1
|
Hota S, Kumar M. Unveiling the impact of Leptospira TolC efflux protein on host tissue adherence, complement evasion, and diagnostic potential. Infect Immun 2024; 92:e0041924. [PMID: 39392312 PMCID: PMC11556070 DOI: 10.1128/iai.00419-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
The TolC family protein of Leptospira is a type I outer membrane efflux protein. Phylogenetic analysis revealed significant sequence conservation among pathogenic Leptospira species (83%-98% identity) compared with intermediate and saprophytic species. Structural modeling indicated a composition of six β-strands and 10 α-helices arranged in two repeats, resembling bacterial outer membrane efflux proteins. Recombinant TolC (rTolC), expressed in a heterologous host and purified via Ni-NTA chromatography, maintained its secondary structural integrity, as verified by circular dichroism spectroscopy. Polyclonal antibodies against rTolC detected native TolC expression in pathogenic Leptospira but not in nonpathogenic ones. Immunoassays and detergent fractionation assays indicated surface localization of TolC. The rTolC's recognition by sera from leptospirosis-infected hosts across species suggests its utility as a diagnostic marker. Notably, rTolC demonstrated binding affinity for various extracellular matrix components, including collagen and chondroitin sulfate A, as well as plasma proteins such as factor H, C3b, and plasminogen, indicating potential roles in tissue adhesion and immune evasion. Functional assays demonstrated that rTolC-bound FH retained cofactor activity for C3b cleavage, highlighting TolC's role in complement regulation. The rTolC protein inhibited both the alternative and the classical pathway-mediated membrane attack complex (MAC) deposition in vitro. Blocking surface-expressed TolC on leptospires using specific antibodies reduced FH acquisition by Leptospira and increased MAC deposition on the spirochete. These findings indicate that TolC contributes to leptospiral virulence by promoting host tissue colonization and evading the immune response, presenting it as a potential target for diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Saswat Hota
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
2
|
Fish-Low CY, Than LTL, Ling KH, Sekawi Z. The Potential of Eight Plasma Proteins as Biomarkers in Redefining Leptospirosis Diagnosis. J Proteome Res 2024; 23:4027-4042. [PMID: 39150348 DOI: 10.1021/acs.jproteome.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Leptospirosis, a notifiable endemic disease in Malaysia, has higher mortality rates than regional dengue fever. Diverse clinical symptoms and limited diagnostic methods complicate leptospirosis diagnosis. The demand for accurate biomarker-based diagnostics is increasing. This study investigated the plasma proteome of leptospirosis patients with leptospiraemia and seroconversion compared with dengue patients and healthy subjects using isobaric tags for relative and absolute quantitation (iTRAQ)-mass spectrometry (MS). The iTRAQ analysis identified a total of 450 proteins, which were refined to a list of 290 proteins through a series of exclusion criteria. Differential expression in the plasma proteome of leptospirosis patients compared to the control groups identified 11 proteins, which are apolipoprotein A-II (APOA2), C-reactive protein (CRP), fermitin family homolog 3 (FERMT3), leucine-rich alpha-2-glycoprotein 1 (LRG1), lipopolysaccharide-binding protein (LBP), myosin-9 (MYH9), platelet basic protein (PPBP), platelet factor 4 (PF4), profilin-1 (PFN1), serum amyloid A-1 protein (SAA1), and thrombospondin-1 (THBS1). Following a study on a verification cohort, a panel of eight plasma protein biomarkers was identified for potential leptospirosis diagnosis: CRP, LRG1, LBP, MYH9, PPBP, PF4, SAA1, and THBS1. In conclusion, a panel of eight protein biomarkers offers a promising approach for leptospirosis diagnosis, addressing the limitations of the "one disease, one biomarker" concept.
Collapse
Affiliation(s)
- Cheng-Yee Fish-Low
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - King-Hwa Ling
- Medical Genetics Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Zamberi Sekawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| |
Collapse
|
3
|
Lymphatic filarial serum proteome profiling for identification and characterization of diagnostic biomarkers. PLoS One 2022; 17:e0270635. [PMID: 35793325 PMCID: PMC9258881 DOI: 10.1371/journal.pone.0270635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/15/2022] [Indexed: 01/08/2023] Open
Abstract
Lymphatic Filariasis (LF) affects more than 863 million people in tropical and subtropical areas of the world, causing high morbidity and long illnesses leading to social exclusion and loss of wages. A combination of drugs Ivermectin, Diethylcarbamazine citrate and Albendazole is recommended by WHO to accelerate the Global Programme to Eliminate Lymphatic Filariasis (GPELF). To assess the outcome of GPELF, to re-evaluate and to formulate further strategies there is an imperative need for high quality diagnostic markers. This study was undertaken to identify Lymphatic Filarial biomarkers which can detect LF infections in asymptomatic cases and would also serve as indicators for differentiating among different clinical stages of the disease. A combination of Fourier-transform infrared spectroscopy (FT-IR), MMP zymography, SDS-PAGE, classical 2DE along with MALDI-TOF/MS was done to identify LF biomarkers from serum samples of different stages of LF patients. FT-IR spectroscopy coupled with univariate and multivariate analysis of LF serum samples, revealed significant differences in peak intensity at 3300, 2950, 1645, 1540 and 1448 cm-1 (p<0.05). The proteomics analysis results showed that various proteins were differentially expressed (p<0.05), including C-reactive protein, α-1-antitrypsin, heterogeneous nuclear ribonucleoprotein D like, apolipoproteins A-I and A-IV in different LF clinical stages. Functional pathway analysis suggested the involvement of differentially expressed proteins in vital physiological pathways like acute phase response, hemostasis, complement and coagulation cascades. Furthermore, the differentiation between different stages of LF cases and biomarkers identified in this study clearly demonstrates the potential of the human serum profiling approach for LF detection. To our knowledge, this is the first report of comparative human serum profiling in different categories of LF patients.
Collapse
|
4
|
Vieira ML, Herwald H, Nascimento ALTO. The interplay between host haemostatic systems and Leptospira spp. infections. Crit Rev Microbiol 2020; 46:121-135. [PMID: 32141788 DOI: 10.1080/1040841x.2020.1735299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hemostasis is a defence mechanism that protects the integrity of the vascular system and is comprised of the coagulation cascade, fibrinolysis, platelet aggregation, and vascular endothelium. Besides the primary function in preserving the vascular integrity, the haemostatic system cooperates with immune and inflammatory processes to eliminate invading pathogens during microbial infections. Under pathological manifestations, hemostasis must therefore interact in a coordinated manner with inflammatory responses and immune reactions. Several pathogens can modulate these host-derived countermeasures by specifically targeting certain haemostatic components for their own benefit. Thus, the ability to modulate host defence systems has to be considered as an essential bacterial virulence mechanism. Complications that bacterial pathogens can induce are therefore often the consequence of evoked host responses. A comprehensive understanding of the molecular mechanisms triggered in infectious processes may help to develop prophylactic methods and novel therapies for the patients suffering from a particular infectious disease. This review aims to provide a critical updated compiling of recent studies on how the pathogenic Leptospira can interact with and manipulate the host haemostatic systems and the consequences for leptospirosis pathogenesis.
Collapse
Affiliation(s)
- Monica L Vieira
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Heiko Herwald
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | | |
Collapse
|
5
|
Fish-Low CY, Than LTL, Ling KH, Lin Q, Sekawi Z. Plasma proteome profiling reveals differentially expressed lipopolysaccharide-binding protein among leptospirosis patients. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 53:157-162. [PMID: 31029530 DOI: 10.1016/j.jmii.2018.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/22/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Human leptospirosis, or commonly known as "rat urine disease" is a zoonotic disease that is caused by the bacteria called Leptospira sp. The incidence rate of leptospirosis has been under-reported due to its unspecific clinical symptoms and the limitations of current laboratory diagnostic methods. Leptospirosis can be effectively treated with antibiotics in the early stage, and it is a curable disease but the accuracy to diagnose the infection is rarely achieved. METHODS The present pilot study investigated plasma protein profiles of leptospirosis patients and compared them against two control groups which consisted of dengue patients and healthy individuals. The plasma protein digests were analyzed using shotgun approach by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein abundances were estimated from the exponentially modified protein abundance index (emPAI) values. Plasma proteins in leptospirosis patients with at least two-fold differential expression compared to dengue and healthy control groups (p < 0.05, ANOVA) were identified. RESULTS Lipopolysaccharide (LPS)-binding protein (LBP) was found to be the only protein that has significant different expression between leptospirosis and the two control groups. The expression levels of leucine-rich alpha-2-glycoprotein (LRG1) and alpha-1-antichymotrypsin (ACT) were different significantly between leptospirosis and healthy group but not to the dengue control group. CONCLUSION This is the first plasma proteome-based study on leptospirosis that reports the differential expression of LBP compared to both dengue and healthy controls, which has not been previously reported in the context of leptospirosis.
Collapse
Affiliation(s)
- Cheng-Yee Fish-Low
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Zamberi Sekawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
Nascimento Filho EG, Vieira ML, Teixeira AF, Santos JC, Fernandes LGV, Passalia FJ, Daroz BB, Rossini A, Kochi LT, Cavenague MF, Pimenta DC, Nascimento ALTO. Proteomics as a tool to understand Leptospira physiology and virulence: Recent advances, challenges and clinical implications. J Proteomics 2018; 180:80-87. [PMID: 29501847 DOI: 10.1016/j.jprot.2018.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Edson G Nascimento Filho
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Monica L Vieira
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Aline F Teixeira
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Jademilson C Santos
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Luis G V Fernandes
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Felipe J Passalia
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil; Programa de Pos-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Brenda B Daroz
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil; Programa de Pos-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Amanda Rossini
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil; Programa de Pos-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leandro T Kochi
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil; Programa de Pos-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Maria F Cavenague
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil; Programa de Pos-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniel C Pimenta
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil.
| |
Collapse
|
7
|
Sadjjadi FS, Rezaie-Tavirani M, Ahmadi NA, Sadjjadi SM, Zali H. Proteome evaluation of human cystic echinococcosis sera using two dimensional gel electrophoresis. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2018; 11:75-82. [PMID: 29564069 PMCID: PMC5849122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AIM Detection of protein expression changes in human cystic echinococcosis sera by 2D gel electrophoresis. BACKGROUND Diagnosis and successful treatment of cystic echinococcosis (CE) is a major challenge, up to now. Identification of related expressed proteins using proteomics tools and bioinformatics analysis of patients' sera have not been investigated, so far. METHODS Sera from eight confirmed CE patients and three healthy controls were collected, tested by 2-DE for total protein separation of serum and analyzed using proteomics and bioinformatics methods. The gels were stained by Coomassie blue followed by scan imaging of the gels. The protein spots in each gel were analyzed using progenesis same spots software. Proteins names were obtained from TagIdent server. RESULTS A total of 263 protein spots with different expression were detected in both normal and diseased samples. Comparison between diseased and normal gels showed the expression of 45 up-regulated protein spots with fold≥2 in diseased gel of which 10 were new proteins with statistical difference by normal gel (p-value<0.05). On the other hand, the expression of 50 down-regulated protein spots were observed of which 11 proteins have been suppressed. Clustering of all detected sera proteins (263) using correlation analysis, divided the proteins into 2 clusters based on up-regulated and down-regulated expression of proteins. Clustering results were approved by principal component analysis (PCA). CONCLUSION Significant protein expression changes in human CE sera which is demonstrable by application of proteomics and bioinformatics analysis makes it an impressing tool for diagnosis of CE patients.
Collapse
Affiliation(s)
- Fatemeh Sadat Sadjjadi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaie-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayeb Ali Ahmadi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Sadjjadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hakimeh Zali
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical. Sciences, Tehran, Iran
| |
Collapse
|
8
|
Vk C, Ty L, Wf L, Ywy WS, An S, S Z, A M. Leptospirosis in human: Biomarkers in host immune responses. Microbiol Res 2017; 207:108-115. [PMID: 29458845 DOI: 10.1016/j.micres.2017.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 02/07/2023]
Abstract
Leptospirosis remains one of the most widespread zoonotic diseases caused by spirochetes of the genus Leptospira, which accounts for high morbidity and mortality globally. Leptospiral infections are often found in tropical and subtropical regions, with people exposed to contaminated environments or animal reservoirs are at high risk of getting the infection. Leptospirosis has a wide range of clinical manifestations with non-specific signs and symptoms and often misdiagnosed with other acute febrile illnesses at early stage of infection. Despite being one of the leading causes of zoonotic morbidity worldwide, there is still a gap between pathogenesis and human immune responses during leptospiral infection. It still remains obscure whether the severity of the infection is caused by the pathogenic properties of the Leptospira itself, or it is a consequence of imbalance host immune factors. Hence, in this review, we seek to summarize the past and present milestone findings on the biomarkers of host immune response aspects during human leptospiral infection, including cytokine and other immune mediators. A profound understanding of the interlink between virulence factors and host immune responses during human leptospirosis is imperative to identify potential biomarkers for diagnostic and prognostic applications as well as designing novel immunotherapeutic strategies in future.
Collapse
Affiliation(s)
- Chin Vk
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia.
| | - Lee Ty
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; School of Foundation Studies, Perdana University, 43400, Serdang, Malaysia.
| | - Lim Wf
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia.
| | - Wan Shahriman Ywy
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia; Department of Medical Laboratory Technology, Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Selangor Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor, Malaysia.
| | - Syafinaz An
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia.
| | - Zamberi S
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia.
| | - Maha A
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
9
|
Bai KJ, Chuang KJ, Chen JK, Hua HE, Shen YL, Liao WN, Lee CH, Chen KY, Lee KY, Hsiao TC, Pan CH, Ho KF, Chuang HC. Investigation into the pulmonary inflammopathology of exposure to nickel oxide nanoparticles in mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:2329-2339. [PMID: 29074311 DOI: 10.1016/j.nano.2017.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/02/2017] [Accepted: 10/07/2017] [Indexed: 12/15/2022]
Abstract
We investigated the effects of nickel oxide nanoparticles (NiONPs) on the pulmonary inflammopathology. NiONPs were intratracheally installed into mice, and lung injury and inflammation were evaluated between 1 and 28 days. NiONPs caused significant increases in LDH, total protein, and IL-6 and a decrease in IL-10 in the BALF and increases in 8-OHdG and caspase-3 in lung tissues at 24 h. Airway inflammation was present in a dose-dependent manner from the upper to lower airways at 24 h of exposure as analyzed by SPECT. Lung parenchyma inflammation and small airway inflammation were observed by CT after NiONP exposure. 8-OHdG in lung tissues had increased with formation of fibrosis at 28 days. Focal adhesion was the most important pathways identified at 24 h as determined by protemics, whereas glutathione metabolism was the most important identified at 28 days. Our results demonstrated the pulmonary inflammopathology caused by NiONPs based on image-to-biochemical approaches.
Collapse
Affiliation(s)
- Kuan-Jen Bai
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - His-En Hua
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yen-Ling Shen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Wei-Neng Liao
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chii-Hong Lee
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kang-Yun Lee
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, Taiwan
| | - Chih-Hong Pan
- Institute of Occupational Safety and Health, Council of Labor Affairs, Executive Yuan, New Taipei City, Taiwan; School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Kin-Fai Ho
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
10
|
Ray S, Patel SK, Venkatesh A, Chatterjee G, Ansari NN, Gogtay NJ, Thatte UM, Gandhe P, Varma SG, Patankar S, Srivastava S. Quantitative Proteomics Analysis of Plasmodium vivax Induced Alterations in Human Serum during the Acute and Convalescent Phases of Infection. Sci Rep 2017; 7:4400. [PMID: 28667326 PMCID: PMC5493610 DOI: 10.1038/s41598-017-04447-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 05/15/2017] [Indexed: 12/23/2022] Open
Abstract
The radial distribution of Plasmodium vivax malaria burden has evoked enormous concern among the global research community. In this study, we have investigated the serum proteome alterations in non-severe vivax malaria patients before and during patient recuperation starting from the early febrile to the defervescence and convalescent stages of the infection. We have also performed an extensive quantitative proteomics analysis to compare the serum proteome profiles of vivax malaria patients with low (LPVM) and moderately-high (MPVM) parasitemia with healthy community controls. Interestingly, some of the serum proteins such as Serum amyloid A, Apolipoprotein A1, C-reactive protein, Titin and Haptoglobin, were found to be sequentially altered with respect to increased parasite counts. Analysis of a longitudinal cohort of malaria patients indicated reversible alterations in serum levels of some proteins such as Haptoglobin, Apolipoprotein E, Apolipoprotein A1, Carbonic anhydrase 1, and Hemoglobin subunit alpha upon treatment; however, the levels of a few other proteins did not return to the baseline even during the convalescent phase of the infection. Here we present the first comprehensive serum proteomics analysis of vivax malaria patients with different levels of parasitemia and during the acute and convalescent phases of the infection.
Collapse
Affiliation(s)
- Sandipan Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.,Department of Clinical Biochemistry, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Sandip K Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Apoorva Venkatesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Gangadhar Chatterjee
- Dept of Biochemistry, Grant Govt Medical College and Sir JJ Group of Hospitals, Byculla, Mumbai, 400008, India
| | - Naziya N Ansari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Nithya J Gogtay
- Departments of Clinical Pharmacology, Seth GS Medical College & KEM Hospital, Parel, Mumbai, 400012, India
| | - Urmila M Thatte
- Departments of Clinical Pharmacology, Seth GS Medical College & KEM Hospital, Parel, Mumbai, 400012, India
| | - Prajakta Gandhe
- Departments of Clinical Pharmacology, Seth GS Medical College & KEM Hospital, Parel, Mumbai, 400012, India
| | - Santosh G Varma
- Dept of Biochemistry, Grant Govt Medical College and Sir JJ Group of Hospitals, Byculla, Mumbai, 400008, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
11
|
Yang M, Ye J, Qin H, Long Y, Li Y. Influence of perfluorooctanoic acid on proteomic expression and cell membrane fatty acid of Escherichia coli. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:532-539. [PMID: 27742440 DOI: 10.1016/j.envpol.2016.09.097] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/30/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Perfluorooctanoic acid (PFOA) has received an increasing attention in the agricultural and food industries due to its risk to human health. To facilitate the development of novel biomarkers of Escherichia coli against PFOA through multi-omics technologies, and to reveal the resistance mechanism of E. coli against PFOA at protein levels, the interactions among pollutant stress, protein expression and cell metabolism was investigated by using iTRAQ-based quantitative proteomic analysis. The results revealed that the 63 up-regulated proteins mainly involved in tricarboxylic acid cycle, glyoxylate and dicarboxylate metabolism and fatty acid biosynthesis, whereas, the 69 down-regulated proteins related to oxidative phosphorylation, pyruvate metabolism and the cell cycle-caulobacter pathway, were also associated with the increase of membrane permeability, excessive expenditure of ATP, disruption of fatty acid biosynthesis under PFOA stress. The results provide novel insights into the influence mechanisms of PFOA on fatty acid and protein networks.
Collapse
Affiliation(s)
- Meng Yang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Jinshao Ye
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, 94598, CA, USA
| | - Huaming Qin
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| | - Yan Long
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Yi Li
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
12
|
Chuang KJ, Lee KY, Pan CH, Lai CH, Lin LY, Ho SC, Ho KF, Chuang HC. Effects of zinc oxide nanoparticles on human coronary artery endothelial cells. Food Chem Toxicol 2016; 93:138-44. [PMID: 27185063 DOI: 10.1016/j.fct.2016.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 12/11/2022]
Abstract
Inhalation of zinc oxide (ZnO) metal fumes is known to cause metal fume fever and to have systemic effects; however, the effects of ZnO nanoparticles (ZnONPs) on the cardiovascular system remain unclear. The objective of this study was to investigate the cardiovascular toxicity of ZnONPs. Human coronary artery endothelial cells (HCAECs) were exposed to ZnONPs of different sizes to investigate the cell viability, 8-hydroxy-2'-deoxyguanosine (8-OHdG), interleukin (IL)-6, nitric oxide (NO), and regulation of cardiovascular disease-related genes. Exposure of HCAECs to ZnONPs resulted in decreased cell viability and increased levels of 8-OHdG, IL-6, and NO. Downregulation of cardiovascular-associated genes was observed in response to ZnONPs in HCAECs determined by qPCR, suggesting that the calcium signaling pathway, neuroactive ligand-receptor interaction, hypertrophic cardiomyopathy, dilated cardiomyopathy, and renin-angiotensin system are important affected pathways in response to ZnONPs. Furthermore, we observed a significant response of AGTR1 to ZnONP exposure in HCAECs. Our results suggest that ZnONPs cause toxicity to HCAECs, which could be associated with cardiovascular dysfunction.
Collapse
Affiliation(s)
- Kai-Jen Chuang
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Chih-Hong Pan
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City, Taiwan; School of Public Health, National Defense Medical Center, Taipei, Taiwan.
| | - Ching-Huang Lai
- School of Public Health, National Defense Medical Center, Taipei, Taiwan.
| | - Lian-Yu Lin
- Department of Internal Medicine, Division of Cardiology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Shu-Chuan Ho
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Kin-Fai Ho
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Hsiao-Chi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
13
|
Urinary neutrophil gelatinase-associated lipocalin is associated with heavy metal exposure in welding workers. Sci Rep 2015; 5:18048. [PMID: 26673824 PMCID: PMC4682179 DOI: 10.1038/srep18048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/11/2015] [Indexed: 12/20/2022] Open
Abstract
Metals cause nephrotoxicity with acute and/or chronic exposure; however, few epidemiological studies have examined impacts of exposure to metal fumes on renal injury in welding workers. In total, 66 welding workers and 12 office workers were recruited from a shipyard located in southern Taiwan. Urine samples from each subject were collected at the beginning (baseline) and end of the work week (1-week exposure). Personal exposure to PM2.5 was measured. The 8-h mean PM2.5 was 50.3 μg/m3 for welding workers and 27.4 μg/m3 for office workers. iTRAQs coupled with LC-MS/MS were used to discover the pathways in response to welding PM2.5 in the urine, suggesting that extracellular matrix (ECM)-receptor interactions are a critical mechanism. ECM-receptor interaction-related biomarkers for renal injury, kidney injury molecule (KIM)-1 and neutrophil gelatinase-associated lipocalin (NGAL), were significantly elevated in welding workers post-exposure, as well as were urinary Al, Cr, Mn, Fe, Co, and Ni levels. NGAL was more significantly associated with Al (r = 0.737, p < 0.001), Cr (r = 0.705, p < 0.001), Fe (r = 0.709, p < 0.001), and Ni (r = 0.657, p < 0.001) than was KIM-1, suggesting that NGAL may be a urinary biomarker for welding PM2.5 exposure. Nephrotoxicity (e.g., renal tubular injury) may be an emerging concern in occupational health.
Collapse
|
14
|
Pan CH, Chuang KJ, Chen JK, Hsiao TC, Lai CH, Jones TP, BéruBé KA, Hong GB, Ho KF, Chuang HC. Characterization of pulmonary protein profiles in response to zinc oxide nanoparticles in mice: a 24-hour and 28-day follow-up study. Int J Nanomedicine 2015; 10:4705-16. [PMID: 26251593 PMCID: PMC4524458 DOI: 10.2147/ijn.s82979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although zinc oxide nanoparticles (ZnONPs) are recognized to cause systemic disorders, little is known about the mechanisms that underlie the time-dependent differences that occur after exposure. The objective of this study was to investigate the mechanistic differences at 24 hours and 28 days after the exposure of BALB/c mice to ZnONPs via intratracheal instillation. An isobaric tag for the relative and absolute quantitation coupled with liquid chromatography/tandem mass spectrometry was used to identify the differential protein expression, biological processes, molecular functions, and pathways. A total of 18 and 14 proteins displayed significant changes in the lung tissues at 24 hours and 28 days after exposure, respectively, with the most striking changes being observed for S100-A9 protein. Metabolic processes and catalytic activity were the main biological processes and molecular functions, respectively, in the responses at the 24-hour and 28-day follow-up times. The glycolysis/gluconeogenesis pathway was continuously downregulated from 24 hours to 28 days, whereas detoxification pathways were activated at the 28-day time-point after exposure. A comprehensive understanding of the potential time-dependent effects of exposure to ZnONPs was provided, which highlights the metabolic mechanisms that may be important in the responses to ZnONP.
Collapse
Affiliation(s)
- Chih-Hong Pan
- Institute of Occupational Safety and Health, Council of Labor Affairs, Executive Yuan, Taiwan ; School of Public Health, National Defense Medical Center, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan ; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, Taiwan
| | - Ching-Huang Lai
- School of Public Health, National Defense Medical Center, Taipei Medical University, Taipei, Taiwan
| | - Tim P Jones
- School of Earth and Ocean Sciences, Cardiff University, Cardiff, Wales, UK
| | - Kelly A BéruBé
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Gui-Bing Hong
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Kin-Fai Ho
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, People's Republic of China ; Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan ; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
15
|
Ray S, Kumar V, Bhave A, Singh V, Gogtay NJ, Thatte UM, Talukdar A, Kochar SK, Patankar S, Srivastava S. Proteomic analysis of Plasmodium falciparum induced alterations in humans from different endemic regions of India to decipher malaria pathogenesis and identify surrogate markers of severity. J Proteomics 2015; 127:103-13. [PMID: 25982387 DOI: 10.1016/j.jprot.2015.04.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/21/2015] [Accepted: 04/29/2015] [Indexed: 11/17/2022]
Abstract
India significantly contributes to the global malaria burden and has the largest population in the world at risk of malaria. This study aims to analyze alterations in the human serum proteome as a consequence of non-severe and severe infections by the malaria parasite Plasmodium falciparum to identify markers related to disease severity and to obtain mechanistic insights about disease pathogenesis and host immune responses. In discovery phase of the study, a comprehensive quantitative proteomic analysis was performed using gel-based (2D-DIGE) and gel-free (iTRAQ) techniques on two independent mass spectrometry platforms (ESI-Q-TOF and Q-Exactive mass spectrometry), and selected targets were validated by ELISA. Proteins showing altered serum abundance in falciparum malaria patients revealed the modulation of different physiological pathways including chemokine and cytokine signaling, IL-12 signaling and production in macrophages, complement cascades, blood coagulation, and protein ubiquitination pathways. Some muscle related and cytoskeletal proteins such as titin and galectin-3-binding protein were found to be up-regulated in severe malaria patients. Hemoglobin levels and platelet counts were also found to be drastically lower in severe malaria patients. Identified proteins including serum amyloid A, C-reactive protein, apolipoprotein E and haptoglobin, which exhibited sequential alterations in their serum abundance in different severity levels of malaria, could serve as potential predictive markers for disease severity. To the best of our information, we report here the first comprehensive analysis describing the serum proteomic alterations observed in severe P. falciparum infected patients from different malaria endemic regions of India. This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Sandipan Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Vipin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Amruta Bhave
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Vaidhvi Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nithya J Gogtay
- Department of Clinical Pharmacology, Seth GS Medical College & KEM Hospital, Parel, Mumbai 400012, India
| | - Urmila M Thatte
- Department of Clinical Pharmacology, Seth GS Medical College & KEM Hospital, Parel, Mumbai 400012, India
| | - Arunansu Talukdar
- Department of Medicine, Medical College and Hospital Kolkata, 88, College Street, Kolkata 700073, India
| | - Sanjay K Kochar
- Department of Medicine, Malaria Research Center, S.P. Medical College, Bikaner 334003, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
16
|
Schuller S, Sergeant K, Renaut J, Callanan JJ, Scaife C, Nally JE. Comparative proteomic analysis of lung tissue from guinea pigs with leptospiral pulmonary haemorrhage syndrome (LPHS) reveals a decrease in abundance of host proteins involved in cytoskeletal and cellular organization. J Proteomics 2015; 122:55-72. [PMID: 25818725 DOI: 10.1016/j.jprot.2015.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/20/2015] [Accepted: 03/08/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED Leptospiral pulmonary haemorrhage syndrome (LPHS) is a particularly severe form of leptospirosis. LPHS is increasingly recognized in both humans and animals and is characterized by rapidly progressive intra-alveolar haemorrhage leading to high mortality. The pathogenic mechanisms of LPHS are poorly understood which hampers the application of effective treatment regimes. In this study a 2-D guinea pig proteome lung map was created and used to investigate the pathogenic mechanisms of LPHS. Comparison of lung proteomes from infected and non-infected guinea pigs via differential in-gel electrophoresis revealed highly significant differences in abundance of proteins contained in 130 spots. Acute phase proteins were the largest functional group amongst proteins with increased abundance in LPHS lung tissue, and likely reflect a local and/or systemic host response to infection. The observed decrease in abundance of proteins involved in cytoskeletal and cellular organization in LPHS lung tissue further suggests that infection with pathogenic Leptospira induces changes in the abundance of host proteins involved in cellular architecture and adhesion contributing to the dramatically increased alveolar septal wall permeability seen in LPHS. BIOLOGICAL SIGNIFICANCE The recent completion of the complete genome sequence of the guinea pig (Cavia porcellus) provides innovative opportunities to apply proteomic technologies to an important animal model of disease. In this study, the comparative proteomic analysis of lung tissue from experimentally infected guinea pigs with leptospiral pulmonary haemorrhage syndrome (LPHS) revealed a decrease in abundance of proteins involved in cellular architecture and adhesion, suggesting that loss or down-regulation of cytoskeletal and adhesion molecules plays an important role in the pathogenesis of LPHS. A publically available guinea pig lung proteome map was constructed to facilitate future pulmonary proteomics in this species.
Collapse
Affiliation(s)
- Simone Schuller
- University College Dublin, School of Veterinary Medicine, Belfield, Dublin 4, Ireland; Vetsuisse Faculty University of Bern, Länggassstrasse 128, 3012 Bern, Switzerland.
| | - Kjell Sergeant
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation" (ERIN) department, 41, rue du Brill, 4422 Belvaux, Luxembourg
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation" (ERIN) department, 41, rue du Brill, 4422 Belvaux, Luxembourg
| | - John J Callanan
- University College Dublin, School of Veterinary Medicine, Belfield, Dublin 4, Ireland; Conway Institute for Biomolecular & Biomedical Research, Belfield, Dublin 4, Ireland; Ross University School of Veterinary Medicine, St Kitts and Nevis, West Indies
| | - Caitriona Scaife
- Conway Institute for Biomolecular & Biomedical Research, Belfield, Dublin 4, Ireland
| | - Jarlath E Nally
- University College Dublin, School of Veterinary Medicine, Belfield, Dublin 4, Ireland; Conway Institute for Biomolecular & Biomedical Research, Belfield, Dublin 4, Ireland; Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, Department of Agriculture, Ames, IA 50010, USA
| |
Collapse
|
17
|
Rajapakse S, Rodrigo C, Handunnetti SM, Fernando SD. Current immunological and molecular tools for leptospirosis: diagnostics, vaccine design, and biomarkers for predicting severity. Ann Clin Microbiol Antimicrob 2015; 14:2. [PMID: 25591623 PMCID: PMC4299796 DOI: 10.1186/s12941-014-0060-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/22/2014] [Indexed: 12/18/2022] Open
Abstract
Leptospirosis is a zoonotic spirochaetal illness that is endemic in many tropical countries. The research base on leptospirosis is not as strong as other tropical infections such as malaria. However, it is a lethal infection that can attack many vital organs in its severe form, leading to multi-organ dysfunction syndrome and death. There are many gaps in knowledge regarding the pathophysiology of leptospirosis and the role of host immunity in causing symptoms. This hinders essential steps in combating disease, such as developing a potential vaccine. Another major problem with leptospirosis is the lack of an easy to perform, accurate diagnostic tests. Many clinicians in resource limited settings resort to clinical judgment in diagnosing leptospirosis. This is unfortunate, as many other diseases such as dengue, hanta virus, rickettsial infections, and even severe bacterial sepsis, can mimic leptospirosis. Another interesting problem is the prediction of disease severity at the onset of the illness. The majority of patients recover from leptospirosis with only a mild febrile illness, while a few others have severe illness with multi-organ failure. Clinical features are poor predictors of potential severity of infection, and therefore the search is on for potential biomarkers that can serve as early warnings for severe disease. This review concentrates on these three important aspects of this neglected tropical disease: diagnostics, developing a vaccine, and potential biomarkers to predict disease severity.
Collapse
Affiliation(s)
- Senaka Rajapakse
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo, 08, Sri Lanka.
| | - Chaturaka Rodrigo
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo, 08, Sri Lanka.
| | - Shiroma M Handunnetti
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka.
| | | |
Collapse
|
18
|
Pan CH, Liu WT, Bien MY, Lin IC, Hsiao TC, Ma CM, Lai CH, Chen MC, Chuang KJ, Chuang HC. Effects of size and surface of zinc oxide and aluminum-doped zinc oxide nanoparticles on cell viability inferred by proteomic analyses. Int J Nanomedicine 2014; 9:3631-43. [PMID: 25120361 PMCID: PMC4128792 DOI: 10.2147/ijn.s66651] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although the health effects of zinc oxide nanoparticles (ZnONPs) on the respiratory system have been reported, the fate, potential toxicity, and mechanisms in biological cells of these particles, as related to particle size and surface characteristics, have not been well elucidated. To determine the physicochemical properties of ZnONPs that govern cytotoxicity, we investigated the effects of size, electronic properties, zinc concentration, and pH on cell viability using human alveolar-basal epithelial A549 cells as a model. We observed that a 2-hour or longer exposure to ZnONPs induced changes in cell viability. The alteration in cell viability was associated with the zeta potentials and pH values of the ZnONPs. Proteomic profiling of A549 exposed to ZnONPs for 2 and 4 hours was used to determine the biological mechanisms of ZnONP toxicity. p53-pathway activation was the core mechanism regulating cell viability in response to particle size. Activation of the Wnt and TGFβ signaling pathways was also important in the cellular response to ZnONPs of different sizes. The cadherin and Wnt signaling pathways were important cellular mechanisms triggered by surface differences. These results suggested that the size and surface characteristics of ZnONPs might play an important role in their observed cytotoxicity. This approach facilitates the design of more comprehensive systems for the evaluation of nanoparticles.
Collapse
Affiliation(s)
- Chih-Hong Pan
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, Taipei Medical University Hospital, Taipei, Taiwan ; School of Public Health, National Defense Medical Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wen-Te Liu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University Hospital, Taipei, Taiwan ; School of Respiratory Therapy, College of Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Mauo-Ying Bien
- School of Respiratory Therapy, College of Medicine, Taipei Medical University Hospital, Taipei, Taiwan ; Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - I-Chan Lin
- Department of Ophthalmology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, Taiwan
| | - Chih-Ming Ma
- Department of Cosmetic Application and Management, St Mary's Junior College of Medicine, Nursing and Management, Sanxing, Taiwan
| | - Ching-Huang Lai
- School of Public Health, National Defense Medical Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Mei-Chieh Chen
- Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ; School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University Hospital, Taipei, Taiwan ; School of Respiratory Therapy, College of Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
19
|
Gouthamchandra K, Kumar A, Shwetha S, Mukherjee A, Chandra M, Ravishankar B, Khaja MN, Sadhukhan PC, Das S. Serum proteomics of hepatitis C virus infection reveals retinol-binding protein 4 as a novel regulator. J Gen Virol 2014; 95:1654-1667. [PMID: 24784414 DOI: 10.1099/vir.0.062430-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Persistent infection of hepatitis C virus (HCV) can lead to liver cirrhosis and hepatocellular carcinoma, which are currently diagnosed by invasive liver biopsy. Approximately 15-20 % of cases of chronic liver diseases in India are caused by HCV infection. In North India, genotype 3 is predominant, whereas genotype 1 is predominant in southern parts of India. The aim of this study was to identify differentially regulated serum proteins in HCV-infected Indian patients (genotypes 1 and 3) using a two-dimensional electrophoresis approach. We identified eight differentially expressed proteins by MS. Expression levels of one of the highly upregulated proteins, retinol-binding protein 4 (RBP4), was validated by ELISA and Western blotting in two independent cohorts. We also confirmed our observation in the JFH1 infectious cell culture system. Interestingly, the HCV core protein enhanced RBP4 levels and partial knockdown of RBP4 had a positive impact on HCV replication, suggesting a possible role for this cellular protein in regulating HCV infection. Analysis of RBP4-interacting partners using a bioinformatic approach revealed novel insights into the possible involvement of RBP4 in HCV-induced pathogenesis. Taken together, this study provided information on the proteome profile of the HCV-infected Indian population, and revealed a link between HCV infection, RBP4 and insulin resistance.
Collapse
Affiliation(s)
- K Gouthamchandra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - Anuj Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - Shivaprasad Shwetha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - Anirban Mukherjee
- ICMR Virus Unit, Kolkata, ID & BG Hospital Campus, GB-4 (East Wing) 1st Floor, 57, Dr Suresh Chandra Banerjee Road, Beliaghata, Kolkata 700010, India
| | - Madhavi Chandra
- Bioviz Technologies Pvt Ltd, Sagar Society, Road No. 2, Banjara Hills, Hyderabad 500 034, India
| | | | - M N Khaja
- Bioviz Technologies Pvt Ltd, Sagar Society, Road No. 2, Banjara Hills, Hyderabad 500 034, India
| | - Provash Chandra Sadhukhan
- ICMR Virus Unit, Kolkata, ID & BG Hospital Campus, GB-4 (East Wing) 1st Floor, 57, Dr Suresh Chandra Banerjee Road, Beliaghata, Kolkata 700010, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW In the past years, the importance of studying leptospirosis in a translational context has become more evident. This review addresses recent findings in the study of leptospirosis infection, focusing on those applicable to public health, or that will affect management and diagnosis of cases of leptospirosis. RECENT FINDINGS We review here recent findings regarding translational aspects of leptospirosis research. Briefly, PCR or a combination of serology and PCR seem to have a higher sensitivity than the current gold standard (microagglutination test). More clinical trials are needed to determine the best treatment for mild and severe leptospirosis. Dendritic cells and γδ T cells seem to have an important role in the immune response to leptospirosis. Environmental assessment is emerging as a very useful tool. SUMMARY In order to understand leptospirosis, multiple aspects need to be considered, including host, pathogen and environment. In this review, we will address newer diagnostics, current advances in immunology and treatment and the growing role of environmental assessment.
Collapse
|
21
|
Chen TT, Chuang KJ, Chiang LL, Chen CC, Yeh CT, Wang LS, Gregory C, Jones T, BéruBé K, Lee CN, Chuang HC, Cheng TJ. Characterization of the interactions between protein and carbon black. JOURNAL OF HAZARDOUS MATERIALS 2014; 264:127-135. [PMID: 24291665 DOI: 10.1016/j.jhazmat.2013.10.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/23/2013] [Accepted: 10/25/2013] [Indexed: 06/02/2023]
Abstract
A considerable amount of studies have been conducted to investigate the interactions of biological fluids with nanoparticle surfaces, which exhibit a high affinity for proteins and particles. However, the mechanisms underlying these interactions have not been elucidated, particularly as they relate to human health. Using bovine serum albumin (BSA) and mice bronchoalveolar lavage fluid (BALF) as models for protein-particle conjugates, we characterized the physicochemical modifications of carbon blacks (CB) with 23nm or 65nm in diameter after protein treatment. Adsorbed BALF-containing proteins were quantified and identified by pathways, biological analyses and protein classification. Significant modifications of the physicochemistry of CB were induced by the addition of BSA. Enzyme modulators and hydrolase predominately interacted with CB, with protein-to-CB interactions that were associated with the coagulation pathways. Additionally, our results revealed that an acute-phase response could be activated by these proteins. With regard to human health, the present study revealed that the CB can react with proteins (∼55kDa and 70kDa) after inhalation and may modify the functional structures of lung proteins, leading to the activation of acute-inflammatory responses in the lungs.
Collapse
Affiliation(s)
- Tzu-Tao Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Kai-Jen Chuang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan.
| | - Ling-Ling Chiang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Chun-Chao Chen
- Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Chi-Tai Yeh
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cancer Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
| | - Liang-Shun Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cancer Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
| | - Clive Gregory
- Institute of Primary Care and Public Health, Cardiff University, Cardiff, Wales, UK.
| | - Tim Jones
- School of Earth and Ocean Sciences, Cardiff University, Cardiff, Wales, UK.
| | - Kelly BéruBé
- School of Biosciences, Cardiff University, Cardiff, Wales, UK.
| | - Chun-Nin Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Hsiao-Chi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Tsun-Jen Cheng
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
22
|
Ray S, Patel SK, Kumar V, Damahe J, Srivastava S. Differential expression of serum/plasma proteins in various infectious diseases: specific or nonspecific signatures. Proteomics Clin Appl 2013; 8:53-72. [PMID: 24293340 PMCID: PMC7168033 DOI: 10.1002/prca.201300074] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 01/26/2023]
Abstract
Apart from direct detection of the infecting organisms or biomarker of the pathogen itself, surrogate host markers are also useful for sensitive and early diagnosis of pathogenic infections. Early detection of pathogenic infections, discrimination among closely related diseases with overlapping clinical manifestations, and monitoring of disease progression can be achieved by analyzing blood biomarkers. Therefore, over the last decade large numbers of proteomics studies have been conducted to identify differentially expressed human serum/plasma proteins in different infectious diseases with the intent of discovering novel potential diagnostic/prognostic biomarkers. However, in-depth review of the literature indicates that many reported biomarkers are altered in the same way in multiple infectious diseases, regardless of the type of infection. This might be a consequence of generic acute phase reactions, while the uniquely modulated candidates in different pathogenic infections could be indicators of some specific responses. In this review article, we will provide a comprehensive analysis of differentially expressed serum/plasma proteins in various infectious diseases and categorize the protein markers associated with generic or specific responses. The challenges associated with the discovery, validation, and translational phases of serum/plasma biomarker establishment are also discussed.
Collapse
Affiliation(s)
- Sandipan Ray
- Department of Biosciences and Bioengineering, Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | | | | | | |
Collapse
|
23
|
Leptospiral LruA is required for virulence and modulates an interaction with mammalian apolipoprotein AI. Infect Immun 2013; 81:3872-9. [PMID: 23918777 DOI: 10.1128/iai.01195-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Leptospirosis is a worldwide zoonosis caused by spirochetes of the genus Leptospira. While understanding of pathogenesis remains limited, the development of mutagenesis in Leptospira has provided a powerful tool for identifying novel virulence factors. LruA is a lipoprotein that has been implicated in leptospiral uveitis as a target of the immune response. In this study, two lruA mutants, M754 and M765, generated by transposon mutagenesis from Leptospira interrogans serovar Manilae, were characterized. In M754, the transposon inserted in the middle of lruA, resulting in no detectable expression of LruA. In M765, the transposon inserted toward the 3' end of the gene, resulting in expression of a truncated protein. LruA was demonstrated to be on the cell surface in M765 and the wild type (WT). M754, but not M765, was attenuated in a hamster model of acute infection. A search for differential binding to human serum proteins identified a serum protein of around 30 kDa bound to the wild type and the LruA deletion mutant (M754), but not to the LruA truncation mutant (M765). Two-dimensional separation of proteins from leptospiral cells incubated with guinea pig serum identified the 28-kDa apolipoprotein A-I (ApoA-I) as a major mammalian serum protein that binds Leptospira in vitro. Interestingly, M754 (with no detectable LruA) bound more ApoA-I than did the LruA-expressing strains Manilae wild type and M765. Our data thus identify LruA as a surface-exposed leptospiral virulence factor that contributes to leptospiral pathogenesis, possibly by modulating cellular interactions with serum protein ApoA-I.
Collapse
|
24
|
Su CL, Chen TT, Chang CC, Chuang KJ, Wu CK, Liu WT, Ho KF, Lee KY, Ho SC, Tseng HE, Chuang HC, Cheng TJ. Comparative proteomics of inhaled silver nanoparticles in healthy and allergen provoked mice. Int J Nanomedicine 2013; 8:2783-99. [PMID: 23946650 PMCID: PMC3742529 DOI: 10.2147/ijn.s46997] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Silver nanoparticles (AgNPs) have been associated with the exacerbation of asthma; however, the immunological basis for the adjuvant effects of AgNPs is not well understood. Objective The aim of the study reported here was to investigate the allergic effects of AgNP inhalation using proteomic approaches. Methods Allergen provoked mice were exposed to 33 nm AgNPs at 3.3 mg/m3. Following this, bronchoalveolar lavage fluid (BALF) and plasma were collected to determine protein profiles. Results In total, 106 and 79 AgNP-unique proteins were identified in the BALF of control and allergic mice, respectively. Additionally, 40 and 26 AgNP-unique proteins were found in the plasma of control and allergic mice, respectively. The BALF and plasma protein profiles suggested that metabolic, cellular, and immune system processes were associated with pulmonary exposure to AgNPs. In addition, we observed 18 proteins associated with systemic lupus erythematosus that were commonly expressed in both control and allergic mice after AgNP exposure. Significant allergy responses were observed after AgNP exposure in control and allergic mice, as determined by ovalbumin-specific immunoglobulin E. Conclusion Inhaled AgNPs may regulate immune responses in the lungs of both control and allergic mice. Our results suggest that immunology is a vital response to AgNPs.
Collapse
Affiliation(s)
- Chien-Ling Su
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, School of Respiratory Therapy, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zolla L, D'Alessandro A. Preface to the Special Issue: Integrated omics. J Proteomics 2012; 76 Spec No.:3-9. [PMID: 23079073 DOI: 10.1016/j.jprot.2012.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/08/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Lello Zolla
- Tuscia University, Largo dell'Università, snc, 01100 Viterbo, Italy.
| | | |
Collapse
|
26
|
Ray S, Srivastava R, Tripathi K, Vaibhav V, Patankar S, Srivastava S. Serum proteome changes in dengue virus-infected patients from a dengue-endemic area of India: towards new molecular targets? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:527-36. [PMID: 22917478 DOI: 10.1089/omi.2012.0037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The global burden of dengue continues to worsen, specifically in tropical and subtropical countries, and has evolved as a major public health problem. We investigated the changes in serum proteome in dengue fever (DF) patients from a dengue-endemic area of India to obtain mechanistic insights about the disease pathogenesis, the host immune response, and identification of potential serum protein biomarkers of this infectious disease. In this study, serum samples from DF patients, healthy subjects, and patients with falciparum malaria (an infectious disease control) were investigated by 2D-DIGE in combination with MALDI-TOF/TOF MS. The findings were validated with Western blotting. Functional clustering of the identified proteins was performed using PANTHER and DAVID tools. Compared to the healthy controls, we found significant changes in the expression levels of 48 protein spots corresponding to 18 unique proteins (7 downregulated and 11 upregulated) in DF patients (p<0.05). Among these differentially-expressed proteins, 11 candidates exhibited different trends in dengue fever compared to falciparum malaria. Importantly, our results suggest that dengue virus infection leads to alterations in expression levels of multiple serum proteins involved in diverse and vital physiological pathways, including acute phase response signaling, complement cascades, hemostasis, and blood coagulation. For the first time we report here that the serum levels of hemopexin, haptoglobin, serum amyloid P, and kininogen precursor, are altered in DF. This study informs the pathogenesis and host immune response to dengue virus infection, as well as the current search for new diagnostic and molecular drug targets.
Collapse
Affiliation(s)
- Sandipan Ray
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | | | | | | | | |
Collapse
|
27
|
Proteomic investigation of falciparum and vivax malaria for identification of surrogate protein markers. PLoS One 2012; 7:e41751. [PMID: 22912677 PMCID: PMC3415403 DOI: 10.1371/journal.pone.0041751] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/25/2012] [Indexed: 01/30/2023] Open
Abstract
This study was conducted to analyze alterations in the human serum proteome as a consequence of infection by malaria parasites Plasmodium falciparum and P. vivax to obtain mechanistic insights about disease pathogenesis, host immune response, and identification of potential protein markers. Serum samples from patients diagnosed with falciparum malaria (FM) (n = 20), vivax malaria (VM) (n = 17) and healthy controls (HC) (n = 20) were investigated using multiple proteomic techniques and results were validated by employing immunoassay-based approaches. Specificity of the identified malaria related serum markers was evaluated by means of analysis of leptospirosis as a febrile control (FC). Compared to HC, 30 and 31 differentially expressed and statistically significant (p<0.05) serum proteins were identified in FM and VM respectively, and almost half (46.2%) of these proteins were commonly modulated due to both of the plasmodial infections. 13 proteins were found to be differentially expressed in FM compared to VM. Functional pathway analysis involving the identified proteins revealed the modulation of different vital physiological pathways, including acute phase response signaling, chemokine and cytokine signaling, complement cascades and blood coagulation in malaria. A panel of identified proteins consists of six candidates; serum amyloid A, hemopexin, apolipoprotein E, haptoglobin, retinol-binding protein and apolipoprotein A-I was used to build statistical sample class prediction models. By employing PLS-DA and other classification methods the clinical phenotypic classes (FM, VM, FC and HC) were predicted with over 95% prediction accuracy. Individual performance of three classifier proteins; haptoglobin, apolipoprotein A-I and retinol-binding protein in diagnosis of malaria was analyzed using receiver operating characteristic (ROC) curves. The discrimination of FM, VM, FC and HC groups on the basis of differentially expressed serum proteins demonstrates the potential of this analytical approach for the detection of malaria as well as other human diseases.
Collapse
|