1
|
Reyes CDG, Mojgan A, Fowowe M, Onigbinde S, Daramola O, Lubman DM, Mechref Y. Differential expression of N-glycopeptides derived from serum glycoproteins in mild cognitive impairment (MCI) patients. Proteomics 2024; 24:e2300620. [PMID: 38602241 PMCID: PMC11749004 DOI: 10.1002/pmic.202300620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
Mild cognitive impairment (MCI) is an early stage of memory loss that affects cognitive abilities with the aging of individuals, such as language or visual/spatial comprehension. MCI is considered a prodromal phase of more complicated neurodegenerative diseases such as Alzheimer's. Therefore, accurate diagnosis and better understanding of the disease prognosis will facilitate prevention of neurodegeneration. However, the existing diagnostic methods fail to provide precise and well-timed diagnoses, and the pathophysiology of MCI is not fully understood. Alterations of the serum N-glycoproteome expression could represent an essential contributor to the overall pathophysiology of neurodegenerative diseases and be used as a potential marker to assess MCI diagnosis using less invasive procedures. In this approach, we identified N-glycopeptides with different expressions between healthy and MCI patients from serum glycoproteins. Seven of the N-glycopeptides showed outstanding AUC values, among them the antithrombin-III Asn224 + 4-5-0-2 with an AUC value of 1.00 and a p value of 0.0004. According to proteomics and ingenuity pathway analysis (IPA), our data is in line with recent publications, and the glycoproteins carrying the identified N-sites play an important role in neurodegeneration.
Collapse
Affiliation(s)
| | - Atashi Mojgan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Mojibola Fowowe
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Oluwatosin Daramola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - David M. Lubman
- Department of Surgery, The University of Michigan, Ann Arbor, MI 48109
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| |
Collapse
|
2
|
Messina A, Romeo DA, Barone R, Sturiale L, Palmigiano A, Zappia M, Garozzo D. CSF N-Glycomics Using MALDI MS Techniques. Methods Mol Biol 2024; 2785:49-65. [PMID: 38427187 DOI: 10.1007/978-1-0716-3774-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In this chapter, we will present the methodology currently applied in our laboratory for the structural elucidation of the cerebrospinal fluid (CSF) N-glycome. N-glycans are released from denatured carboxymethylated glycoproteins by digestion with peptide-N-glycosidase F (PNGase F) and purified using both C18 Sep-Pak® and porous graphitized carbon (PGC) HyperSep™ Hypercarb™ solid phase extraction (SPE) cartridges. The glycan pool is subsequently permethylated to increase mass spectrometry sensitivity. Molecular assignments are performed through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) analysis considering either the protein N-linked glycosylation pathway or MALDI TOF MS/MS data. Each stage has been optimized to obtain high-quality mass spectra in reflector mode with an optimal signal-to-noise ratio up to m/z 4800. This method has been successfully adopted to associate specific N-glycome profiles to the early and the advanced phases of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Angela Messina
- CNR, Istituto per i Polimeri, Compositi e i Biomateriali Catania, Catania, Italy
| | - Donata Agata Romeo
- CNR, Istituto per i Polimeri, Compositi e i Biomateriali Catania, Catania, Italy
| | - Rita Barone
- CNR, Istituto per i Polimeri, Compositi e i Biomateriali Catania, Catania, Italy
- Pediatric Neurology Unit, Department of Pediatrics, University of Catania, Catania, Italy
| | - Luisa Sturiale
- CNR, Istituto per i Polimeri, Compositi e i Biomateriali Catania, Catania, Italy
| | - Angelo Palmigiano
- CNR, Istituto per i Polimeri, Compositi e i Biomateriali Catania, Catania, Italy
| | - Mario Zappia
- Section of Neurosciences-Department GF Ingrassia, University of Catania, Catania, Italy
| | - Domenico Garozzo
- CNR, Istituto per i Polimeri, Compositi e i Biomateriali Catania, Catania, Italy.
| |
Collapse
|
3
|
Raj Shekhar B, Rupani K, Raghunath Parkar S, Sunil Nayak A, Vasant Kumbhar B, Khare SP, Menon S, Gawde H, Kumar Das D. Identifying Novel Risk Conferring Genes Involved in Glycosylation Processes with Familial Schizophrenia in an Indian Cohort: Prediction of ADAMTS9 gene Variant for Structural Stability. Gene 2023; 872:147443. [PMID: 37105505 DOI: 10.1016/j.gene.2023.147443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
Schizophrenia is a complex neuropsychiatric disorder and heritability is as high as 80% making it the most heritable mental disorder. Although GWAS has identified numerous variants, the pathophysiology is still elusive. Here, an attempt was made to identify genetic risk factors in familial cases of schizophrenia that are associated with a common causative pathway. To achieve this objective, exome sequencing was done in 4 familial cases and identified six unique coding variants in five genes. Among these genes, PIGQ gene has two pathogenic variants, one nonsense and in-frame deletion. One missense variant in GALNT16 and one in GALNT5 have variable damaging score, however, the other variants, in ADAMTS9 and in LTBP4 have the highest damaging score. Further analysis showed that the variant of LTBP4 was not present in the functional domain. The other missense variant in the ADAMTS9 gene was found to be significant and was present in the thrombospondin repeat motif, one of the important motifs. Detailed molecular dynamics simulation study on this variant showed a damaging effect on structural stability. Since, all these genes culminated into the glycosylation process, it was evident that an aberrant glycosylation process may be one of the risk factors. Although, extracellular matrix formation through glycosylation have been shown to be associated, the involvement of ADAMTS9 and PIGQ gene mediated glycosylation has not been reported. In this paper, a novel link between ADAMTS9 and PIGQ gene with schizophrenia have been reported. Therefore, this novel observation has contributed immensely to the existing knowledge on risk factor of Schizophrenia.
Collapse
Affiliation(s)
- Bipin Raj Shekhar
- Genetic Research Centre, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, Maharashtra-400012, India; Stem Cell Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, Maharashtra-400012, India
| | - Karishma Rupani
- Department of Psychiatry, Seth GS Medical College and KEM Hospital, Parel, Mumbai, Maharashtra-400012, India
| | - Shubhangi Raghunath Parkar
- Department of Psychiatry, Seth GS Medical College and KEM Hospital, Parel, Mumbai, Maharashtra-400012, India
| | - Ajita Sunil Nayak
- Department of Psychiatry, Seth GS Medical College and KEM Hospital, Parel, Mumbai, Maharashtra-400012, India
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University (Deemed), Mumbai, Maharashtra-400012, India
| | - Satyajeet P Khare
- Symbiosis School of Biological Sciences, Symbiosis International University, Pune, Maharashtra-412115, India
| | - Shyla Menon
- Stem Cell Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, Maharashtra-400012, India
| | - Harshavardhan Gawde
- Genetic Research Centre, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, Maharashtra-400012, India
| | - Dhanjit Kumar Das
- Stem Cell Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, Maharashtra-400012, India.
| |
Collapse
|
4
|
Tudor L, Nedic Erjavec G, Nikolac Perkovic M, Konjevod M, Uzun S, Kozumplik O, Mimica N, Lauc G, Svob Strac D, Pivac N. The Association of the Polymorphisms in the FUT8-Related Locus with the Plasma Glycosylation in Post-Traumatic Stress Disorder. Int J Mol Sci 2023; 24:ijms24065706. [PMID: 36982780 PMCID: PMC10056189 DOI: 10.3390/ijms24065706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
The molecular underpinnings of post-traumatic stress disorder (PTSD) are still unclear due to the complex interactions of genetic, psychological, and environmental factors. Glycosylation is a common post-translational modification of proteins, and different pathophysiological states, such as inflammation, autoimmune diseases, and mental disorders including PTSD, show altered N-glycome. Fucosyltransferase 8 (FUT8) is the enzyme that catalyzes the addition of core fucose on glycoproteins, and mutations in the FUT8 gene are associated with defects in glycosylation and functional abnormalities. This is the first study that investigated the associations of plasma N-glycan levels with FUT8-related rs6573604, rs11621121, rs10483776, and rs4073416 polymorphisms and their haplotypes in 541 PTSD patients and control participants. The results demonstrated that the rs6573604 T allele was more frequent in the PTSD than in the control participants. Significant associations of plasma N-glycan levels with PTSD and FUT8-related polymorphisms were observed. We also detected associations of rs11621121 and rs10483776 polymorphisms and their haplotypes with plasma levels of specific N-glycan species in both the control and PTSD groups. In carriers of different rs6573604 and rs4073416 genotypes and alleles, differences in plasma N-glycan levels were only found in the control group. These molecular findings suggest a possible regulatory role of FUT8-related polymorphisms in glycosylation, the alternations of which could partially explain the development and clinical manifestation of PTSD.
Collapse
Affiliation(s)
- Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatrics, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (O.K.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Faculty of Education and Rehabilitation Sciences, University of Zagreb, 10000 Zagreb, Croatia
| | - Oliver Kozumplik
- Department for Biological Psychiatry and Psychogeriatrics, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (O.K.); (N.M.)
- Faculty of Education and Rehabilitation Sciences, University of Zagreb, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatrics, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (O.K.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Gordan Lauc
- Glycobiology Laboratory, Genos Ltd., 10000 Zagreb, Croatia;
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
- Correspondence: (D.S.S.); (N.P.)
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
- University of Applied Sciences Hrvatsko Zagorje Krapina, 49000 Krapina, Croatia
- Correspondence: (D.S.S.); (N.P.)
| |
Collapse
|
5
|
Reyes CDG, Hakim MA, Atashi M, Goli M, Gautam S, Wang J, Bennett AI, Zhu J, Lubman DM, Mechref Y. LC-MS/MS Isomeric Profiling of N-Glycans Derived from Low-Abundant Serum Glycoproteins in Mild Cognitive Impairment Patients. Biomolecules 2022; 12:1657. [PMID: 36359007 PMCID: PMC9687829 DOI: 10.3390/biom12111657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 09/29/2023] Open
Abstract
Mild cognitive impairment (MCI) is an early stage of memory loss that affects cognitive abilities, such as language or virtual/spatial comprehension. This cognitive decline is mostly observed with the aging of individuals. Recently, MCI has been considered as a prodromal phase of Alzheimer's disease (AD), with a 10-15% conversion rate. However, the existing diagnostic methods fail to provide precise and well-timed diagnoses, and the pathophysiology of MCI is not fully understood. Alterations of serum N-glycan expression could represent essential contributors to the overall pathophysiology of neurodegenerative diseases and be used as a potential marker to assess MCI diagnosis using non-invasive procedures. Herein, we undertook an LC-MS/MS glycomics approach to determine and characterize potential N-glycan markers in depleted blood serum samples from MCI patients. For the first time, we profiled the isomeric glycome of the low abundant serum glycoproteins extracted from serum samples of control and MCI patients using an LC-MS/MS analytical strategy. Additionally, the MRM validation of the identified data showed five isomeric N-glycans with the ability to discriminate between healthy and MCI patients: the sialylated N-glycans GlcNAc5,Hex6,Neu5Ac3 and GlcNAc6,Hex7,Neu5Ac4 with single AUCs of 0.92 and 0.87, respectively, and a combined AUC of 0.96; and the sialylated-fucosylated N-glycans GlcNAc4,Hex5,Fuc,Neu5Ac, GlcNAc5,Hex6,Fuc,Neu5Ac2, and GlcNAc6,Hex7,Fuc,Neu5Ac3 with single AUCs of 0.94, 0.67, and 0.88, respectively, and a combined AUC of 0.98. According to the ingenuity pathway analysis (IPA) and in line with recent publications, the identified N-glycans may play an important role in neuroinflammation. It is a process that plays a fundamental role in neuroinflammation, an important process in the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Md. Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Mojgan Atashi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Andrew I. Bennett
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Jianhui Zhu
- Department of Surgery, The University of Michigan, Ann Arbor, MI 48109, USA
| | - David M. Lubman
- Department of Surgery, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
6
|
Klarić TS, Lauc G. The dynamic brain N-glycome. Glycoconj J 2022; 39:443-471. [PMID: 35334027 DOI: 10.1007/s10719-022-10055-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 01/17/2023]
Abstract
The attachment of carbohydrates to other macromolecules, such as proteins or lipids, is an important regulatory mechanism termed glycosylation. One subtype of protein glycosylation is asparagine-linked glycosylation (N-glycosylation) which plays a key role in the development and normal functioning of the vertebrate brain. To better understand the role of N-glycans in neurobiology, it's imperative we analyse not only the functional roles of individual structures, but also the collective impact of large-scale changes in the brain N-glycome. The systematic study of the brain N-glycome is still in its infancy and data are relatively scarce. Nevertheless, the prevailing view has been that the neuroglycome is inherently restricted with limited capacity for variation. The development of improved methods for N-glycomics analysis of brain tissue has facilitated comprehensive characterisation of the complete brain N-glycome under various experimental conditions on a larger scale. Consequently, accumulating data suggest that it's more dynamic than previously recognised and that, within a general framework, it has a given capacity to change in response to both intrinsic and extrinsic stimuli. Here, we provide an overview of the many factors that can alter the brain N-glycome, including neurodevelopment, ageing, diet, stress, neuroinflammation, injury, and disease. Given this emerging evidence, we propose that the neuroglycome has a hitherto underappreciated plasticity and we discuss the therapeutic implications of this regarding the possible reversal of pathological changes via interventions. We also briefly review the merits and limitations of N-glycomics as an analytical method before reflecting on some of the outstanding questions in the field.
Collapse
Affiliation(s)
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
7
|
Characterization of Hevin (SPARCL1) Immunoreactivity in Postmortem Human Brain Homogenates. Neuroscience 2021; 467:91-109. [PMID: 34033869 DOI: 10.1016/j.neuroscience.2021.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
Hevin is a matricellular glycoprotein that plays important roles in neural developmental processes such as neuronal migration, synaptogenesis and synaptic plasticity. In contrast to other matricellular proteins whose expression decreases when development is complete, hevin remains highly expressed, suggesting its involvement in adult brain function. In vitro studies have shown that hevin can have different post-translational modifications. However, the glycosylation pattern of hevin in the human brain remains unknown, as well as its relative distribution and localization. The present study provides the first thorough characterization of hevin protein expression by Western blot in postmortem adult human brain. Our results demonstrated two major specific immunoreactive bands for hevin: an intense band migrating around 130 kDa, and a band migrating around 100 kDa. Biochemical assays revealed that both hevin bands have a different glycosylation pattern. Subcellular fractionation showed greater expression in membrane-enriched fraction than in cytosolic preparation, and a higher expression in prefrontal cortex (PFC) compared to hippocampus (HIP), caudate nucleus (CAU) and cerebellum (CB). We confirmed that a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) and matrixmetalloproteinase 3 (MMP-3) proteases digestion led to an intense double band with similar molecular weight to that described as SPARC-like fragment (SLF). Finally, hevin immunoreactivity was also detected in human astrocytoma, meningioma, cerebrospinal fluid and serum samples, but was absent from any blood cell type.
Collapse
|
8
|
Aberrant sialylation in a patient with a HNF1α variant and liver adenomatosis. iScience 2021; 24:102323. [PMID: 33889819 PMCID: PMC8050382 DOI: 10.1016/j.isci.2021.102323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022] Open
Abstract
Glycosylation is a fundamental post-translational modification of proteins that boosts their structural diversity providing subtle and specialized biological properties and functions. All those genetic diseases due to a defective glycan biosynthesis and attachment to the nascent glycoproteins fall within the wide area of congenital disorders of glycosylation (CDG), mostly causing multisystem involvement. In the present paper, we detailed the unique serum N-glycosylation of a CDG-candidate patient with an unexplained neurological phenotype and liver adenomatosis harboring a recurrent pathogenic HNF1α variant. Serum transferrin isoelectric focusing showed a surprising N-glycosylation pattern consisting on hyposialylation, as well as remarkable hypersialylation. Mass spectrometry-based glycomic analyses of individual serum glycoproteins enabled to unveil hypersialylated complex N-glycans comprising up to two sialic acids per antenna. Further advanced MS analysis showed the additional sialic acid is bonded through an α2-6 linkage to the peripheral N-acetylglucosamine residue. Serum N-glycome is altered in a boy with neurological syndrome and HNF1α mutated HCA Glycomics reveals unique hypersialylated N-glycans with two NeuAc per antenna In-depth MS studies show the additional NeuAc is α2-6 linked to an outer arm GlcNAc
Collapse
|
9
|
Nikolac Perkovic M, Sagud M, Tudor L, Konjevod M, Svob Strac D, Pivac N. A Load to Find Clinically Useful Biomarkers for Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:175-202. [PMID: 33834401 DOI: 10.1007/978-981-33-6044-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Depression is heterogeneous and complex disease with diverse symptoms. Its neurobiological underpinning is still not completely understood. For now, there are still no validated, easy obtainable, clinically useful noninvasive biomarker(s) or biomarker panel that will be able to confirm a diagnosis of depression, its subtypes and improve diagnostic procedures. Future multimodal preclinical and clinical research that involves (epi)genetic, molecular, cellular, imaging, and other studies is necessary to advance our understanding of the role of monoamines, GABA, HPA axis, neurotrophins, metabolome, and glycome in the pathogenesis of depression and their potential as diagnostic, prognostic, and treatment response biomarkers. These studies should be focused to include the first-episode depression and antidepressant drug-naïve patients with large sample sizes to reduce variability in different biological and clinical parameters. At present, metabolomics study revealed with high precision that a neurometabolite panel consisting of plasma metabolite biomarkers (GABA, dopamine, tyramine, kynurenine) might represent clinically useful biomarkers of MDD.
Collapse
Affiliation(s)
- Matea Nikolac Perkovic
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
| | - Lucija Tudor
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Dubravka Svob Strac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia.
| |
Collapse
|
10
|
Fazekas CL, Sipos E, Klaric T, Török B, Bellardie M, Erjave GN, Perkovic MN, Lauc G, Pivac N, Zelena D. Searching for glycomic biomarkers for predicting resilience and vulnerability in a rat model of posttraumatic stress disorder. Stress 2020; 23:715-731. [PMID: 32666865 DOI: 10.1080/10253890.2020.1795121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is triggered by traumatic events in 10-20% of exposed subjects. N-linked glycosylation, by modifying protein functions, may provide an important environmental link predicting vulnerability. Our goals were (1) to find alterations in plasma N-glycome predicting stress-vulnerability; (2) to investigate how trauma affects N-glycome in the plasma (PGP) and in three PTSD-related brain regions (prefrontal cortex, hippocampus and amygdala; BGP), hence, uncover specific targets for PTSD treatment. We examined male (1) controls, (2) traumatized vulnerable and (3) traumatized resilient rats both before and several weeks after electric footshock. Vulnerable and resilient groups were separated by z-score analysis of behavior. Higher freezing behavior and decreased social interest were detected in vulnerable groups compared to control and resilient rats. Innate anxiety did not predict vulnerability, but pretrauma levels of PGP10(FA1G1Ga1), PGP11(FA2G2), and PGP15(FA3G2) correlated positively with it, the last one being the most sensitive. Traumatic stress induced a shift from large, elaborate N-glycans toward simpler neutral structures in the plasma of all traumatized animals and specifically in the prefrontal cortex of vulnerable rats. In plasma trauma increased PGP17(A2G2S) level in vulnerable animals. In all three brain regions, BGP11(F(6)A2B) was more abundant in vulnerable rats, while most behavioral correlations occurred in the prefrontal cortex. In conclusion, we found N-glycans (especially PGP15(FA3G2)) in plasma as possible biomarkers of vulnerability to trauma that warrants further investigation. Posttrauma PGP17(A2G2S1) increase showed overlap with human results highlighting the utility and relevance of this animal model. Prefrontal cortex is a key site of trauma-induced glycosylation changes that could modulate the behavioral outcome.
Collapse
Affiliation(s)
- Csilla Lea Fazekas
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Janos Szentagothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Eszter Sipos
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Thomas Klaric
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
- Glycobiology Laboratory, Genos Ltd, Zagreb, Croatia
| | - Bibiána Török
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Janos Szentagothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Manon Bellardie
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Gordana Nedic Erjave
- Laboratory for Molecular Neuropsychiatry, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
- Glycobiology Laboratory, Genos Ltd, Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Dóra Zelena
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
11
|
Gaunitz S, Tjernberg LO, Schedin-Weiss S. The N-glycan profile in cortex and hippocampus is altered in Alzheimer disease. J Neurochem 2020; 159:292-304. [PMID: 32986846 PMCID: PMC8596851 DOI: 10.1111/jnc.15202] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022]
Abstract
Protein glycosylation is crucial for the central nervous system and brain functions, including processes that are defective in Alzheimer disease (AD) such as neurogenesis, synaptic function, and memory formation. Still, the roles of glycans in the development of AD are relatively unexplored. Glycomics studies of cerebrospinal fluid (CSF) have previously shown altered glycosylation pattern in patients with different stages of cognitive impairment, including AD, compared to healthy controls. As a consequence, we hypothesized that the glycan profile is altered in the brain of patients with AD and analyzed the asparagine‐linked (N‐linked) glycan profile in hippocampus and cortex in AD and control brain. Glycans were enzymatically liberated from brain glycoproteins and analyzed by liquid chromatography‐tandem mass spectrometry (LC‐MS/MS). Eleven glycans showed significantly different levels in hippocampus compared to cortex in both control and AD brain. Two glycans in cortex and four in hippocampus showed different levels in AD compared to control brain. All glycans that differed between controls and AD brain had similar structures with one sialic acid, at least one fucose and a confirmed or potential bisecting N‐acetylglucosamine (GlcNAc). The glycans that were altered in AD brain differed from those that were altered in AD CSF. One glycan found to be present in significantly lower levels in both hippocampus and cortex in AD compared to control contained a structurally and functionally interesting epitope that we assign as a terminal galactose decorated with fucose and sialic acid. Altogether, these studies suggest that protein glycosylation is an important component in the development of AD and warrants further studies.
Collapse
Affiliation(s)
- Stefan Gaunitz
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
12
|
Messina A, Palmigiano A, Esposito F, Fiumara A, Bordugo A, Barone R, Sturiale L, Jaeken J, Garozzo D. HILIC-UPLC-MS for high throughput and isomeric N-glycan separation and characterization in Congenital Disorders Glycosylation and human diseases. Glycoconj J 2020; 38:201-211. [PMID: 32915358 DOI: 10.1007/s10719-020-09947-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022]
Abstract
N-glycan analyses may serve uncovering disease-associated biomarkers, as well as for profiling distinctive changes supporting diagnosis of genetic disorders of glycan biosynthesis named congenital disorders of glycosylation (CDG). Strategies based on liquid chromatography (LC) preferentially coupled to electrospray ionization (ESI) - mass spectrometry (MS) have emerged as powerful analytical methods for N-glycan identification and characterization. To enhance detection sensitivity, glycans are commonly labelled with a functional tag prior to LC-MS analysis. Since most derivatization techniques are notoriously time-consuming, some commercial analytical kits have been developed to speed up N-deglycosylation and N-glycan labelling of glycoproteins of pharmaceutical and biological interest such as monoclonal antibodies (mAbs). We exploited the analytical capabilities of RapiFluor-MS (RFMS) to perform, by a slightly modified protocol, a detailed N-glycan characterization of total serum and single serum glycoproteins from specific patients with CDG (MAN1B1-CDG, ALG12-CDG, MOGS-CDG, TMEM199-CDG). This strategy, accomplished by Hydrophilic Interaction Chromatography (HILIC)-UPLC-ESI-MS separation of the RFMS derivatized N-glycans, allowed us to uncover structural details of patients serum released N-glycans, thus extending the current knowledge on glycan profiles in these individual glycosylation diseases. The applied methodology enabled to differentiate in some cases either structural isomers and isomers differing in the linkage type. All the here reported applications demonstrated that RFMS method, coupled to HILIC-UPLC-ESI-MS, represents a sensitive high throughput approach for serum N-glycome analysis and a valuable option for glycan detection and separation particularly for isomeric species.
Collapse
Affiliation(s)
- Angela Messina
- CNR, Institute for Polymers, Composites and Biomaterials, IPCB, Catania, Italy
| | - Angelo Palmigiano
- CNR, Institute for Polymers, Composites and Biomaterials, IPCB, Catania, Italy
| | - Francesca Esposito
- CNR, Institute for Polymers, Composites and Biomaterials, IPCB, Catania, Italy
- IOM Ricerca S.r.l, Viagrande, CT, Italy
| | - Agata Fiumara
- Pediatric Clinic- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Andrea Bordugo
- Department of Mother and Child, Pediatric Clinic, University Hospital of Verona, Verona, Italy
| | - Rita Barone
- CNR, Institute for Polymers, Composites and Biomaterials, IPCB, Catania, Italy
- Child Neurology and Psychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Luisa Sturiale
- CNR, Institute for Polymers, Composites and Biomaterials, IPCB, Catania, Italy
| | - Jaak Jaeken
- Center for Metabolic Diseases, UZ and KU Leuven, Leuven, Belgium
| | - Domenico Garozzo
- CNR, Institute for Polymers, Composites and Biomaterials, IPCB, Catania, Italy.
| |
Collapse
|
13
|
Osimanjiang W, Roballo KCS, Houck BD, Ito M, Antonopoulos A, Dell A, Haslam SM, Bushman JS. Analysis of N- and O-Linked Glycosylation: Differential Glycosylation after Rat Spinal Cord Injury. J Neurotrauma 2020; 37:1954-1962. [PMID: 32316850 DOI: 10.1089/neu.2019.6974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glycosylation is a fundamental cellular process that has a dramatic impact on the functionality of glycoconjugates such as proteins or lipids and mediates many different biological interactions including cell migration, cellular signaling, and synaptic interactions in the nervous system. In spinal cord injury (SCI), all of these cellular processes are altered, but the potential contributions of glycosylation changes to these alterations has not been thoroughly investigated. We studied the glycosylation of injured spinal cord tissue from rats that received a contusion SCI. The N- and O-linked glycosylation was assessed at 3 and 14 days post-injury (DPI), and compared with uninjured control and time-matched sham spinal tissue. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tandem MS (MS/MS) were performed to analyze carbohydrate structures. Results revealed diverse and abundant glycosylation in all groups, with some carbohydrate structures differentially produced in SCI animals compared with uninjured controls and shams. One such change occurred in the abundance of the Sda structure, Neu5Ac-α-(2,3)-[GalNAc-β-(1,4)-]Gal-β-(1,4)-GlcNAc, which was increased in SCI samples compared with shams and non-injured controls. Immunohistochemistry (IHC) and western blot were performed on SCI and sham samples using the CT1 antibody, which recognizes the terminal trisaccharide of Sda with high specificity. Both of these metrics confirmed elevated Sda structure in SCI tissue, where IHC further showed that Sda is expressed mainly by microglia. The results of these studies suggest that SCI causes a significant alteration in N- and O-linked glycosylation.
Collapse
Affiliation(s)
- Wupu Osimanjiang
- School of Pharmacy, University of Wyoming, Laramie, Wyoming, USA
| | | | - Brenda D Houck
- School of Pharmacy, University of Wyoming, Laramie, Wyoming, USA
| | - Mai Ito
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jared S Bushman
- School of Pharmacy, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
14
|
Quaranta A, Spasova M, Passarini E, Karlsson I, Ndreu L, Thorsén G, Ilag LL. N-Glycosylation profiling of intact target proteins by high-resolution mass spectrometry (MS) and glycan analysis using ion mobility-MS/MS. Analyst 2020; 145:1737-1748. [DOI: 10.1039/c9an02081k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycosylation characterization could lead to the discovery of biomarkers and is crucial in quality control of biopharmaceuticals. Here we present a method to quantify glycoforms on intact proteins, with parallel glycan identification by IMS-MS/MS.
Collapse
Affiliation(s)
- Alessandro Quaranta
- Department of Environmental Science and Analytical Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Maya Spasova
- Department of Environmental Science and Analytical Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Elena Passarini
- Department of Environmental Science and Analytical Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Isabella Karlsson
- Department of Environmental Science and Analytical Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Lorena Ndreu
- Department of Environmental Science and Analytical Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Gunnar Thorsén
- IVL Swedish Environmental Research Institute
- 11428 Stockholm
- Sweden
| | - Leopold L. Ilag
- Department of Environmental Science and Analytical Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| |
Collapse
|
15
|
Camperi J, Pichon V, Delaunay N. Separation methods hyphenated to mass spectrometry for the characterization of the protein glycosylation at the intact level. J Pharm Biomed Anal 2019; 178:112921. [PMID: 31671335 DOI: 10.1016/j.jpba.2019.112921] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 01/26/2023]
Abstract
Glycosylation is one of the most common post-translational modifications of proteins that affects their biological activity, solubility, and half-life. Therefore, its characterization is of great interest in proteomic, particularly from a diagnostic and therapeutic point of view. However, the number and type of glycosylation sites, the degree of site occupancy and the different possible structures of glycans can lead to a very large number of isoforms for a given protein, called glycoforms. The identification of these glycoforms constitutes an important analytical challenge. Indeed, to attempt to characterize all of them, it is necessary to develop efficient separation methods associated with a sensitive and informative detection mode, such as mass spectrometry (MS). Most analytical methods are based on bottom-up proteomics, which consists in the analysis of the protein at the glycopeptides level after its digestion. Even if this approach provides essential information, including the localization and composition of glycans on the protein, it is also characterized by a loss of information on macro-heterogeneity, i.e. the nature of the glycans present on a given glycoform. The analysis of glycoforms at the intact level can overcome this disadvantage. The aim of this review is to detail the state-of-the art of separation methods that can be easily hyphenated with MS for the characterization of protein glycosylation at the intact level. The different electrophoretic and chromatographic approaches are discussed in detail. The miniaturization of these separation methods is also discussed with their potential applications. While the first studies focused on the development and optimization of the separation step to achieve high resolution between isoforms, the recent ones are much more application-oriented, such as clinical diagnosis, quality control, and glycoprotein monitoring in formulations or biological samples.
Collapse
Affiliation(s)
- Julien Camperi
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, UMR CBI 8231 CNRS - ESPCI Paris, PSL University, Paris, France
| | - Valerie Pichon
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, UMR CBI 8231 CNRS - ESPCI Paris, PSL University, Paris, France; Sorbonne Université, Paris, France
| | - Nathalie Delaunay
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, UMR CBI 8231 CNRS - ESPCI Paris, PSL University, Paris, France.
| |
Collapse
|
16
|
Regan P, McClean PL, Smyth T, Doherty M. Early Stage Glycosylation Biomarkers in Alzheimer's Disease. MEDICINES 2019; 6:medicines6030092. [PMID: 31484367 PMCID: PMC6789538 DOI: 10.3390/medicines6030092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is of great cause for concern in our ageing population, which currently lacks diagnostic tools to permit accurate and timely diagnosis for affected individuals. The development of such tools could enable therapeutic interventions earlier in the disease course and thus potentially reducing the debilitating effects of AD. Glycosylation is a common, and important, post translational modification of proteins implicated in a host of disease states resulting in a complex array of glycans being incorporated into biomolecules. Recent investigations of glycan profiles, in a wide range of conditions, has been made possible due to technological advances in the field enabling accurate glycoanalyses. Amyloid beta (Aβ) peptides, tau protein, and other important proteins involved in AD pathogenesis, have altered glycosylation profiles. Crucially, these abnormalities present early in the disease state, are present in the peripheral blood, and help to distinguish AD from other dementias. This review describes the aberrant glycome in AD, focusing on proteins implicated in development and progression, and elucidates the potential of glycome aberrations as early stage biomarkers of AD.
Collapse
Affiliation(s)
- Patricia Regan
- Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland.
- Cellular Health and Toxicology Research Group, Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland.
| | - Paula L McClean
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Clinical Translational Research and Innovation Centre, Altnagelvin Area Hospital, Glenshane Road, Derry BT47 6SB, UK
| | - Thomas Smyth
- Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
- Cellular Health and Toxicology Research Group, Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
| | - Margaret Doherty
- Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
- Cellular Health and Toxicology Research Group, Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
| |
Collapse
|
17
|
Riboni N, Quaranta A, Motwani HV, Österlund N, Gräslund A, Bianchi F, Ilag LL. Solvent-Assisted Paper Spray Ionization Mass Spectrometry (SAPSI-MS) for the Analysis of Biomolecules and Biofluids. Sci Rep 2019; 9:10296. [PMID: 31311939 PMCID: PMC6635430 DOI: 10.1038/s41598-019-45358-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/24/2019] [Indexed: 12/23/2022] Open
Abstract
Paper Spray Ionization (PSI) is commonly applied for the analysis of small molecules, including drugs, metabolites, and pesticides in biological fluids, due to its high versatility, simplicity, and low costs. In this study, a new setup called Solvent Assisted Paper Spray Ionization (SAPSI), able to increase data acquisition time, signal stability, and repeatability, is proposed to overcome common PSI drawbacks. The setup relies on an integrated solution to provide ionization potential and constant solvent flow to the paper tip. Specifically, the ion source was connected to the instrument fluidics along with the voltage supply systems, ensuring a close control over the ionization conditions. SAPSI was successfully applied for the analysis of different classes of biomolecules: amyloidogenic peptides, proteins, and N-glycans. The prolonged analysis time allowed real-time monitoring of processes taking places on the paper tip, such as amyloid peptides aggregation and disaggregation phenomena. The enhanced signal stability allowed to discriminate protein species characterized by different post translational modifications and adducts with electrophilic compounds, both in aqueous solutions and in biofluids, such as serum and cerebrospinal fluid, without any sample pretreatment. In the next future, application to clinical relevant modifications, could lead to the development of quick and cost-effective diagnostic tools.
Collapse
Affiliation(s)
- Nicoló Riboni
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, SE, Sweden.,Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, IT, Italy
| | - Alessandro Quaranta
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, SE, Sweden
| | - Hitesh V Motwani
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, SE, Sweden
| | - Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE, Sweden
| | - Federica Bianchi
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, IT, Italy
| | - Leopold L Ilag
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, SE, Sweden.
| |
Collapse
|
18
|
Metabolomic and glycomic findings in posttraumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:181-193. [PMID: 30025792 DOI: 10.1016/j.pnpbp.2018.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/21/2018] [Accepted: 07/14/2018] [Indexed: 01/10/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a stressor-related disorder that develops in a subset of individuals exposed to a traumatic experience. Factors associated with vulnerability to PTSD are still not fully understood. PTSD is frequently comorbid with various psychiatric and somatic disorders, moderate response to treatment and remission rates. The term "theranostics" combines diagnosis, prognosis, and therapy and offers targeted therapy based on specific analyses. Theranostics, combined with novel techniques and approaches called "omics", which integrate genomics, transcriptomic, proteomics and metabolomics, might improve knowledge about biological underpinning of PTSD, and offer novel therapeutic strategies. The focus of this review is on metabolomic and glycomic data in PTSD. Metabolomics evaluates changes in the metabolome of an organism by exploring the set of small molecules (metabolites), while glycomics studies the glycome, a complete repertoire of glycan structures with their functional roles in biological systems. Both metabolome and glycome reflect the physiological and pathological conditions in individuals. Only a few studies evaluated metabolic and glycomic changes in patients with PTSD. The metabolomics studies in PTSD patients uncovered different metabolites that might be associated with psychopathological alterations in PTSD. The glycomics study in PTSD patients determined nine N-glycan structures and found accelerated and premature aging in traumatized subjects and subjects with PTSD based on a GlycoAge index. Therefore, further larger studies and replications are needed. Better understanding of the biological basis of PTSD, including metabolomic and glycomic data, and their integration with other "omics" approaches, might identify new molecular targets and might provide improved therapeutic approaches.
Collapse
|
19
|
Messina A, Palmigiano A, Bua RO, Romeo DA, Barone R, Sturiale L, Zappia M, Garozzo D. CSF N-Glycoproteomics Using MALDI MS Techniques in Neurodegenerative Diseases. Methods Mol Biol 2019; 2044:255-272. [PMID: 31432418 DOI: 10.1007/978-1-4939-9706-0_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CSF diagnostics has proved to be a formidable testing ground for N-glycoproteomic analysis of neurological diseases. To characterize specific N-glycan profiles of CSF in early and advanced phases of Alzheimer's disease, as well as in lysosomal storage disorders such as Tay-Sachs disease, we set up in our lab a robust and feasible protocol by coupling bioanalytical methods and mass spectrometry analysis.Starting from a few microliters of CSF, after protein denaturation, reduction, and alkylation, N-glycans are released from glycoproteins using the peptide-N-glycosidase F (PNGase F) and purified. The analysis of permethylated N-glycans by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and MALDI-TOF MS/MS allowed us to identify specific glyco-structures and also to distinguish between isobaric N-glycans.
Collapse
Affiliation(s)
- Angela Messina
- CNR, Istituto per i Polimeri, Compositi e i Biomateriali Catania, Catania, Italy
| | - Angelo Palmigiano
- CNR, Istituto per i Polimeri, Compositi e i Biomateriali Catania, Catania, Italy
| | - Rosaria Ornella Bua
- CNR, Istituto per i Polimeri, Compositi e i Biomateriali Catania, Catania, Italy
| | - Donata Agata Romeo
- CNR, Istituto per i Polimeri, Compositi e i Biomateriali Catania, Catania, Italy
| | - Rita Barone
- CNR, Istituto per i Polimeri, Compositi e i Biomateriali Catania, Catania, Italy
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Pediatric Neurology Unit, Department of Pediatrics, University of Catania, Catania, Italy
| | - Luisa Sturiale
- CNR, Istituto per i Polimeri, Compositi e i Biomateriali Catania, Catania, Italy
| | - Mario Zappia
- Section of Neurosciences, Department GF Ingrassia, University of Catania, Catania, Italy
| | - Domenico Garozzo
- CNR, Istituto per i Polimeri, Compositi e i Biomateriali Catania, Catania, Italy.
| |
Collapse
|
20
|
Frost DC, Li L. Recent advances in mass spectrometry-based glycoproteomics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 95:71-123. [PMID: 24985770 DOI: 10.1016/b978-0-12-800453-1.00003-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein glycosylation plays fundamental roles in many biological processes as one of the most common, and the most complex, posttranslational modification. Alterations in glycosylation profile are now known to be associated with many diseases. As a result, the discovery and detailed characterization of glycoprotein disease biomarkers is a primary interest of biomedical research. Advances in mass spectrometry (MS)-based glycoproteomics and glycomics are increasingly enabling qualitative and quantitative approaches for site-specific structural analysis of protein glycosylation. While the complexity presented by glycan heterogeneity and the wide dynamic range of clinically relevant samples like plasma, serum, cerebrospinal fluid, and tissue make comprehensive analyses of the glycoproteome a challenging task, the ongoing efforts into the development of glycoprotein enrichment, enzymatic digestion, and separation strategies combined with novel quantitative MS methodologies have greatly improved analytical sensitivity, specificity, and throughput. This review summarizes current MS-based glycoproteomics approaches and highlights recent advances in its application to cancer biomarker and neurodegenerative disease research.
Collapse
Affiliation(s)
- Dustin C Frost
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA; Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
21
|
Palmigiano A, Messina A, Bua RO, Barone R, Sturiale L, Zappia M, Garozzo D. CSF N-Glycomics Using MALDI MS Techniques in Alzheimer's Disease. Methods Mol Biol 2018; 1750:75-91. [PMID: 29512066 DOI: 10.1007/978-1-4939-7704-8_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this chapter, we present the methodology currently applied in our laboratory for the structural elucidation of the cerebrospinal fluid (CSF) N-glycome. N-glycans are released from denatured carboxymethylated glycoproteins by digestion with peptide-N-glycosidase F (PNGase F) and purified using both C18 Sep-Pak® and porous graphitized carbon (PGC) HyperSep™ Hypercarb™ solid-phase extraction (SPE) cartridges. The glycan pool is subsequently permethylated to increase mass spectrometry sensitivity. Molecular assignments are performed through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) analysis considering either the protein N-linked glycosylation pathway or MALDI TOF MS/MS data. Each stage has been optimized to obtain high-quality mass spectra in reflector mode with an optimal signal-to-noise ratio up to m/z 4800. This method has been successfully adopted to associate specific N-glycome profiles to the early and the advanced phases of Alzheimer's disease.
Collapse
Affiliation(s)
- Angelo Palmigiano
- CNR, Istituto per i Polimeri, Compositi e i Biomateriali Catania, Catania, Italy
| | - Angela Messina
- CNR, Istituto per i Polimeri, Compositi e i Biomateriali Catania, Catania, Italy
| | - Rosaria Ornella Bua
- CNR, Istituto per i Polimeri, Compositi e i Biomateriali Catania, Catania, Italy
| | - Rita Barone
- CNR, Istituto per i Polimeri, Compositi e i Biomateriali Catania, Catania, Italy
- Pediatric Neurology Unit, Department of Pediatrics, University of Catania, Catania, Italy
| | - Luisa Sturiale
- CNR, Istituto per i Polimeri, Compositi e i Biomateriali Catania, Catania, Italy
| | - Mario Zappia
- Section of Neurosciences, Department of GF Ingrassia, University of Catania, Catania, Italy
| | - Domenico Garozzo
- CNR, Istituto per i Polimeri, Compositi e i Biomateriali Catania, Catania, Italy.
| |
Collapse
|
22
|
Advanced LC-MS Methods for N-Glycan Characterization. ADVANCES IN THE USE OF LIQUID CHROMATOGRAPHY MASS SPECTROMETRY (LC-MS) - INSTRUMENTATION DEVELOPMENTS AND APPLICATIONS 2018. [DOI: 10.1016/bs.coac.2017.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
23
|
Glycosylation patterns of selected proteins in individual serum and cerebrospinal fluid samples. J Pharm Biomed Anal 2017; 145:431-439. [DOI: 10.1016/j.jpba.2017.04.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 01/08/2023]
|
24
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
25
|
Understanding Alzheimer's disease by global quantification of protein phosphorylation and sialylated N-linked glycosylation profiles: A chance for new biomarkers in neuroproteomics? J Proteomics 2017; 161:11-25. [DOI: 10.1016/j.jprot.2017.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/24/2017] [Accepted: 04/03/2017] [Indexed: 12/13/2022]
|
26
|
Sroka-Bartnicka A, Karlsson I, Ndreu L, Quaranta A, Pijnappel M, Thorsén G. Particle-based N-linked glycan analysis of selected proteins from biological samples using nonglycosylated binders. J Pharm Biomed Anal 2016; 132:125-132. [PMID: 27718394 DOI: 10.1016/j.jpba.2016.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/08/2016] [Accepted: 09/24/2016] [Indexed: 12/25/2022]
Abstract
Glycosylation is one of the most common and important post-translational modifications, influencing both the chemical and the biological properties of proteins. Studying the glycosylation of the entire protein population of a sample can be challenging because variations in the concentrations of certain proteins can enhance or obscure changes in glycosylation. Furthermore, alterations in the glycosylation pattern of individual proteins, exhibiting larger variability in disease states, have been suggested as biomarkers for different types of cancer, as well as inflammatory and neurodegenerative diseases. In this paper, we present a rapid and efficient method for glycosylation analysis of individual proteins focusing on changes in the degree of fucosylation or other alterations to the core structure of the glycans, such as the presence of bisecting N-acetylglucosamines and a modified degree of branching. Streptavidin-coated magnetic beads are used in combination with genetically engineered immunoaffinity binders, called VHH antibody fragments. A major advantage of the VHHs is that they are nonglycosylated; thus, enzymatic release of glycans from the targeted protein can be performed directly on the beads. After deglycosylation, the glycans are analyzed by MALDI-TOF-MS. The developed method was evaluated concerning its specificity, and thereafter implemented for studying the glycosylation pattern of two different proteins, alpha-1-antitrypsin and transferrin, in human serum and cerebrospinal fluid. To our knowledge, this is the first example of a protein array-type experiment that employs bead-based immunoaffinity purification in combination with mass spectrometry analysis for fast and efficient glycan analysis of individual proteins in biological fluid.
Collapse
Affiliation(s)
- Anna Sroka-Bartnicka
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Isabella Karlsson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Lorena Ndreu
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Alessandro Quaranta
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Matthijs Pijnappel
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Gunnar Thorsén
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
27
|
N-Glycan profile analysis of transferrin using a microfluidic compact disc and MALDI-MS. Anal Bioanal Chem 2016; 408:4765-76. [PMID: 27137515 PMCID: PMC4909800 DOI: 10.1007/s00216-016-9570-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/06/2016] [Accepted: 04/15/2016] [Indexed: 12/25/2022]
Abstract
It has been known for a long time that diseases can be associated with changes to the glycosylation of specific proteins. This has been shown for cancer, immunological disorders, and neurodegenerative diseases. The possibility of using the glycosylation patterns of proteins as biomarkers for disease would be a great asset for clinical research or diagnosis. There is at present a lack of rapid, automated, and cost-efficient analytical techniques for the determination of the glycosylation of specific serum proteins. We have developed a method for determining the glycosylation pattern of proteins based on the affinity capture of a specific serum protein, the enzymatic release of the N-linked glycans, and the analysis of the glycan pattern using MALDI-MS. All sample preparation is performed in a disposable centrifugal microfluidic disc. The sample preparation is miniaturized, requiring only 1 μL of sample per determination, and automated with the possibility of processing 54 samples in parallel in 3.5 h. We have developed a method for the glycosylation pattern analysis of transferrin. The method has been tested on serum samples from chronic alcohol abusers and a control group. Also, a SIMCA model was created and evaluated to discriminate between the two groups.
Collapse
|
28
|
Global serum glycoform profiling for the investigation of dystroglycanopathies & Congenital Disorders of Glycosylation. Mol Genet Metab Rep 2016; 7:55-62. [PMID: 27134828 PMCID: PMC4834675 DOI: 10.1016/j.ymgmr.2016.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 12/11/2022] Open
Abstract
The Congenital Disorders of Glycosylation (CDG) are an expanding group of genetic disorders which encompass a spectrum of glycosylation defects of protein and lipids, including N- & O-linked defects and among the latter are the muscular dystroglycanopathies (MD). Initial screening of CDG is usually based on the investigation of the glycoproteins transferrin, and/or apolipoprotein CIII. These biomarkers do not always detect complex or subtle defects present in older patients, therefore there is a need to investigate additional glycoproteins in some cases. We describe a sensitive 2D-Differential Gel Electrophoresis (DIGE) method that provides a global analysis of the serum glycoproteome. Patient samples from PMM2-CDG (n = 5), CDG-II (n = 7), MD and known complex N- & O-linked glycosylation defects (n = 3) were analysed by 2D DIGE. Using this technique we demonstrated characteristic changes in mass and charge in PMM2-CDG and in charge in CDG-II for α1-antitrypsin, α1-antichymotrypsin, α2-HS-glycoprotein, ceruloplasmin, and α1-acid glycoproteins 1&2. Analysis of the samples with known N- & O-linked defects identified a lower molecular weight glycoform of C1-esterase inhibitor that was not observed in the N-linked glycosylation disorders indicating the change is likely due to affected O-glycosylation. In addition, we could identify abnormal serum glycoproteins in LARGE and B3GALNT2-deficient muscular dystrophies. The results demonstrate that the glycoform pattern is varied for some CDG patients not all glycoproteins are consistently affected and analysis of more than one protein in complex cases is warranted. 2D DIGE is an ideal method to investigate the global glycoproteome and is a potentially powerful tool and secondary test for aiding the complex diagnosis and sub classification of CDG. The technique has further potential in monitoring patients for future treatment strategies. In an era of shifting emphasis from gel- to mass-spectral based proteomics techniques, we demonstrate that 2D-DIGE remains a powerful method for studying global changes in post-translational modifications of proteins.
Collapse
|
29
|
Gizaw ST, Ohashi T, Tanaka M, Hinou H, Nishimura SI. Glycoblotting method allows for rapid and efficient glycome profiling of human Alzheimer's disease brain, serum and cerebrospinal fluid towards potential biomarker discovery. Biochim Biophys Acta Gen Subj 2016; 1860:1716-27. [PMID: 26968461 DOI: 10.1016/j.bbagen.2016.03.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Understanding of the significance of posttranslational glycosylation in Alzheimer's disease (AD) is of growing importance for the investigation of the pathogenesis of AD as well as discovery research of the disease-specific serum biomarkers. METHODS We designed a standard protocol for the glycoblotting combined with MALDI-TOFMS to perform rapid and quantitative profiling of the glycan parts of glycoproteins (N-glycans) and glycosphingolipids (GSLs) using human AD's post-mortem samples such as brain tissues (dissected cerebral cortices such as frontal, parietal, occipital, and temporal domains), serum and cerebrospinal fluid (CSF). RESULTS The structural profiles of the major N-glycans released from glycoproteins and the total expression levels of the glycans were found to be mostly similar between the brain tissues of the AD patients and those of the normal control group. In contrast, the expression levels of the serum and CSF protein N-glycans such as bisect-type and multiply branched glycoforms were increased significantly in AD patient group. In addition, the levels of some gangliosides such as GM1, GM2 and GM3 appeared to alter in the AD patient brain and serum samples when compared with the normal control groups. CONCLUSION Alteration of the expression levels of major N- and GSL-glycans in human brain tissues, serum and CSF of AD patients can be monitored quantitatively by means of the glycoblotting-based standard protocols. GENERAL SIGNIFICANCE The changes in the expression levels of the glycans derived from the human post-mortem samples uncovered by the standardized glycoblotting method provides potential serum biomarkers in central nervous system disorders and can contribute to the insight into the molecular mechanisms in the pathogenesis of neurodegenerative diseases and future drug discovery. Most importantly, the present preliminary trials using human post-mortem samples of AD patients suggest that large-scale serum glycomics cohort by means of various-types of human AD patients as well as the normal control sera can facilitate the discovery research of highly sensitive and reliable serum biomarkers for an early diagnosis of AD. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Solomon T Gizaw
- Field of Drug Discovery Research, Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21 W11, Sapporo 001-0021, Japan
| | - Tetsu Ohashi
- Medicinal Chemistry Pharmaceuticals, Co., Ltd, N21 W12, Sapporo 001-0021, Japan
| | - Masakazu Tanaka
- Medicinal Chemistry Pharmaceuticals, Co., Ltd, N21 W12, Sapporo 001-0021, Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research, Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21 W11, Sapporo 001-0021, Japan; Medicinal Chemistry Pharmaceuticals, Co., Ltd, N21 W12, Sapporo 001-0021, Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research, Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21 W11, Sapporo 001-0021, Japan; Medicinal Chemistry Pharmaceuticals, Co., Ltd, N21 W12, Sapporo 001-0021, Japan.
| |
Collapse
|
30
|
Palmigiano A, Barone R, Sturiale L, Sanfilippo C, Bua RO, Romeo DA, Messina A, Capuana ML, Maci T, Le Pira F, Zappia M, Garozzo D. CSF N-glycoproteomics for early diagnosis in Alzheimer's disease. J Proteomics 2016; 131:29-37. [DOI: 10.1016/j.jprot.2015.10.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/03/2015] [Accepted: 10/06/2015] [Indexed: 12/14/2022]
|
31
|
Gizaw ST, Koda T, Amano M, Kamimura K, Ohashi T, Hinou H, Nishimura SI. A comprehensive glycome profiling of Huntington's disease transgenic mice. Biochim Biophys Acta Gen Subj 2015; 1850:1704-18. [DOI: 10.1016/j.bbagen.2015.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/28/2015] [Accepted: 04/15/2015] [Indexed: 12/13/2022]
|
32
|
Barone R, Sturiale L, Fiumara A, Palmigiano A, Bua RO, Rizzo R, Zappia M, Garozzo D. CSF N-glycan profile reveals sialylation deficiency in a patient with GM2 gangliosidosis presenting as childhood disintegrative disorder. Autism Res 2015; 9:423-8. [PMID: 26286102 DOI: 10.1002/aur.1541] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/17/2015] [Accepted: 08/03/2015] [Indexed: 11/07/2022]
Abstract
Protein N-glycosylation consists in the synthesis and processing of the oligosaccharide moiety (N-glycan) linked to a protein and it serves several functions for the proper central nervous system (CNS) development and function. Previous experimental and clinical studies have shown the importance of proper glycoprotein sialylation for the synaptic function and the occurrence of autism spectrum disorders (ASD) in the presence of sialylation deficiency in the CNS. Late-onset Tay Sachs disease (LOTSD) is a lysosomal disorder caused by mutations in the HEXA gene resulting in GM2-ganglioside storage in the CNS. It is characterized by progressive neurological impairment and high co-occurrence of psychiatric disturbances. We studied the N-glycome profile of the cerebrospinal fluid (CSF) in a 14 year-old patient with GM2-gangliosidosis (LOTSD). At the age of 4, the patient presented regressive autism fulfilling criteria for childhood disintegrative disorder (CDD). A CSF sample was obtained in the course of diagnostic work-up for the suspicion of an underlying neurodegenerative disorder. We found definite changes of CSF N-glycans due to a dramatic decrease of sialylated biantennary and triantennary structures and an increase of asialo-core fucosylated bisected N-glycans. No changes of total plasma N-glycans were found. Herein findings highlight possible relationships between the early onset psychiatric disturbance featuring CDD in the patient and defective protein sialylation in the CNS. In conclusion, the study first shows aberrant N-glycan structures of CSF proteins in LOTSD; unveils possible pathomechanisms of GM2-gangliosidosis; supports existing relationships between neuropsychiatric disorders and unproper protein glycosylation in the CNS.
Collapse
Affiliation(s)
- Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania
| | - Luisella Sturiale
- CNR-Institute for Polymers, Composites and Biomaterials IPCB, Catania
| | - Agata Fiumara
- Centre for Inherited Metabolic Diseases, Department of Clinical and Experimental Medicine, University of Catania
| | - Angelo Palmigiano
- CNR-Institute for Polymers, Composites and Biomaterials IPCB, Catania
| | - Rosaria O Bua
- CNR-Institute for Polymers, Composites and Biomaterials IPCB, Catania
| | - Renata Rizzo
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania
| | - Mario Zappia
- Section of Neuroscience Department GF Ingrassia, University of Catania, Catania, Italy
| | - Domenico Garozzo
- CNR-Institute for Polymers, Composites and Biomaterials IPCB, Catania
| |
Collapse
|
33
|
Dias C, Rauter AP. Carbohydrates and Glycomimetics in Alzheimer's Disease Therapeutics and Diagnosis. CARBOHYDRATES IN DRUG DESIGN AND DISCOVERY 2015. [DOI: 10.1039/9781849739993-00180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease is the most prevalent form of late-life dementia, affecting millions worldwide. The devastating nature of the disease, unsuccessful treatment options and high socio-economic impact has inspired scientists to develop new structures with neuroprotective properties. Although currently available drugs target cholinergic neurotransmission, investigation towards disease-modifying therapies has been growing and carbohydrates have been playing an active role in the latest discoveries. Sugars, as polyfunctional compounds particularly important in biology and widely involved in human health and disease, have great potential to generate bioactive and bioavailable interesting molecules. Herein we discuss the importance of carbohydrates and glycomimetic structures, addressing different aspects of neuroprotection under investigation, targeting amyloid, tau and cholinergic hypotheses. The potential of carbohydrates in diagnosis is also discussed.
Collapse
Affiliation(s)
- Catarina Dias
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016 Lisbon Portugal
| | - Amélia P. Rauter
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016 Lisbon Portugal
| |
Collapse
|
34
|
Goyallon A, Cholet S, Chapelle M, Junot C, Fenaille F. Evaluation of a combined glycomics and glycoproteomics approach for studying the major glycoproteins present in biofluids: Application to cerebrospinal fluid. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:461-473. [PMID: 26160412 DOI: 10.1002/rcm.7125] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/08/2014] [Accepted: 12/14/2014] [Indexed: 06/04/2023]
Abstract
RATIONALE Glycosylation is one of the most complex types of post-translational modifications of proteins. The alteration of glycans bound to proteins from cerebrospinal fluid (CSF) in relation to disorders of the central nervous system is a highly relevant subject, but only few studies have focused on the glycosylation of CSF proteins. METHODS Reproducible profiles of CSF N-glycans were first obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry after permethylation. Tryptic glycopeptides from CSF proteins were also enriched by hydrophilic interaction, and the resulting extracts divided into two equal aliquots. A first aliquot was enzymatically deglycosylated and analyzed by nano-liquid chromatography/tandem mass spectrometry while the second one, containing intact enriched glycopeptides, was directly analyzed. Site-specific data were obtained by combining the data from these three experiments. RESULTS We describe the development of a versatile approach for obtaining site-specific information on the N-glycosylation of CSF glycoproteins. Under these conditions, 124 N-glycopeptides representing 55 N-glycosites from 36 glycoproteins were tentatively identified. Special emphasis was placed on the analysis of glycoproteins/glycopeptides bearing 'brain-type' N-glycans, representing potential biologically relevant structures in the field of neurodegenerative disorders. Using our workflow, only a few proteins were shown to carry such particular glycan motifs. CONCLUSIONS We developed an approach combining N-glycomics and N-glycoproteomics and underline its usefulness to study the site-specific glycosylation of major human CSF proteins. The final rather long-term objective is to combine these data with those from other omics approaches to delve deeper into the understanding of particular neurological disorders.
Collapse
Affiliation(s)
- Arnaud Goyallon
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191, Gif-sur-Yvette, France
| | - Sophie Cholet
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191, Gif-sur-Yvette, France
| | | | - Christophe Junot
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191, Gif-sur-Yvette, France
| | - François Fenaille
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191, Gif-sur-Yvette, France
| |
Collapse
|
35
|
Riches Z, Collier AC. Posttranscriptional regulation of uridine diphosphate glucuronosyltransferases. Expert Opin Drug Metab Toxicol 2015; 11:949-65. [PMID: 25797307 DOI: 10.1517/17425255.2015.1028355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The uridine diphosphate (UDP)-glucuronosyltransferase (UGT) superfamily of enzymes (EC 2.4.1.17) conjugates glucuronic acid to an aglycone substrate to make them more polar and readily excreted. In general, this reaction terminates the activities of chemicals, drugs and toxins, although occasionally a more active or toxic species is produced. AREAS COVERED In addition to their well-known transcriptional responsiveness, UGTs are also regulated by posttranscriptional mechanisms. Here, the authors review these mechanisms, including latency, modulation of co-substrate accessibility and binding, dimerization and oligomerization, protein-protein interactions, allosteric inhibition and activation, posttranslational structural and functional modifications and developmental switching for UGTs. EXPERT OPINION Posttranscriptional regulation of UGTs has traditionally received less attention than nuclear regulation, in part because mechanisms involving ribosomes and endoplasmic reticula are challenging to investigate. Most promising of the posttranscriptional mechanisms reviewed are likely to be effects on co-substrate (UDP-glucuronic acid) transport and availability and structure-function changes to UGT proteins through, for example, glycosylation and phosphorylation. Although classical biochemistry continues to illuminate many aspects of UGT function, advances in proteomics and structural biology are beginning to assist in the determination of posttranscriptional regulation mechanisms for UGTs.
Collapse
Affiliation(s)
- Zoe Riches
- University of British Columbia, Faculty of Pharmaceutical Sciences , 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3 , Canada +1 604 827 2380 ;
| | | |
Collapse
|
36
|
Junot C, Fenaille F, Colsch B, Bécher F. High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. MASS SPECTROMETRY REVIEWS 2014; 33:471-500. [PMID: 24288070 DOI: 10.1002/mas.21401] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
The metabolome is the set of small molecular mass compounds found in biological media, and metabolomics, which refers to as the analysis of metabolome in a given biological condition, deals with the large scale detection and quantification of metabolites in biological media. It is a data driven and multidisciplinary approach combining analytical chemistry for data acquisition, and biostatistics, informatics and biochemistry for mining and interpretation of these data. Since the middle of the 2000s, high resolution mass spectrometry is widely used in metabolomics, mainly because the detection and identification of metabolites are improved compared to low resolution instruments. As the field of HRMS is quickly and permanently evolving, the aim of this work is to review its use in different aspects of metabolomics, including data acquisition, metabolite annotation, identification and quantification. At last, we would like to show that, thanks to their versatility, HRMS instruments are the most appropriate to achieve optimal metabolome coverage, at the border of other omics fields such as lipidomics and glycomics.
Collapse
Affiliation(s)
- Christophe Junot
- Commissariat à l'Energie Atomique, Centre de Saclay, DSV/iBiTec-S/SPI, Laboratoire d'Etude du Métabolisme des Médicaments, 91191, Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
37
|
Gonçalves M, Tillack L, de Carvalho M, Pinto S, Conradt HS, Costa J. Phosphoneurofilament heavy chain and N-glycomics from the cerebrospinal fluid in amyotrophic lateral sclerosis. Clin Chim Acta 2014; 438:342-9. [PMID: 25261856 DOI: 10.1016/j.cca.2014.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/26/2014] [Accepted: 09/10/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease of the motor neuron for which no clinically validated biomarkers have been identified. METHODS We have quantified by ELISA the biomarker phosphoneurofilament heavy chain (pNFH) in the cerebrospinal fluid (CSF) of ALS patients (n=29) and age-matched control patients with other diseases (n=19) by ELISA. Furthermore, we compared protein N-glycosylation of the CSF in ALS patients and controls, by applying a glycomics approach based on liquid chromatography and mass spectrometry. RESULTS pNFH levels were significantly higher in ALS patients in comparison with controls (P<0.0001) in particular in fast progressors. The N-glycans found in the CSF were predominantly complex diantennary with sialic acid in α2,3- and α2,6-linkage, and bisecting N-acetylglucosamine-containing structures as well as peripherally fucosylated structures were found. As compared with controls the ALS group had a significant increase of a peak composed of the monosialylated diantennary glycans A2G2S(6)1 and FA2G2S(3)1 (P=0.0348). CONCLUSIONS Our results underscore the value of pNFH as a biomarker in ALS. In addition, we identified a variation of the N-glycosylation pattern in ALS, suggesting that this change should be explored in future studies as potential biomarker.
Collapse
Affiliation(s)
- Margarida Gonçalves
- Laboratory of Glycobiology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Linda Tillack
- GlycoThera GmbH, Feodor-Lynen Strasse 35, 30625 Hannover, Germany
| | - Mamede de Carvalho
- Department Neurosciences, Hospital de Santa Maria, Lisbon, Portugal; Translational Clinical Physiology Unit, Instituto de Medicina Molecular, Institute of Physiology, Faculty of Medicine - University of Lisbon, Portugal
| | - Susana Pinto
- Department Neurosciences, Hospital de Santa Maria, Lisbon, Portugal; Translational Clinical Physiology Unit, Instituto de Medicina Molecular, Institute of Physiology, Faculty of Medicine - University of Lisbon, Portugal
| | - Harald S Conradt
- GlycoThera GmbH, Feodor-Lynen Strasse 35, 30625 Hannover, Germany
| | - Júlia Costa
- Laboratory of Glycobiology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
38
|
Comparative Analysis of Glycogene Expression in Different Mouse Tissues Using RNA-Seq Data. Int J Genomics 2014; 2014:837365. [PMID: 25121089 PMCID: PMC4121153 DOI: 10.1155/2014/837365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/10/2014] [Indexed: 11/29/2022] Open
Abstract
Glycogenes regulate a wide array of biological processes in the development of organisms as well as different diseases such as cancer, primary open-angle glaucoma, and renal dysfunction. The objective of this study was to explore the role of differentially expressed glycogenes (DEGGs) in three major tissues such as brain, muscle, and liver using mouse RNA-seq data, and we identified 579, 501, and 442 DEGGs for brain versus liver (BvL579), brain versus muscle (BvM501), and liver versus muscle (LvM442) groups. DAVID functional analysis suggested inflammatory response, glycosaminoglycan metabolic process, and protein maturation as the enriched biological processes in BvL579, BvM501, and LvM442, respectively. These DEGGs were then used to construct three interaction networks by using GeneMANIA, from which we detected potential hub genes such as PEMT and HPXN (BvL579), IGF2 and NID2 (BvM501), and STAT6 and FLT1 (LvM442), having the highest degree. Additionally, our community analysis results suggest that the significance of immune system related processes in liver, glycosphingolipid metabolic processes in the development of brain, and the processes such as cell proliferation, adhesion, and growth are important for muscle development. Further studies are required to confirm the role of predicted hub genes as well as the significance of biological processes.
Collapse
|
39
|
Iminosugars: Therapeutic Applications and Synthetic Considerations. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_50] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
40
|
Heywood WE, Mills P, Grunewald S, Worthington V, Jaeken J, Carreno G, Lemonde H, Clayton PT, Mills K. A new method for the rapid diagnosis of protein N-linked congenital disorders of glycosylation. J Proteome Res 2013; 12:3471-9. [PMID: 23742123 DOI: 10.1021/pr400328g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Congenital Disorders of Glycosylation (CDG) are a devastating group of genetic disorders that encompass a spectrum of glycosylation defects and are characterized by the underglycosylation of or the presence of abnormal glycans on glycoproteins. The N-linked CDG disorders (Type I and II) are usually diagnosed in chemical pathology laboratories by an abnormal serum transferrin isoelectric focusing (IEF) pattern. Transferrin has been the protein of choice for CDG analysis because it is well characterized, highly abundant, and easily detected in plasma. However, IEF provides limited information on the glycosylation defect and requires a separate and extensive glycan analysis to diagnose CDG Type II. We have therefore developed a simple bead-based immunoaffinity and mass spectrometry-based assay to address these issues. Our method uses immuno-purified transferrin and proteolytic digestion followed by a rapid 30 min mass spectral analysis and allows us to identify both micro- and macroheterogeneity of transferrin by sequencing of peptides and glycopeptides. In summary, we have developed a simple, rapid test for N-linked glycosylation disorders that is a significant improvement on existing laboratory tests currently used for investigating defective N-linked glycosylation.
Collapse
Affiliation(s)
- Wendy E Heywood
- Biochemistry Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health & Great Ormond Street Hospital, University College London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|