biology for Medicine
| |
Collapse
|
25
|
Kimura A, Arakawa N, Hirano H. Mass spectrometric analysis of the phosphorylation levels of the SWI/SNF chromatin remodeling/tumor suppressor proteins ARID1A and Brg1 in ovarian clear cell adenocarcinoma cell lines. J Proteome Res 2014; 13:4959-69. [PMID: 25083560 DOI: 10.1021/pr500470h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein phosphorylation is one of the major factors involved in tumor progression and malignancy. We performed exploratory studies aimed at identifying phosphoproteins characteristic to cell lines derived from ovarian clear cell adenocarcinoma (CCA), a highly malignant type of ovarian cancer. Comparative phosphoproteome analysis revealed that the phosphopeptides of five SWI/SNF chromatin remodeling/tumor suppressor components, including ARID1A and BRG1, were significantly down-regulated in CCA cells. We then quantitatively determined the phosphorylation levels of ARID1A and BRG1 by immunoprecipitation-multiple reaction monitoring (IP-MRM) that we used for analysis of the cognate phospho- and nonphosphopeptides of low-abundance proteins. The phosphorylation level of Brg1 at Ser1452 was down-regulated in CCA cells, whereas the phosphorylation level of ARID1A at Ser696 did not significantly differ between CCA and non-CCA cells. These results were consistent with the results of immunoblotting showing that Brg1 levels were comparable, but ARID1A levels were lower, in CCA cells relative to non-CCA cells. This is the first report to demonstrate reduced phosphorylation of Brg1 in CCA-derived cells. Our data also indicated that the IP-MRM/MS method we used is a powerful tool for validation of the phosphoproteins detected by shotgun analysis of phosphopeptides.
Collapse
Affiliation(s)
- Ayuko Kimura
- Advanced Medical Research Center and Graduate School of Medical Life Science, Yokohama City University , Fukuura 3-9, Kanazawa, Yokohama 236-0004, Japan
| | | | | |
Collapse
|
26
|
Zong N, Ping P, Lau E, Choi HJH, Ng DCM, Meyer D, Fang C, Li H, Wang D, Zelaya IM, Yates JR, Lam MPY. Lysine ubiquitination and acetylation of human cardiac 20S proteasomes. Proteomics Clin Appl 2014; 8:590-594. [PMID: 24957502 PMCID: PMC5094860 DOI: 10.1002/prca.201400029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/12/2014] [Accepted: 06/10/2014] [Indexed: 11/06/2022]
Abstract
PURPOSE Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets polyubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations. EXPERIMENTAL DESIGN Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-resolution MS to identify ubiquitination and acetylation sites. We developed a library search strategy that may be used to complement database search in identifying PTM in different samples. RESULTS We identified 63 ubiquitinated lysines from intact human cardiac 20S proteasomes. In parallel, 65 acetylated residues were also discovered, 39 of which shared with ubiquitination sites. CONCLUSION AND CLINICAL RELEVANCE This is the most comprehensive characterization of cardiac proteasome ubiquitination to date. There are significant overlaps between the discovered ubiquitination and acetylation sites, permitting potential crosstalk in regulating proteasome functions. The information presented here will aid future therapeutic strategies aimed at regulating the functions of cardiac proteasomes.
Collapse
Affiliation(s)
- Nobel Zong
- The NHLBI Proteomics Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Departments of Physiology and Medicine/Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Peipei Ping
- The NHLBI Proteomics Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Departments of Physiology and Medicine/Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Edward Lau
- The NHLBI Proteomics Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Departments of Physiology and Medicine/Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Howard JH Choi
- The NHLBI Proteomics Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dominic CM Ng
- The NHLBI Proteomics Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - David Meyer
- The NHLBI Proteomics Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Caiyun Fang
- The NHLBI Proteomics Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Haomin Li
- The NHLBI Proteomics Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ding Wang
- The NHLBI Proteomics Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Departments of Physiology and Medicine/Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ivette M Zelaya
- The NHLBI Proteomics Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Maggie PY Lam
- The NHLBI Proteomics Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Departments of Physiology and Medicine/Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
27
|
Shen X, Young R, Canty JM, Qu J. Quantitative proteomics in cardiovascular research: global and targeted strategies. Proteomics Clin Appl 2014; 8:488-505. [PMID: 24920501 DOI: 10.1002/prca.201400014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/02/2014] [Accepted: 06/06/2014] [Indexed: 11/05/2022]
Abstract
Extensive technical advances in the past decade have substantially expanded quantitative proteomics in cardiovascular research. This has great promise for elucidating the mechanisms of cardiovascular diseases and the discovery of cardiac biomarkers used for diagnosis and treatment evaluation. Global and targeted proteomics are the two major avenues of quantitative proteomics. While global approaches enable unbiased discovery of altered proteins via relative quantification at the proteome level, targeted techniques provide higher sensitivity and accuracy, and are capable of multiplexed absolute quantification in numerous clinical/biological samples. While promising, technical challenges need to be overcome to enable full utilization of these techniques in cardiovascular medicine. Here, we discuss recent advances in quantitative proteomics and summarize applications in cardiovascular research with an emphasis on biomarker discovery and elucidating molecular mechanisms of disease. We propose the integration of global and targeted strategies as a high-throughput pipeline for cardiovascular proteomics. Targeted approaches enable rapid, extensive validation of biomarker candidates discovered by global proteomics. These approaches provide a promising alternative to immunoassays and other low-throughput means currently used for limited validation.
Collapse
Affiliation(s)
- Xiaomeng Shen
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA; New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | | | | | | |
Collapse
|
28
|
Cui Z, Scruggs SB, Gilda JE, Ping P, Gomes AV. Regulation of cardiac proteasomes by ubiquitination, SUMOylation, and beyond. J Mol Cell Cardiol 2014; 71:32-42. [PMID: 24140722 PMCID: PMC3990655 DOI: 10.1016/j.yjmcc.2013.10.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/21/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the major intracellular degradation system, and its proper function is critical to the health and function of cardiac cells. Alterations in cardiac proteasomes have been linked to several pathological phenotypes, including cardiomyopathies, ischemia-reperfusion injury, heart failure, and hypertrophy. Defects in proteasome-dependent cellular protein homeostasis can be causal for the initiation and progression of certain cardiovascular diseases. Emerging evidence suggests that the UPS can specifically target proteins that govern pathological signaling pathways for degradation, thus altering downstream effectors and disease outcomes. Alterations in UPS-substrate interactions in disease occur, in part, due to direct modifications of 19S, 11S or 20S proteasome subunits. Post-translational modifications (PTMs) are one facet of this proteasomal regulation, with over 400 known phosphorylation sites, over 500 ubiquitination sites and 83 internal lysine acetylation sites, as well as multiple sites for caspase cleavage, glycosylation (such as O-GlcNAc modification), methylation, nitrosylation, oxidation, and SUMOylation. Changes in cardiac proteasome PTMs, which occur in ischemia and cardiomyopathies, are associated with changes in proteasome activity and proteasome assembly; however several features of this regulation remain to be explored. In this review, we focus on how some of the less common PTMs affect proteasome function and alter cellular protein homeostasis. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".
Collapse
Affiliation(s)
- Ziyou Cui
- Department of Neurobiology, Physiology and Behavior, University of California, Davis CA 95616, USA
| | - Sarah B Scruggs
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | - Jennifer E Gilda
- Department of Neurobiology, Physiology and Behavior, University of California, Davis CA 95616, USA
| | - Peipei Ping
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis CA 95616, USA; Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
29
|
miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo. PLoS One 2014; 9:e96820. [PMID: 24810628 PMCID: PMC4014556 DOI: 10.1371/journal.pone.0096820] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/11/2014] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, which inhibit the stability and/or translation of a mRNA. miRNAs have been found to play a powerful role in various cardiovascular diseases. Recently, we have demonstrated that a microRNA (miR-181c) can be encoded in the nucleus, processed to the mature form in the cytosol, translocated into the mitochondria, and ultimately can regulate mitochondrial gene expression. However the in vivo impact of miR-181c is unknown. Here we report an in-vivo method for administration of miR-181c in rats, which leads to reduced exercise capacity and signs of heart failure, by targeting the 3′-end of mt-COX1 (cytochrome c oxidase subunit 1). We cloned miR-181c and packaged it in lipid-based nanoparticles for systemic delivery. The plasmid DNA complexed nanovector shows no apparent toxicity. We find that the mRNA levels of mitochondrial complex IV genes in the heart, but not any other mitochondrial genes, are significantly altered with miR-181c overexpression, suggesting selective mitochondrial complex IV remodeling due to miR-181c targeting mt-COX1. Isolated heart mitochondrial studies showed significantly altered O2-consumption, ROS production, matrix calcium, and mitochondrial membrane potential in miR-181c-treated animals. For the first time, this study shows that miRNA delivered to the heart in-vivo can lead to cardiac dysfunction by regulating mitochondrial genes.
Collapse
|
30
|
Ribbens JJ, Moser AB, Hubbard WC, Bongarzone ER, Maegawa GHB. Characterization and application of a disease-cell model for a neurodegenerative lysosomal disease. Mol Genet Metab 2014; 111:172-83. [PMID: 24094551 PMCID: PMC3946682 DOI: 10.1016/j.ymgme.2013.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/16/2013] [Accepted: 09/16/2013] [Indexed: 12/18/2022]
Abstract
Disease-cell models that recapitulate specific molecular phenotypes are essential for the investigation of molecular pathogenesis of neurodegenerative diseases including lysosomal storage diseases (LSDs) with predominant neurological manifestations. Herein we report the development and characterization of a cell model for a rapid neurodegenerative LSDs, globoid-cell leukodystrophy (GLD), mostly known as Krabbe disease. GLD is caused by the deficiency of β-galactocerebrosidase (GALC), a lysosomal enzyme that hydrolyzes two glycosphingolipids, psychosine and galactosylceramide. Unfortunately, the available culture fibroblasts from GLD patients consist of a limited research tool as these cells fail to accumulate psychosine, the central pathogenic glycosphingolipid in this LSD that results in severe demyelination. Firstly, we obtained brain samples from the Twitcher (Twi) mice (GALC(twi/twi)), the natural mouse model with GALC deficiency. We immortalized the primary neuroglial cultured cells with SV40 large T antigen, generating the 145M-Twi and the 145C-Wt cell lines from the Twi and control mice, respectively. Both cell lines expressed specific oligodendrocyte markers including A2B5 and GalC. The 145M-Twi cells showed biochemical and cellular disturbances related to GLD neuropathogenesis including remarkable caspase-3 activation, release of cytochrome C into the cytosol and expansion of the lysosomal compartment. Under treatment with glycosphingolipids, 145M-Twi cells showed increased LC3B levels, a marker of autophagy. Using the LC-MS/MS method that we developed, the 145M-Twi cells showed significantly higher levels of psychosine. The 145M-Twi and 145C-Wt lines allowed the development of a robust throughput LC-MS/MS assay to measure cellular psychosine levels. In this throughput assay, l-cycloserine showed to significantly reduce the 145M-Twi cellular levels of psychosine. The established 145M-Twi cells are powerful research tools to investigate the neurologically relevant pathogenic pathways as well as to develop primary screening assays for the identification of therapeutic agents for GLD and potentially other glycosphingolipid disorders.
Collapse
Affiliation(s)
- Jameson J Ribbens
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ann B Moser
- Kennedy Krieger Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Walter C Hubbard
- Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Clinical Pharmacology, Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL 60612, USA
| | - Gustavo H B Maegawa
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
31
|
Giorgianni F, Usman Khan M, Weber KT, Gerling IC, Beranova-Giorgianni S. Phosphoproteome mapping of cardiomyocyte mitochondria in a rat model of heart failure. Mol Cell Biochem 2014; 389:159-67. [PMID: 24395194 DOI: 10.1007/s11010-013-1937-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/18/2013] [Indexed: 11/26/2022]
Abstract
Mitochondria are complex organelles essential to cardiomyocyte survival. Protein phosphorylation is emerging as a key regulator of mitochondrial function. In the study reported here, we analyzed subsarcolemmal (SSM) mitochondria harvested from rats who have received 4 weeks of aldosterone/salt treatment to simulate the neurohormonal profile of human congestive heart failure. Our objective was to obtain an initial qualitative inventory of the phosphoproteins in this biologic system. SSM mitochondria were harvested, and the phosphoproteome was analyzed with a gel-free bioanalytical platform. Mitochondrial proteins were digested with trypsin, and the digests were enriched for phosphopeptides with immobilized metal ion affinity chromatography. The phosphopeptides were analyzed by ion trap liquid chromatography-tandem mass spectrometry, and the phosphoproteins identified via database searches. Based on MS/MS and MS(3) data, we characterized a set of 42 phosphopeptides that encompassed 39 phosphorylation sites. These peptides mapped to 26 proteins, for example, long-chain specific acyl-CoA dehydrogenase, Complex III subunit 6, and mitochondrial import receptor TOM70. Collectively, the characterized phosphoproteins belong to diverse functional modules, including bioenergetic pathways, protein import machinery, and calcium handling. The phosphoprotein panel discovered in this study provides a foundation for future differential phosphoproteome profiling toward an integrated understanding of the role of mitochondrial phosphorylation in heart failure.
Collapse
Affiliation(s)
- Francesco Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Room 445, Memphis, TN, 38163, USA
| | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Maggie P Y Lam
- From the Departments of Physiology and Medicine, the NHLBI Proteomics Center, David Geffen School of Medicine at University of California Los Angeles, CA
| | | | | | | |
Collapse
|
33
|
Using phosphoproteomics to monitor disregulated signaling networks in cardiac disease preceding heart failure. Bioanalysis 2013; 5:2863-6. [DOI: 10.4155/bio.13.271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
34
|
Lin SL, Lin TY, Fuh MR. Microfluidic chip-based liquid chromatography coupled to mass spectrometry for determination of small molecules in bioanalytical applications: An update. Electrophoresis 2013; 35:1275-84. [DOI: 10.1002/elps.201300415] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Shu-Ling Lin
- Department of Chemistry; Soochow University; Taipei Taiwan
| | | | - Ming-Ren Fuh
- Department of Chemistry; Soochow University; Taipei Taiwan
| |
Collapse
|
35
|
Wijeratne AB, Manning JR, Schultz JEJ, Greis KD. Quantitative phosphoproteomics using acetone-based peptide labeling: method evaluation and application to a cardiac ischemia/reperfusion model. J Proteome Res 2013; 12:4268-79. [PMID: 24016359 DOI: 10.1021/pr400835k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mass spectrometry (MS) techniques to globally profile protein phosphorylation in cellular systems that are relevant to physiological or pathological changes have been of significant interest in biological research. An MS-based strategy utilizing an inexpensive acetone-based peptide-labeling technique known as reductive alkylation by acetone (RABA) for quantitative phosphoproteomics was explored to evaluate its capacity. Because the chemistry for RABA labeling for phosphorylation profiling had not been previously reported, it was first validated using a standard phosphoprotein and identical phosphoproteomes from cardiac tissue extracts. A workflow was then utilized to compare cardiac tissue phosphoproteomes from mouse hearts not expressing FGF2 versus hearts expressing low-molecular-weight fibroblast growth factor-2 (LMW FGF2) to relate low-molecular-weight fibroblast growth factor-2 (LMW FGF2)-mediated cardioprotective phenomena induced by ischemia/reperfusion injury of hearts, with downstream phosphorylation changes in LMW FGF2 signaling cascades. Statistically significant phosphorylation changes were identified at 14 different sites on 10 distinct proteins, including some with mechanisms already established for LMW FGF2-mediated cardioprotective signaling (e.g., connexin-43), some with new details linking LMW FGF2 to the cardioprotective mechanisms (e.g., cardiac myosin binding protein C or cMyBPC), and also several new downstream effectors not previously recognized for cardio-protective signaling by LMW FGF2. Additionally, one of the phosphopeptides, cMyBPC/pSer-282, identified was further verified with site-specific quantification using an SRM (selected reaction monitoring)-based approach that also relies on isotope labeling of a synthetic phosphopeptide with deuterated acetone as an internal standard. Overall, this study confirms that the inexpensive acetone-based peptide labeling can be used in both exploratory and targeted quantification phosphoproteomic studies to identify and verify biologically relevant phosphorylation changes in whole tissues.
Collapse
Affiliation(s)
- Aruna B Wijeratne
- Department of Cancer Biology and ‡Department of Pharmacology & Cell Biophysics, University of Cincinnati College of Medicine , 3125 Eden Avenue,Cincinnati, Ohio 45267, United States
| | | | | | | |
Collapse
|
36
|
Zhang J, Lin A, Powers J, Lam MP, Lotz C, Liem D, Lau E, Wang D, Deng N, Korge P, Zong NC, Cai H, Weiss J, Ping P. Perspectives on: SGP symposium on mitochondrial physiology and medicine: mitochondrial proteome design: from molecular identity to pathophysiological regulation. ACTA ACUST UNITED AC 2013; 139:395-406. [PMID: 22641634 PMCID: PMC3362520 DOI: 10.1085/jgp.201210797] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jun Zhang
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Christopher I. Murray
- Department of Biological Chemistry, Division of Cardiology and Biomedical Engineering, Johns Hopkins University, Baltimore MD
| | - Jennifer E. Van Eyk
- Department of Biological Chemistry, Division of Cardiology and Biomedical Engineering, Johns Hopkins University, Baltimore MD
- Department of Medicine, Division of Cardiology and Biomedical Engineering, Johns Hopkins University, Baltimore MD
| |
Collapse
|
38
|
Lam MPY, Lau E, Scruggs SB, Wang D, Kim TY, Liem DA, Zhang J, Ryan CM, Faull KF, Ping P. Site-specific quantitative analysis of cardiac mitochondrial protein phosphorylation. J Proteomics 2012; 81:15-23. [PMID: 23022582 DOI: 10.1016/j.jprot.2012.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/05/2012] [Accepted: 09/12/2012] [Indexed: 12/19/2022]
Abstract
We report the development of a multiple-reaction monitoring (MRM) strategy specifically tailored to the detection and quantification of mitochondrial protein phosphorylation. We recently derived 68 MRM transitions specific to protein modifications in the respiratory chain, voltage-dependent anion channel, and adenine nucleotide translocase. Here, we have now expanded the total number of MRM transitions to 176 to cover proteins from the tricarboxylic acid cycle, pyruvate dehydrogenase complex, and branched-chain alpha-keto acid dehydrogenase complex. We utilized the transition set to analyze endogenous protein phosphorylation in human heart, mouse heart, and mouse liver. The data demonstrate the potential utility of the MRM workflow for studying the functional details of mitochondrial phosphorylation signaling. This article is part of a Special Issue entitled: From protein structures to clinical applications.
Collapse
Affiliation(s)
- Maggie P Y Lam
- Department of Physiology, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Alberghina L, Gaglio D, Gelfi C, Moresco RM, Mauri G, Bertolazzi P, Messa C, Gilardi MC, Chiaradonna F, Vanoni M. Cancer cell growth and survival as a system-level property sustained by enhanced glycolysis and mitochondrial metabolic remodeling. Front Physiol 2012; 3:362. [PMID: 22988443 PMCID: PMC3440026 DOI: 10.3389/fphys.2012.00362] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/23/2012] [Indexed: 12/14/2022] Open
Abstract
Systems Biology holds that complex cellular functions are generated as system-level properties endowed with robustness, each involving large networks of molecular determinants, generally identified by “omics” analyses. In this paper we describe four basic cancer cell properties that can easily be investigated in vitro: enhanced proliferation, evasion from apoptosis, genomic instability, and inability to undergo oncogene-induced senescence. Focusing our analysis on a K-ras dependent transformation system, we show that enhanced proliferation and evasion from apoptosis are closely linked, and present findings that indicate how a large metabolic remodeling sustains the enhanced growth ability. Network analysis of transcriptional profiling gives the first indication on this remodeling, further supported by biochemical investigations and metabolic flux analysis (MFA). Enhanced glycolysis, down-regulation of TCA cycle, decoupling of glucose and glutamine utilization, with increased reductive carboxylation of glutamine, so to yield a sustained production of growth building blocks and glutathione, are the hallmarks of enhanced proliferation. Low glucose availability specifically induces cell death in K-ras transformed cells, while PKA activation reverts this effect, possibly through at least two mitochondrial targets. The central role of mitochondria in determining the two investigated cancer cell properties is finally discussed. Taken together the findings reported herein indicate that a system-level property is sustained by a cascade of interconnected biochemical pathways that behave differently in normal and in transformed cells.
Collapse
Affiliation(s)
- Lilia Alberghina
- SysBio Centre for Systems Biology Milano and Rome, Italy ; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|