1
|
Ding SM, Yap MKK. Deciphering toxico-proteomics of Asiatic medically significant venomous snake species: A systematic review and interactive data dashboard. Toxicon 2024; 250:108120. [PMID: 39393539 DOI: 10.1016/j.toxicon.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Snakebite envenomation (SBE) is a neglected tropical disease (NTD) with an approximate 1.8 million cases annually. The tremendous figure is concerning, and the currently available treatment for snakebite envenomation is antivenom. However, the current antivenom has limited cross-neutralisation activity due to the variations in snake venom composition across species and geographical locations. The proteomics of medically important venomous species is essential as they study the venom compositions within and among different species. The advancement of sophisticated proteomic approaches allows intensive investigation of snake venoms. Nevertheless, there is a need to consolidate the venom proteomics profiles and distribution analysis to examine their variability patterns. This review systematically analysed the proteomics and toxicity profiles of medically important venomous species from Asia across different geographical locations. An interactive dashboard - Asiatic Proteomics Interactive Datasets was curated to consolidate the distribution patterns of the venom compositions, serve as a comprehensive directory for large-scale comparative meta-analyses. The population proteomics demonstrate higher diversities in the predominant venom toxins. Besides, inter-regional differences were also observed in Bungarus sp., Naja sp., Calliophis sp., and Ophiophagus hannah venoms. The elapid venoms are predominated with three-finger toxins (3FTXs) and phospholipase A2 (PLA2). Intra-regional variation is only significantly observed in Naja naja venoms. Proteomics diversity is more prominent in viper venoms, with widespread dominance observed in snake venom metalloproteinase (SVMP) and snake venom serine protease (SVSP). Correlations exist between the proteomics profiles and the toxicity (LD50) of the medically important venomous species. Additionally, the predominant toxins, alongside their pathophysiological effects, were highlighted and discussed as well. The insights of interactive toxico-proteomics datasets provide comprehensive frameworks of venom dynamics and contribute to developing antivenoms for snakebite envenomation. This could reduce misdiagnosis of SBE and accelerate the researchers' data mining process.
Collapse
Affiliation(s)
- Sher Min Ding
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | | |
Collapse
|
2
|
Lüddecke T, Avella I, Damm M, Schulte L, Eichberg J, Hardes K, Schiffmann S, Henke M, Timm T, Lochnit G, Vilcinskas A. The Toxin Diversity, Cytotoxicity, and Enzymatic Activity of Cape Cobra ( Naja nivea) Venom. Toxins (Basel) 2024; 16:438. [PMID: 39453214 PMCID: PMC11511112 DOI: 10.3390/toxins16100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
"True" cobras (genus Naja) are among the venomous snakes most frequently involved in snakebite accidents in Africa and Asia. The Cape cobra (Naja nivea) is one of the African cobras of highest medical importance, but much remains to be learned about its venom. Here, we used a shotgun proteomics approach to better understand the qualitative composition of N. nivea venom and tested its cytotoxicity and protease activity as well as its effect on intracellular Ca2+ release and NO synthesis. We identified 156 venom components representing 17 protein families, with the dominant ones being three-finger toxins, mostly of the short-chain type. Two-thirds of the three-finger toxin entries identified were assigned as cytotoxins, while the remainder were categorized as neurotoxins, including short-chain, long-chain, and ancestral three-finger toxins. We also identified snake venom metalloproteinases and members of CRISP, l-amino acid oxidase, and other families. Protease activity and its effect on intracellular Ca2+ release and NO synthesis were low. Phospholipase A2 activity was surprisingly high, despite this toxin family being marginally recovered in the analyzed venom. Cytotoxicity was relevant only at higher venom concentrations, with macrophage and neuroblastoma cell lines showing the lowest viability. These results are in line with the predominantly neurotoxic envenomation symptoms caused by Cape cobra bites. The present overview of the qualitatively complex and functionally intriguing venom of N. nivea may provide insights into the pathobiochemistry of this species' venom.
Collapse
Affiliation(s)
- Tim Lüddecke
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (I.A.); (M.D.); (L.S.)
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (J.E.); (K.H.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
| | - Ignazio Avella
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (I.A.); (M.D.); (L.S.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Maik Damm
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (I.A.); (M.D.); (L.S.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Lennart Schulte
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (I.A.); (M.D.); (L.S.)
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (J.E.); (K.H.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Johanna Eichberg
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (J.E.); (K.H.); (A.V.)
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Kornelia Hardes
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (J.E.); (K.H.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Susanne Schiffmann
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany
| | - Marina Henke
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany
| | - Thomas Timm
- Institute for Biochemistry, Justus Liebig University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (T.T.); (G.L.)
| | - Günter Lochnit
- Institute for Biochemistry, Justus Liebig University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (T.T.); (G.L.)
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (J.E.); (K.H.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| |
Collapse
|
3
|
Murphy K, Tasoulis T, Dunstan N, Isbister GK. Anticoagulant activity in Australasian elapid snake venoms and neutralisation with antivenom and varespladib. Toxicon 2024; 247:107836. [PMID: 38945217 DOI: 10.1016/j.toxicon.2024.107836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/04/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The venoms of Australasian elapid snakes are known to possess coagulant activity, including some with strong procoagulant activity and others with anticoagulant activity, although the latter are less well known. This study investigates the anticoagulant activity of Australasian elapid snake venoms, and whether this activity is neutralised by commercial snake antivenom and varespladib (PLA2 inhibiting agent). Clotting assays were completed for 34 species of Australasian elapids. Antivenom neutralisation assays with tiger snake antivenom (TSAV) were performed on five species to determine if there was cross-neutralisation. Varespladib neutralisation assays were also completed for the same five species. All Pseudechis species venoms had anticoagulant activity, except P. porphyriacus, which was procoagulant. Pseudechis species venoms had similar anticoagulant potency ranging from the most potent P. colletti venom to the least potent P. butleri venom. The three Austrelaps (copperhead) species venoms were the next most potent anticoagulants. Six further snakes, Elapognathus coronatus, Acanthophis pyrrhus, A. antarcticus, Suta suta, Denisonia devisi and D. maculata, had weaker anticoagulant activity, except for D. maculata which had similar anticoagulant activity to Pseudechis species. Tiger Snake Antivenom (1200mU/mL) neutralised the anticoagulant effect of P. australis for concentrations up to 1 mg/mL. TSAV (1200mU/mL) also neutralised P. colletti, D. maculata, A. superbus and A. pyrrhus venoms at their EC50, demonstrating cross neutralisation. Varespladib neutralised the anticoagulant effect of P. australis venom at 5 μM and for venoms of P. colletti, D. maculata, A. superbus and A. pyrrhus. We found anticoagulant activity to be present in six genera of Australasian snakes at low concentrations, which can be completely neutralised by both antivenom and varespladib. Anticoagulant activity in Australian elapid venoms was associated with species possessing high PLA2 activity without procoagulant snake venom serine proteases.
Collapse
Affiliation(s)
- Kate Murphy
- Clinical Toxicology Research Group, University of Newcastle, New South Wales, Australia
| | - Theo Tasoulis
- Clinical Toxicology Research Group, University of Newcastle, New South Wales, Australia
| | | | - Geoffrey K Isbister
- Clinical Toxicology Research Group, University of Newcastle, New South Wales, Australia; Department of Clinical Toxicology, Calvary Mater Newcastle, New South Wales, Australia.
| |
Collapse
|
4
|
Tasoulis T, Wang CR, Sumner J, Dunstan N, Pukala TL, Isbister GK. The Eastern Bandy Bandy Vermicella annulata, expresses high abundance of SVMP, CRiSP and Kunitz protein families in its venom proteome. J Proteomics 2024; 295:105086. [PMID: 38266913 DOI: 10.1016/j.jprot.2024.105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/01/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
The Australian elapid snake radiation (Hydrophiinae) has evolved in the absence of competition from other advanced snakes. This has resulted in ecological specialisation in Australian elapids and the potential for venom proteomes divergent to other elapids. We characterised the venom of the Australian elapid Vermicella annulata (eastern bandy bandy). The venom was analysed using a two-dimensional fractionation process consisting of reverse-phase high-performance liquid chromatography then sodium dodecyl sulphate polyacrylamide gel electrophoresis, followed by bottom-up proteomics. Resulting peptides were matched to a species-specific transcriptome and 87% of the venom was characterised. We identified 11 toxins in the venom from six families: snake venom metalloproteinases (SVMP; 24.2%; two toxins) that are class P-III SVMPs containing a disintegrin-like domain, three-finger toxins (3FTx; 21.6%; five toxins), kunitz peptides (KUN; 19.5%; one toxin), cysteine-rich secretory proteins (CRiSP; 18%; one toxin), and phospholipase A2 (PLA2; 4%; two toxins). The venom had low toxin diversity with five protein families having one or two toxins, except for 3FTx with five different toxins. V. annulata expresses an unusual venom proteome, with high abundances of CRiSP, KUN and SVMP, which are not normally highly expressed in elapid venoms. This unusual venom composition could be an adaptation to its specialised diet. BIOLOGICAL SIGNIFICANCE: Although the Australian elapid radiation represents the most extensive speciation event of elapids on any continent, with 100 terrestrial species, the venom composition of these snakes has rarely been investigated, with only five species currently characterised. Here we provide the venom proteome of a sixth species, Vermicella annulata. The venom of this species could be particularly informative from an evolutionary perspective, as it is an extreme dietary specialist, only preying on blind snakes (Typhlopidae). We show that V. annulata expresses a highly unusual venom for an elapid, due to the high abundance of the protein families SVMP, CRiSP, and KUN, which together make up 61% of the venom. When averaged across all species, a typical elapid venom is 82% PLA2 and 3FTx. This is the second recorded instance of an Australian elapid having evolved highly divergent venom expression.
Collapse
Affiliation(s)
- Theo Tasoulis
- Clinical Toxicology Research Group, University of Newcastle N.S.W. 2308, Australia
| | - C Ruth Wang
- Department of Chemistry, University of Adelaide S.A., Australia
| | - Joanna Sumner
- Museums Victoria, Carlton Gardens, VIC 3053, Australia
| | | | - Tara L Pukala
- Department of Chemistry, University of Adelaide S.A., Australia
| | - Geoffrey K Isbister
- Clinical Toxicology Research Group, University of Newcastle N.S.W. 2308, Australia.
| |
Collapse
|
5
|
A current perspective on snake venom composition and constituent protein families. Arch Toxicol 2023; 97:133-153. [PMID: 36437303 DOI: 10.1007/s00204-022-03420-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022]
Abstract
Snake venoms are heterogeneous mixtures of proteins and peptides used for prey subjugation. With modern proteomics there has been a rapid expansion in our knowledge of snake venom composition, resulting in the venom proteomes of 30% of vipers and 17% of elapids being characterised. From the reasonably complete proteomic coverage of front-fanged snake venom composition (179 species-68 species of elapids and 111 species of vipers), the venoms of vipers and elapids contained 42 different protein families, although 18 were only reported in < 5% of snake species. Based on the mean abundance and occurrence of the 42 protein families, they can be classified into 4 dominant, 6 secondary, 14 minor, and 18 rare protein families. The dominant, secondary and minor categories account for 96% on average of a snake's venom composition. The four dominant protein families are: phospholipase A2 (PLA2), snake venom metalloprotease (SVMP), three-finger toxins (3FTx), and snake venom serine protease (SVSP). The six secondary protein families are: L-amino acid oxidase (LAAO), cysteine-rich secretory protein (CRiSP), C-type lectins (CTL), disintegrins (DIS), kunitz peptides (KUN), and natriuretic peptides (NP). Venom variation occurs at all taxonomic levels, including within populations. The reasons for venom variation are complex, as variation is not always associated with geographical variation in diet. The four dominant protein families appear to be the most important toxin families in human envenomation, being responsible for coagulopathy, neurotoxicity, myotoxicity and cytotoxicity. Proteomic techniques can be used to investigate the toxicological profile of a snake venom and hence identify key protein families for antivenom immunorecognition.
Collapse
|
6
|
Sofyantoro F, Yudha DS, Lischer K, Nuringtyas TR, Putri WA, Kusuma WA, Purwestri YA, Swasono RT. Bibliometric Analysis of Literature in Snake Venom-Related Research Worldwide (1933-2022). Animals (Basel) 2022; 12:2058. [PMID: 36009648 PMCID: PMC9405337 DOI: 10.3390/ani12162058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Snake envenomation is a severe economic and health concern affecting countries worldwide. Snake venom carries a wide variety of small peptides and proteins with various immunological and pharmacological properties. A few key research areas related to snake venom, including its applications in treating cancer and eradicating antibiotic-resistant bacteria, have been gaining significant attention in recent years. The goal of the current study was to analyze the global profile of literature in snake venom research. This study presents a bibliometric review of snake venom-related research documents indexed in the Scopus database between 1933 and 2022. The overall number of documents published on a global scale was 2999, with an average annual production of 34 documents. Brazil produced the highest number of documents (n = 729), followed by the United States (n = 548), Australia (n = 240), and Costa Rica (n = 235). Since 1963, the number of publications has been steadily increasing globally. At a worldwide level, antivenom, proteomics, and transcriptomics are growing hot issues for research in this field. The current research provides a unique overview of snake venom research at global level from 1933 through 2022, and it may be beneficial in guiding future research.
Collapse
Affiliation(s)
- Fajar Sofyantoro
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Donan Satria Yudha
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Kenny Lischer
- Faculty of Engineering, University of Indonesia, Jakarta 16424, Indonesia
| | - Tri Rini Nuringtyas
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | | - Wisnu Ananta Kusuma
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Yekti Asih Purwestri
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Respati Tri Swasono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
7
|
Tasoulis T, Wang CR, Sumner J, Dunstan N, Pukala TL, Isbister GK. The Unusual Metalloprotease-Rich Venom Proteome of the Australian Elapid Snake Hoplocephalus stephensii. Toxins (Basel) 2022; 14:toxins14050314. [PMID: 35622563 PMCID: PMC9147224 DOI: 10.3390/toxins14050314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
The Australasian region is home to the most diverse elapid snake radiation on the planet (Hydrophiinae). Many of these snakes have evolved into unique ecomorphs compared to elapids on other continents; however, their venom compositions are poorly known. The Australian elapid Hoplocephalus stephensii (Stephen’s banded snake) is an arboreal snake with a unique morphology. Human envenoming results in venom-induced consumption coagulopathy, without neurotoxicity. Using transcriptomics and a multi-step fractionation method involving reverse-phase high-performance liquid chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis and bottom-up proteomics, we characterized the venom proteome of H. stephensii. 92% of the total protein component of the venom by weight was characterized, and included all dominant protein families and 4 secondary protein families. Eighteen toxins made up 76% of the venom, four previously characterized and 14 new toxins. The four dominant protein families made up 77% of the venom, including snake venom metalloprotease (SVMP; 36.7%; three identified toxins), phospholipase A2 (PLA2; 24.0%; five identified toxins), three-finger toxin (3FTx; 10.2%; two toxins) and snake venom serine protease (SVSP; 5.9%; one toxin; Hopsarin). Secondary protein families included L-amino acid oxidase (LAAO; 10.8%; one toxin), natriuretic peptide (NP; 0.8%; two toxins), cysteine-rich secretory protein (CRiSP; 1.7%; two toxins), c-type lectin (CTL; 1.1%; one toxin), and one minor protein family, nerve growth factor (NGF; 0.8%; one toxin). The venom composition of H. stephensii differs to other elapids, with a large proportion of SVMP and LAAO, and a relatively small amount of 3FTx. H. stephensii venom appeared to have less toxin diversity than other elapids, with only 18 toxins making up three-quarters of the venom.
Collapse
Affiliation(s)
- Theo Tasoulis
- Clinical Toxicology Research Group Newcastle, University of Newcastle, Newcastle, NSW 2308, Australia;
- Correspondence:
| | - C. Ruth Wang
- Department of Chemistry, Faculty of Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (C.R.W.); (T.L.P.)
| | - Joanna Sumner
- Genetic Resources, Museums Victoria, Carlton Gardens, Melbourne, VIC 5053, Australia;
| | | | - Tara L. Pukala
- Department of Chemistry, Faculty of Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (C.R.W.); (T.L.P.)
| | - Geoffrey K. Isbister
- Clinical Toxicology Research Group Newcastle, University of Newcastle, Newcastle, NSW 2308, Australia;
| |
Collapse
|
8
|
Zeitler L, Fiore A, Meyer C, Russier M, Zanella G, Suppmann S, Gargaro M, Sidhu SS, Seshagiri S, Ohnmacht C, Köcher T, Fallarino F, Linkermann A, Murray PJ. Anti-ferroptotic mechanism of IL4i1-mediated amino acid metabolism. eLife 2021; 10:64806. [PMID: 33646117 PMCID: PMC7946422 DOI: 10.7554/elife.64806] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Interleukin-4-induced-1 (IL4i1) is an amino acid oxidase secreted from immune cells. Recent observations have suggested that IL4i1 is pro-tumorigenic via unknown mechanisms. As IL4i1 has homologs in snake venoms (L-amino acid oxidases [LAAO]), we used comparative approaches to gain insight into the mechanistic basis of how conserved amino acid oxidases regulate cell fate and function. Using mammalian expressed recombinant proteins, we found that venom LAAO kills cells via hydrogen peroxide generation. By contrast, mammalian IL4i1 is non-cytotoxic and instead elicits a cell protective gene expression program inhibiting ferroptotic redox death by generating indole-3-pyruvate (I3P) from tryptophan. I3P suppresses ferroptosis by direct free radical scavenging and through the activation of an anti-oxidative gene expression program. Thus, the pro-tumor effects of IL4i1 are likely mediated by local anti-ferroptotic pathways via aromatic amino acid metabolism, arguing that an IL4i1 inhibitor may modulate tumor cell death pathways.
Collapse
Affiliation(s)
- Leonie Zeitler
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Claudia Meyer
- Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
| | - Marion Russier
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Gaia Zanella
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | - Sachdev S Sidhu
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | | | - Caspar Ohnmacht
- Helmholtz Zentrum München Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Thomas Köcher
- Vienna BioCenter Core Facilities GmbH, Vienna, Austria
| | | | | | - Peter J Murray
- Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
9
|
Kazandjian TD, Petras D, Robinson SD, van Thiel J, Greene HW, Arbuckle K, Barlow A, Carter DA, Wouters RM, Whiteley G, Wagstaff SC, Arias AS, Albulescu LO, Plettenberg Laing A, Hall C, Heap A, Penrhyn-Lowe S, McCabe CV, Ainsworth S, da Silva RR, Dorrestein PC, Richardson MK, Gutiérrez JM, Calvete JJ, Harrison RA, Vetter I, Undheim EAB, Wüster W, Casewell NR. Convergent evolution of pain-inducing defensive venom components in spitting cobras. Science 2021; 371:386-390. [PMID: 33479150 PMCID: PMC7610493 DOI: 10.1126/science.abb9303] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023]
Abstract
Convergent evolution provides insights into the selective drivers underlying evolutionary change. Snake venoms, with a direct genetic basis and clearly defined functional phenotype, provide a model system for exploring the repeated evolution of adaptations. While snakes use venom primarily for predation, and venom composition often reflects diet specificity, three lineages of cobras have independently evolved the ability to spit venom at adversaries. Using gene, protein, and functional analyses, we show that the three spitting lineages possess venoms characterized by an up-regulation of phospholipase A2 (PLA2) toxins, which potentiate the action of preexisting venom cytotoxins to activate mammalian sensory neurons and cause enhanced pain. These repeated independent changes provide a fascinating example of convergent evolution across multiple phenotypic levels driven by selection for defense.
Collapse
Affiliation(s)
- T D Kazandjian
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - D Petras
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - S D Robinson
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - J van Thiel
- Institute of Biology, University of Leiden, Leiden 2333BE, Netherlands
| | - H W Greene
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - K Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK
| | - A Barlow
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - D A Carter
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - R M Wouters
- Institute of Biology, University of Leiden, Leiden 2333BE, Netherlands
| | - G Whiteley
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - S C Wagstaff
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Research Computing Unit, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - A S Arias
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - L-O Albulescu
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - A Plettenberg Laing
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - C Hall
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - A Heap
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - S Penrhyn-Lowe
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - C V McCabe
- School of Earth Sciences, University of Bristol, Bristol BS8 1RL, UK
| | - S Ainsworth
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - R R da Silva
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Molecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - P C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - M K Richardson
- Institute of Biology, University of Leiden, Leiden 2333BE, Netherlands
| | - J M Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - J J Calvete
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas, 46010 Valencia, Spain
| | - R A Harrison
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - I Vetter
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - E A B Undheim
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Blindern, 0316 Oslo, Norway
| | - W Wüster
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - N R Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| |
Collapse
|
10
|
Factor XII-Deficient Chicken Plasma as a Useful Target for Screening of Pro- and Anticoagulant Animal Venom Toxins. Toxins (Basel) 2020; 12:toxins12020079. [PMID: 31979411 PMCID: PMC7076771 DOI: 10.3390/toxins12020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 11/24/2022] Open
Abstract
The sensitivity of vertebrate citrated plasma to pro- and anticoagulant venom or toxins occurs on a microscale level (micrograms). Although it improves responses to agonists, recalcification triggers a relatively fast thrombin formation process in mammalian plasma. As it has a natural factor XII deficiency, the recalcification time (RT) of chicken plasma (CP) is comparatively long [≥ 1800 seconds (s)]. Our objective was to compare the ability of bee venom phospholipase A2 (bvPLA2) to neutralize clot formation induced by an activator of coagulation (the aPTT clot) in recalcified human and chicken plasmas, through rotational thromboelastometry. The strategy used in this study was to find doses of bvPLA2 that were sufficient enough to prolong the clotting time (CT) of these activated plasmas to values within their normal RT range. The CT of CP was prolonged in a dose-dependent manner by bvPLA2, with 17 ± 2.8 ng (n = 6) being sufficient to displace the CT values of the activated samples to ≥ 1800 s. Only amounts up to 380 ± 41 ng (n = 6) of bvPLA2 induced the same effect in activated human plasma samples. In conclusion, the high sensitivity of CP to agonists and rotational thromboelastometry could be useful. For example, during screening procedures for assaying the effects of toxins in several stages of the coagulation pathway, such as clot initiation, formation, stability, strength, or dissolution.
Collapse
|
11
|
Travis ZD, Sherchan P, Hayes WK, Zhang JH. Surgically-induced brain injury: where are we now? Chin Neurosurg J 2019; 5:29. [PMID: 32922928 PMCID: PMC7398187 DOI: 10.1186/s41016-019-0181-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022] Open
Abstract
Neurosurgical procedures cause inevitable brain damage from the multitude of surgical manipulations utilized. Incisions, retraction, thermal damage from electrocautery, and intraoperative hemorrhage cause immediate and long-term brain injuries that are directly linked to neurosurgical operations, and these types of injuries, collectively, have been termed surgical brain injury (SBI). For the past decade, a model developed to study the underlying brain pathologies resulting from SBI has provided insight on cellular mechanisms and potential therapeutic targets. This model, as seen in a rat, mouse, and rabbit, mimics a neurosurgical operation and causes commonly encountered post-operative complications such as brain edema, neuroinflammation, and hemorrhage. In this review, we elaborate on SBI and its clinical impact, the SBI animal models and their clinical relevance, the importance of applying therapeutics before neurosurgical procedures (i.e., preconditioning), and the new direction of applying venom-derived proteins to attenuate SBI.
Collapse
Affiliation(s)
- Zachary D Travis
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - William K Hayes
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| |
Collapse
|
12
|
Guiding recombinant antivenom development by omics technologies. N Biotechnol 2018; 45:19-27. [DOI: 10.1016/j.nbt.2017.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 11/23/2022]
|
13
|
Antibody Cross-Reactivity in Antivenom Research. Toxins (Basel) 2018; 10:toxins10100393. [PMID: 30261694 PMCID: PMC6215175 DOI: 10.3390/toxins10100393] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 12/04/2022] Open
Abstract
Antivenom cross-reactivity has been investigated for decades to determine which antivenoms can be used to treat snakebite envenomings from different snake species. Traditionally, the methods used for analyzing cross-reactivity have been immunodiffusion, immunoblotting, enzyme-linked immunosorbent assay (ELISA), enzymatic assays, and in vivo neutralization studies. In recent years, new methods for determination of cross-reactivity have emerged, including surface plasmon resonance, antivenomics, and high-density peptide microarray technology. Antivenomics involves a top-down assessment of the toxin-binding capacities of antivenoms, whereas high-density peptide microarray technology may be harnessed to provide in-depth knowledge on which toxin epitopes are recognized by antivenoms. This review provides an overview of both the classical and new methods used to investigate antivenom cross-reactivity, the advantages and disadvantages of each method, and examples of studies using the methods. A special focus is given to antivenomics and high-density peptide microarray technology as these high-throughput methods have recently been introduced in this field and may enable more detailed assessments of antivenom cross-reactivity.
Collapse
|
14
|
A functional and thromboelastometric-based micromethod for assessing crotoxin anticoagulant activity and antiserum relative potency against Crotalus durissus terrificus venom. Toxicon 2018; 148:26-32. [PMID: 29654870 DOI: 10.1016/j.toxicon.2018.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 11/20/2022]
Abstract
The assessment of the capacity of antivenoms to neutralize the lethal activity of snake venoms still relies on traditional rodent in vivo lethality assay. ED50 and LD50 assays require large quantities of venoms and antivenoms, and besides leading to animal suffering. Therefore, in vitro tests should be introduced for assessing antivenom neutralizing capacity in intermediary steps of antivenom production. This task is facilitated when one key lethal toxin is identified. A good example is crotoxin, a β-neurotoxin phospholipase A2-like toxin that presents anticoagulant activity in vitro and is responsible for the lethality of venoms of Crotalus durissus snakes. By using rotational thromboelastometry, we reported recently one sensitive coagulation assay for assessing relative potency of the anti-bothropic serum in neutralizing procoagulant activity of Bothrops jararaca venom upon recalcified factor-XII-deficient chicken plasma samples (CPS). In this study, we stablished conditions for determining relative potency of four batches of the anti-crotalic serum (ACS) (antagonist) in inactivating crotoxin anticoagulant activity in CPS (target) simultaneously treated with one classical activator of coagulation (agonists). The correlation coefficient (r) between values related the ACS potency in inactivating both in vitro crotoxin anticoagulant activity and the in vivo lethality of whole venom (ED50) was 0.94 (p value < 0.05). In conclusion, slowness in spontaneous thrombin/fibrin generation even after recalcification elicit time lapse sufficient for elaboration of one dose-response curve to pro- or anti-coagulant agonists in CPS. We propose this methodology as an alternative and sensitive assay for assessing antivenom neutralizing ability in plasma of immunized horses as well as for in-process quality control.
Collapse
|
15
|
Analysis of snake venom composition and antimicrobial activity. Toxicon 2018; 150:151-167. [PMID: 29800609 DOI: 10.1016/j.toxicon.2018.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/24/2018] [Accepted: 05/21/2018] [Indexed: 02/02/2023]
Abstract
With the threat of a post-antibiotic era looming, the search for new and effective antibiotics from novel sources is imperative. Not only has crude snake venom been shown to be effective, but specific components within the venoms, such as Phospholipase A2s and l-amino acid oxidases have been isolated and demonstrated to be effective as well. Despite numerous studies being completed on snake venoms, there is a heavy bias towards utilizing the venoms from the highly toxic Elapidae and Viperidae species. Very few studies have been conducted on the less toxic, but taxonomically more diverse, Colubridae. Furthermore, an extensive review of the literature examining the efficacy and potential specificity of these venoms has not been completed. Therefore, the aims of this study were to elucidate any similarities in snake venoms as well as investigate the efficacy of snake venom antimicrobial properties towards morphologically and metabolically diverse microbial classes and the prevalence of snake species with antimicrobial properties within each snake family. The results indicate that snake venoms and their isolated components are powerful antimicrobial agents but vary in efficacy towards different microbial classes. Furthermore, due to similarities in venom composition, and limited preliminary studies, the less toxic Colubridae family may be a fruitful area of research to find novel antimicrobial agents that are less harmful to humans.
Collapse
|
16
|
Calvete JJ, Rodríguez Y, Quesada-Bernat S, Pla D. Toxin-resolved antivenomics-guided assessment of the immunorecognition landscape of antivenoms. Toxicon 2018; 148:107-122. [PMID: 29704534 DOI: 10.1016/j.toxicon.2018.04.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/26/2018] [Accepted: 04/22/2018] [Indexed: 01/23/2023]
Abstract
Snakebite envenoming represents a major issue in rural areas of tropical and subtropical regions across sub-Saharan Africa, South to Southeast Asia, Latin America and Oceania. Antivenoms constitute the only scientifically validated therapy for snakebite envenomings, provided they are safe, effective, affordable, accessible and administered appropriately. However, the lack of financial incentives in a technology that has remained relatively unchanged for more than a century, has contributed to some manufacturers leaving the market and others downscaling production or increasing the prices, leading to a decline in the availability and accessibility for these life-saving antidotes to millions of rural poor most at risk from snakebites in low income countries. The shortage of antivenoms can be significantly alleviated by optimizing the use of current antivenoms (through the assessment of their specific and paraspecific efficacy against the different medically relevant homologous and heterologous snake venoms) and by generating novel polyspecific antivenoms exhibiting broad clinical spectrum and wide geographic distribution range. Research on venoms has been continuously enhanced by advances in technology. Particularly, the last decade has witnessed the development of omics strategies for unravelling the toxin composition of venoms ("venomics") and to assess the immunorecognition profile of antivenoms ("antivenomics"). Here, we review recent developments and reflect on near future innovations that promise to revolutionize the mutually enlightening relationship between evolutionary and translational venomics.
Collapse
Affiliation(s)
- Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
| | - Yania Rodríguez
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Sarai Quesada-Bernat
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Davinia Pla
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
| |
Collapse
|
17
|
Xiong S, Huang C. Synergistic strategies of predominant toxins in snake venoms. Toxicol Lett 2018; 287:142-154. [PMID: 29428543 DOI: 10.1016/j.toxlet.2018.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/17/2018] [Accepted: 02/03/2018] [Indexed: 12/22/2022]
Abstract
Synergism is a significant phenomenon present in snake venoms that may be an evolving strategy to potentiate toxicities. Synergism exists between different toxins or toxin complexes in various snake venoms, with phospholipaseA2s (PLA2s) (toxins or subunits) the main enablers. The predominant toxins, snake venom PLA2s, metalloproteases (SVMPs), serine proteases (SVSPs) and three-finger toxins (3FTxs), play essential roles in synergistic processes. The hypothetical mechanisms of synergistic effect can be generalized under the effects of amplification and chaperoning. The Toxicity Score is among the few quantitative methods to assess synergism. Selection of toxins involved in synergistically enhanced toxicity as the targets are important for development of novel antivenoms or inhibitors.
Collapse
Affiliation(s)
- Shengwei Xiong
- College of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, China
| | - Chunhong Huang
- College of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
18
|
Goldenberg J, Cipriani V, Jackson TNW, Arbuckle K, Debono J, Dashevsky D, Panagides N, Ikonomopoulou MP, Koludarov I, Li B, Santana RC, Nouwens A, Jones A, Hay C, Dunstan N, Allen L, Bush B, Miles JJ, Ge L, Kwok HF, Fry BG. Proteomic and functional variation within black snake venoms (Elapidae: Pseudechis). Comp Biochem Physiol C Toxicol Pharmacol 2018; 205:53-61. [PMID: 29353015 DOI: 10.1016/j.cbpc.2018.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
Abstract
Pseudechis (black snakes) is an Australasian elapid snake genus that inhabits much of mainland Australia, with two representatives confined to Papua New Guinea. The present study is the first to analyse the venom of all 9 described Pseudechis species (plus one undescribed species) to investigate the evolution of venom composition and functional activity. Proteomic results demonstrated that the typical Pseudechis venom profile is dominated by phospholipase A2 toxins. Strong cytotoxicity was the dominant function for most species. P. porphyriacus, the most basal member of the genus, also exhibited the most divergent venom composition, being the only species with appreciable amounts of procoagulant toxins. The relatively high presence of factor Xa recovered in P. porphyriacus venom may be related to a predominantly amphibian diet. Results of this study provide important insights to guide future ecological and toxinological investigations.
Collapse
Affiliation(s)
- Jonathan Goldenberg
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, Ledeganckstraat 35, Ghent 9000, Belgium
| | - Vittoria Cipriani
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Timothy N W Jackson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Parkville, VIC 3000, Australia
| | - Kevin Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea SA2, 8PP, UK
| | - Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Daniel Dashevsky
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Nadya Panagides
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Maria P Ikonomopoulou
- QIMR Berghofer Institute of Medical Research, Herston, QLD 4049, Australia; School of Medicine, The University of Queensland, Herston, QLD 4002, Australia; Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid 28049, Spain
| | - Ivan Koludarov
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Bin Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Renan Castro Santana
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Alun Jones
- Institute for Molecular Biosciences, University of Queensland, Slt Lucia, QLD 4072, Australia
| | - Chris Hay
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Luke Allen
- Venom Supplies, Tanunda, SA 5352, Australia
| | - Brian Bush
- Snakes Harmful & Harmless, 9 Birch Place, Stoneville, WA 6081, Australia
| | - John J Miles
- QIMR Berghofer Institute of Medical Research, Herston, QLD 4049, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Lilin Ge
- School of Pharmacy, Nanjing University of Chinese Medicine, Qixia District, Nanjing, China
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
19
|
Patra A, Kalita B, Chanda A, Mukherjee AK. Proteomics and antivenomics of Echis carinatus carinatus venom: Correlation with pharmacological properties and pathophysiology of envenomation. Sci Rep 2017; 7:17119. [PMID: 29215036 PMCID: PMC5719401 DOI: 10.1038/s41598-017-17227-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 10/30/2017] [Indexed: 01/12/2023] Open
Abstract
The proteome composition of Echis carinatus carinatus venom (ECV) from India was studied for the first time by tandem mass spectrometry analysis. A total of 90, 47, and 22 distinct enzymatic and non-enzymatic proteins belonging to 15, 10, and 6 snake venom protein families were identified in ECV by searching the ESI-LC-MS/MS data against non-redundant protein databases of Viperidae (taxid 8689), Echis (taxid 8699) and Echis carinatus (taxid 40353), respectively. However, analysis of MS/MS data against the Transcriptome Shotgun Assembly sequences (87 entries) of conger E. coloratus identified only 14 proteins in ECV. Snake venom metalloproteases and snaclecs, the most abundant enzymatic and non-enzymatic proteins, respectively in ECV account for defibrinogenation and the strong in vitro pro-coagulant activity. Further, glutaminyl cyclase, aspartic protease, aminopeptidase, phospholipase B, vascular endothelial growth factor, and nerve growth factor were reported for the first time in ECV. The proteome composition of ECV was well correlated with its biochemical and pharmacological properties and clinical manifestations observed in Echis envenomed patients. Neutralization of enzymes and pharmacological properties of ECV, and immuno-cross-reactivity studies unequivocally point to the poor recognition of <20 kDa ECV proteins, such as PLA2, subunits of snaclec, and disintegrin by commercial polyvalent antivenom.
Collapse
Affiliation(s)
- Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Bhargab Kalita
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Abhishek Chanda
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India.
| |
Collapse
|
20
|
A Review and Database of Snake Venom Proteomes. Toxins (Basel) 2017; 9:toxins9090290. [PMID: 28927001 PMCID: PMC5618223 DOI: 10.3390/toxins9090290] [Citation(s) in RCA: 375] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Advances in the last decade combining transcriptomics with established proteomics methods have made possible rapid identification and quantification of protein families in snake venoms. Although over 100 studies have been published, the value of this information is increased when it is collated, allowing rapid assimilation and evaluation of evolutionary trends, geographical variation, and possible medical implications. This review brings together all compositional studies of snake venom proteomes published in the last decade. Compositional studies were identified for 132 snake species: 42 from 360 (12%) Elapidae (elapids), 20 from 101 (20%) Viperinae (true vipers), 65 from 239 (27%) Crotalinae (pit vipers), and five species of non-front-fanged snakes. Approximately 90% of their total venom composition consisted of eight protein families for elapids, 11 protein families for viperines and ten protein families for crotalines. There were four dominant protein families: phospholipase A2s (the most common across all front-fanged snakes), metalloproteases, serine proteases and three-finger toxins. There were six secondary protein families: cysteine-rich secretory proteins, l-amino acid oxidases, kunitz peptides, C-type lectins/snaclecs, disintegrins and natriuretic peptides. Elapid venoms contained mostly three-finger toxins and phospholipase A2s and viper venoms metalloproteases, phospholipase A2s and serine proteases. Although 63 protein families were identified, more than half were present in <5% of snake species studied and always in low abundance. The importance of these minor component proteins remains unknown.
Collapse
|
21
|
Calderón-Celis F, Cid-Barrio L, Encinar JR, Sanz-Medel A, Calvete JJ. Absolute venomics: Absolute quantification of intact venom proteins through elemental mass spectrometry. J Proteomics 2017; 164:33-42. [PMID: 28579478 DOI: 10.1016/j.jprot.2017.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
Abstract
We report the application of a hybrid element and molecular MS configuration for the parallel absolute quantification of μHPLC-separated intact sulfur-containing venom proteins, via ICP triple quadrupole MS and 32S/34S isotope dilution analysis, and identification by ESI-QToF-MS of the toxins of the medically important African black-necked spitting cobra, Naja nigricollis (Tanzania); New Guinea small-eyed snake, Micropechis ikaheka; and Papuan black snake, Pseudechis papuanus. The main advantage of this approach is that only one generic sulfur-containing standard is required to quantify each and all intact Cys- and/or Met-containing toxins of the venom proteome. The results of absolute quantification are in reasonably good agreement with previously reported relative quantification of the most abundant protein families. However, both datasets depart in the quantification of the minor ones, showing a tendency for this set of proteins to be underestimated in standard peptide-centric venomics approaches. The molecular identity, specific toxic activity, and concentration in the venom, are the pillars on which the toxicovenomics-aimed discovery of the most medically-relevant venom toxins, e.g. those that need to be neutralized by an effective therapeutic antivenom, should be based. The pioneering venom proteome-wide absolute quantification shown in this paper represents thus a significant advance towards this goal. The potential of ICP triple quadrupole MS in proteomics in general, and venomics in particular, is critically discussed. BIOLOGICAL SIGNIFICANCE Animal venoms provide excellent model systems for investigating interactions between predators and prey, and the molecular mechanisms that contribute to adaptive protein evolution. On the other hand, numerous cases of snake bites occur yearly by encounters of humans and snakes in their shared natural environment. Snakebite envenoming is a serious global public health issue that affects the most impoverished and geopolitically disadvantaged rural communities in many tropical and subtropical countries. Unveiling the temporal and spatial patterns of venom variability is of fundamental importance to understand the molecular basis of envenoming, a prerequisite for developing therapeutic strategies against snakebite envenoming. Research on venoms has been continuously enhanced by advances in technology. The combined application of next-generation transcriptomic and venomic workflows has demonstrated unparalleled capabilities for venom characterization in unprecedented detail. However, mass spectrometry is not inherently quantitative, and this analytical limitation has sparked the development of methods to determine absolute abundance of proteins in biological samples. Here we show the potential of a hybrid element and molecular MS configuration for the parallel ESI-QToF-MS and ICP-QQQ detection and absolute quantification of intact sulfur-containing venom proteins via 32S/34S isotope dilution analysis. This configuration has been applied to quantify the toxins of the medically important African snake Naja nigricollis (Tanzania), and the Papuan species Micropechis ikaheka and Pseudechis papuanus.
Collapse
Affiliation(s)
- Francisco Calderón-Celis
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Laura Cid-Barrio
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain.
| |
Collapse
|
22
|
Gutiérrez JM, Solano G, Pla D, Herrera M, Segura Á, Vargas M, Villalta M, Sánchez A, Sanz L, Lomonte B, León G, Calvete JJ. Preclinical Evaluation of the Efficacy of Antivenoms for Snakebite Envenoming: State-of-the-Art and Challenges Ahead. Toxins (Basel) 2017; 9:toxins9050163. [PMID: 28505100 PMCID: PMC5450711 DOI: 10.3390/toxins9050163] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/17/2017] [Accepted: 05/10/2017] [Indexed: 01/09/2023] Open
Abstract
Animal-derived antivenoms constitute the mainstay in the therapy of snakebite envenoming. The efficacy of antivenoms to neutralize toxicity of medically-relevant snake venoms has to be demonstrated through meticulous preclinical testing before their introduction into the clinical setting. The gold standard in the preclinical assessment and quality control of antivenoms is the neutralization of venom-induced lethality. In addition, depending on the pathophysiological profile of snake venoms, the neutralization of other toxic activities has to be evaluated, such as hemorrhagic, myotoxic, edema-forming, dermonecrotic, in vitro coagulant, and defibrinogenating effects. There is a need to develop laboratory assays to evaluate neutralization of other relevant venom activities. The concept of the 3Rs (Replacement, Reduction, and Refinement) in Toxinology is of utmost importance, and some advances have been performed in their implementation. A significant leap forward in the study of the immunological reactivity of antivenoms against venoms has been the development of “antivenomics”, which brings the analytical power of mass spectrometry to the evaluation of antivenoms. International partnerships are required to assess the preclinical efficacy of antivenoms against snake venoms in different regions of the world in order to have a detailed knowledge on the neutralizing profile of these immunotherapeutics.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Gabriela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Davinia Pla
- Instituto de Biomedicina de Valencia, CSIC, Valencia 46010, Spain.
| | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
- Sección de Química Analítica, Escuela de Química, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Andrés Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Libia Sanz
- Instituto de Biomedicina de Valencia, CSIC, Valencia 46010, Spain.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, CSIC, Valencia 46010, Spain.
| |
Collapse
|
23
|
Lomonte B, Calvete JJ. Strategies in 'snake venomics' aiming at an integrative view of compositional, functional, and immunological characteristics of venoms. J Venom Anim Toxins Incl Trop Dis 2017; 23:26. [PMID: 28465677 PMCID: PMC5408369 DOI: 10.1186/s40409-017-0117-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
This work offers a general overview on the evolving strategies for the proteomic analysis of snake venoms, and discusses how these may be combined through diverse experimental approaches with the goal of achieving a more comprehensive knowledge on the compositional, toxic, and immunological characteristics of venoms. Some recent developments in this field are summarized, highlighting how strategies have evolved from the mere cataloguing of venom components (proteomics/venomics), to a broader exploration of their immunological (antivenomics) and functional (toxicovenomics) characteristics. Altogether, the combination of these complementary strategies is helping to build a wider, more integrative view of the life-threatening protein cocktails produced by venomous snakes, responsible for thousands of deaths every year.
Collapse
Affiliation(s)
- Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501 Costa Rica
| | - Juan J Calvete
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| |
Collapse
|
24
|
Pla D, Sanz L, Whiteley G, Wagstaff SC, Harrison RA, Casewell NR, Calvete JJ. What killed Karl Patterson Schmidt? Combined venom gland transcriptomic, venomic and antivenomic analysis of the South African green tree snake (the boomslang), Dispholidus typus. Biochim Biophys Acta Gen Subj 2017; 1861:814-823. [PMID: 28130154 PMCID: PMC5335903 DOI: 10.1016/j.bbagen.2017.01.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/15/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022]
Abstract
Background Non-front-fanged colubroid snakes comprise about two-thirds of extant ophidian species. The medical significance of the majority of these snakes is unknown, but at least five species have caused life-threatening or fatal human envenomings. However, the venoms of only a small number of species have been explored. Methods A combined venomic and venom gland transcriptomic approach was employed to characterise of venom of Dispholidus typus (boomslang), the snake that caused the tragic death of Professor Karl Patterson Schmidt. The ability of CroFab™ antivenom to immunocapture boomslang venom proteins was investigated using antivenomics. Results Transcriptomic-assisted proteomic analysis identified venom proteins belonging to seven protein families: three-finger toxin (3FTx); phospholipase A2 (PLA2); cysteine-rich secretory proteins (CRISP); snake venom (SV) serine proteinase (SP); C-type lectin-like (CTL); SV metalloproteinases (SVMPs); and disintegrin-like/cysteine-rich (DC) proteolytic fragments. CroFab™ antivenom efficiently immunodepleted some boomslang SVMPs. Conclusions The present work is the first to address the overall proteomic profile of D. typus venom. This study allowed us to correlate the toxin composition with the toxic activities of the venom. The antivenomic analysis suggested that the antivenom available at the time of the unfortunate accident could have exhibited at least some immunoreactivity against the boomslang SVMPs responsible for the disseminated intravascular coagulation syndrome that caused K.P. Schmidt's fatal outcome. General significance This study may stimulate further research on other non-front-fanged colubroid snake venoms capable of causing life-threatening envenomings to humans, which in turn should contribute to prevent fatal human accidents, such as that unfortunately suffered by K.P. Schmidt. The venom proteome of Dispholidus typus (boomslang) is reported. Transcriptomic-assisted proteomic analysis identified venom proteins belonging to seven protein families. Boomslang venom proteome is dominated (75%) by snake venom PIII-metalloproteinases (PIII-SVMPs). CroFab™ antivenom efficiently immunodepleted some boomslang PIII-SVMPs.
Collapse
Affiliation(s)
- Davinia Pla
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Libia Sanz
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Gareth Whiteley
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Simon C Wagstaff
- Bioinformatics Unit, Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Robert A Harrison
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| | - Juan J Calvete
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain.
| |
Collapse
|