1
|
Saha M, Qiu L, Han-Hallett Y, Welch CJ, Cooks RG. Simultaneous Quantitation of Multiple Biological Thiols Using Reactive Ionization and Derivatization with Charged Mass Tags. Anal Chem 2024; 96:19414-19421. [PMID: 39570044 DOI: 10.1021/acs.analchem.4c03807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The biologically important thiols (cysteine, homocysteine, N-acetyl cysteine, and glutathione) are key species in redox homeostasis, and there is a clinical need to measure them rapidly, accurately, and simultaneously at low levels in complex biofluids. The solution to the challenge presented here is based on a new derivatizing reagent that combines a thiol-selective unit to optimize the chemical transformation and a precharged pyridinium unit chosen to maximize sensitivity in mass spectrometry. Derivatization is performed simultaneously with ionization ("reactive ionization"), and mass spectrometry is used to record and characterize the thiol reaction products. The method is applicable over the concentration range from 1 μM to 10 mM and is demonstrated for 25 blood serum, 1 plasma, and 3 types of tissue samples. The experiment is characterized by limited sample preparation (<4 min) and short analysis time (<1 min). High precision and accuracy (both better than 8%) are validated using independent HPLC-MS analysis. Cystine-cysteine redox homeostasis can be monitored by introducing an additional reduction step, and the accuracy and precision of these results are also validated by HPLC-MS.
Collapse
Affiliation(s)
- Mousumi Saha
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lingqi Qiu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yu Han-Hallett
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christopher J Welch
- Indiana Consortium for Analytical Science and Engineering (ICASE), Indianapolis, Indiana 46202, United States
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Tachino J, Togami Y, Matsumoto H, Matsubara T, Seno S, Ogura H, Oda J. Plasma proteomics profile-based comparison of torso versus brain injury: A prospective cohort study. J Trauma Acute Care Surg 2024; 97:557-565. [PMID: 38595266 PMCID: PMC11446512 DOI: 10.1097/ta.0000000000004356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Trauma-related deaths and posttraumatic sequelae are a global health concern, necessitating a deeper understanding of the pathophysiology to advance trauma therapy. Proteomics offers insights into identifying and analyzing plasma proteins associated with trauma and inflammatory conditions; however, current proteomic methods have limitations in accurately measuring low-abundance plasma proteins. This study compared plasma proteomics profiles of patients from different acute trauma subgroups to identify new therapeutic targets and devise better strategies for personalized medicine. METHODS This prospective observational single-center cohort study was conducted between August 2020 and September 2021 in the intensive care unit of Osaka University Hospital in Japan. Enrolling 59 consecutive patients with blunt trauma, we meticulously analyzed plasma proteomics profiles in participants with torso or head trauma, comparing them with those of controls (mild trauma). Using the Olink Explore 3072 instrument (Olink Proteomics AB, Uppsala, Sweden), we identified five endotypes (α-ε) via unsupervised hierarchical clustering. RESULTS The median time from injury to blood collection was 47 minutes [interquartile range, 36-64 minutes]. The torso trauma subgroup exhibited 26 unique proteins with significantly altered expression, while the head trauma subgroup showed 68 unique proteins with no overlap between the two. The identified endotypes included α (torso trauma, n = 8), β (young patients with brain injury, n = 5), γ (severe brain injury postsurgery, n = 8), δ (torso or brain trauma with mild hyperfibrinolysis, n = 18), and ε (minor trauma, n = 20). Patients with torso trauma showed changes in blood pressure, smooth muscle adaptation, hypermetabolism, and hypoxemia. Patients with traumatic brain injury had dysregulated blood coagulation and altered nerves regeneration and differentiation. CONCLUSION This study identified unique plasma protein expression patterns in patients with torso trauma and traumatic brain injury, helping categorize five distinct endotypes. Our findings may offer new insights for clinicians, highlighting potential strategies for personalized medicine and improved trauma-related care. LEVEL OF EVIDENCE Prognostic and Epidemiological; Level III.
Collapse
|
3
|
Chi YJ, Bai ZY, Feng GL, Lai XH, Song YF. ER-mitochondria contact sites regulate hepatic lipogenesis via Ip3r-Grp75-Vdac complex recruiting Seipin. Cell Commun Signal 2024; 22:464. [PMID: 39350150 PMCID: PMC11440722 DOI: 10.1186/s12964-024-01829-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Mitochondria and endoplasmic reticulum (ER) contact sites (MERCS) constitute a functional communication platform for ER and mitochondria, and they play a crucial role in the lipid homeostasis of the liver. However, it remains unclear about the exact effects of MERCs on the neutral lipid synthesis of the liver. METHODS In this study, the role and mechanism of MERCS in palmitic acid (PA)-induced neutral lipid imbalance in the liver was explored by constructing a lipid metabolism animal model based on yellow catfish. Given that the structural integrity of MERCS cannot be disrupted by the si-mitochondrial calcium uniporter (si-mcu), the MERCS-mediated Ca2+ signaling in isolated hepatocytes was intercepted by transfecting them with si-mcu in some in vitro experiments. RESULTS The key findings were: (1) Hepatocellular MERCs sub-proteome analysis confirmed that, via activating Ip3r-Grp75-voltage-dependent anion channel (Vdac) complexes, excessive dietary PA intake enhanced hepatic MERCs. (2) Dietary PA intake caused hepatic neutral lipid deposition by MERCs recruiting Seipin, which promoted lipid droplet biogenesis. (3) Our findings provide the first proof that MERCs recruited Seipin and controlled hepatic lipid homeostasis, depending on Ip3r-Grp75-Vdac-controlled Ca2+ signaling, apart from MERCs's structural integrity. Noteworthy, our results also confirmed these mechanisms are conservative from fish to mammals. CONCLUSIONS The findings of this study provide a new insight into the regulatory role of MERCS-recruited SEIPIN in hepatic lipid synthesis via Ip3r-Grp75-Vdac complex-mediated Ca2+ signaling, highlighting the critical contribution of MERCS in hepatic lipid homeostasis.
Collapse
Affiliation(s)
- Ying-Jia Chi
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen-Yu Bai
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guang-Li Feng
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Hong Lai
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
4
|
van Amerongen S, Das S, Kamps S, Goossens J, Bongers B, Pijnenburg YAL, Vanmechelen E, Vijverberg EGB, Teunissen CE, Verberk IMW. Cerebrospinal fluid biomarkers and cognitive trajectories in patients with Alzheimer's disease and a history of traumatic brain injury. Neurobiol Aging 2024; 141:121-128. [PMID: 38908030 DOI: 10.1016/j.neurobiolaging.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Traumatic brain injury (TBI) and Alzheimer's disease (AD) have overlapping mechanisms but it remains unknown if pathophysiological characteristics and cognitive trajectories in AD patients are influenced by TBI history. Here, we studied AD patients (stage MCI or dementia) with TBI history (ADTBI+, n=110), or without (ADTBI-, n=110) and compared baseline CSF concentrations of amyloid beta 1-42 (Aβ42), phosphorylated tau181 (pTau181), total tau, neurofilament light chain (NfL), synaptosomal associated protein-25kDa (SNAP25), neurogranin (Ng), neuronal pentraxin-2 (NPTX2) and glutamate receptor-4 (GluR4), as well as differences in cognitive trajectories using linear mixed models. Explorative, analyses were repeated within stratified TBI groups by TBI characteristics (timing, severity, number). We found no differences in baseline CSF biomarker concentrations nor in cognitive trajectories between ADTBI+ and ADTBI- patients. TBI >5 years ago was associated with higher NPTX2 and a tendency for higher SNAP25 concentrations compared to TBI ≤ 5 years ago, suggesting that TBI may be associated with long-term synaptic dysfunction only when occurring before onset or in a pre-clinical disease stage of AD.
Collapse
Affiliation(s)
- Suzan van Amerongen
- Amsterdam Neuroscience, Neurodegeneration, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands; Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, De Boelelaan 1118, Amsterdam 1081 HV, the Netherlands.
| | - Shreyasee Das
- Neurochemistry Laboratory, Department of Laboratory Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; ADx NeuroSciences, Technologiepark-Zwijnaarde 6, Gent 9052, Belgium
| | - Suzie Kamps
- Amsterdam Neuroscience, Neurodegeneration, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands; Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, De Boelelaan 1118, Amsterdam 1081 HV, the Netherlands
| | - Julie Goossens
- ADx NeuroSciences, Technologiepark-Zwijnaarde 6, Gent 9052, Belgium
| | - Bram Bongers
- Neurochemistry Laboratory, Department of Laboratory Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| | - Yolande A L Pijnenburg
- Amsterdam Neuroscience, Neurodegeneration, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands; Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, De Boelelaan 1118, Amsterdam 1081 HV, the Netherlands
| | | | - Everard G B Vijverberg
- Amsterdam Neuroscience, Neurodegeneration, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands; Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, De Boelelaan 1118, Amsterdam 1081 HV, the Netherlands
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neurodegeneration, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands; Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, De Boelelaan 1118, Amsterdam 1081 HV, the Netherlands; Neurochemistry Laboratory, Department of Laboratory Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| | - Inge M W Verberk
- Amsterdam Neuroscience, Neurodegeneration, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands; Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, De Boelelaan 1118, Amsterdam 1081 HV, the Netherlands; Neurochemistry Laboratory, Department of Laboratory Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| |
Collapse
|
5
|
Song YF, Bai ZY, Lai XH, Luo Z, Hogstrand C. Ip3r-Grp75-Vdac and Relevant Ca 2+ Signaling Regulate Dietary Palmitic Acid-Induced De Novo Lipogenesis by Mitochondria-Associated ER Membrane (MAM) Recruiting Seipin in Yellow Catfish. J Nutr 2024:S0022-3166(24)00224-4. [PMID: 38641205 DOI: 10.1016/j.tjnut.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND The mitochondria-associated endoplasmic reticulum membrane (MAM) is the central hub for endoplasmic reticulum and mitochondria functional communication. It plays a crucial role in hepatic lipid homeostasis. However, even though MAM has been acknowledged to be rich in enzymes that contribute to lipid biosynthesis, no study has yet investigated the exact role of MAM on hepatic neutral lipid synthesis. OBJECTIVES To address these gaps, this study investigated the systemic control mechanisms of MAM on neutral lipids synthesis by recruiting seipin, focusing on the role of the inositol trisphosphate receptor-1,4,5(Ip3r)-75 kDa glucose-regulated protein (Grp75)-voltage-dependent anion channel (Vdac) complex and their relevant Ca2+ signaling in this process. METHODS To this end, a model animal for lipid metabolism, yellow catfish (Pelteobagrus fulvidraco), were fed 6 different diets containing a range of palmitic acid (PA) concentrations from 0-150 g/kg in vivo for 10 wk. In vitro, experiments were also conducted to intercept the MAM-mediated Ca2+ signaling in isolated hepatocytes by transfecting them with si-mitochondrial calcium uniporter (mcu). Because mcu was placed in the inner mitochondrial membrane (IMM), si-mcu cannot disrupt MAM's structural integrity. RESULTS 1. Hepatocellular MAM subproteome analysis indicated excessive dietary PA intake enhanced hepatic MAM structure joined by activating Ip3r-Grp75-Vdac complexes. 2. Dietary PA intake induced hepatic neutral lipid accumulation through MAM recruiting Seipin, which activated lipid droplet biogenesis. Our findings also revealed a previously unidentified mechanism whereby MAM-recruited seipin and controlled hepatic lipid homeostasis, depending on Ip3r-Grp75-Vdac-controlled Ca2+ signaling and not only MAM's structural integrity. CONCLUSIONS These results offer a novel insight into the MAM-recruited seipin in controlling hepatic lipid synthesis in a MAM structural integrity-dependent and Ca2+ signaling-dependent manner, highlighting the critical contribution of MAM in maintaining hepatic neutral lipid homeostasis.
Collapse
Affiliation(s)
- Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China.
| | - Zhen-Yu Bai
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Hong Lai
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, Franklin-Wilkins Building, London, United Kingdom
| |
Collapse
|
6
|
Wei Y, Ren X, Yuan Z, Hong J, Wang T, Chen W, Xu Y, Ding J, Lin J, Jiang W, Zhang P, Wu Q. Trauma diagnostic-related target proteins and their detection techniques. Expert Rev Mol Med 2024; 26:e7. [PMID: 38602081 PMCID: PMC11062145 DOI: 10.1017/erm.2024.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 04/12/2024]
Abstract
Trauma is a significant health issue that not only leads to immediate death in many cases but also causes severe complications, such as sepsis, thrombosis, haemorrhage, acute respiratory distress syndrome and traumatic brain injury, among trauma patients. Target protein identification technology is a vital technique in the field of biomedical research, enabling the study of biomolecular interactions, drug discovery and disease treatment. It plays a crucial role in identifying key protein targets associated with specific diseases or biological processes, facilitating further research, drug design and the development of treatment strategies. The application of target protein technology in biomarker detection enables the timely identification of newly emerging infections and complications in trauma patients, facilitating expeditious medical interventions and leading to reduced post-trauma mortality rates and improved patient prognoses. This review provides an overview of the current applications of target protein identification technology in trauma-related complications and provides a brief overview of the current target protein identification technology, with the aim of reducing post-trauma mortality, improving diagnostic efficiency and prognostic outcomes for patients.
Collapse
Affiliation(s)
- YiLiu Wei
- Department of Trauma Center & Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, 350004 Fuzhou, China
- Department of Trauma Center and Emergency Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350004 Fuzhou, China
| | - Xiaohan Ren
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Zhitao Yuan
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Jie Hong
- Department of Trauma Center & Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, 350004 Fuzhou, China
- Department of Trauma Center and Emergency Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350004 Fuzhou, China
| | - Tao Wang
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Weizhi Chen
- Department of Trauma Center & Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, 350004 Fuzhou, China
- Department of Trauma Center and Emergency Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350004 Fuzhou, China
| | - Yuqing Xu
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Jinwang Ding
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Jun Lin
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Wenqian Jiang
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Peng Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Qiaoyi Wu
- Department of Trauma Center & Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, 350004 Fuzhou, China
- Department of Trauma Center and Emergency Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350004 Fuzhou, China
| |
Collapse
|
7
|
Huang W, Zhao S, Liu H, Pan M, Dong H. The Role of Protein Degradation in Estimation Postmortem Interval and Confirmation of Cause of Death in Forensic Pathology: A Literature Review. Int J Mol Sci 2024; 25:1659. [PMID: 38338938 PMCID: PMC10855206 DOI: 10.3390/ijms25031659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
It is well known that proteins are important bio-macromolecules in human organisms, and numerous proteins are widely used in the clinical practice, whereas their application in forensic science is currently limited. This limitation is mainly attributed to the postmortem degradation of targeted proteins, which can significantly impact final conclusions. In the last decade, numerous methods have been established to detect the protein from a forensic perspective, and some of the postmortem proteins have been applied in forensic practice. To better understand the emerging issues and challenges in postmortem proteins, we have reviewed the current application of protein technologies at postmortem in forensic practice. Meanwhile, we discuss the application of proteins in identifying the cause of death, and postmortem interval (PMI). Finally, we highlight the interpretability and limitations of postmortem protein challenges. We believe that utilizing the multi-omics method can enhance the comprehensiveness of applying proteins in forensic practice.
Collapse
Affiliation(s)
- Weisheng Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Hankou, Wuhan 430030, China; (W.H.)
| | - Shuquan Zhao
- Faculty of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
| | - Huine Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Hankou, Wuhan 430030, China; (W.H.)
| | - Meichen Pan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Hankou, Wuhan 430030, China; (W.H.)
| | - Hongmei Dong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Hankou, Wuhan 430030, China; (W.H.)
| |
Collapse
|
8
|
Zhang Y, Li Z, Wang H, Pei Z, Zhao S. Molecular biomarkers of diffuse axonal injury: recent advances and future perspectives. Expert Rev Mol Diagn 2024; 24:39-47. [PMID: 38183228 DOI: 10.1080/14737159.2024.2303319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Diffuse axonal injury (DAI), with high mortality and morbidity both in children and adults, is one of the most severe pathological consequences of traumatic brain injury. Currently, clinical diagnosis, disease assessment, disability identification, and postmortem diagnosis of DAI is mainly limited by the absent of specific molecular biomarkers. AREAS COVERED In this review, we first introduce the pathophysiology of DAI, summarized the reported biomarkers in previous animal and human studies, and then the molecular biomarkers such as β-Amyloid precursor protein, neurofilaments, S-100β, myelin basic protein, tau protein, neuron-specific enolase, Peripherin and Hemopexin for DAI diagnosis is summarized. Finally, we put forward valuable views on the future research direction of diagnostic biomarkers of DAI. EXPERT OPINION In recent years, the advanced technology has ultimately changed the research of DAI, and the numbers of potential molecular biomarkers was introduced in related studies. We summarized the latest updated information in such studies to provide references for future research and explore the potential pathophysiological mechanism on diffuse axonal injury.
Collapse
Affiliation(s)
- Youyou Zhang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Wang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhiyong Pei
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Shuquan Zhao
- Department of Forensic Pathology, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Chen Q, Li L, Xu L, Yang B, Huang Y, Qiao D, Yue X. Proteomic analysis discovers potential biomarkers of early traumatic axonal injury in the brainstem. Int J Legal Med 2024; 138:207-227. [PMID: 37338605 DOI: 10.1007/s00414-023-03039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE Application of Tandem Mass Tags (TMT)-based LC-MS/MS analysis to screen for differentially expressed proteins (DEPs) in traumatic axonal injury (TAI) of the brainstem and to predict potential biomarkers and key molecular mechanisms of brainstem TAI. METHODS A modified impact acceleration injury model was used to establish a brainstem TAI model in Sprague-Dawley rats, and the model was evaluated in terms of both functional changes (vital sign measurements) andstructural changes (HE staining, silver-plating staining and β-APP immunohistochemical staining). TMT combined with LC-MS/MS was used to analyse the DEPs in brainstem tissues from TAI and Sham groups. The biological functions of DEPs and potential molecular mechanisms in the hyperacute phase of TAI were analysed by bioinformatics techniques, and candidate biomarkers were validated using western blotting and immunohistochemistry on brainstem tissues from animal models and humans. RESULTS Based on the successful establishment of the brainstem TAI model in rats, TMT-based proteomics identified 65 DEPs, and bioinformatics analysis indicated that the hyperacute phase of TAI involves multiple stages of biological processes including inflammation, oxidative stress, energy metabolism, neuronal excitotoxicity and apoptosis. Three DEPs, CBR1, EPHX2 and CYP2U1, were selected as candidate biomarkers and all three proteins were found to be significantly expressed in brainstem tissue 30 min-7 days after TAI in both animal models and humans. CONCLUSION Using TMT combined with LC-MS/MS analysis for proteomic study of early TAI in rat brainstem, we report for the first time that CBR1, EPHX2 and CYP2U1 can be used as biomarkers of early TAI in brainstem by means of western blotting and immunohistochemical staining, compensating for the limitations of silver-plating staining and β-APP immunohistochemical staining, especially in the case of very short survival time after TAI (shorter than 30 min). A number of other proteins that also have a potential marker role are also presented, providing new insights into the molecular mechanisms, therapeutic targets and forensic identification of early TAI in brainstem.
Collapse
Affiliation(s)
- Qianling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lingyue Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Luyao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Bin Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuebing Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xia Yue
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
10
|
Kobeissy F, Goli M, Yadikar H, Shakkour Z, Kurup M, Haidar MA, Alroumi S, Mondello S, Wang KK, Mechref Y. Advances in neuroproteomics for neurotrauma: unraveling insights for personalized medicine and future prospects. Front Neurol 2023; 14:1288740. [PMID: 38073638 PMCID: PMC10703396 DOI: 10.3389/fneur.2023.1288740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2023] [Indexed: 02/12/2024] Open
Abstract
Neuroproteomics, an emerging field at the intersection of neuroscience and proteomics, has garnered significant attention in the context of neurotrauma research. Neuroproteomics involves the quantitative and qualitative analysis of nervous system components, essential for understanding the dynamic events involved in the vast areas of neuroscience, including, but not limited to, neuropsychiatric disorders, neurodegenerative disorders, mental illness, traumatic brain injury, chronic traumatic encephalopathy, and other neurodegenerative diseases. With advancements in mass spectrometry coupled with bioinformatics and systems biology, neuroproteomics has led to the development of innovative techniques such as microproteomics, single-cell proteomics, and imaging mass spectrometry, which have significantly impacted neuronal biomarker research. By analyzing the complex protein interactions and alterations that occur in the injured brain, neuroproteomics provides valuable insights into the pathophysiological mechanisms underlying neurotrauma. This review explores how such insights can be harnessed to advance personalized medicine (PM) approaches, tailoring treatments based on individual patient profiles. Additionally, we highlight the potential future prospects of neuroproteomics, such as identifying novel biomarkers and developing targeted therapies by employing artificial intelligence (AI) and machine learning (ML). By shedding light on neurotrauma's current state and future directions, this review aims to stimulate further research and collaboration in this promising and transformative field.
Collapse
Affiliation(s)
- Firas Kobeissy
- Department of Neurobiology, School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Hamad Yadikar
- Department of Biological Sciences Faculty of Science, Kuwait University, Safat, Kuwait
| | - Zaynab Shakkour
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
| | - Milin Kurup
- Alabama College of Osteopathic Medicine, Dothan, AL, United States
| | | | - Shahad Alroumi
- Department of Biological Sciences Faculty of Science, Kuwait University, Safat, Kuwait
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Kevin K. Wang
- Department of Neurobiology, School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
11
|
Li Z, Quan B, Li X, Xiong W, Peng Z, Liu J, Wang Y. A proteomic and phosphoproteomic landscape of spinal cord injury. Neurosci Lett 2023; 814:137449. [PMID: 37597742 DOI: 10.1016/j.neulet.2023.137449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Spinal cord injury (SCI) is a devastating trauma of the central nervous system, with high levels of morbidity, disability, and mortality. To explore the underlying mechanism of SCI, we analyzed the proteome and phosphoproteome of rats at one week after SCI. We identified 465 up-regulated and 129 down-regulated differentially expressed proteins (DEPs), as well as 184 up-regulated and 40 down-regulated differentially expressed phosphoproteins (DEPPs). Using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, we identified the biological characteristics of these proteins from the perspectives of cell component, biological process, and molecular function. We also found a lot of enriched functional pathways such as GABAergic synapse pathway, ErbB signaling pathway, tight junction, adherens junction. The integrated analysis of proteomics and phosphoproteomics yielded 22 differently expressed co-identified proteins of DEPs and DEPPs, which revealed strongly correlative patterns. These findings may help clarify the potential mechanisms of trauma and repair in SCI and may guide the development of novel treatments.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; The Fifth Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Bingxuan Quan
- The Fifth Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Xiuyan Li
- The Fifth Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Wei Xiong
- Department of Orthopedic Surgery, Limin Hospital of Weihai High District, Weihai, China
| | - Zhibin Peng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingsong Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yansong Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, Harbin Medical University, Harbin, China.
| |
Collapse
|
12
|
Fang T, Yue L, Longlong Z, Longda M, Fang H, Yehui L, Yang L, Yiwu Z. Peripherin: A proposed biomarker of traumatic axonal injury triggered by mechanical force. Eur J Neurosci 2023; 58:3206-3225. [PMID: 37574217 DOI: 10.1111/ejn.16111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
Traumatic axonal injury (TAI) is one of the most common pathological features of severe traumatic brain injury (TBI). Our previous study using proteomics suggested that peripherin (PRPH) should be a potential candidate as a biomarker for TAI diagnosis. This study is to further elucidate the role and association of PRPH with TAI. In the animal study, we performed immunohistochemistry, ELISA and morphological analysis to evaluate PRPH level and distribution following a severe impact. PRPH-positive regions were widely distributed in the axonal tract throughout the whole brain. Axonal injuries with PRPH inclusion were observed post-TBI. Besides, PRPH was significantly increased in both cerebral spinal fluid and plasma at the early phase post-TBI. Colocalization analysis based on microscopy revealed that PRPH represents an immunohistological biomarker in the neuropathological diagnosis of TAI. Brain samples from patients with TBI were included to further test whether PRPH is feasible in the real practice of neuropathology. Immunohistochemistry of PRPH, NFH, APP and NFL on human brain tissues further confirmed PRPH as an immunohistological biomarker that could be applied in practice. Collectively, we conclude that PRPH mirrors the cytoskeleton injury of axons and could represent a neuropathological biomarker for TAI.
Collapse
Affiliation(s)
- Tong Fang
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Physiology and Biochemistry, College of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Yue
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathology, Shanghai Medicilon Inc., Shanghai, China
| | - Zhu Longlong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ma Longda
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huang Fang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lv Yehui
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li Yang
- Institute of Forensic Science, Ministry of Public Security, People's Republic of China, Beijing, China
| | - Zhou Yiwu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Lampros M, Vlachos N, Tsitsopoulos PP, Zikou AK, Argyropoulou MI, Voulgaris S, Alexiou GA. The Role of Novel Imaging and Biofluid Biomarkers in Traumatic Axonal Injury: An Updated Review. Biomedicines 2023; 11:2312. [PMID: 37626808 PMCID: PMC10452517 DOI: 10.3390/biomedicines11082312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of disability worldwide. Traumatic axonal injury (TAI) is a subtype of TBI resulting from high-impact forces that cause shearing and/or stretching of the axonal fibers in white matter tracts. It is present in almost half of cases of severe TBI and frequently associated with poor functional outcomes. Axonal injury results from axonotomy due to mechanical forces and the activation of a biochemical cascade that induces the activation of proteases. It occurs at a cellular level; hence, conventional imaging modalities often fail to display TAI lesions. However, the advent of novel imaging modalities, such as functional magnetic resonance imaging and fiber tractography, has significantly improved the detection and characteristics of TAI. Furthermore, the significance of several fluid and structural biomarkers has also been researched, while the contribution of omics in the detection of novel biomarkers is currently under investigation. In the present review, we discuss the role of imaging modalities and potential biomarkers in diagnosing, classifying, and predicting the outcome in patients with TAI.
Collapse
Affiliation(s)
- Marios Lampros
- Department of Neurosurgery, School of Medicine, University of Ioannina, St. Niarhou Avenue, 45500 Ioannina, Greece; (M.L.); (N.V.); (S.V.)
| | - Nikolaos Vlachos
- Department of Neurosurgery, School of Medicine, University of Ioannina, St. Niarhou Avenue, 45500 Ioannina, Greece; (M.L.); (N.V.); (S.V.)
| | - Parmenion P. Tsitsopoulos
- Department of Neurosurgery, Hippokratio General Hospital, Aristotle University of Thessaloniki School of Medicine, 54942 Thessaloniki, Greece;
| | - Anastasia K. Zikou
- Department of Radiology, University of Ioannina, 45110 Ioannina, Greece; (A.K.Z.); (M.I.A.)
| | - Maria I. Argyropoulou
- Department of Radiology, University of Ioannina, 45110 Ioannina, Greece; (A.K.Z.); (M.I.A.)
| | - Spyridon Voulgaris
- Department of Neurosurgery, School of Medicine, University of Ioannina, St. Niarhou Avenue, 45500 Ioannina, Greece; (M.L.); (N.V.); (S.V.)
| | - George A. Alexiou
- Department of Neurosurgery, School of Medicine, University of Ioannina, St. Niarhou Avenue, 45500 Ioannina, Greece; (M.L.); (N.V.); (S.V.)
| |
Collapse
|
14
|
UPLC/Q-TOF MS-Based Urine Metabonomics Study to Identify Diffuse Axonal Injury Biomarkers in Rat. DISEASE MARKERS 2022; 2022:2579489. [PMID: 36188427 PMCID: PMC9519327 DOI: 10.1155/2022/2579489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Diffuse axonal injury (DAI) represents a frequent traumatic brain injury (TBI) type, significantly contributing to the dismal neurological prognosis and high mortality in TBI patients. The increase in mortality can be associated with delayed and nonspecific initial symptoms in DAI patients. Additionally, the existing approaches for diagnosis and monitoring are either low sensitivity or high cost. Therefore, novel, reliable, and objective diagnostic markers should be developed to diagnose and monitor DAI prognosis. Urine is an optimal sample to detect biomarkers for DAI noninvasively. Therefore, the DAI rat model was established in this work. Meanwhile, the ultraperformance liquid chromatography quadrupole-time-of-flight hybrid mass spectrometry- (UPLC/Q-TOF MS-) untargeted metabolomics approach was utilized to identify the features of urine metabolomics to diagnose DAI. This work included 57 metabolites with significant alterations and 21 abnormal metabolic pathways from the injury groups. Three metabolites, viz., urea, butyric acid, and taurine, were identified as possible biomarkers to diagnose DAI based on the great fold changes (FCs) and biological functions during DAI. The present study detected several novel biomarkers for noninvasively diagnosing and monitoring DAI and helped understand the DAI-associated metabolic events.
Collapse
|
15
|
Yu R, Cheng L, Yang S, Liu Y, Zhu Z. iTRAQ-Based Proteomic Analysis Reveals Potential Serum Biomarkers for Pediatric Non-Hodgkin's Lymphoma. Front Oncol 2022; 12:848286. [PMID: 35371990 PMCID: PMC8970600 DOI: 10.3389/fonc.2022.848286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 11/20/2022] Open
Abstract
Non-Hodgkin’s lymphoma (NHL) is the third most common malignant tumor among children. However, at initial NHL diagnosis, most cases are at an advanced stage because of nonspecific clinical manifestations and currently limited diagnostic methods. This study aimed to screen and verify potential serum biomarkers of pediatric NHL using isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic analysis. Serum protein expression profiles from children with B-NHL (n=20) and T-NHL (n=20) and healthy controls (n=20) were detected by utilizing iTRAQ in combination with two-dimensional liquid chromatography-tandem mass spectrometry (2D LC–MS/MS) and analyzed by applying Ingenuity Pathway Analysis (IPA). The candidate biomarkers S100A8 and LRG1 were further validated by using enzyme-linked immunosorbent assays (ELISAs). Receiver operating characteristic (ROC) analysis based on ELISA data was used to evaluate diagnostic efficacy. In total, 534 proteins were identified twice using iTRAQ combined with 2D LC–MS/MS. Further analysis identified 79 and 73 differentially expressed proteins in B-NHL and T-NHL serum, respectively, compared with control serum according to our defined criteria; 34 proteins were overexpressed and 45 proteins underexpressed in B-NHL, whereas 45 proteins were overexpressed and 28 proteins underexpressed in T-NHL (p < 0.05). IPA demonstrated a variety of signaling pathways, including acute phase response signaling and liver X receptor/retinoid X receptor (LXR/RXR) activation, to be strongly associated with pediatric NHL. S100A8 and LRG1 were elevated in NHL patients compared to normal controls according to ELISA (p < 0.05), which was consistent with iTRAQ results. The areas under the ROC curves of S100A8, LRG1, and the combination of S100A8 and LRG1 were 0.873, 0.898 and 0.970, respectively. Our findings indicate that analysis of the serum proteome using iTRAQ combined with 2D LC–MS/MS is a feasible approach for biomarker discovery. Serum S100A8 and LRG1 are promising candidate biomarkers for pediatric NHL, and these differential proteins illustrate a novel pathogenesis and may be clinically helpful for NHL diagnosis in the future.
Collapse
Affiliation(s)
- Runhong Yu
- Henan Provincial People's Hospital, Institute of Hematology of Henan Provincial People's Hospital, Zhengzhou, China.,Henan Provincial People's Hospital, Henan Key laboratory of Stem Cell Differentiation and Modification, Zhengzhou, China
| | - Linna Cheng
- Henan Provincial People's Hospital, Institute of Hematology of Henan Provincial People's Hospital, Zhengzhou, China.,Henan Provincial People's Hospital, Henan Key laboratory of Stem Cell Differentiation and Modification, Zhengzhou, China
| | - Shiwei Yang
- Henan Provincial People's Hospital, Institute of Hematology of Henan Provincial People's Hospital, Zhengzhou, China.,Henan Provincial People's Hospital, Henan Key laboratory of Stem Cell Differentiation and Modification, Zhengzhou, China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zunmin Zhu
- Henan Provincial People's Hospital, Institute of Hematology of Henan Provincial People's Hospital, Zhengzhou, China.,Henan Provincial People's Hospital, Henan Key laboratory of Stem Cell Differentiation and Modification, Zhengzhou, China.,Department of Hematology, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Xu Y, Zhou C, Li J, Xu Y, He F. iTRAQ-based proteomic analysis reveals potential osteogenesis-promoted role of ATM in strontium-incorporated titanium implant. J Biomed Mater Res A 2021; 110:964-975. [PMID: 34897987 DOI: 10.1002/jbm.a.37345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/17/2021] [Accepted: 12/04/2021] [Indexed: 11/06/2022]
Abstract
The present study aims to reveal the osteogenic roles played by DNA damage response biomarkers through implementing isobaric tags for relative and absolute quantitation (iTRAQ) technique. First, sandblasted large-grit double acid-etched (SLA) titanium implant and strontium-incorporated (SLA-Sr) titanium implant were used for inserting in the tibiae of rats. iTRAQ technique was used to detect protein expression changes and identify differentially expressed proteins (DEPs). In total, 19,343 peptides and 4280 proteins were screened out. Among them, 91 and 138 DEPs were identified in the SLA-Sr group after implantation for 3 and 7 days, respectively. Ataxia-telangiectasia mutated (ATM) protein up-regulated on the 3rd day showed a trend of further up-regulation on the 7th day. Moreover, functional enrichment analyses were also conducted to explore the biological function of DEPs during the initial stage of osseointegration in vivo, which revealed that the biological functions of the DEPs on the 7th day were mainly related to "mismatch repair" and "mitotic G1 DNA damage checkpoint." Analysis of the Reactome signaling pathway showed that ATM was associated with TP53's regulation and activation. Finally, DNA damage repair related genes were selected for validation at mRNA and protein expression levels. Real-time reverse transcription-polymerase chain reaction and immunohistochemistry validation results demonstrated that mRNA expression level of ATM was higher in SLA-Sr group. In conclusion, SLA-Sr titanium implant could initiate DNA damage repair by activating expression levels of ATM. This study was striving to reveal new faces of better osseointegration and shedding light on the biological function and underlying mechanisms of this important procedure.
Collapse
Affiliation(s)
- Yuzi Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Chuan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jia Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yangbo Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Fuming He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Chen J, Dou P, Xiao H, Dou D, Han X, Kuang H. Application of Proteomics and Metabonomics to Reveal the Molecular Basis of Atractylodis Macrocephalae Rhizome for Ameliorating Hypothyroidism Instead of Hyperthyroidism. Front Pharmacol 2021; 12:664319. [PMID: 33959028 PMCID: PMC8095350 DOI: 10.3389/fphar.2021.664319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 12/28/2022] Open
Abstract
As the treatments of diseases with Chinese herbs are holistic and characterized by multiple components, pathways, and targets, elucidating the efficacy of Chinese herbs in treating diseases, and their molecular basis, requires a comprehensive, network-based approach. In this study, we used a network pharmacology strategy, as well as in vivo proteomics and metabonomics, to reveal the molecular basis by which Atractylodis macrocephalae rhizome (AMR) ameliorates hypothyroidism. Eighteen main compounds from AMR and its fractions (volatile oil fraction, crude polysaccharides fraction, lactones fraction, oligosaccharide fraction, and atractyloside fraction) were identified by HPLC, and their targets were screened using the TCMSP database and Swiss Target Prediction. Disease targets were gathered from the TTD, CTD and TCMSP databases. Hub targets were screened by different plug-ins, such as Bisogene, Merge, and CytoNCA, in Cytoscape 3.7.1 software and analyzed for pathways by the DAVID database. Hypothyroidism and hyperthyroidism pharmacological models were established through systems pharmacology based on proteomic and metabolomic techniques. Finally, AMR and its fractions were able to ameliorate the hypothyroidism model to different degrees, whereas no significant improvements were noted in the hyperthyroidism model. The lactones fraction and the crude polysaccharides fraction were considered the most important components of AMR for ameliorating hypothyroidism. These amelioration effects were achieved through promoting substance and energy metabolism. In sum, the integrative approach used in this study demonstrates how network pharmacology, proteomics, and metabolomics can be used effectively to elucidate the efficacy, molecular basis, and mechanism of action of medicines used in TCM.
Collapse
Affiliation(s)
- Jing Chen
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Da Lian, China.,Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Peiyuan Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Da Lian, China
| | - Hang Xiao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Da Lian, China
| | - Deqiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Da Lian, China
| | - Xueying Han
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Da Lian, China
| | - Haixue Kuang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
18
|
Wang H, Chen J, Gao C, Chen W, Chen G, Zhang M, Luo C, Wang T, Chen X, Tao L. TMT-based proteomics analysis to screen potential biomarkers of acute-phase TBI in rats. Life Sci 2020; 264:118631. [PMID: 33131748 DOI: 10.1016/j.lfs.2020.118631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/09/2020] [Accepted: 10/17/2020] [Indexed: 01/19/2023]
Abstract
AIMS Traumatic brain injury (TBI) is a common nervous system injury. However, the detailed mechanisms about functional dysregulation and dignostic biomarkers post-TBI are still unclear. So we aimed to identify potential differentially expressed proteins and genes in TBI for clinical diagnosis and therapeutic purposes. MAIN METHODS Rat TBI model was established by the weight-drop method. First, through TMT-proteomics, we screened for the change in the proteins expression profile acute phase post-TBI. The DAVID and Reactome databases were used to analyze and visualize the dysregulation proteins. Then, using publicly available microarray datasets GSE45997, differentially expressed genes (DGEs) were identified for the 24 h post-TBI stage. Also, the proteomic data were compared with microarray data to analyze the similarity. KEY FINDINGS We found significant proteomics and transcriptomic changes in post-TBI samples. 989, 881, 832, 1057 proteins were quantitated at 1 h, 6 h, 24 h, and 3 d post-injury correspondingly. Concerning proteomics findings, oxygen transport, acute-phase response, and negative regulation of endopeptidase activity were influenced throughout the acute phrase of TBI. Also, pathways related to scavenging of heme from plasma, binding, and uptake of ligands by scavenger receptors were highly enriched in all time-points of TBI samples. SIGNIFICANCE We noticed that the interaction-networks trend to get complicated with more node connections following the progression of TBI. We inferred that Hk-1, PRKAR2A, and MBP could be novel candidate biomarkers related to time-injury in acute-phase TBI. Also, Ceruloplasmin and Complement C3 were found to be important proteins and genes are involved in the TBI.
Collapse
Affiliation(s)
- Haochen Wang
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou 215123, China.
| | - Jie Chen
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou 215123, China
| | - Cheng Gao
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou 215123, China
| | - Wei Chen
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou 215123, China
| | - Guang Chen
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou 215123, China
| | - Mingyang Zhang
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou 215123, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou 215123, China
| | - Tao Wang
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou 215123, China
| | - Xiping Chen
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou 215123, China.
| | - Luyang Tao
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou 215123, China.
| |
Collapse
|
19
|
Huang J, Tang Y, Zou X, Lu Y, She S, Zhang W, Ren H, Yang Y, Hu H. Identification of the fatty acid synthase interaction network via iTRAQ-based proteomics indicates the potential molecular mechanisms of liver cancer metastasis. Cancer Cell Int 2020; 20:332. [PMID: 32699531 PMCID: PMC7372886 DOI: 10.1186/s12935-020-01409-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Background Fatty acid synthase (FASN) is highly expressed in various types of cancer and has an important role in carcinogenesis and metastasis. To clarify the mechanisms of FASN in liver cancer invasion and metastasis, the FASN protein interaction network in liver cancer was identified by targeted proteomic analysis. Methods Wound healing and Transwell assays was performed to observe the effect of FASN during migration and invasion in liver cancer. Isobaric tags for relative and absolute quantitation (iTRAQ)-based mass spectrometry were used to identify proteins interacting with FASN in HepG2 cells. Differential expressed proteins were validated by co-immunoprecipitation, western blot analyses and confocal microscopy. Western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were performed to demonstrate the mechanism of FASN regulating metastasis. Results FASN knockdown inhibited migration and invasion of HepG2 and SMMC7721 cells. A total of, 79 proteins interacting with FASN were identified. Additionally, gene ontology term enrichment analysis indicated that the majority of biological regulation and cellular processes that the FASN-interacting proteins were associated with. Co-precipitation and co-localization of FASN with fascin actin-bundling protein 1 (FSCN1), signal-induced proliferation-associated 1 (SIPA1), spectrin β, non-erythrocytic 1 (SPTBN1) and CD59 were evaluated. Knockdown of FASN in liver cancer reduced the expression of FSCN1, SIPA1, SPTBN1 and CD59. Furthermore, inhibition of FASN, FSCN1 or SPTBN1 expression in liver cancer resulted in alterations of epithelial–mesenchymal transition (EMT)-associated markers E-cadherin, N-cadherin, vimentin and transcription factors, Snail and Twist, at the mRNA level, and changes in matrix metallopeptidase (MMP)-2 and MMP-9 protein expression. Conclusion The results suggested that the FASN-interacting protein network produced by iTRAQ-based proteomic analyses may be involved in regulating invasion and metastasis in liver cancer by influencing EMT and the function of MMPs.
Collapse
Affiliation(s)
- Juan Huang
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Yao Tang
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Xiaoqin Zou
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Yi Lu
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Sha She
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Wenyue Zhang
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Hong Ren
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Yixuan Yang
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China.,The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400010 China
| | - Huaidong Hu
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China.,The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400010 China
| |
Collapse
|
20
|
Ning H, Cui Y, Song X, Chen L, Yin Z, Hua L, Ren F, Suo Y, Wang X, Zhang H, Hu D, Ge Y. iTRAQ-based proteomic analysis reveals key proteins affecting cardiac function in broilers that died of sudden death syndrome. Poult Sci 2020; 98:6472-6482. [PMID: 31509194 PMCID: PMC8913949 DOI: 10.3382/ps/pez532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 08/31/2019] [Indexed: 12/26/2022] Open
Abstract
Sudden death syndrome (SDS), which is a cardiac-related condition commonly observed in chickens selected for rapid growth, causes significant economic losses to the global poultry industry. Its pathogenesis in broilers is poorly understood, and little is known about the proteome of the heart tissue of SDS broilers. A quantitative proteomic approach using isobaric tags for relative and absolute quantification labeling of peptides was used to characterize the protein expression profiles in the left ventricle of SDS broilers. These proteins were further analyzed by bioinformatics, and two proteins were validated by western blot analysis. We identified 186 differentially expressed proteins (DEPs), of which 72 were upregulated, and 114 were downregulated in the SDS group. Functional annotation suggested that 7 DEPs were related to cardiac muscle contraction, and another 7 DEPs were related to cardiac energy metabolism. Protein interaction network predictions indicated that differences in cardiac muscle contraction between SDS and healthy groups were regulated by troponin T, tropomyosin alpha-1 chain, fast myosin heavy chain HCIII, myosin-1B, coronin, and myoglobin, whereas differences in cardiac energy metabolism and biosynthesis of amino acids were regulated by gamma-enolase, phosphoglycerate mutase, NADH-ubiquinone oxidoreductase chain 2, serine/threonine-protein kinase, myoglobin, and alpha-amylase. Our expression profiles provide useful information and new insights into key proteins to elucidate SDS for further studies.
Collapse
Affiliation(s)
- Hongmei Ning
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yunli Cui
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaochao Song
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lingli Chen
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhihong Yin
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China.,Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Liushuai Hua
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Fei Ren
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yu Suo
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xinrui Wang
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hongli Zhang
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Dongfang Hu
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China.,Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yaming Ge
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
21
|
Wei S, Liang XZ, Hu Q, Wang WS, Xu WJ, Cheng XQ, Peng J, Guo QY, Liu SY, Jiang W, Ding X, Han GH, Liu P, Shi CH, Wang Y. Different protein expression patterns in rat spinal nerves during Wallerian degeneration assessed using isobaric tags for relative and absolute quantitation proteomics profiling. Neural Regen Res 2020; 15:315-323. [PMID: 31552905 PMCID: PMC6905349 DOI: 10.4103/1673-5374.265556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Sensory and motor nerve fibers of peripheral nerves have different anatomies and regeneration functions after injury. To gain a clear understanding of the biological processes behind these differences, we used a labeling technique termed isobaric tags for relative and absolute quantitation to investigate the protein profiles of spinal nerve tissues from Sprague-Dawley rats. In response to Wallerian degeneration, a total of 626 proteins were screened in sensory nerves, of which 368 were upregulated and 258 were downregulated. In addition, 637 proteins were screened in motor nerves, of which 372 were upregulated and 265 were downregulated. All identified proteins were analyzed using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of bioinformatics, and the presence of several key proteins closely related to Wallerian degeneration were tested and verified using quantitative real-time polymerase chain reaction analyses. The differentially expressed proteins only identified in the sensory nerves were mainly relevant to various biological processes that included cell-cell adhesion, carbohydrate metabolic processes and cell adhesion, whereas differentially expressed proteins only identified in the motor nerves were mainly relevant to biological processes associated with the glycolytic process, cell redox homeostasis, and protein folding. In the aspect of the cellular component, the differentially expressed proteins in the sensory and motor nerves were commonly related to extracellular exosomes, the myelin sheath, and focal adhesion. According to the Kyoto Encyclopedia of Genes and Genomes, the differentially expressed proteins identified are primarily related to various types of metabolic pathways. In conclusion, the present study screened differentially expressed proteins to reveal more about the differences and similarities between sensory and motor nerves during Wallerian degeneration. The present findings could provide a reference point for a future investigation into the differences between sensory and motor nerves in Wallerian degeneration and the characteristics of peripheral nerve regeneration. The study was approved by the Ethics Committee of the Chinese PLA General Hospital, China (approval No. 2016-x9-07) in September 2016.
Collapse
Affiliation(s)
- Shuai Wei
- The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region; Institute of Orthopedics, Chinese PLA General Hospital, Beijing; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xue-Zhen Liang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing; The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Qian Hu
- The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Wei-Shan Wang
- The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Wen-Jing Xu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Qing Cheng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Quan-Yi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Shu-Yun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Wen Jiang
- The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region; Institute of Orthopedics, Chinese PLA General Hospital, Beijing; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao Ding
- The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region; Institute of Orthopedics, Chinese PLA General Hospital, Beijing; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Gong-Hai Han
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province; Kunming Medical University, Kunming, Yunnan Province, China
| | - Ping Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province; Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Chen-Hui Shi
- The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
22
|
iTRAQ-based proteomic analysis of Mycoplasma bovis NM-28 strain from two generations for vaccine screening. Vaccine 2019; 38:549-561. [PMID: 31740094 DOI: 10.1016/j.vaccine.2019.10.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022]
Abstract
Mycoplasma bovis is an important pathogenic bacterium affecting cows and cattle. Clinically, an inactivated vaccine of M. bovis is mainly used to prevent infection by this bacterium. The changes that occur in the antigen when M. bovis is continuously passaged in vitro remain unknown. Therefore, we performed an in vitro serial passage of the M. bovis NM-28 strain, which was isolated and identified in our laboratory. An isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics method was used to analyse the differences between generations 3 and 60. Many major membrane proteins or protective antigens reported in the literature did not exhibit changes between these generations. We found an imbalance between growth rate and nutrition in the 60th generation. The proteomics results were verified by western blotting and real-time PCR. Growth curves were also prepared based on colony-forming units (CFUs) between the 3rd and 60th generations. The number of colonies in the 60th generation in the stationary phase was 5 × 109 CFU mL-1, which was 10-fold higher than that in the 3rd generation. The 60th generation of the NM-28 strain can be used as an inactivated vaccine strain of M. bovis to lower production costs compared to use of the 3rd generation.
Collapse
|
23
|
Song H, Chen M, Chen C, Cui J, Johnson CE, Cheng J, Wang X, Swerdlow RH, DePalma RG, Xia W, Gu Z. Proteomic Analysis and Biochemical Correlates of Mitochondrial Dysfunction after Low-Intensity Primary Blast Exposure. J Neurotrauma 2019; 36:1591-1605. [PMID: 30484371 PMCID: PMC6909772 DOI: 10.1089/neu.2018.6114] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Service members during military actions or combat training are frequently exposed to primary blasts by weaponry. Most studies have investigated moderate or severe brain injuries from blasts generating overpressures >100 kPa, whereas understanding the pathophysiology of low-intensity blast (LIB)-induced mild traumatic brain injury (mTBI) leading to neurological deficits remains elusive. Our recent studies, using an open-field LIB-induced mTBI mouse model with a peak overpressure at 46.6 kPa, demonstrated behavioral impairments and brain nanoscale damages, notably mitochondrial and axonal ultrastructural changes. In this study, we used tandem mass tagged (TMT) quantitative proteomics and bioinformatics analysis to seek insights into the molecular mechanisms underlying ultrastructural pathology. Changes in global- and phospho-proteomes were determined at 3 and 24 h and at 7 and 30 days post injury (DPI), in order to investigate the biochemical and molecular correlates of mitochondrial dysfunction. Results showed striking dynamic changes in a total of 2216 proteins and 459 phosphorylated proteins at vary time points after blast. Disruption of key canonical pathways included evidence of mitochondrial dysfunction, oxidative stress, axonal/cytoskeletal/synaptic dysregulation, and neurodegeneration. Bioinformatic analysis identified blast-induced trends in networks related to cellular growth/development/movement/assembly and cell-to-cell signaling interactions. With observations of proteomic changes, we found LIB-induced oxidative stress associated with mitochondrial dysfunction mainly at 7 and 30 DPI. These dysfunctions included impaired fission-fusion dynamics, diminished mitophagy, decreased oxidative phosphorylation, and compensated respiration-relevant enzyme activities. Insights on the early pathogenesis of primary LIB-induced brain damage provide a template for further characterization of its chronic effects, identification of potential biomarkers, and targets for intervention.
Collapse
Affiliation(s)
- Hailong Song
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri
| | - Mei Chen
- Bedford VA Medical Center, Bedford, Massachusetts
| | - Chen Chen
- Department of Computer Sciences, University of Missouri, Columbia, Missouri
| | - Jiankun Cui
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri
- Truman VA Hospital Research Service, Columbia, Missouri
| | - Catherine E. Johnson
- Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, Missouri
| | - Jianlin Cheng
- Department of Computer Sciences, University of Missouri, Columbia, Missouri
| | - Xiaowan Wang
- Department of Neurology, University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Russell H. Swerdlow
- Department of Neurology, University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Ralph G. DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC
- Norman Rich Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Weiming Xia
- Bedford VA Medical Center, Bedford, Massachusetts
| | - Zezong Gu
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri
- Truman VA Hospital Research Service, Columbia, Missouri
| |
Collapse
|
24
|
Wen W, Zhao Z, Li R, Guan J, Zhou Z, Luo X, Suman SP, Sun Q. Skeletal muscle proteome analysis provides insights on high altitude adaptation of yaks. Mol Biol Rep 2019; 46:2857-2866. [DOI: 10.1007/s11033-019-04732-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/28/2019] [Indexed: 12/20/2022]
|
25
|
Curcumin mitigates axonal injury and neuronal cell apoptosis through the PERK/Nrf2 signaling pathway following diffuse axonal injury. Neuroreport 2019; 29:661-677. [PMID: 29570500 PMCID: PMC5959262 DOI: 10.1097/wnr.0000000000001015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diffuse axonal injury (DAI) accounts for more than 50% of all traumatic brain injury. In response to the mechanical damage associated with DAI, the abnormal proteins produced in the neurons and axons, namely, β-APP and p-tau, induce endoplasmic reticulum (ER) stress. Curcumin, a major component extracted from the rhizome of Curcuma longa, has shown potent anti-inflammatory, antioxidant, anti-infection, and antitumor activity in previous studies. Moreover, curcumin is an activator of nuclear factor-erythroid 2-related factor 2 (Nrf2) and promotes its nuclear translocation. In this study, we evaluated the therapeutic potential of curcumin for the treatment of DAI and investigated the mechanisms underlying the protective effects of curcumin against neural cell death and axonal injury after DAI. Rats subjected to a model of DAI by head rotational acceleration were treated with vehicle or curcumin to evaluate the effect of curcumin on neuronal and axonal injury. We observed that curcumin (20 mg/kg intraperitoneal) administered 1 h after DAI induction alleviated the aggregation of p-tau and β-APP in neurons, reduced ER-stress-related cell apoptosis, and ameliorated neurological deficits. Further investigation showed that the protective effect of curcumin in DAI was mediated by the PERK/Nrf2 pathway. Curcumin promoted PERK phosphorylation, and then Nrf2 dissociated from Keap1 and was translocated to the nucleus, which activated ATF4, an important bZIP transcription factor that maintains intracellular homeostasis, but inhibited the CHOP, a hallmark of ER stress and ER-associated programmed cell death. In summary, we demonstrate for the first time that curcumin confers protection against abnormal proteins and neuronal apoptosis after DAI, that the process is mediated by strengthening of the unfolded protein response to overcome ER stress, and that the protective effect of curcumin against DAI is dependent on the activation of Nrf2.
Collapse
|
26
|
Song T, Zhu Y, Zhang P, Zhao M, Zhao D, Ding S, Zhu S, Li J. Integrated Proteomics and Metabolomic Analyses of Plasma Injury Biomarkers in a Serious Brain Trauma Model in Rats. Int J Mol Sci 2019; 20:ijms20040922. [PMID: 30791599 PMCID: PMC6412711 DOI: 10.3390/ijms20040922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
Diffuse axonal injury (DAI) is a prevalent and serious brain injury with significant morbidity and disability. However, the underlying pathogenesis of DAI remains largely unclear, and there are still no objective laboratory-based tests available for clinicians to make an early diagnosis of DAI. An integrated analysis of metabolomic data and proteomic data may be useful to identify all of the molecular mechanisms of DAI and novel potential biomarkers. Therefore, we established a rat model of DAI, and applied an integrated UPLC-Q-TOF/MS-based metabolomics and isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to obtain unbiased profiling data. Differential analysis identified 34 metabolites and 43 proteins in rat plasma of the injury group. Two metabolites (acetone and 4-Hydroxybenzaldehyde) and two proteins (Alpha-1-antiproteinase and Alpha-1-acid glycoprotein) were identified as potential biomarkers for DAI, and all may play important roles in the pathogenesis of DAI. Our study demonstrated the feasibility of integrated metabolomics and proteomics method to uncover the underlying molecular mechanisms of DAI, and may help provide clinicians with some novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Tao Song
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
- Department of Forensic Medicine, Hainan Medical University, Haikou 571199, China.
| | - Ying Zhu
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Zhang
- Department of Forensic Medicine, Hainan Medical University, Haikou 571199, China.
| | - Minzhu Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Dezhang Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Shisheng Zhu
- Faculty of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China.
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing 401331, China.
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
27
|
Martinez BI, Stabenfeldt SE. Current trends in biomarker discovery and analysis tools for traumatic brain injury. J Biol Eng 2019; 13:16. [PMID: 30828380 PMCID: PMC6381710 DOI: 10.1186/s13036-019-0145-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) affects 1.7 million people in the United States each year, causing lifelong functional deficits in cognition and behavior. The complex pathophysiology of neural injury is a primary barrier to developing sensitive and specific diagnostic tools, which consequentially has a detrimental effect on treatment regimens. Biomarkers of other diseases (e.g. cancer) have provided critical insight into disease emergence and progression that lend to developing powerful clinical tools for intervention. Therefore, the biomarker discovery field has recently focused on TBI and made substantial advancements to characterize markers with promise of transforming TBI patient diagnostics and care. This review focuses on these key advances in neural injury biomarkers discovery, including novel approaches spanning from omics-based approaches to imaging and machine learning as well as the evolution of established techniques.
Collapse
Affiliation(s)
- Briana I. Martinez
- School of Life Sciences, Arizona State University, Tempe, AZ USA
- School of Biological and Health Systems Engineering, Ira A. Fulton School of Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287-9709 USA
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Ira A. Fulton School of Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287-9709 USA
| |
Collapse
|
28
|
Li LH, Huang QM, Barbero M, Liu L, Nguyen TT, Beretta-Piccoli M, Xu AL, Ji LJ. Quantitative proteomics analysis to identify biomarkers of chronic myofascial pain and therapeutic targets of dry needling in a rat model of myofascial trigger points. J Pain Res 2019; 12:283-298. [PMID: 30662282 PMCID: PMC6327913 DOI: 10.2147/jpr.s185916] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Proteomics analysis may provide important information regarding the pathogenesis of chronic myofascial pain and the mechanisms underlying the treatment effects of dry needling. Materials and methods This study used a rat model of myofascial trigger points (MTrPs) to perform a proteomics analysis. Three biological replicate experiments were used to compare the proteomes of healthy control rats, a rat model of MTrP, MTrP model rats following dry needling of MTrPs, and MTrP model rats following dry needling of non-MTrPs. Tandem mass tag (TMT) labeling technology based on nanoscale liquid chromatography-tandem mass spectrometry was used. Hierarchical clustering, gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and protein–protein interaction network analysis were performed to characterize the proteins. To validate the TMT results, three candidate biomarker proteins were verified using parallel reaction monitoring and Western blot analysis. Results A total of 2,635 proteins were identified. GO and KEGG enrichment analyses showed that the glycolysis/gluconeogenesis pathways played dominant roles in the pathogenesis of chronic myofascial pain. The three candidate biomarker proteins were the pyruvate kinase muscle isozyme (encoded by the PKM gene), the muscle isoform of glycogen phosphorylase (encoded by the PYGM gene), and myozenin 2 (encoded by the MYOZ2 gene). The validation results were consistent with the TMT results. Conclusion This is the first proteomics study that has investigated the pathogenesis of chronic myofascial pain and the mechanisms underlying the treatment effects of dry needling in an in vivo rat model of MTrPs, which might promote our understanding of the molecular mechanisms underlying chronic myofascial pain.
Collapse
Affiliation(s)
- Li-Hui Li
- Department of Sport Medicine and Rehabilitation Center, Shanghai University of Sport, Shanghai, China, .,Rehabilitation Research Laboratory 2rLab, Department of Business Economics Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Qiang-Min Huang
- Department of Sport Medicine and Rehabilitation Center, Shanghai University of Sport, Shanghai, China,
| | - Marco Barbero
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Lin Liu
- Nanjing Sport Institute, Sport and Health Science Department, Nanjing, China
| | - Thi-Tham Nguyen
- Faculty of Sport Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Matteo Beretta-Piccoli
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - An-Le Xu
- Department of Sport Medicine and Rehabilitation Center, Shanghai University of Sport, Shanghai, China,
| | - Li-Juan Ji
- Department of Sport Medicine and Rehabilitation Center, Shanghai University of Sport, Shanghai, China,
| |
Collapse
|
29
|
Ouyang F, Yu T, Gu C, Wang G, Shi R, Lv R, Wu E, Ma C, Guo R, Li J, Zaczek A, Liu J. Sensitive detection of caspase-3 enzymatic activities and inhibitor screening by mass spectrometry with dual maleimide labelling quantitation. Analyst 2019; 144:6751-6759. [DOI: 10.1039/c9an01458f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a great need to develop sensitive and specific methods for quantitative analysis of caspase-3 activities in cell apoptosis.
Collapse
|
30
|
Song YF, Gao Y, Hogstrand C, Li DD, Pan YX, Luo Z. Upstream regulators of apoptosis mediates methionine-induced changes of lipid metabolism. Cell Signal 2018; 51:176-190. [PMID: 30099089 DOI: 10.1016/j.cellsig.2018.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 12/20/2022]
Abstract
Although the role of methionine (Met), as precursor for l-carnitine synthesis, in the regulation of lipid metabolism has been explored. Met seems to have tissue- and species-specific regulatory effect on lipid metabolism, implying that the mechanisms in Met regulation of lipid metabolism is complex and may involve the upstream regulatory pathway of lipid metabolism. The present study was performed to determine the mechanism of apoptosis signaling pathways mediating Met-induced changes of hepatic lipid deposition and metabolism in fish, and compare the differences of the mechanisms between the fish and mammals. By iTRAQ-based quantitative proteome analyses, we found that both dietary Met deficiency and excess evoked apoptosis signaling pathways, increased hepatic lipid deposition and caused aberrant hepatic lipid metabolism of yellow catfish Pelteobagrus fulvidraco. Using primary hepatocytes from P. fulvidraco, inhibition of caspase by Z-VAD-FMK blocked the apoptotic signaling pathways with a concomitant reversal of Met deficiency- and excess-induced increase of lipid deposition, indicating that apoptosis involved the Met-mediated changes of hepatic lipid metabolism. Moreover, we explored the roles of three upstream apoptotic signaling pathways (PI3K/AKT-TOR pathway, cAMP/PKA/CREB pathway and LKB1/AMPK-FOXO pathway) influencing hepatic lipid metabolism of P. fulvidraco. The three upstream pathways participated in apoptosis mediating Met-induced changes of lipid metabolism in P. fulvidraco. At last, HepG2 cell line was used to compare the similarities of mechanisms in apoptosis mediating Met-induced changes of lipid metabolism between fish and mammals. Although several slight differences existed, apoptosis mediated the Met-induced changes of lipid metabolism between fish and mammals. The present study reveals novel apoptosis-relevant signal transduction axis which mediates the Met-induced changes of lipid metabolism, which will help understand the mechanistic link between apoptosis and lipid metabolism, and highlight the importance of the evolutionary conservative apoptosis signaling axis in regulating Met-induced changes of hepatic lipid metabolism.
Collapse
Affiliation(s)
- Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Gao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Dan-Dan Li
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Ya-Xiong Pan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| |
Collapse
|
31
|
Zhang P, Zhu S, Zhao M, Zhao P, Zhao H, Deng J, Li J. Identification of plasma biomarkers for diffuse axonal injury in rats by iTRAQ-coupled LC-MS/MS and bioinformatics analysis. Brain Res Bull 2018; 142:224-232. [PMID: 30077728 DOI: 10.1016/j.brainresbull.2018.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022]
Abstract
DAI is a serious and complex brain injury associated with significant morbidity and mortality. The lack of reliable objective diagnostic modalities for DAI delays administration of therapeutic interventions. Hence, identifying reliable biomarkers is urgently needed to enable early DAI diagnosis in the clinic. Herein, we established a rat model of DAI and applied an isobaric tags for a relative and absolute quantification (iTRAQ) coupled with nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) proteomics approach to screen differentially expressed plasma proteins associated with DAI. A total of 58 proteins were found to be significantly modulated in blood plasma samples of the injury group in at least one time point compared to controls. Bioinformatics analysis of the differentially expressed proteins revealed that the pathogenesis of axonal injury underlying DAI is multi-stage biological process involved. Two significantly changed proteins, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and hemopexin (Hpx), were identified as potential diagnostic biomarkers for DAI, and were successfully confirmed by further western blot analysis. This proteomic profiling study not only identified novel plasma biomarkers that may facilitate the development of clinically diagnostic for DAI, but also provided enhanced understanding of the molecular mechanisms underlying DAI.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Forensic Medicine, Hainan Medical University, Haikou 571199, China
| | - Shisheng Zhu
- Faculty of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Minzhu Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Peng Zhao
- Faculty of Basic Medical Sciences, Zunyi Medical And Pharmaceutical College, Zunyi 563006, China
| | - Haiyi Zhao
- Genecreate Biological Engineering Co., Ltd., National Bio-Industry Base, Wuhan, 430075, China
| | - Jianqiang Deng
- Department of Forensic Medicine, Hainan Medical University, Haikou 571199, China
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
32
|
Zhang P, Zhu S, Zhao M, Dai Y, Zhang L, Ding S, Zhao P, Li J. Integration of 1H NMR- and UPLC-Q-TOF/MS-based plasma metabonomics study to identify diffuse axonal injury biomarkers in rat. Brain Res Bull 2018; 140:19-27. [DOI: 10.1016/j.brainresbull.2018.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 12/30/2022]
|
33
|
Bao W, He F, Yu L, Gao J, Meng F, Ding Y, Zou H, Luo B. Complement cascade on severe traumatic brain injury patients at the chronic unconscious stage: implication for pathogenesis. Expert Rev Mol Diagn 2018; 18:761-766. [PMID: 29718755 DOI: 10.1080/14737159.2018.1471985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Patients who awake from severely traumatic brain injury (TBI) may remain unconscious for many years. Although behavioral assessment and functional imaging are currently used as diagnostic tools, the molecular basis underlying chronic condition has yet to be explored. METHOD Plasma samples were obtained at 3 time points (1, 3 and 6 months) from 18 patients with chronic disorders of consciousness who survived severe TBI, and 6 healthy volunteers. A coupled isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics approach was used to screen differentially expressed proteins (DEPs) between patients and controls. Potential molecular mechanisms were further discussed through bioinformatics analyses. RESULT In total, 300 plasma proteins <1% false discovery rates were identified and 32 proteins were consistently altered between patients and controls. Biological pathway analysis revealed that the DEPs were predominantly involved in complement cascade. CONCLUSIONS This study discussed potential mechanisms of complement cascade underlying chronic stage in severe TBI.
Collapse
Affiliation(s)
- Wangxiao Bao
- a Department of Neurology, First Affiliated Hospital, Collaborative Innovation Center for Brain Science , Zhejiang University School of Medicine , Hangzhou , China
| | - Fangping He
- a Department of Neurology, First Affiliated Hospital, Collaborative Innovation Center for Brain Science , Zhejiang University School of Medicine , Hangzhou , China
| | - Lihua Yu
- b Department of Neurology , Zhejiang Provincial People's Hospital , Hangzhou , China.,e People's Hospital of Hangzhou Medical College , Hangzhou Zhejiang Province , China
| | - Jian Gao
- c Department of Rehabilitation , Hangzhou Hospital of Zhejiang CAPR , Hangzhou , China
| | - Fanxia Meng
- a Department of Neurology, First Affiliated Hospital, Collaborative Innovation Center for Brain Science , Zhejiang University School of Medicine , Hangzhou , China
| | - Yahui Ding
- d Department of Neurology, First Affiliated Hospital , Zhejiang Provincial People's Hospital , Hangzhou , China.,e People's Hospital of Hangzhou Medical College , Hangzhou Zhejiang Province , China
| | - Hai Zou
- d Department of Neurology, First Affiliated Hospital , Zhejiang Provincial People's Hospital , Hangzhou , China.,e People's Hospital of Hangzhou Medical College , Hangzhou Zhejiang Province , China
| | - Benyan Luo
- a Department of Neurology, First Affiliated Hospital, Collaborative Innovation Center for Brain Science , Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
34
|
Li N, Du Q, Bai R, Sun J. Vitality and wound-age estimation in forensic pathology: review and future prospects. Forensic Sci Res 2018; 5:15-24. [PMID: 32490306 PMCID: PMC7241561 DOI: 10.1080/20961790.2018.1445441] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/12/2018] [Indexed: 01/01/2023] Open
Abstract
Determining the age of a wound is challenging in forensic pathology, but it can contribute to the reconstruction of crime scenes and lead to arrest of suspects. Forensic scholars have tended to focus on evaluating wound vitality and determining the time elapsed since the wound was sustained. Recent progress in forensic techniques, particularly high-throughput analyses, has enabled evaluation of materials at the cellular and molecular levels, as well as simultaneous assessment of multiple markers. This paper provides an update on wound-age estimation in forensic pathology, summarizes the recent literature, and considers useful additional information provided by each marker. Finally, the future prospects for estimating wound age in forensic practise are discussed with the hope of providing something useful for further study.
Collapse
Affiliation(s)
- Na Li
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Forensic Science, Shanxi Medical University, Taiyuan, China
| | - Qiuxiang Du
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Forensic Science, Shanxi Medical University, Taiyuan, China
| | - Rufeng Bai
- Key Laboratory of Evidence Science, China University of Political Science and Law, Beijing, China.,Collaborative Innovation Centre of Judicial Civilization, Beijing, China
| | - Junhong Sun
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Forensic Science, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
35
|
Ouyang F, Zhao Z, Gao R, Shi R, Wu E, Lv R, Xu G, Liu J. Dual Maleimide Tagging for Relative and Absolute Quantitation of Cysteine-Containing Peptides by MALDI-TOF MS. Chembiochem 2018; 19:1154-1161. [PMID: 29542852 DOI: 10.1002/cbic.201800031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Indexed: 12/18/2022]
Abstract
A dual maleimide (DuMal) tagging method has been developed for both relative and absolute quantitation of cysteine-containing peptides (CCPs) in combination with MALDI-TOF mass spectrometry. A pair of maleimides with minimal differences in their chemical structures, N-methylmaleimide and Nethylmaleimide, have been chosen to allow for the rapid (≈minutes) tagging of CCPs in the Michael addition reaction with high efficiency. It has been validated that the DuMal tagging technique is sensitive and reliable in the quantitative analysis of CCPs. Absolute quantitation of CCPs can be achieved with a detection limit as low as 7.3 nm. Relative quantitation of CCPs can be performed in various sample mixtures with consistent results (coefficient of variation <5 %). The DuMal tagging technique provides a sensitive and accurate approach for the quantitation of biomolecules containing thiol reactive sites; thus it is promising for protein detection, disease diagnosis, and biomarker discovery associated with post-translational modifications of cysteines.
Collapse
Affiliation(s)
- Fuzhong Ouyang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123, P.R. China
| | - Zhihao Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123, P.R. China
| | - Ruifang Gao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123, P.R. China
| | - Rui Shi
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123, P.R. China
| | - Enhui Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123, P.R. China
| | - Rui Lv
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123, P.R. China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Translational Research, and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, P.R. China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123, P.R. China
| |
Collapse
|
36
|
Zhang P, Dai Y, Xiong J, Zhu S, Zhao M, Ding S, Li J. iTRAQ-based differential proteomic analysis of the brains in a rat model of delayedcarbon monoxide encephalopathy. Brain Res Bull 2018; 137:329-337. [PMID: 29355713 DOI: 10.1016/j.brainresbull.2018.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/07/2018] [Accepted: 01/12/2018] [Indexed: 11/26/2022]
Abstract
Delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) is a difficult-to-manage neurological complication that can severely affect the life quality of patients. Although the central nervous system (CNS) injuries have been reported, the underlying molecular mechanisms are still unclear. Therefore, we established a rat model of DEACMP, applying isobaric tags for a relative and absolute quantification (iTRAQ)-based proteomics approach to identify differentially expressed proteins in cerebral tissue. A total of 170 proteins in the CO exposure groups were identified as differentially changed. Bioinformatics analysis suggested that these proteins are mainly involved in the biological processes, such as energy metabolism and many neurodegenerative diseases. Three proteins, Glial fibrillary acidic protein (GFAP), mitochondrial malate dehydrogenase (MDHM), and isocitrate dehydrogenase [NAD] subunit alpha (IDH3A), were identified as playing important roles in CNS injuries in DEACMP, and were successfully confirmed by immunohistochemistry analysis. Our study not only offers us new insights into the pathophysiological mechanisms of CNS injuries in DEACMP, but also may provide clinicians with important references in early prevention and treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yalei Dai
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jincheng Xiong
- Chongqing Wanzhou District Public Security Bureau, Chongqing 404000, China
| | - Shisheng Zhu
- Faculty of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Minzhu Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
37
|
Bao W, He F, Gao J, Meng F, Zou H, Luo B. Alpha-1-antitrypsin: a novel predictor for long-term recovery of chronic disorder of consciousness. Expert Rev Mol Diagn 2018; 18:307-313. [PMID: 29419340 DOI: 10.1080/14737159.2018.1438192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The aim of this manuscript was to explore the molecular basis and identify novel biomarkers for the diagnosis and prognosis of patients with chronic disorder of consciousness. METHODS A coupled isobaric tag for relative and absolute quantitation-based approach was used to screen differentially expressed proteins (DEPs) between patients with chronic disorder of consciousness and healthy individuals. Candidate proteins were identified and measured. The Coma Recovery Scale-Revised (CRS-R) score was used to quantify the severity, and long-term recovery was assessed by Glasgow Outcome Scale (GOS). RESULTS Between patients and controls, a total of 77 DEPs were identified. Based on the DEPs, a network containing 50 nodes and 207 edges was built, and alpha-1-antitrypsin was marked as the hub protein. The results indicated that alpha-1-antitrypsin correlated with the CRS-R score with a correlation coefficient of 0.631, and an outcome at 12 months (8.5 ± 2.1 ng/ml in patients with GOS 1-2 vs. 6.8 ± 1.6 ng/ml in those with GOS 3-5, p = 0.002). CONCLUSIONS The data confirm the diagnostic and prognostic potential of alpha-1-antitrypsin in chronic disorder of consciousness, which may contribute to the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Wangxiao Bao
- a Department of Neurology, First Affiliated Hospital, Collaborative Innovation Center for Brain Science , Zhejiang University School of Medicine , Hangzhou , China
| | - Fangping He
- a Department of Neurology, First Affiliated Hospital, Collaborative Innovation Center for Brain Science , Zhejiang University School of Medicine , Hangzhou , China
| | - Jian Gao
- b Department of Rehabilitation , Hangzhou Hospital of Zhejiang CAPR , Hangzhou , China
| | - Fanxia Meng
- a Department of Neurology, First Affiliated Hospital, Collaborative Innovation Center for Brain Science , Zhejiang University School of Medicine , Hangzhou , China
| | - Hai Zou
- c Department of Cardiology , Zhejiang Provincial People's Hospital , Hangzhou , PR China.,d People's Hospital of Hangzhou Medical College , Hangzhou , China
| | - Benyan Luo
- a Department of Neurology, First Affiliated Hospital, Collaborative Innovation Center for Brain Science , Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
38
|
Ganau M, Syrmos N, Paris M, Ganau L, Ligarotti GKI, Moghaddamjou A, Chibbaro S, Soddu A, Ambu R, Prisco L. Current and Future Applications of Biomedical Engineering for Proteomic Profiling: Predictive Biomarkers in Neuro-Traumatology. MEDICINES 2018; 5:medicines5010019. [PMID: 29401743 PMCID: PMC5874584 DOI: 10.3390/medicines5010019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Abstract
This systematic review aims to summarize the impact of nanotechnology and biomedical engineering in defining clinically meaningful predictive biomarkers in patients with traumatic brain injury (TBI), a critical worldwide health problem with an estimated 10 billion people affected annually worldwide. Data were collected through a review of the existing English literature performed on Scopus, MEDLINE, MEDLINE in Process, EMBASE, and/or Cochrane Central Register of Controlled Trials. Only experimental articles revolving around the management of TBI, in which the role of new devices based on innovative discoveries coming from the field of nanotechnology and biomedical engineering were highlighted, have been included and analyzed in this study. Based on theresults gathered from this research on innovative methods for genomics, epigenomics, and proteomics, their future application in this field seems promising. Despite the outstanding technical challenges of identifying reliable biosignatures for TBI and the mixed nature of studies herein described (single cells proteomics, biofilms, sensors, etc.), the clinical implementation of those discoveries will allow us to gain confidence in the use of advanced neuromonitoring modalities with a potential dramatic improvement in the management of those patients.
Collapse
Affiliation(s)
- Mario Ganau
- Department of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada.
- School of Medicine, University of Cagliari, 09124 Cagliari, Italy.
| | - Nikolaos Syrmos
- School of Medicine, Aristotle University of Thessaloniki, 54623 Thessaloniki, Greece.
| | - Marco Paris
- National Hospital for Neurology and Neurosurgery, University College London, London WC1N 3BG, UK.
| | - Laura Ganau
- School of Medicine, University of Cagliari, 09124 Cagliari, Italy.
| | | | - Ali Moghaddamjou
- Department of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada.
| | - Salvatore Chibbaro
- Division of Neurosurgery, University of Strasbourg, 67000 Strasbourg, France.
| | - Andrea Soddu
- Brain and Mind Institute, Physics & Astronomy Department, Western University, London, ON N6A 3K7, Canada.
| | - Rossano Ambu
- School of Medicine, University of Cagliari, 09124 Cagliari, Italy.
| | - Lara Prisco
- John Radcliffe Hospital, Oxford University, Oxford OX3 9DU, UK.
| |
Collapse
|
39
|
Zhang P, Zhang L, Li Y, Zhu S, Zhao M, Ding S, Li J. Quantitative Proteomic Analysis To Identify Differentially Expressed Proteins in Myocardium of Epilepsy Using iTRAQ Coupled with Nano-LC-MS/MS. J Proteome Res 2017; 17:305-314. [PMID: 29090925 DOI: 10.1021/acs.jproteome.7b00579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epilepsy is a difficult-to-manage neurological disease that can result in organ damage, such as cardiac injury, that contributes to sudden unexpected death in epilepsy (SUDEP). Although recurrent seizure-induced cardiac dysregulation has been reported, the underlying molecular mechanisms are unclear. We established an epileptic model with Sprague-Dawley rats by applying isobaric tags for a relative and absolute quantification (iTRAQ)-based proteomics approach to identify differentially expressed proteins in myocardial tissue. A total of seven proteins in the acute epilepsy group and 60 proteins in the chronic epilepsy group were identified as differentially expressed. Bioinformatics analysis suggested that the pathogenesis of cardiac injury in acute and chronic epilepsy may be due to different molecular mechanisms. Three proteins, a receptor for activated protein kinase C1 (RACK1), aldehyde dehydrogenase 6 family member A1 (ALDH6A1), and glycerol uptake/transporter 1 (Hhatl), were identified as playing crucial roles in cardiac injury during epilepsy and were successfully confirmed by Western blot and immunohistochemistry analysis. Our study not only provides a deeper understanding of the pathophysiological mechanisms of myocardial damage in epilepsy, but also suggests some potential novel therapeutic targets for preventing cardiac injury and reducing the incidence of sudden death due to heart failure.
Collapse
Affiliation(s)
| | | | - Yongguo Li
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Shisheng Zhu
- Faculty of Medical Technology, Chongqing Medical and Pharmaceutical College , Chongqing 401331, China
| | - Minzhu Zhao
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Shijia Ding
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Jianbo Li
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| |
Collapse
|
40
|
Li M, Li L, Wang K, Su W, Jia J, Wang X. The effect of electroacupuncture on proteomic changes in the motor cortex of 6-OHDA Parkinsonian rats. Brain Res 2017; 1673:52-63. [PMID: 28760440 DOI: 10.1016/j.brainres.2017.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Electroacupuncture (EA) has been reported to alleviate motor deficits in Parkinson's disease (PD) patients, and PD animal models. However, the mechanisms by which EA improves motor function have not been investigated. We have employed a 6-hydroxydopamine (6-OHDA) unilateral injection induced PD model to investigate whether EA alters protein expression in the motor cortex. We found that 4weeks of EA treatment significantly improved spontaneous floor plane locomotion and rotarod performance. High-throughput proteomic analysis in the motor cortex was employed. The expression of 54 proteins were altered in the unlesioned motor cortex, and 102 protein expressions were altered in the lesioned motor cortex of 6-OHDA rats compared to sham rats. Compared to non-treatment PD control, EA treatment reversed 6 proteins in unlesioned and 19 proteins in lesioned motor cortex. The present study demonstrated that PD induces proteomic changes in the motor cortex, some of which are rescued by EA treatment. These targeted proteins were mainly involved in increasing autophagy, mRNA processing and ATP binding and maintaining the balance of neurotransmitters.
Collapse
Affiliation(s)
- Min Li
- Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University, Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Lijuan Li
- Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University, Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Ke Wang
- Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University, Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Wenting Su
- Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University, Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Jun Jia
- Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University, Beijing Institute for Brain Disorders, Beijing 100069, China.
| | - Xiaomin Wang
- Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University, Beijing Institute for Brain Disorders, Beijing 100069, China.
| |
Collapse
|
41
|
Miller MAE, O’Cualain R, Selley J, Knight D, Karim MF, Hubbard SJ, Johnson GN. Dynamic Acclimation to High Light in Arabidopsis thaliana Involves Widespread Reengineering of the Leaf Proteome. FRONTIERS IN PLANT SCIENCE 2017; 8:1239. [PMID: 28775726 PMCID: PMC5517461 DOI: 10.3389/fpls.2017.01239] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/30/2017] [Indexed: 05/18/2023]
Abstract
Leaves of Arabidopsis thaliana transferred from low to high light increase their capacity for photosynthesis, a process of dynamic acclimation. A mutant, gpt2, lacking a chloroplast glucose-6-phosphate/phosphate translocator, is deficient in its ability to acclimate to increased light. Here, we have used a label-free proteomics approach, to perform relative quantitation of 1993 proteins from Arabidopsis wild type and gpt2 leaves exposed to increased light. Data are available via ProteomeXchange with identifier PXD006598. Acclimation to light is shown to involve increases in electron transport and carbon metabolism but no change in the abundance of photosynthetic reaction centers. The gpt2 mutant shows a similar increase in total protein content to wild type but differences in the extent of change of certain proteins, including in the relative abundance of the cytochrome b6f complex and plastocyanin, the thylakoid ATPase and selected Benson-Calvin cycle enzymes. Changes in leaf metabolite content as plants acclimate can be explained by changes in the abundance of enzymes involved in metabolism, which were reduced in gpt2 in some cases. Plants of gpt2 invest more in stress-related proteins, suggesting that their reduced ability to acclimate photosynthetic capacity results in increased stress.
Collapse
Affiliation(s)
- Matthew A. E. Miller
- School of Earth and Environmental Sciences, University of ManchesterManchester, United Kingdom
| | - Ronan O’Cualain
- School of Biological Sciences, University of ManchesterManchester, United Kingdom
| | - Julian Selley
- School of Biological Sciences, University of ManchesterManchester, United Kingdom
| | - David Knight
- School of Biological Sciences, University of ManchesterManchester, United Kingdom
| | - Mohd F. Karim
- School of Earth and Environmental Sciences, University of ManchesterManchester, United Kingdom
| | - Simon J. Hubbard
- School of Biological Sciences, University of ManchesterManchester, United Kingdom
| | - Giles N. Johnson
- School of Earth and Environmental Sciences, University of ManchesterManchester, United Kingdom
| |
Collapse
|
42
|
Sarkis GA, Mangaonkar MD, Moghieb A, Lelling B, Guertin M, Yadikar H, Yang Z, Kobeissy F, Wang KKW. The Application of Proteomics to Traumatic Brain and Spinal Cord Injuries. Curr Neurol Neurosci Rep 2017; 17:23. [DOI: 10.1007/s11910-017-0736-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Serum Proteome Alterations in Patients with Cognitive Impairment after Traumatic Brain Injury Revealed by iTRAQ-Based Quantitative Proteomics. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8572509. [PMID: 28251161 PMCID: PMC5303854 DOI: 10.1155/2017/8572509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/01/2016] [Accepted: 12/13/2016] [Indexed: 12/26/2022]
Abstract
Background. Cognitive impairment is the leading cause of traumatic brain injury- (TBI-) related disability; however, the underlying pathogenesis of this dysfunction is not completely understood. Methods. Using an isobaric tagging for relative and absolute quantitation- (iTRAQ-) based quantitative proteomic approach, serum samples from healthy control subjects, TBI patients with cognitive impairment, and TBI patients without cognitive impairment were analysed to identify differentially expressed proteins (DEPs) related to post-TBI cognitive impairment. In addition, DEPs were further analysed using bioinformatic platforms and validated using enzyme-linked immunosorbent assays (ELISA). Results. A total of 56 DEPs were identified that were specifically related to TBI-induced cognitive impairment. Bioinformatic analysis revealed that a wide variety of cellular and metabolic processes and some signaling pathways were involved in the pathophysiology of cognitive deficits following TBI. Five randomly selected DEPs were validated using ELISA in an additional 105 cases, and the results also supported the experimental findings. Conclusions. Despite limitations, our findings will facilitate further studies of the pathological mechanisms underlying TBI-induced cognitive impairment and provide new methods for the research and development of neuroprotective agents. However, further investigation on a large cohort is warranted.
Collapse
|