1
|
Gautam SS, Singh SP. Immunopurification Reagents and Their Application in Biologics and Biomarker Quantitation Using LC-MS/MS in Drug Discovery. J Chromatogr Sci 2023; 61:799-805. [PMID: 36469494 DOI: 10.1093/chromsci/bmac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 10/01/2023]
Abstract
The LC-MS/MS technology is one of the most utilized bio-analytical tools owing to its advantage of selectivity, sensitivity and multitasking. The advent of novel biological therapies and increasing demand for protein biomarker identification and quantitation have put the LC-MS/MS technology at the forefront. The questions which are been posed to the LC-MS/MS scientist are complex. The complexity of the question increases further with the matrices in which these questions need to be answered. To bring down the complexity of the analysis, LC-MS/MS technology is utilizing the immunopurification (IP) technique as the new sample preparation technique. The IP reagents are the most common reagents which are used to decrease the matrices' complexity and allow the LC-MS/MS system to reach greater sensitivity. The utilization of these reagents is increasing every day, but the proper utilization of these reagents is still unknown to the common analyst in drug discovery. The present review throws light on the utilization aspect of these reagents, as we have classified these reagents on basis of their utilization, which will allow the readers to gain an understanding of these reagents. This review will also talk about the merits and the demerits of each approach and the current understanding of utilizing these reagents.
Collapse
Affiliation(s)
- Shashyendra Singh Gautam
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 200102, India
- Biocon-Bristol-Myers Squibb Research Centre, Syngene International Ltd, Bangalore 560100, India
| | - Sheelendra Pratap Singh
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 200102, India
| |
Collapse
|
2
|
Trogden KP, Lee J, Bracey KM, Ho KH, McKinney H, Zhu X, Arpag G, Folland TG, Osipovich AB, Magnuson MA, Zanic M, Gu G, Holmes WR, Kaverina I. Microtubules regulate pancreatic β-cell heterogeneity via spatiotemporal control of insulin secretion hot spots. eLife 2021; 10:59912. [PMID: 34783306 PMCID: PMC8635970 DOI: 10.7554/elife.59912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Heterogeneity of glucose-stimulated insulin secretion (GSIS) in pancreatic islets is physiologically important but poorly understood. Here, we utilize mouse islets to determine how microtubules (MTs) affect secretion toward the vascular extracellular matrix at single cell and subcellular levels. Our data indicate that MT stability in the β-cell population is heterogenous, and that GSIS is suppressed in cells with highly stable MTs. Consistently, MT hyper-stabilization prevents, and MT depolymerization promotes the capacity of single β-cell for GSIS. Analysis of spatiotemporal patterns of secretion events shows that MT depolymerization activates otherwise dormant β-cells via initiation of secretion clusters (hot spots). MT depolymerization also enhances secretion from individual cells, introducing both additional clusters and scattered events. Interestingly, without MTs, the timing of clustered secretion is dysregulated, extending the first phase of GSIS and causing oversecretion. In contrast, glucose-induced Ca2+ influx was not affected by MT depolymerization yet required for secretion under these conditions, indicating that MT-dependent regulation of secretion hot spots acts in parallel with Ca2+ signaling. Our findings uncover a novel MT function in tuning insulin secretion hot spots, which leads to accurately measured and timed response to glucose stimuli and promotes functional β-cell heterogeneity.
Collapse
Affiliation(s)
- Kathryn P Trogden
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Justin Lee
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Kai M Bracey
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Kung-Hsien Ho
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Hudson McKinney
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Xiaodong Zhu
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Medicine, Vanderbilt University, Nashville, United States
| | - Goker Arpag
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Thomas G Folland
- Department of Mechanical Engineering, Vanderbilt University, Nashville, United States
| | - Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States.,Center for Stem Cell Biology, Vanderbilt University, Nashville, United States
| | - Mark A Magnuson
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States.,Center for Stem Cell Biology, Vanderbilt University, Nashville, United States
| | - Marija Zanic
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, United States.,Department of Biochemistry, Vanderbilt University, Nashville, United States
| | - Guoqiang Gu
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - William R Holmes
- Department of Physics and Astronomy, Vanderbilt University, Nashville, United States.,Department of Mathematics, Vanderbilt University, Nashville, United States.,Quantitative Systems Biology Center, Vanderbilt University, Nashville, United States
| | - Irina Kaverina
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| |
Collapse
|
3
|
Rahman FU, Park DR, Joe Y, Jang KY, Chung HT, Kim UH. Critical Roles of Carbon Monoxide and Nitric Oxide in Ca 2+ Signaling for Insulin Secretion in Pancreatic Islets. Antioxid Redox Signal 2019; 30:560-576. [PMID: 29486595 DOI: 10.1089/ars.2017.7380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS Glucagon-like peptide-1 (GLP-1) increases intracellular Ca2+ concentrations, resulting in insulin secretion from pancreatic β-cells through the sequential production of Ca2+ mobilizing messengers nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose (cADPR). We previously found that NAADP activates the neuronal type of nitric oxide (NO) synthase (nNOS), the product of which, NO, activates guanylyl cyclase to produce cyclic guanosine monophosphate (cGMP), which, in turn, induces cADPR formation. Our aim was to explore the relationship between Ca2+ signals and gasotransmitters formation in insulin secretion in β-cells upon GLP-1 stimulation. RESULTS We show that NAADP-induced cGMP production by nNOS activation is dependent on carbon monoxide (CO) formation by heme oxygenase-2 (HO-2). Treatment with exogenous NO and CO amplifies cGMP formation, Ca2+ signal strength, and insulin secretion, whereas this signal is impeded when exposed to combined treatment with NO and CO. Furthermore, CO potentiates cGMP formation in a dose-dependent manner, but higher doses of CO inhibited cGMP formation. Our data with regard to zinc protoporphyrin, a HO inhibitor, and HO-2 knockdown, revealed that NO-induced cADPR formation and insulin secretion are dependent on HO-2. Consistent with this observation, the administration of NO or CO donors to type 2 diabetic mice improved glucose tolerance, but the same did not hold true when both were administered concurrently. INNOVATION Our research reveals the role of two gas transmitters, CO and NO, for Ca2+ second messengers formation in pancreatic β-cells. CONCLUSION These results demonstrate that CO, the downstream regulator of NO, plays a role in bridging the gap between the Ca2+ signaling messengers during insulin secretion in pancreatic β-cells.
Collapse
Affiliation(s)
- Faiz Ur Rahman
- 1 Department of Biochemistry, Jeonju, Republic of Korea.,2 National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Dae-Ryoung Park
- 1 Department of Biochemistry, Jeonju, Republic of Korea.,2 National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Yeonsoo Joe
- 2 National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea.,3 Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Kyu Yun Jang
- 4 Department of Pathology Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hun Taeg Chung
- 3 Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Uh-Hyun Kim
- 1 Department of Biochemistry, Jeonju, Republic of Korea.,2 National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea.,5 Institute of Cardiovascular Research, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
4
|
Hameury S, Borderie L, Monneuse JM, Skorski G, Pradines D. Prediction of skin anti-aging clinical benefits of an association of ingredients from marine and maritime origins: Ex vivo evaluation using a label-free quantitative proteomic and customized data processing approach. J Cosmet Dermatol 2019; 18:355-370. [PMID: 29797450 DOI: 10.1111/jocd.12528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND The application of ingredients from marine and maritime origins is increasingly common in skin care products, driven by consumer expectations for natural ingredients. However, these ingredients are typically studied for a few isolated in vitro activities. OBJECTIVES The purpose of this study was to carry out a comprehensive evaluation of the activity on the skin of an association of ingredients from marine and maritime origins using label-free quantitative proteomic analysis, in order to predict the clinical benefits if used in a skin care product. METHODS An aqueous gel containing 6.1% of ingredients from marine and maritime origins (amino acid-enriched giant kelp extract, trace element-enriched seawater, dedifferentiated sea fennel cells) was topically applied on human skin explants. The skin explants' proteome was analyzed in a label-free manner by high-performance liquid nano-chromatography coupled with tandem mass spectrometry. A specific data processing pipeline (CORAVALID) providing an objective and comprehensive interpretation of the statistically relevant biological activities processed the results. RESULTS Compared to untreated skin explants, 64 proteins were significantly regulated by the gel treatment (q-value ≤ 0.05). Computer data processing revealed an activity of the ingredients on the epidermis and the dermis. These significantly regulated proteins are involved in gene expression, cell survival and metabolism, inflammatory processes, dermal extracellular matrix synthesis, melanogenesis and keratinocyte proliferation, migration, and differentiation. CONCLUSIONS These results suggest that the tested ingredients could help to preserve a healthy epidermis and dermis, and possibly to prevent the visible signs of skin aging.
Collapse
Affiliation(s)
- Sebastien Hameury
- Research & Development Department, Laboratoires B.L.C. Thalgo Cosmetic S.A., Roquebrune-sur-Argens, France
| | | | | | | | - Dominique Pradines
- Research & Development Department, Laboratoires B.L.C. Thalgo Cosmetic S.A., Roquebrune-sur-Argens, France
| |
Collapse
|
5
|
Wang Y, Liu Q, Huan Y, Li R, Li C, Sun S, Guo N, Yang M, Liu S, Shen Z. Sirtuin 5 overexpression attenuates glucolipotoxicity-induced pancreatic β cells apoptosis and dysfunction. Exp Cell Res 2018; 371:205-213. [DOI: 10.1016/j.yexcr.2018.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/25/2022]
|
6
|
Nakashima Y, Miyagi-Shiohira C, Kobayashi N, Saitoh I, Watanabe M, Noguchi H. A proteome analysis of pig pancreatic islets and exocrine tissue by liquid chromatography with tandem mass spectrometry. Islets 2017; 9:159-176. [PMID: 29099648 PMCID: PMC5710700 DOI: 10.1080/19382014.2017.1389826] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liquid chromatography with tandem mass spectrometry (LC-MS/MS) is a proteome analysis method, and the shotgun analysis by LC-MS/MS comprehensively identifies proteins from tissues and cells with high resolving power. In this study, we analyzed the protein expression in pancreatic tissue by LC-MS/MS. Islets isolated from porcine pancreata (purity ≥95%) and exocrine tissue (purity ≥99%) were used in this study. LC-MS/MS showed that 13 proteins were expressed in pancreatic islets only (Group I), 43 proteins were expressed in both islets and exocrine tissue (Group I&E), and 102 proteins were expressed in exocrine tissue only (Group E). Proteins involved in islet differentiation and cell proliferation were identified in Group I (e.g. CLUS, CMGA, MIF). In addition, various functional proteins (e.g. SCG2, TBA1A) were identified in islet by using the new method of 'principal component analysis (PCA)'. However, the function of such proteins on islets remains unclear. EPCAM was identified in Group E. Group E was found to include proteins involved in clinical inflammatory diseases such as pancreatitis (e.g. CBPA1, CGL, CYTB, ISK1 and PA21B). Many of these identified proteins were reported less frequently in previous studies, and HS71B, NEC2, PRAF3 and SCG1 were newly detected in Group I while CPNS1, DPEP1, GANAB, GDIB, GGT1, HSPB1, ICTL, VILI, MUTA, NDKB, PTGR1, UCHL3, VAPB and VINC were newly detected in Group E. These results show that comprehensive expression analysis of proteins by LC-MS/MS is useful as a method to investigate new factors constructing cellular component, biological process, and molecular function.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- CONTACT Hirofumi Noguchi Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
7
|
Ayanlaja AA, Xiong Y, Gao Y, Ji G, Tang C, Abdikani Abdullah Z, Gao D. Distinct Features of Doublecortin as a Marker of Neuronal Migration and Its Implications in Cancer Cell Mobility. Front Mol Neurosci 2017; 10:199. [PMID: 28701917 PMCID: PMC5487455 DOI: 10.3389/fnmol.2017.00199] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/06/2017] [Indexed: 12/16/2022] Open
Abstract
Neuronal migration is a critical process in the development of the nervous system. Defects in the migration of the neurons are associated with diseases like lissencephaly, subcortical band heterotopia (SBH), and pachygyria. Doublecortin (DCX) is an essential factor in neurogenesis and mutations in this protein impairs neuronal migration leading to several pathological conditions. Although, DCX is capable of modulating and stabilizing microtubules (MTs) to ensure effective migration, the mechanisms involved in executing these functions remain poorly understood. Meanwhile, there are existing gaps regarding the processes that underlie tumor initiation and progression into cancer as well as the ability to migrate and invade normal cells. Several studies suggest that DCX is involved in cancer metastasis. Unstable interactions between DCX and MTs destabilizes cytoskeletal organization leading to disorganized movements of cells, a process which may be implicated in the uncontrolled migration of cancer cells. However, the underlying mechanism is complex and require further clarification. Therefore, exploring the importance and features known up to date about this molecule will broaden our understanding and shed light on potential therapeutic approaches for the associated neurological diseases. This review summarizes current knowledge about DCX, its features, functions, and relationships with other proteins. We also present an overview of its role in cancer cells and highlight the importance of studying its gene mutations.
Collapse
Affiliation(s)
- Abiola A Ayanlaja
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Ye Xiong
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Yue Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - GuangQuan Ji
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Chuanxi Tang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Zamzam Abdikani Abdullah
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - DianShuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| |
Collapse
|
8
|
Neelankal John A, Morahan G, Jiang FX. Incomplete Re-Expression of Neuroendocrine Progenitor/Stem Cell Markers is a Key Feature of β-Cell Dedifferentiation. J Neuroendocrinol 2017; 29. [PMID: 27891681 DOI: 10.1111/jne.12450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/23/2023]
Abstract
There is increasing evidence to suggest that type 2 diabetes mellitus (T2D), a pandemic metabolic disease, may be caused by β-cell dedifferentiation (βCD). However, there is currently no universal definition of βCD, and the underlying mechanism is poorly understood. We hypothesise that a high-glucose in vitro environment mimics hyperglycaemia in vivo and that β cells grown in this milieu over a long period will undergo dedifferentiation. In the present study, we report that the pancreatic β cell line mouse insulinoma 6 (MIN6) grown under a high-glucose condition did not undergo massive cell death but exhibited a glucose-stimulated insulin-secreting profile similar to that of immature β cells. The expression of insulin and the glucose-sensing molecule glucose transporter 2 (Glut2) in late passage MIN6 cells was significantly lower than the early passage at both the RNA and protein levels. Mechanistically, these cells also expressed significantly less of the 'pancreatic and duodenal homebox1' (Pdx1) β-cell transcription factor. Finally, passaged MIN6 cells dedifferentiated to demonstrate some features of β-cell precursors, as well as neuroendocrine markers, in addition to expressing both glucagon and insulin. Thus, we concluded that high-glucose passaged MIN6 cells passaged MIN6 cells. provide a cellular model of β-cell dedifferentiation that can help researchers develop a better understanding of this process. These findings provide new insights that may enhance knowledge of the pathophysiology of T2D and facilitate the establishment of a novel strategy by which this disease can be treated.
Collapse
Affiliation(s)
- A Neelankal John
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Australia
- School of Medicine And Pharmacology, University of Western Australia, Carwley, Australia
| | - G Morahan
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Australia
- School of Medicine And Pharmacology, University of Western Australia, Carwley, Australia
| | - F-X Jiang
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Australia
- School of Medicine And Pharmacology, University of Western Australia, Carwley, Australia
| |
Collapse
|
9
|
Fetal endocannabinoids orchestrate the organization of pancreatic islet microarchitecture. Proc Natl Acad Sci U S A 2015; 112:E6185-94. [PMID: 26494286 DOI: 10.1073/pnas.1519040112] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endocannabinoids are implicated in the control of glucose utilization and energy homeostasis by orchestrating pancreatic hormone release. Moreover, in some cell niches, endocannabinoids regulate cell proliferation, fate determination, and migration. Nevertheless, endocannabinoid contributions to the development of the endocrine pancreas remain unknown. Here, we show that α cells produce the endocannabinoid 2-arachidonoylglycerol (2-AG) in mouse fetuses and human pancreatic islets, which primes the recruitment of β cells by CB1 cannabinoid receptor (CB1R) engagement. Using subtractive pharmacology, we extend these findings to anandamide, a promiscuous endocannabinoid/endovanilloid ligand, which impacts both the determination of islet size by cell proliferation and α/β cell sorting by differential activation of transient receptor potential cation channel subfamily V member 1 (TRPV1) and CB1Rs. Accordingly, genetic disruption of TRPV1 channels increases islet size whereas CB1R knockout augments cellular heterogeneity and favors insulin over glucagon release. Dietary enrichment in ω-3 fatty acids during pregnancy and lactation in mice, which permanently reduces endocannabinoid levels in the offspring, phenocopies CB1R(-/-) islet microstructure and improves coordinated hormone secretion. Overall, our data mechanistically link endocannabinoids to cell proliferation and sorting during pancreatic islet formation, as well as to life-long programming of hormonal determinants of glucose homeostasis.
Collapse
|
10
|
Ling Z, De Pauw P, Jacobs-Tulleneers-Thevissen D, Mao R, Gillard P, Hampe CS, Martens GA, In't Veld P, Lernmark Å, Keymeulen B, Gorus F, Pipeleers D. Plasma GAD65, a Marker for Early β-Cell Loss After Intraportal Islet Cell Transplantation in Diabetic Patients. J Clin Endocrinol Metab 2015; 100:2314-21. [PMID: 25816051 PMCID: PMC5393519 DOI: 10.1210/jc.2015-1216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CONTEXT AND OBJECTIVE Intraportal islet transplantation can restore insulin production in type 1 diabetes patients, but its effect is subject to several interfering processes. To assess the influence of β-cell loss before and during engraftment, we searched for a real-time marker of β-cell destruction. Previous studies showed that 65-kDa isoform of glutamate decarboxylase (GAD65) is discharged by chemically damaged rat β-cells. We therefore examined the utility of the GAD65 assay to detect and quantify destruction of human β-cells in vitro and in vivo. DESIGN AND PARTICIPANTS A time-resolved fluorescence immunoassay was used to measure GAD65 discharge from β-cells after administration of toxins or after intraportal transplantation. The study in patients involved type 1 diabetes recipients of 56 implants. RESULTS GAD65 was discharged from cultured human β-cells between 4 and 24 hours after acute insult and proportional to the number of dying cells. It was also detected in plasma during the first 24 hours after intraportal transplantation of human islet cell grafts. Diabetic nude rat recipients without hyperglycemic correction exhibited higher plasma GAD65 levels than those with normalization. In type 1 diabetes recipients of grafts with 2-5 × 10(6) β-cells per kilogram of body weight, five of six with plasma GAD65 greater than 1 ng/mL failed to increase plasma C-peptide by greater than 0.5 ng/mL at posttransplant month 2, whereas five of six with undetectable plasma GAD 65 and 15 of 19 with intermediate levels did result in such increase. CONCLUSION Plasma GAD65 qualifies as a marker for early β-cell loss after intraportal transplantation. Further studies are needed to extend its clinical utility.
Collapse
Affiliation(s)
- Zhidong Ling
- Diabetes Research Center and Universitair Ziekenhuis Brussel (Z.L., P.D.P., D.J.-T.-T., R.M., G.A.M., P.I.V., B.K., F.G., D.P.), Brussels Free University-VUB, B-1090 Brussels, Belgium; Department of Endocrinology (P.G.), Universitair Ziekenhuis Gasthuisberg, Katholieke Universiteit Leuven-KUL, B-3000 Leuven, Belgium; Department of Medicine (C.S.H.), University of Washington, Seattle, Washington 98109; and Department of Clinical Sciences (Å.L.), Lund University, Skåne University Hospital, SE-20502 Malmö, Sweden
| | - Pieter De Pauw
- Diabetes Research Center and Universitair Ziekenhuis Brussel (Z.L., P.D.P., D.J.-T.-T., R.M., G.A.M., P.I.V., B.K., F.G., D.P.), Brussels Free University-VUB, B-1090 Brussels, Belgium; Department of Endocrinology (P.G.), Universitair Ziekenhuis Gasthuisberg, Katholieke Universiteit Leuven-KUL, B-3000 Leuven, Belgium; Department of Medicine (C.S.H.), University of Washington, Seattle, Washington 98109; and Department of Clinical Sciences (Å.L.), Lund University, Skåne University Hospital, SE-20502 Malmö, Sweden
| | - Daniel Jacobs-Tulleneers-Thevissen
- Diabetes Research Center and Universitair Ziekenhuis Brussel (Z.L., P.D.P., D.J.-T.-T., R.M., G.A.M., P.I.V., B.K., F.G., D.P.), Brussels Free University-VUB, B-1090 Brussels, Belgium; Department of Endocrinology (P.G.), Universitair Ziekenhuis Gasthuisberg, Katholieke Universiteit Leuven-KUL, B-3000 Leuven, Belgium; Department of Medicine (C.S.H.), University of Washington, Seattle, Washington 98109; and Department of Clinical Sciences (Å.L.), Lund University, Skåne University Hospital, SE-20502 Malmö, Sweden
| | - Rui Mao
- Diabetes Research Center and Universitair Ziekenhuis Brussel (Z.L., P.D.P., D.J.-T.-T., R.M., G.A.M., P.I.V., B.K., F.G., D.P.), Brussels Free University-VUB, B-1090 Brussels, Belgium; Department of Endocrinology (P.G.), Universitair Ziekenhuis Gasthuisberg, Katholieke Universiteit Leuven-KUL, B-3000 Leuven, Belgium; Department of Medicine (C.S.H.), University of Washington, Seattle, Washington 98109; and Department of Clinical Sciences (Å.L.), Lund University, Skåne University Hospital, SE-20502 Malmö, Sweden
| | - Pieter Gillard
- Diabetes Research Center and Universitair Ziekenhuis Brussel (Z.L., P.D.P., D.J.-T.-T., R.M., G.A.M., P.I.V., B.K., F.G., D.P.), Brussels Free University-VUB, B-1090 Brussels, Belgium; Department of Endocrinology (P.G.), Universitair Ziekenhuis Gasthuisberg, Katholieke Universiteit Leuven-KUL, B-3000 Leuven, Belgium; Department of Medicine (C.S.H.), University of Washington, Seattle, Washington 98109; and Department of Clinical Sciences (Å.L.), Lund University, Skåne University Hospital, SE-20502 Malmö, Sweden
| | - Christiane S Hampe
- Diabetes Research Center and Universitair Ziekenhuis Brussel (Z.L., P.D.P., D.J.-T.-T., R.M., G.A.M., P.I.V., B.K., F.G., D.P.), Brussels Free University-VUB, B-1090 Brussels, Belgium; Department of Endocrinology (P.G.), Universitair Ziekenhuis Gasthuisberg, Katholieke Universiteit Leuven-KUL, B-3000 Leuven, Belgium; Department of Medicine (C.S.H.), University of Washington, Seattle, Washington 98109; and Department of Clinical Sciences (Å.L.), Lund University, Skåne University Hospital, SE-20502 Malmö, Sweden
| | - Geert A Martens
- Diabetes Research Center and Universitair Ziekenhuis Brussel (Z.L., P.D.P., D.J.-T.-T., R.M., G.A.M., P.I.V., B.K., F.G., D.P.), Brussels Free University-VUB, B-1090 Brussels, Belgium; Department of Endocrinology (P.G.), Universitair Ziekenhuis Gasthuisberg, Katholieke Universiteit Leuven-KUL, B-3000 Leuven, Belgium; Department of Medicine (C.S.H.), University of Washington, Seattle, Washington 98109; and Department of Clinical Sciences (Å.L.), Lund University, Skåne University Hospital, SE-20502 Malmö, Sweden
| | - Peter In't Veld
- Diabetes Research Center and Universitair Ziekenhuis Brussel (Z.L., P.D.P., D.J.-T.-T., R.M., G.A.M., P.I.V., B.K., F.G., D.P.), Brussels Free University-VUB, B-1090 Brussels, Belgium; Department of Endocrinology (P.G.), Universitair Ziekenhuis Gasthuisberg, Katholieke Universiteit Leuven-KUL, B-3000 Leuven, Belgium; Department of Medicine (C.S.H.), University of Washington, Seattle, Washington 98109; and Department of Clinical Sciences (Å.L.), Lund University, Skåne University Hospital, SE-20502 Malmö, Sweden
| | - Åke Lernmark
- Diabetes Research Center and Universitair Ziekenhuis Brussel (Z.L., P.D.P., D.J.-T.-T., R.M., G.A.M., P.I.V., B.K., F.G., D.P.), Brussels Free University-VUB, B-1090 Brussels, Belgium; Department of Endocrinology (P.G.), Universitair Ziekenhuis Gasthuisberg, Katholieke Universiteit Leuven-KUL, B-3000 Leuven, Belgium; Department of Medicine (C.S.H.), University of Washington, Seattle, Washington 98109; and Department of Clinical Sciences (Å.L.), Lund University, Skåne University Hospital, SE-20502 Malmö, Sweden
| | - Bart Keymeulen
- Diabetes Research Center and Universitair Ziekenhuis Brussel (Z.L., P.D.P., D.J.-T.-T., R.M., G.A.M., P.I.V., B.K., F.G., D.P.), Brussels Free University-VUB, B-1090 Brussels, Belgium; Department of Endocrinology (P.G.), Universitair Ziekenhuis Gasthuisberg, Katholieke Universiteit Leuven-KUL, B-3000 Leuven, Belgium; Department of Medicine (C.S.H.), University of Washington, Seattle, Washington 98109; and Department of Clinical Sciences (Å.L.), Lund University, Skåne University Hospital, SE-20502 Malmö, Sweden
| | - Frans Gorus
- Diabetes Research Center and Universitair Ziekenhuis Brussel (Z.L., P.D.P., D.J.-T.-T., R.M., G.A.M., P.I.V., B.K., F.G., D.P.), Brussels Free University-VUB, B-1090 Brussels, Belgium; Department of Endocrinology (P.G.), Universitair Ziekenhuis Gasthuisberg, Katholieke Universiteit Leuven-KUL, B-3000 Leuven, Belgium; Department of Medicine (C.S.H.), University of Washington, Seattle, Washington 98109; and Department of Clinical Sciences (Å.L.), Lund University, Skåne University Hospital, SE-20502 Malmö, Sweden
| | - Daniel Pipeleers
- Diabetes Research Center and Universitair Ziekenhuis Brussel (Z.L., P.D.P., D.J.-T.-T., R.M., G.A.M., P.I.V., B.K., F.G., D.P.), Brussels Free University-VUB, B-1090 Brussels, Belgium; Department of Endocrinology (P.G.), Universitair Ziekenhuis Gasthuisberg, Katholieke Universiteit Leuven-KUL, B-3000 Leuven, Belgium; Department of Medicine (C.S.H.), University of Washington, Seattle, Washington 98109; and Department of Clinical Sciences (Å.L.), Lund University, Skåne University Hospital, SE-20502 Malmö, Sweden
| |
Collapse
|
11
|
Brackeva B, Kramer G, Vissers JPC, Martens GA. Quantitative proteomics of rat and human pancreatic beta cells. Data Brief 2015. [PMID: 26217750 PMCID: PMC4510137 DOI: 10.1016/j.dib.2015.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Data set description: This data set is composed by label-free alternate-scanning LC-MS/MS proteomics analysis human and Wistar rat pancreatic islet endocrine cells. The mass spectrometry data of the human and rat pancreatic beta cells and the resulting proteome search output from ProteinLynx GlobalSERVER (PLGS) have been deposited to the ProteomeXchange Consortium [1] via the PRIDE partner repository with the dataset identifiers PXD001539 (human) and PXD001816 (rat). From these mass spectrometry data, 'relative molar amount units' between cell types and across species were calculated. Biological relevance: These data provide a quantitative view on the unfractionated proteomes of human and rat beta and alpha cells. It is likely biased towards the proteins with higher molar abundance, relating to core functional pathways, but also includes several proteins with an islet-enriched expression. The quality of the cell preps is state-of-the-art, and the label-free quantitation is both precise and accurate, allowing detailed quantitative analysis.
Collapse
Affiliation(s)
- B Brackeva
- B-Probe, Diabetes Research Center, Vrije Universiteit Brussel (VUB), Belgium ; Department of Clinical Chemistry and Radio-immunology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - G Kramer
- Department of Medical Biochemistry, Academisch Medisch Centrum, Amsterdam, The Netherlands
| | | | - G A Martens
- B-Probe, Diabetes Research Center, Vrije Universiteit Brussel (VUB), Belgium ; Department of Clinical Chemistry and Radio-immunology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
12
|
Brackeva B, De Punt V, Kramer G, Costa O, Verhaeghen K, Stangé G, Sadones J, Xavier C, Aerts JMFG, Gorus FK, Martens GA. Potential of UCHL1 as biomarker for destruction of pancreatic beta cells. J Proteomics 2015; 117:156-67. [PMID: 25638021 DOI: 10.1016/j.jprot.2015.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/09/2014] [Accepted: 01/09/2015] [Indexed: 01/08/2023]
Abstract
UNLABELLED There is a clinical need for plasma tests for real-time detection of beta cell destruction, as surrogate endpoint in islet transplantation and immunoprevention trials in type 1 diabetes. This study reports on the use of label-free LC-MS/MS proteomics for bottom-up selection of candidate biomarkers. Ubiquitin COOH-terminal hydrolase 1 (UCHL1) was identified as abundant protein in rat and human beta cells, showing promising beta cell-selectivity, and was selected for further validation in standardized toxicity models. In vitro, H2O2-induced necrosis of INS-1 cells and human islets resulted in intracellular UCHL1 depletion and its extracellular discharge. In vivo, streptozotocin progressively depleted UCHL1 from islet cores and in 50% of animals, an associated plasma UCHL1 surge was detected preceding the GAD65 peak. UCHL1 was cleared with a half-life of 20min. Whole-body dynamic planar imaging of (99m)-Technetium-labeled UCHL1 indicated a rapid UCHL1 uptake in the liver and spleen, followed by urinary excretion of mainly proteolytic UCHL1 fragments. We conclude that LC-MS/MS proteomics is a useful tool to prioritize biomarkers for beta cell injury with promising molar abundance. Despite its consistent UCHL1 discharge by damaged beta cells in vitro, its in vivo use might be restrained by its rapid elimination from plasma. BIOLOGICAL SIGNIFICANCE Our bottom-up LC-MS/MS proteomics represents a pragmatic approach to identify protein-type biomarkers of pancreatic beta cell injury. UCHL1 successfully passed sequential validation steps of beta cell-selectivity, antigenicity and toxic discharge in vitro. Whole-body dynamic planar imaging of radiolabeled recombinant UCHL1 indicated rapid clearance through the liver, spleen and urinary excretion of proteolytic fragments, likely explaining non-consistent detection in vivo. Integration of kinetic biomarker clearance studies in the a priori selection criteria is recommended before engaging in resource-intensive custom development of sensitive immunoassays for clinical translation.
Collapse
Affiliation(s)
- B Brackeva
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Belgium; Department of Clinical Chemistry and Radio-immunology, Universitair Ziekenhuis Brussel, Belgium
| | - V De Punt
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Belgium; Department of Clinical Chemistry and Radio-immunology, Universitair Ziekenhuis Brussel, Belgium
| | - G Kramer
- Department of Medical Biochemistry, Academisch Medisch Centrum, Amsterdam, Netherlands
| | - O Costa
- Department of Clinical Chemistry and Radio-immunology, Universitair Ziekenhuis Brussel, Belgium
| | - K Verhaeghen
- Department of Clinical Chemistry and Radio-immunology, Universitair Ziekenhuis Brussel, Belgium
| | - G Stangé
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Belgium
| | - J Sadones
- Department of Anatomopathology, Universitair Ziekenhuis Brussel, Belgium
| | - C Xavier
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel (VUB), Belgium
| | - J M F G Aerts
- Department of Medical Biochemistry, Academisch Medisch Centrum, Amsterdam, Netherlands
| | - F K Gorus
- Department of Clinical Chemistry and Radio-immunology, Universitair Ziekenhuis Brussel, Belgium
| | - G A Martens
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Belgium; Department of Clinical Chemistry and Radio-immunology, Universitair Ziekenhuis Brussel, Belgium.
| |
Collapse
|
13
|
Martens GA. Species-Related Differences in the Proteome of Rat and Human Pancreatic Beta Cells. J Diabetes Res 2015; 2015:549818. [PMID: 26064985 PMCID: PMC4442007 DOI: 10.1155/2015/549818] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/16/2015] [Indexed: 12/20/2022] Open
Abstract
The core proteomes of human and rat pancreatic beta cells were compared by label-free LC-MS/MS: this resulted in quantification of relative molar abundances of 707 proteins belonging to functional pathways of intermediary metabolism, protein synthesis, and cytoskeleton. Relative molar abundances were conserved both within and between pathways enabling the selection of a housekeeping network for geometric normalization and the analysis of potentially relevant differential expressions. Human beta cells differed from rat beta cells in their lower level of enzymes involved in glucose sensing (MDH1, PC, and ACLY) and upregulation of lysosomal enzymes. Human cells also expressed more heat shock proteins and radical scavenging systems: apart from SOD2, they expressed high levels of H2O2-scavenger peroxiredoxin 3 (PRDX3), confirmed by microarray, Western blotting, and microscopy. Besides conferring lower susceptibility to oxidative stress to human cells PRDX3 might also play a role in physiological redox regulation as, in rat, its expression was restricted to a beta cell subset with higher metabolic glucose responsiveness. In conclusion, although their core proteomic architecture is conserved, human and rat beta cells differ in their molar expression of key enzymes involved in glucose sensing and redox control.
Collapse
Affiliation(s)
- G. A. Martens
- B-Probe, Diabetes Research Center, Brussels Free University (VUB), Belgium
- Department of Clinical Chemistry & Radioimmunology, University Hospital Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
- *G. A. Martens:
| |
Collapse
|
14
|
Martin B, Chadwick W, Janssens J, Premont RT, Schmalzigaug R, Becker KG, Lehrmann E, Wood WH, Zhang Y, Siddiqui S, Park SS, Cong WN, Daimon CM, Maudsley S. GIT2 Acts as a Systems-Level Coordinator of Neurometabolic Activity and Pathophysiological Aging. Front Endocrinol (Lausanne) 2015; 6:191. [PMID: 26834700 PMCID: PMC4716144 DOI: 10.3389/fendo.2015.00191] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/14/2015] [Indexed: 01/08/2023] Open
Abstract
Aging represents one of the most complicated and highly integrated somatic processes. Healthy aging is suggested to rely upon the coherent regulation of hormonal and neuronal communication between the central nervous system and peripheral tissues. The hypothalamus is one of the main structures in the body responsible for sustaining an efficient interaction between energy balance and neurological activity and therefore likely coordinates multiple systems in the aging process. We previously identified, in hypothalamic and peripheral tissues, the G protein-coupled receptor kinase interacting protein 2 (GIT2) as a stress response and aging regulator. As metabolic status profoundly affects aging trajectories, we investigated the role of GIT2 in regulating metabolic activity. We found that genomic deletion of GIT2 alters hypothalamic transcriptomic signatures related to diabetes and metabolic pathways. Deletion of GIT2 reduced whole animal respiratory exchange ratios away from those related to primary glucose usage for energy homeostasis. GIT2 knockout (GIT2KO) mice demonstrated lower insulin secretion levels, disruption of pancreatic islet beta cell mass, elevated plasma glucose, and insulin resistance. High-dimensionality transcriptomic signatures from islets isolated from GIT2KO mice indicated a disruption of beta cell development. Additionally, GIT2 expression was prematurely elevated in pancreatic and hypothalamic tissues from diabetic-state mice (db/db), compared to age-matched wild type (WT) controls, further supporting the role of GIT2 in metabolic regulation and aging. We also found that the physical interaction of pancreatic GIT2 with the insulin receptor and insulin receptor substrate 2 was diminished in db/db mice compared to WT mice. Therefore, GIT2 appears to exert a multidimensional "keystone" role in regulating the aging process by coordinating somatic responses to energy deficits.
Collapse
Affiliation(s)
- Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Wayne Chadwick
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jonathan Janssens
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Richard T. Premont
- Department of Medicine, Gastroenterology Division, Duke University, Durham, NC, USA
| | - Robert Schmalzigaug
- Department of Medicine, Gastroenterology Division, Duke University, Durham, NC, USA
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, National Institutes of Health, Baltimore, MD, USA
| | - Elin Lehrmann
- Gene Expression and Genomics Unit, National Institutes of Health, Baltimore, MD, USA
| | - William H. Wood
- Gene Expression and Genomics Unit, National Institutes of Health, Baltimore, MD, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institutes of Health, Baltimore, MD, USA
| | - Sana Siddiqui
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Sung-Soo Park
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Wei-na Cong
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Caitlin M. Daimon
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- *Correspondence: Stuart Maudsley,
| |
Collapse
|
15
|
Martens GA, Motté E, Kramer G, Stangé G, Gaarn LW, Hellemans K, Nielsen JH, Aerts JM, Ling Z, Pipeleers D. Functional characteristics of neonatal rat β cells with distinct markers. J Mol Endocrinol 2014; 52:11-28. [PMID: 24049066 DOI: 10.1530/jme-13-0106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neonatal β cells are considered developmentally immature and hence less glucose responsive. To study the acquisition of mature glucose responsiveness, we compared glucose-regulated redox state, insulin synthesis, and secretion of β cells purified from neonatal or 10-week-old rats with their transcriptomes and proteomes measured by oligonucleotide and LC-MS/MS profiling. Lower glucose responsiveness of neonatal β cells was explained by two distinct properties: higher activity at low glucose and lower activity at high glucose. Basal hyperactivity was associated with higher NAD(P)H, a higher fraction of neonatal β cells actively incorporating (3)H-tyrosine, and persistently increased insulin secretion below 5 mM glucose. Neonatal β cells lacked the steep glucose-responsive NAD(P)H rise between 5 and 10 mM glucose characteristic for adult β cells and accumulated less NAD(P)H at high glucose. They had twofold lower expression of malate/aspartate-NADH shuttle and most glycolytic enzymes. Genome-wide profiling situated neonatal β cells at a developmental crossroad: they showed advanced endocrine differentiation when specifically analyzed for their mRNA/protein level of classical neuroendocrine markers. On the other hand, discrete neonatal β cell subpopulations still expressed mRNAs/proteins typical for developing/proliferating tissues. One example, delta-like 1 homolog (DLK1) was used to investigate whether neonatal β cells with basal hyperactivity corresponded to a more immature subset with high DLK1, but no association was found. In conclusion, the current study supports the importance of glycolytic NADH-shuttling in stimulus function coupling, presents basal hyperactivity as novel property of neonatal β cells, and provides potential markers to recognize intercellular developmental differences in the endocrine pancreas.
Collapse
Affiliation(s)
- G A Martens
- Diabetes Research Center, Brussels Free University (VUB), Laarbeeklaan 103, B1090 Brussel, Belgium Department of Clinical Chemistry and Radioimmunology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B1090 Brussels, Belgium Department of Medical Biochemistry, Academisch Medisch Centrum, Amsterdam, The Netherlands Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jiang L, Brackeva B, Ling Z, Kramer G, Aerts JM, Schuit F, Keymeulen B, Pipeleers D, Gorus F, Martens GA. Potential of protein phosphatase inhibitor 1 as biomarker of pancreatic β-cell injury in vitro and in vivo. Diabetes 2013; 62:2683-8. [PMID: 23557701 PMCID: PMC3717856 DOI: 10.2337/db12-1507] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is a need for plasma-based tests that can directly measure the extent of β-cell injury in vivo in patients receiving islet grafts and in animal models. In this study, we propose protein phosphatase 1, regulatory (inhibitor) subunit 1A (PPP1R1A) as a novel biomarker for acute β-cell destruction. Liquid chromatography-tandem mass spectrometry proteome analysis of fluorescence-activated cell sorter-purified β-cells, tissue-comparative Western blotting, and immunohistochemistry indicated relatively high molar abundance and selectivity of PPP1R1A in β-cells. PPP1R1A was discharged into the extracellular space of chemically injured rat and human islets in vitro, proportionate to the extent of β-cell death. Streptozotocin injection in rats led to a progressive PPP1R1A depletion from the cytoplasm of disintegrating β-cells and a marked surge in plasma levels detectable by an affinity-capture method. A similar massive PPP1R1A discharge in blood was also detected in three patients immediately after intraportal islet transplantation. Our findings provide first proof-of-principle for PPP1R1A as real-time biomarker of β-cell destruction in animal models and patients and warrant development of more sensitive methods for its further validation in clinical trials.
Collapse
Affiliation(s)
- Lei Jiang
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Benedicte Brackeva
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Clinical Chemistry and Radioimmunology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Zhidong Ling
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gertjan Kramer
- Department of Medical Biochemistry, Academisch Medisch Centrum, Amsterdam, the Netherlands
| | - Johannes M. Aerts
- Department of Medical Biochemistry, Academisch Medisch Centrum, Amsterdam, the Netherlands
| | - Frans Schuit
- Gene Expression Unit, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Bart Keymeulen
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniel Pipeleers
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frans Gorus
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Clinical Chemistry and Radioimmunology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Geert A. Martens
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Clinical Chemistry and Radioimmunology, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Corresponding author: Geert A. Martens,
| |
Collapse
|