1
|
Qiu Z, Guo J, Chen B, Fang J. Psychosis of Epilepsy: An Update on Clinical Classification and Mechanism. Biomolecules 2025; 15:56. [PMID: 39858450 PMCID: PMC11762389 DOI: 10.3390/biom15010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/24/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Epilepsy is a prevalent chronic neurological disorder that can significantly impact patients' lives. The incidence and risk of psychosis in individuals with epilepsy are notably higher than in the general population, adversely affecting both the management and rehabilitation of epilepsy and further diminishing patients' quality of life. This review provides an overview of the classification and clinical features of psychosis of epilepsy, with the aim of offering insights and references for the clinical diagnosis and treatment of various types of psychosis of epilepsy. Additionally, we examine the potential pathophysiological mechanisms underlying the psychosis of epilepsy from three perspectives: neuroimaging, neurobiology, and genetics. The alterations in brain structure and function, neurotransmitters, neuroinflammatory mediators, and genetic factors discussed in this review may offer insights into the onset and progression of psychotic symptoms in epilepsy patients and are anticipated to inform the identification of novel therapeutic targets in the future.
Collapse
Affiliation(s)
| | | | | | - Jiajia Fang
- Department of Neurology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; (Z.Q.); (J.G.); (B.C.)
| |
Collapse
|
2
|
Walaszek M, Kachlik Z, Cubała WJ. Low-carbohydrate diet as a nutritional intervention in a major depression disorder: focus on relapse prevention. Nutr Neurosci 2024; 27:1185-1198. [PMID: 38245881 DOI: 10.1080/1028415x.2024.2303218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
OBJECTIVES Mood disorders are trending to be among the leading causes of years lived with disability. Despite multiple treatment options, around 30% patients with major depressive disorder (MDD) develop treatment resistant depression (TRD) and fail to respond to current pharmacological therapies. This study aimed to explore the potential benefits of nutritional treatment strategies, along with their molecular mechanisms of action, focusing especially on low-carbohydrate diet (LCHD), ketogenic diet (KD) and other strategies based on carbohydrates intake reduction. METHODS A comprehensive literature review was conducted to determine the impact of LCHD on alleviating depressive symptoms in patients with MDD, along with an explanation of its mode of action. RESULTS The study revealed significant impact of nutritional interventions based on restriction in carbohydrate intake such as LCHD, KD or sugar-sweetened beverages (SSB) exclusion on anxiety or depression symptoms reduction, mood improvement and lower risk of cognitive impairment or depression. The efficacy of these approaches is further substantiated by their underlying molecular mechanisms, mainly brain-derived neurotrophic factor (BDNF) which is a potential key target of sugar restriction diets in terms of neuroplasticity. DISCUSSION Healthcare professionals may consider implementing LCHD strategies for MDD and TRD patients to modify the disease process, maintain euthymia, and prevent depressive episode relapses. Ranging from the exclusion of SSB to the adherence to rigorous LCHD regimens, these nutritional approaches are safe, straightforward to implement, and may confer benefits for well-being and relapse prevention in this specific patient population.
Collapse
Affiliation(s)
- Michał Walaszek
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Zofia Kachlik
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Wiesław Jerzy Cubała
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
3
|
Chandra J. The potential role of the p75 receptor in schizophrenia: neuroimmunomodulation and making life or death decisions. Brain Behav Immun Health 2024; 38:100796. [PMID: 38813083 PMCID: PMC11134531 DOI: 10.1016/j.bbih.2024.100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024] Open
Abstract
The nerve growth factor receptor, also referred to as tumour necrosis factor II and the p75 neurotrophin receptor (p75), serves pleiotropic functions in both the peripheral and central nervous system, involving modulation of immune responses, cell survival and cell death signalling in response to multiple ligands including cytokines such as TNFα, as well as proneurotrophins and mature neurotrophins. Whilst in vitro and in vivo studies have characterised various responses of the p75 receptor in isolated conditions, it remains unclear whether the p75 receptor serves to provide neuroprotection or contributes to neurotoxicity in neuroinflammatory and neurotrophin-deficit conditions, such as those presenting in schizophrenia. The purpose of this mini-review is to characterise the potential signalling mechanisms of the p75 receptor respective to neuropathological changes prevailing in schizophrenia to ultimately propose how specific functions of the receptor may underlie altered levels of p75 in specific cell types. On the basis of this evaluation, this mini-review aims to promote avenues for future research in utilising the therapeutic potential of ligands for the p75 receptor in psychiatric disorders, whereby heightened inflammation and reductions in trophic signalling mechanisms coalesce in the brain, potentially resulting in tissue damage.
Collapse
Affiliation(s)
- Jessica Chandra
- Neuroscience Research Australia, University of New South Wales, Sydney, Australia
| |
Collapse
|
4
|
Sadighi M, Mai L, Xu Y, Boillot M, Targa G, Mottarlini F, Brambilla P, Gass P, Caffino L, Fumagalli F, Homberg JR. Chronic exposure to imipramine induces a switch from depression-like to mania-like behavior in female serotonin transporter knockout rats: Role of BDNF signaling in the infralimbic cortex. J Affect Disord 2024; 351:128-142. [PMID: 38280571 DOI: 10.1016/j.jad.2024.01.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Bipolar disorder (BD) is a highly burdensome psychiatric disorder characterized by alternating states of mania and depression. A major challenge in the clinic is the switch from depression to mania, which is often observed in female BD patients during antidepressant treatment such as imipramine. However, the underlying neural basis is unclear. METHODS To investigate the potential neuronal pathways, serotonin transporter knockout (SERT KO) rats, an experimental model of female BD patients, were subjected to a battery of behavioral tests under chronic treatment of the antidepressant imipramine. In addition, the expression of brain-derived neurotrophic factor (BDNF) and its downstream signaling was examined in the prefrontal cortex. RESULTS Chronic exposure to imipramine reduced anxiety and sociability and problem-solving capacity, and increased thigmotaxis and day/night activity in all animals, but specifically in female SERT KO rats, compared to female wild-type (WT) rats. Further, we found an activation of BDNF-TrkB-Akt pathway signaling in the infralimbic, but not prelimbic, cortex after chronic imipramine treatment in SERT KO, but not WT, rats. LIMITATIONS Repeated testing behaviors could potentially affect the results. Additionally, the imipramine induced changes in behavior and in the BDNF system were measured in separate animals. CONCLUSIONS Our study indicates that female SERT KO rats, which mirror the female BD patients with the 5-HTTLPR s-allele, are at higher risk of a switch to mania-like behaviors under imipramine treatment. Activation of the BDNF-TrkB-Akt pathway in the infralimbic cortex might contribute to this phenotype, but causal evidence remains to be provided.
Collapse
Affiliation(s)
- Mina Sadighi
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Lingling Mai
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Yifan Xu
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Morgane Boillot
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Deng L, Jiang H, Lin J, Xu D, Qi A, Guo Q, Li PP, Wang X, Liu JS, Fu X, Li P. Clock knockout in inhibitory neurons reduces predisposition to epilepsy and influences anxiety-like behaviors in mice. Neurobiol Dis 2024; 193:106457. [PMID: 38423191 DOI: 10.1016/j.nbd.2024.106457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024] Open
Abstract
Epilepsy is a brain disorder affecting up to 1 in 26 individuals. Despite its clinical importance, the molecular mechanisms of epileptogenesis are still far from clarified. Our previous study showed that disruption of Clock in excitatory neurons alters cortical circuits and leads to generation of focal epilepsy. In this study, a GAD-Cre;Clockflox/flox mouse line with conditional Clock gene knockout in inhibitory neurons was established. We observed that seizure latency was prolonged, the severity and mortality of pilocarpine-induced seizure were significantly reduced, and memory was improved in GAD-Cre;Clockflox/flox mice. We hypothesize that mice with CLOCK knockout in inhibitory neurons have increased threshold for seizure, opposite from mice with CLOCK knockout in excitatory neurons. Further investigation showed Clock knockout in inhibitory neurons upregulated the basal protein level of ARC, a synaptic plasticity-associated immediate-early gene product, likely through the BDNF-ERK pathway. Altered basal levels of ARC may play an important role in epileptogenesis after Clock deletion in inhibitory neurons. Although sEPSCs and intrinsic properties of layer 5 pyramidal neurons in the somatosensory cortex exhibit no changes, the spine density increased in apical dendrite of pyramidal neurons in CLOCK knockout group. Our results suggest an underlying mechanism by which the circadian protein CLOCK in inhibitory neurons participates in neuronal activity and regulates the predisposition to epilepsy.
Collapse
Affiliation(s)
- Lu Deng
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Hong Jiang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Jingjing Lin
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Di Xu
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Ailin Qi
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Qing Guo
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Ping-Ping Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xinshi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Judy S Liu
- Department of Neurology, Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, USA.
| | - Xiaoqin Fu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| | - Peijun Li
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, Shandong, China.
| |
Collapse
|
6
|
Bu Y, Yang S, Wang D, Hu S, Zhang Q, Wu Z, Yang C. Role of soluble epoxide hydrolase in pain and depression comorbidity. Neurobiol Dis 2024; 193:106443. [PMID: 38395315 DOI: 10.1016/j.nbd.2024.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
The coexistence of chronic pain and depression in clinical practice places a substantial social burden and profoundly impacts in patients. Although a clear correlation exists, the underlying mechanism of comorbidity between chronic pain and depression remains elusive. Research conducted in recent decades has uncovered that soluble epoxide hydrolase, a pivotal enzyme in the metabolism of polyunsaturated fatty acids, plays a crucial role in inflammation. Interestingly, this enzyme is intricately linked to the development of both pain and depression. With this understanding, this review aims to summarize the roles of soluble epoxide hydrolase in pain, depression, and their comorbidity. Simultaneously, we will also explore the underlying mechanisms, providing guidance for future research and drug development.
Collapse
Affiliation(s)
- Yuchen Bu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Di Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
7
|
Qian L, Huang S, Liu X, Jiang Y, Jiang Y, Hu Y, Yang Z. Morroniside improves the symptoms of post-stroke depression in mice through the BDNF signaling pathway mediated by MiR-409-3p. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155224. [PMID: 38006805 DOI: 10.1016/j.phymed.2023.155224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/22/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Post-stroke depression (PSD) is a common psychiatric symptom after a stroke. Morroniside, an iridoid glycoside found in Cornus officinalis, has garnered significant attention for its potential to alleviate symptoms associated with depression. PURPOSE This study aims to highlight the potential use of morroniside in the treatment of PSD and elucidate the underlying molecular mechanisms. METHODS To establish a reliable PSD model, male C57BL/6 mice were subjected to brief MCAO in conjunction with CUMS. Post-morroniside administration, neuronal viability, and hippocampal cell apoptosis were evaluated by Nissl staining and TUNEL detection, respectively. Depression-like behaviors were evaluated using SPT, TST, and FST. The Longa score and cylinder test were used to evaluate the effect of morroniside on motor function. Furthermore, to investigate the underlying molecular mechanisms, bioinformatic analysis and the dual luciferase assay were performed to investigate the MiR-409-3p-BDNF interaction. In addition, subsequent to MiR-409-3p overexpression via AAV virus, we assessed mRNA expression and protein levels of key components within the BDNF/TrkB signaling pathway using RT-qPCR, immunohistochemistry, and western blot analysis. RESULTS The observed decrease in apoptosis and amelioration of depression-like behaviors strongly indicate the potential of morroniside as a therapeutic agent for PSD. Furthermore, the upregulation of key proteins within the BDNF/TrkB signaling pathway in the cortex suggests that morroniside activates this pathway. Through bioinformatics analysis, MiR-409-3p was identified and found to bind to the BDNF gene, resulting in the inhibition of BDNF expression. Importantly, we demonstrate that morroniside mitigates this inhibitory effect of MiR-409-3p on BDNF, thereby facilitating the activation of the BDNF/TrkB signaling pathway. CONCLUSION The findings suggest that morroniside demonstrates the ability to improve PSD symptoms through the BDNF/TrkB signaling pathway mediated by MiR-409-3p. These results emphasize the importance of the BDNF signaling pathway in improving PSD symptoms and provide a possible mechanism for morroniside to treat PSD.
Collapse
Affiliation(s)
- Lihui Qian
- Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, 222004, Lianyungang, Jiangsu, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China
| | - Sirui Huang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China
| | - Xiaoli Liu
- Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, 222004, Lianyungang, Jiangsu, China
| | - Yongxia Jiang
- Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, 222004, Lianyungang, Jiangsu, China
| | - Yongqu Jiang
- Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, 222004, Lianyungang, Jiangsu, China
| | - Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China; Shen Chun-ti Nation-Famous Experts Studio for Traditional Chinese Medicine Inheritance, Changzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 213003, Changzhou, Jiangsu, China.
| | - Zhou Yang
- Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, 222004, Lianyungang, Jiangsu, China.
| |
Collapse
|
8
|
Zhang K, Zhai W, Ge X, Zhang X, Tian W, Zhai X. Targeting BDNF with acupuncture: A novel integrated strategy for diabetes and depression comorbidity. Heliyon 2023; 9:e22798. [PMID: 38125513 PMCID: PMC10731078 DOI: 10.1016/j.heliyon.2023.e22798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/12/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Diabetes and depression are common comorbid conditions that impose a substantial health burden. Acupuncture may effectively improve symptoms in patients with diabetes and depression, but the underlying mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) may play a vital role in the effects of acupuncture on diabetes and depression comorbidity. This review summarizes the potential role of BDNF in acupuncture for diabetes and depression comorbidity. BDNF appears to exert its effects via the BDNF-TrkB-ERK-CREB signaling pathway. BDNF levels are reduced in diabetes and depression, and acupuncture may increase BDNF expression, improving symptoms and glycemic control. High-quality research is needed to validate the efficacy of acupuncture for diabetes and depression comorbidity. Randomized controlled trials and mechanistic studies should investigate the BDNF pathway and other potential mechanisms. Improved understanding of the links between diabetes, depression and acupuncture may enable targeted and individualized patient care. Earlier diagnosis and management of diabetes and depression comorbidity should also be a priority.
Collapse
Affiliation(s)
- Kaiqi Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Weihang Zhai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaolei Ge
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Xiaoqian Zhang
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, 100038, China
| | - Wei Tian
- Gaoyang County Hospital, Hebei Province, Baoding 071599, China
| | - Xu Zhai
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| |
Collapse
|
9
|
Paolini M, Fortaner-Uyà L, Lorenzi C, Spadini S, Maccario M, Zanardi R, Colombo C, Poletti S, Benedetti F. Association between NTRK2 Polymorphisms, Hippocampal Volumes and Treatment Resistance in Major Depressive Disorder. Genes (Basel) 2023; 14:2037. [PMID: 38002980 PMCID: PMC10671548 DOI: 10.3390/genes14112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the increasing availability of antidepressant drugs, a high rate of patients with major depression (MDD) does not respond to pharmacological treatments. Brain-derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling is thought to influence antidepressant efficacy and hippocampal volumes, robust predictors of treatment resistance. We therefore hypothesized the possible role of BDNF and neurotrophic receptor tyrosine kinase 2 (NTRK2)-related polymorphisms in affecting both hippocampal volumes and treatment resistance in MDD. A total of 121 MDD inpatients underwent 3T structural MRI scanning and blood sampling to obtain genotype information. General linear models and binary logistic regressions were employed to test the effect of genetic variations related to BDNF and NTRK2 on bilateral hippocampal volumes and treatment resistance, respectively. Finally, the possible mediating role of hippocampal volumes on the relationship between genetic markers and treatment response was investigated. A significant association between one NTRK2 polymorphism with hippocampal volumes and antidepressant response was found, with significant indirect effects. Our results highlight a possible mechanistic explanation of antidepressant action, possibly contributing to the understanding of MDD pathophysiology.
Collapse
Affiliation(s)
- Marco Paolini
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Lidia Fortaner-Uyà
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cristina Lorenzi
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sara Spadini
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Melania Maccario
- Mood Disorders Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Raffaella Zanardi
- Mood Disorders Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cristina Colombo
- Mood Disorders Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
10
|
Limón-Morales O, Morales-Quintero K, Arteaga-Silva M, Molina-Jiménez T, Cerbón M, Bonilla-Jaime H. Alterations of learning and memory are accompanied by alterations in the expression of 5-HT receptors, glucocorticoid receptor and brain-derived neurotrophic factor in different brain regions of an animal model of depression generated by neonatally male treatment with clomipramine in male rats. Behav Brain Res 2023; 455:114664. [PMID: 37714467 DOI: 10.1016/j.bbr.2023.114664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Depressive illness has been associated with impaired cognitive processes accompanied by reduced neurotrophin levels, especially brain-derived neurotrophic factor (BDNF), and dysfunctions in the hypothalamic-pituitary-adrenal (HPA) axis. In addition, depression is characterized by a decreased functioning of the serotonergic system due to changes in the activity or expression of its receptors including, most significantly, 5-HT1A, 5-HT2A, and 5-HT3 in brain regions that regulate mood, emotions, and memory, such as the prefrontal cortex, hippocampus, and amygdala. In this regard, rats treated with clomipramine (CMI) in the neonatal stage show depression-like behaviors that persist into adulthood; hence, this constitutes an adequate model of depression for exploring various molecular aspects associated with the etiology of this disorder. This, study, then, was designed to analyze the long-term effects of early postnatal exposure to CMI on the expression of 5-HT1A, 5-HT2A, and 5-HT3 receptors, as well as BDNF and GR in the following brain regions: PFC, amygdala, hippocampus, and hypothalamus, which could be related to alterations in memory and learning, as evaluated using the novel object recognition (NOR) and Morris water maze (MWM). Expression of the 5-HT1A, 5-HT2A, and 5-HT3 receptors, BDNF, and the glucocorticoid receptor (GR) was assessed by RT-qPCR in the four aforementioned brain regions, all of which play important roles in the control of memory and mood. Findings show that neonatal treatment with CMI causes alterations in memory and learning, as indicated by alterations in the results of the MWM and NOR tests. Expression of the 5-HT1A receptor increased in the hippocampus, amygdala, and hypothalamus, but decreased in the PFC, while the 5-HT2A and BDNF receptors decreased their expression in the PFC, amygdala, and hippocampus. There was no change in the expression of the 5-HT3 receptor. In addition, expression of GR in the hippocampus and PFC was low, but increased in the hypothalamus. Taken together, these data show that neonatal CMI treatment produces permanent molecular changes in brain regions related to learning and memory that could contribute to explaining the behavioral alterations observed in this model.
Collapse
Affiliation(s)
- Ofelia Limón-Morales
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, C.P 09340 CDMX, Mexico; Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico.
| | - Kenia Morales-Quintero
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, C.P 09340 CDMX, Mexico
| | - Tania Molina-Jiménez
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/n, Zona Universitaria Xalapa, Veracruz, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, C.P 09340 CDMX, Mexico
| |
Collapse
|
11
|
Markov DD, Dolotov OV, Grivennikov IA. The Melanocortin System: A Promising Target for the Development of New Antidepressant Drugs. Int J Mol Sci 2023; 24:ijms24076664. [PMID: 37047638 PMCID: PMC10094937 DOI: 10.3390/ijms24076664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Major depression is one of the most prevalent mental disorders, causing significant human suffering and socioeconomic loss. Since conventional antidepressants are not sufficiently effective, there is an urgent need to develop new antidepressant medications. Despite marked advances in the neurobiology of depression, the etiology and pathophysiology of this disease remain poorly understood. Classical and newer hypotheses of depression suggest that an imbalance of brain monoamines, dysregulation of the hypothalamic-pituitary-adrenal axis (HPAA) and immune system, or impaired hippocampal neurogenesis and neurotrophic factors pathways are cause of depression. It is assumed that conventional antidepressants improve these closely related disturbances. The purpose of this review was to discuss the possibility of affecting these disturbances by targeting the melanocortin system, which includes adrenocorticotropic hormone-activated receptors and their peptide ligands (melanocortins). The melanocortin system is involved in the regulation of various processes in the brain and periphery. Melanocortins, including peripherally administered non-corticotropic agonists, regulate HPAA activity, exhibit anti-inflammatory effects, stimulate the levels of neurotrophic factors, and enhance hippocampal neurogenesis and neurotransmission. Therefore, endogenous melanocortins and their analogs are able to complexly affect the functioning of those body’s systems that are closely related to depression and the effects of antidepressants, thereby demonstrating a promising antidepressant potential.
Collapse
Affiliation(s)
- Dmitrii D. Markov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Oleg V. Dolotov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Igor A. Grivennikov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
12
|
Komatsuya K, Kikuchi N, Hirabayashi T, Kasahara K. The Regulatory Roles of Cerebellar Glycosphingolipid Microdomains/Lipid Rafts. Int J Mol Sci 2023; 24:ijms24065566. [PMID: 36982638 PMCID: PMC10058044 DOI: 10.3390/ijms24065566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Lipid rafts are dynamic assemblies of glycosphingolipids, sphingomyelin, cholesterol, and specific proteins which are stabilized into platforms involved in the regulation of vital cellular processes. Cerebellar lipid rafts are cell surface ganglioside microdomains for the attachment of GPI-anchored neural adhesion molecules and downstream signaling molecules such as Src-family kinases and heterotrimeric G proteins. In this review, we summarize our recent findings on signaling in ganglioside GD3 rafts of cerebellar granule cells and several findings by other groups on the roles of lipid rafts in the cerebellum. TAG-1, of the contactin group of immunoglobulin superfamily cell adhesion molecules, is a phosphacan receptor. Phosphacan regulates the radial migration signaling of cerebellar granule cells, via Src-family kinase Lyn, by binding to TAG-1 on ganglioside GD3 rafts. Chemokine SDF-1α, which induces the tangential migration of cerebellar granule cells, causes heterotrimeric G protein Goα translocation to GD3 rafts. Furthermore, the functional roles of cerebellar raft-binding proteins including cell adhesion molecule L1, heterotrimeric G protein Gsα, and L-type voltage-dependent calcium channels are discussed.
Collapse
|
13
|
Deyama S, Kaneda K. Role of neurotrophic and growth factors in the rapid and sustained antidepressant actions of ketamine. Neuropharmacology 2023; 224:109335. [PMID: 36403852 DOI: 10.1016/j.neuropharm.2022.109335] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
The neurotrophic hypothesis of depression proposes that reduced levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) contribute to neuronal atrophy or loss in the prefrontal cortex (PFC) and hippocampus and impaired hippocampal adult neurogenesis, which are associated with depressive symptoms. Chronic, but acute, treatment with typical monoaminergic antidepressants can at least partially reverse these deficits, in part via induction of BDNF and/or VEGF expression, consistent with their delayed onset of action. Ketamine, an N-methyl-d-aspartate receptor antagonist, exerts rapid and sustained antidepressant effects. Rodent studies have revealed that ketamine rapidly increases BDNF and VEGF release and/or expression in the PFC and hippocampus, which in turn increases the number and function of spine synapses in the PFC and hippocampal neurogenesis. Ketamine also induces the persistent release of insulin-like growth factor 1 (IGF-1) in the PFC of male mice. These neurotrophic effects of ketamine are associated with its rapid and sustained antidepressant effects. In this review, we first provide an overview of the neurotrophic hypothesis of depression and then discuss the role of BDNF, VEGF, IGF-1, and other growth factors (IGF-2 and transforming growth factor-β1) in the antidepressant effects of ketamine and its enantiomers. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| |
Collapse
|
14
|
Abstract
OBJECTIVE A better understanding of the genetic, molecular and cellular mechanisms of brain-derived neurotrophic factor (BDNF) and its association with neuroplasticity could play a pivotal role in finding future therapeutic targets for novel drugs in major depressive disorder (MDD). Because there are conflicting results regarding the exact role of BDNF polymorphisms in MDD still, we set out to systematically review the current evidence regarding BDNF-related mutations in MDD. METHODS We conducted a keyword-guided search of the PubMed and Embase databases, using 'BDNF' or 'brain-derived neurotrophic factor' and 'major depressive disorder' and 'single-nucleotide polymorphism'. We included all publications in line with our exclusion and inclusion criteria that focused on BDNF-related mutations in the context of MDD. RESULTS Our search yielded 427 records in total. After screening and application of our eligibility criteria, 71 studies were included in final analysis. According to present overall scientific data, there is a possibly major pathophysiological role for BDNF neurotrophic systems to play in MDD. However, on the one hand, the synthesis of evidence makes clear that likely no overall association of BDNF-related mutations with MDD exists. On the other hand, it can be appreciated that solidifying evidence emerged on specific significant sub-conditions and stratifications based on various demographic, clinico-phenotypical and neuromorphological variables. CONCLUSIONS Further research should elucidate specific BDNF-MDD associations based on demographic, clinico-phenotypical and neuromorphological variables. Furthermore, biomarker approaches, specifically combinatory ones, involving BDNF should be further investigated.
Collapse
|
15
|
Kouba BR, Torrá ACNC, Camargo A, Rodrigues ALS. The antidepressant-like effect elicited by vitamin D 3 is associated with BDNF/TrkB-related synaptic protein synthesis. Metab Brain Dis 2023; 38:601-611. [PMID: 36350480 DOI: 10.1007/s11011-022-01115-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Vitamin D3 (cholecalciferol) has been shown to exert antidepressant-like responses, but the role BDNF/TrkB-related synaptic plasticity in this effect remains to be established. Thus, this study investigated the time-course antidepressant-like response of vitamin D3 in female and male mice and the possible role of BDNF/TrkB signaling in this response. The repeated (7 and 21 days), but not acute (60 min), administration of vitamin D3 (2.5 μg/kg, p.o.) exerted an antidepressant-like effect in female and male mice subjected to the tail suspension test, without altering the basal locomotor activity in the open-field test. Notably, vitamin D3 caused a similar time-dependent antidepressant-like effect in male and female mice, suggesting that this behavioral response in the tail suspension test might not be affected by sex differences. Vitamin D3 administration for 21 days, but not for 7 days or 1 h, augmented BDNF levels in the hippocampus and prefrontal cortex of mice. No effects on phospho-CREB/CREB levels were detected in the hippocampus and prefrontal cortex after chronic vitamin D3 administration. Additionally, vitamin D3 increased TrkB, GluA1, and PSD-95 levels in the prefrontal cortex, but not in the hippocampus. Furthermore, an upregulation of synapsin level was observed in both brain regions after vitamin D3 administration. These findings reinforce and extend the notion that vitamin D3 is effective to produce antidepressant-like responses in male and female mice and provide novel evidence that this effect could be associated with BDNF/TrkB-related synaptic protein synthesis. Finally, vitamin D3 could be a feasible nutritional strategy for the management of depression.
Collapse
Affiliation(s)
- Bruna R Kouba
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Ana Clara N C Torrá
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
16
|
Schappi JM, Rasenick MM. Gα s, adenylyl cyclase, and their relationship to the diagnosis and treatment of depression. Front Pharmacol 2022; 13:1012778. [PMID: 36467104 PMCID: PMC9716287 DOI: 10.3389/fphar.2022.1012778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022] Open
Abstract
The relationship between depression, its etiology and therapy, and the cAMP signaling system have been studies for decades. This review will focus on cAMP, G proteins and adenylyl cyclase and depression or antidepressant action. Both human and animal studies are compared and contrasted. It is concluded that there is some synteny in the findings that cAMP signaling is attenuated in depression and that this is reversed by successful antidepressant therapy. The G protein that activates adenylyl cyclase, Gαs, appears to have diminished access to adenylyl cyclase in depression, and this is rectified by successful antidepressant treatment. Unfortunately, attempts to link specific isoforms of adenylyl cyclase to depression or antidepressant action suffer from discontinuity between human and animal studies.
Collapse
Affiliation(s)
- Jeffrey M. Schappi
- Departments of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States,Jesse Brown VAMC, Chicago, IL, United States,*Correspondence: Mark M. Rasenick, ; Jeffrey M. Schappi,
| | - Mark M. Rasenick
- Departments of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States,Jesse Brown VAMC, Chicago, IL, United States,Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States,Pax Neuroscience, Glenview, IL, United States,*Correspondence: Mark M. Rasenick, ; Jeffrey M. Schappi,
| |
Collapse
|
17
|
Autry AE. Function of brain-derived neurotrophic factor in the hypothalamus: Implications for depression pathology. Front Mol Neurosci 2022; 15:1028223. [PMID: 36466807 PMCID: PMC9708894 DOI: 10.3389/fnmol.2022.1028223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Depression is a prevalent mental health disorder and is the number one cause of disability worldwide. Risk factors for depression include genetic predisposition and stressful life events, and depression is twice as prevalent in women compared to men. Both clinical and preclinical research have implicated a critical role for brain-derived neurotrophic factor (BDNF) signaling in depression pathology as well as therapeutics. A preponderance of this research has focused on the role of BDNF and its primary receptor tropomyosin-related kinase B (TrkB) in the cortex and hippocampus. However, much of the symptomatology for depression is consistent with disruptions in functions of the hypothalamus including changes in weight, activity levels, responses to stress, and sociability. Here, we review evidence for the role of BDNF and TrkB signaling in the regions of the hypothalamus and their role in these autonomic and behavioral functions associated with depression. In addition, we identify areas for further research. Understanding the role of BDNF signaling in the hypothalamus will lead to valuable insights for sex- and stress-dependent neurobiological underpinnings of depression pathology.
Collapse
Affiliation(s)
- Anita E. Autry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
- *Correspondence: Anita E. Autry,
| |
Collapse
|
18
|
Casarotto P, Umemori J, Castrén E. BDNF receptor TrkB as the mediator of the antidepressant drug action. Front Mol Neurosci 2022; 15:1032224. [PMID: 36407765 PMCID: PMC9666396 DOI: 10.3389/fnmol.2022.1032224] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 08/25/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) signaling through its receptor TrkB has for a long time been recognized as a critical mediator of the antidepressant drug action, but BDNF signaling has been considered to be activated indirectly through the action of typical and rapid-acting antidepressants through monoamine transporters and glutamate NMDA receptors, respectively. However, recent findings demonstrate that both typical and the fast-acting antidepressants directly bind to TrkB and thereby allosterically potentiate BDNF signaling, suggesting that TrkB is the direct target for antidepressant drugs. Increased TrkB signaling particularly in the parvalbumin-expressing interneurons orchestrates iPlasticity, a state of juvenile-like enhanced plasticity in the adult brain. iPlasticity sensitizes neuronal networks to environmental influences, enabling rewiring of networks miswired by adverse experiences. These findings have dramatically changed the position of TrkB in the antidepressant effects and they propose a new end-to-end model of the antidepressant drug action. This model emphasizes the enabling role of antidepressant treatment and the active participation of the patient in the process of recovery from mood disorders.
Collapse
Affiliation(s)
- Plinio Casarotto
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juzoh Umemori
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- Gene and Cell Technology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Eero Castrén
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
He X, Song J, Gao H, Li Z, Wang X, Zeng Q, Xiao Y, Feng J, Zhou D, Wang G. Serum brain-derived neurotrophic factor and glial cell-derived neurotrophic factor in patients with first-episode depression at different ages. Int J Psychiatry Clin Pract 2022:1-9. [PMID: 35980319 DOI: 10.1080/13651501.2022.2107938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
OBJECTIVES We investigated the differences in serum brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) levels and clinical symptoms with first-episode depression at different ages. METHODS Ninety patients (15-60 years old) diagnosed with first-episode depression were enrolled as the study group, and they were divided into early-onset, adult and late-onset groups. The age-matched control groups were healthy volunteers. Serum BDNF and GDNF concentrations were determined by enzyme-linked immunosorbent assay (ELISA). GraphPad Prism 9 was used for t tests, one-way ANOVAs, chi-square tests, and correlation analyses. p < 0.05 indicated significant differences. RESULTS Serum BDNF and GDNF levels were lower in the whole study group and the three subgroups than in the healthy groups. Illness severity, anxiety and education were higher in the early-onset than late-onset patients. Serum BDNF levels were lower in the adult than late-onset patients. Serum BDNF levels were negatively correlated with patient CGI-SI scores. After the LSD test for multiple comparisons, the results were also significant. CONCLUSIONS Low serum BDNF and GDNF levels may be involved in the pathophysiology of first-episode depression, and there were differences in serum BDNF levels at different ages, verifying that serum BDNF and GDNF could serve as potential biomarkers of depression. KEY POINTSDepression is often conceptualised as a systemic illness with different biological mechanisms, but satisfactory explanations have not been provided thus far.The aim of our study was to investigate differences in serum BDNF and GDNF levels and their relationships with clinical symptoms in patients with first-episode depression at different ages.The potential of the neurotrophic factor hypothesis to advance the diagnosis and treatment of depression will be a very exciting new strategy for future research.
Collapse
Affiliation(s)
- Xianping He
- Growth, Development, and Mental Health of Children and Adolescence Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Health and Nutrition, Chongqing, China
| | - Jingyao Song
- Chongqing Changshou District Third People's Hospital, Chongqing, China
| | - He Gao
- Chongqing Changshou District Third People's Hospital, Chongqing, China
| | - Zhenyang Li
- Chongqing Changshou District Third People's Hospital, Chongqing, China
| | - Xiaochun Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Qiaoling Zeng
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yucen Xiao
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaxin Feng
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Dongdong Zhou
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Gaomao Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Shi LS, Ji CH, Tang WQ, Liu Y, Zhang W, Guan W. Hippocampal miR-124 Participates in the Pathogenesis of Depression via Regulating the Expression of BDNF in a Chronic Social Defeat Stress Model of Depression. Curr Neurovasc Res 2022; 19:210-218. [PMID: 35838216 DOI: 10.2174/1567202619666220713105306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE As one of the most prevalent psychiatric disorders, the exact pathogenesis of depression remains elusive. Therefore, there is an urgent need to identify novel antidepressants for effective treatment. MicroRNA-124 (miR-124), the most abundant miRNA in brain tissue, plays a key effect on adult neurogenesis and neuronal differentiation. However, the mechanism of miR-124 in depression has not been clarified so far. The aim of this study is to provide broad insight into the mechanisms underlying depression. METHODS In the study, we used the forced swim test (FST), the tail suspension test (TST), and a Chronic Social Defeat Stress (CSDS) mice model of depression. Quantitative real-time reverse transcription PCR (qRT-PCR), western blotting, immunofluorescence and virus-mediated gene transfer were used together. The level of plasma corticosterone in mice was analyzed by Enzyme Linked Immunosorbent Assay (ELISA). RESULTS It was found that CSDS robustly increased the level of miR-124 in the hippocampus. Genetic knockdown of hippocampal miR-124 produced significant antidepressant-like effects in the CSDS model of depression. Furthermore, AAV-siR-124-EGFP treatment increased the level of plasma corticosterone in CSDS-induced mice. Moreover, it was found that the antidepressant-like effects induced by miR-124 inhibition required the hippocampal BDNF-TrkB system. CONCLUSION Hippocampal miR-124 participated in the pathogenesis of depression by regulating BDNF biosynthesis and was a feasible antidepressant target.
Collapse
Affiliation(s)
- Lin-Sheng Shi
- Department of Cardiology, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu, China
| | - Chun-Hui Ji
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Wen-Qian Tang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Yue Liu
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Wei Zhang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| |
Collapse
|
21
|
Zhao XP, Li H, Dai RP. Neuroimmune crosstalk through brain-derived neurotrophic factor and its precursor pro-BDNF: New insights into mood disorders. World J Psychiatry 2022; 12:379-392. [PMID: 35433323 PMCID: PMC8968497 DOI: 10.5498/wjp.v12.i3.379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/22/2021] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Mood disorders are the most common mental disorders, affecting approximately 350 million people globally. Recent studies have shown that neuroimmune interaction regulates mood disorders. Brain-derived neurotrophic factor (BDNF) and its precursor pro-BDNF, are involved in the neuroimmune crosstalk during the development of mood disorders. BDNF is implicated in the pathophysiology of psychiatric and neurological disorders especially in antidepressant pharmacotherapy. In this review, we describe the functions of BDNF/pro-BDNF signaling in the central nervous system in the context of mood disorders. In addition, we summarize the developments for BDNF and pro-BDNF functions in mood disorders. This review aims to provide new insights into the impact of neuroimmune interaction on mood disorders and reveal a new basis for further development of diagnostic targets and mood disorders.
Collapse
Affiliation(s)
- Xiao-Pei Zhao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Hui Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
22
|
Tomoda T, Sumitomo A, Shukla R, Hirota-Tsuyada Y, Miyachi H, Oh H, French L, Sibille E. BDNF controls GABA AR trafficking and related cognitive processes via autophagic regulation of p62. Neuropsychopharmacology 2022; 47:553-563. [PMID: 34341497 PMCID: PMC8674239 DOI: 10.1038/s41386-021-01116-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023]
Abstract
Reduced brain-derived neurotrophic factor (BDNF) and gamma-aminobutyric acid (GABA) neurotransmission co-occur in brain conditions (depression, schizophrenia and age-related disorders) and are associated with symptomatology. Rodent studies show they are causally linked, suggesting the presence of biological pathways mediating this link. Here we first show that reduced BDNF and GABA also co-occur with attenuated autophagy in human depression. Using mice, we then show that reducing Bdnf levels (Bdnf+/-) leads to upregulated sequestosome-1/p62, a key autophagy-associated adaptor protein, whose levels are inversely correlated with autophagic activity. Reduced Bdnf levels also caused reduced surface presentation of α5 subunit-containing GABAA receptor (α5-GABAAR) in prefrontal cortex (PFC) pyramidal neurons. Reducing p62 gene dosage restored α5-GABAAR surface expression and rescued PFC-relevant behavioral deficits of Bdnf+/- mice, including cognitive inflexibility and reduced sensorimotor gating. Increasing p62 levels was sufficient to recreate the molecular and behavioral profiles of Bdnf+/- mice. Collectively, the data reveal a novel mechanism by which deficient BDNF leads to targeted reduced GABAergic signaling through autophagic dysregulation of p62, potentially underlying cognitive impairment across brain conditions.
Collapse
Affiliation(s)
- Toshifumi Tomoda
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada. .,Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Akiko Sumitomo
- grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada ,grid.258799.80000 0004 0372 2033Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Rammohan Shukla
- grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada ,grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo, Toledo, OH USA
| | - Yuki Hirota-Tsuyada
- grid.258799.80000 0004 0372 2033Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hitoshi Miyachi
- grid.258799.80000 0004 0372 2033Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Hyunjung Oh
- grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada
| | - Leon French
- grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada. .,Department of Psychiatry, University of Toronto, Toronto, ON, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Li Y, Cao J, Hao Z, Liu A, Li X, Li H, Xia N, Wang Z, Zhang Z, Bai J, Zhang H. Aspirin ameliorates the cognition impairment in mice following benzo[a]pyrene treatment via down-regulating BDNF IV methylation. Neurotoxicology 2021; 89:20-30. [PMID: 34979192 DOI: 10.1016/j.neuro.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022]
Abstract
Benzo[a]pyrene (B[a]P) is neurotoxic, however, the mechanisms remain unclear and there is no effective prevention. Available evidence suggests a role of DNA methylation in B[a]P-induced neurotoxicity. This study investigated the brain-derived neurotrophic factor (BDNF) IV methylation in the development of and aspirin intervention against B[a]P's neurotoxicity in mice and HT22 cells. Mice were intraperitoneally treated with solvent or B[a]P (0.5, 2, and 10 mg/kg b.w.) for 60 days. An intervention group was treated simultaneously with B[a]P (10 mg/kg, i.p.) and aspirin (10 mg/kg, daily water-drinking). The treated mice showed a dose-dependent cognitive and behavioral impairment, and cerebral cell apoptosis, which were alleviated by aspirin co-treatment. Following B[a]P treatment, DNA methyltransferase (DNMTs) and BDNF IV hypermethylation were increased in the cerebral cortex of mice compared to controls, while significant decreases were found in BDNF IV and BDNF mRNA, and BDNF protein levels. Aspirin co-treatment rescued DNMTs activation and BDNF IV hypermethylation, and mitigated the recession in BDNF mRNA and protein induced by B[a]P treatment. Similar results were shown in HT22 cells. These findings reveal a critical role of BDNF IV methylation in the neurotoxicity of B[a]P, and demonstrate a promising prevention of aspirin against B[a]P-induced cognitive impairment via inhibiting BDNF IV hypermethylation.
Collapse
Affiliation(s)
- Yangyang Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jingjing Cao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zhongsuo Hao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Aixiang Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xin Li
- Center of Disease Control and Prevention, Taiyuan Iron and Steel Company, Taiyuan, 030003, Shanxi, China
| | - Huan Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Na Xia
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zemin Wang
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental Health, Indiana University School of Public Health, 1025 E 7th St, Bloomington, IN, 47405, USA
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, 030001, Shanxi, China; Key Laboratory of Cellular Physiology, Shanxi Province, Taiyuan, 030001, Shanxi, China; Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
24
|
Castrén E, Monteggia LM. Brain-Derived Neurotrophic Factor Signaling in Depression and Antidepressant Action. Biol Psychiatry 2021; 90:128-136. [PMID: 34053675 DOI: 10.1016/j.biopsych.2021.05.008] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022]
Abstract
Neurotrophic factors, particularly BDNF (brain-derived neurotrophic factor), have been associated with depression and antidepressant drug action. A variety of preclinical and clinical studies have implicated impaired BDNF signaling through its receptor TrkB (neurotrophic receptor tyrosine kinase 2) in the pathophysiology of mood disorders, but many of the initial findings have not been fully supported by more recent meta-analyses, and more both basic and clinical research is needed. In contrast, increased expression and signaling of BDNF has been repeatedly implicated in the mechanisms of both typical and rapid-acting antidepressant drugs, and recent findings have started to elucidate the mechanisms through which antidepressants regulate BDNF signaling. BDNF is a critical regulator of various types of neuronal plasticities in the brain, and plasticity has increasingly been connected with antidepressant action. Although some equivocal data exist, the hypothesis of a connection between neurotrophic factors and neuronal plasticity with mood disorders and antidepressant action has recently been further strengthened by converging evidence from a variety of more recent data reviewed here.
Collapse
Affiliation(s)
- Eero Castrén
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Lisa M Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
25
|
Jabbari-Zadeh F, Cao B, Stanley JA, Liu Y, Wu MJ, Tannous J, Lopez M, Sanches M, Mwangi B, Zunta-Soares GB, Soares JC. Evidence of altered metabolism of cellular membranes in bipolar disorder comorbid with post-traumatic stress disorder. J Affect Disord 2021; 289:81-87. [PMID: 33951550 DOI: 10.1016/j.jad.2021.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
In proton magnetic resonance spectroscopy (¹H MRS) studies, aberrant levels of choline-containing compounds that include glycerophosphocholine plus phosphocholine (GPC+PC), can signify alterations in the metabolism of cellular membrane phospholipids (MPLs) from a healthy baseline. In a recent ¹H MRS study, we reported increased GPC+PC in cortical and subcortical areas of adult patients with bipolar disorder I (BP-I). Post-traumatic stress disorder (PTSD) can worsen the severity of BP-I, but it is unclear whether the effect of a PTSD comorbidity in BP-I is associated with altered MPL metabolism. The purpose of this study was to re-investigate the ¹H MRS data to determine whether the regional extent of elevated GPC+PC was greater in BP-I patients with PTSD (BP-I/wPTSD) compared to BP-I without comorbid PTSD (BP-I/woPTSD) patients and healthy controls. GPC+PC levels from four brain areas [the anterior cingulate cortex (ACC), anterior-dorsal ACC, caudate, and putamen] were measured in 14 BP-I/wPTSD, 36 BP-I/woPTSD, and 44 healthy controls using a multi-voxel 1H MRS approach on a 3 Tesla system with high spatial resolution and absolute quantification. Results show a significant increase in GPC+PC levels from the caudate and putamen of BP-I/wPTSD patients compared to healthy controls (P<0.05) and in the putamen compared to BP-I/woPTSD patients (P<0.05). These findings are consistent with evidence of elevated degradation of MPLs in the neuropil that is more pronounced in BP-I patients with comorbid PTSD.
Collapse
Affiliation(s)
- Faramarz Jabbari-Zadeh
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Canada
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Canada.
| | - Jeffrey A Stanley
- Department of Psychiatry & Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Yang Liu
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Canada
| | - Mon-Ju Wu
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, TX 77054, USA
| | - Jonika Tannous
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, TX 77054, USA
| | - Mizuki Lopez
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Canada
| | - Marsal Sanches
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, TX 77054, USA
| | - Benson Mwangi
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, TX 77054, USA
| | - Giovana B Zunta-Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, TX 77054, USA
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, TX 77054, USA
| |
Collapse
|
26
|
Sales AJ, Maciel IS, Suavinha ACDR, Joca SRL. Modulation of DNA Methylation and Gene Expression in Rodent Cortical Neuroplasticity Pathways Exerts Rapid Antidepressant-Like Effects. Mol Neurobiol 2021; 58:777-794. [PMID: 33025509 DOI: 10.1007/s12035-020-02145-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Stress increases DNA methylation, primarily a suppressive epigenetic mechanism catalyzed by DNA methyltransferases (DNMT), and decreases the expression of genes involved in neuronal plasticity and mood regulation. Despite chronic antidepressant treatment decreases stress-induced DNA methylation, it is not known whether inhibition of DNMT would convey rapid antidepressant-like effects. AIM This work tested such a hypothesis and evaluated whether a behavioral effect induced by DNMT inhibitors (DNMTi) corresponds with changes in DNA methylation and transcript levels in genes consistently associated with the neurobiology of depression and synaptic plasticity (BDNF, TrkB, 5-HT1A, NMDA, and AMPA). METHODS Male Wistar rats received intraperitoneal (i.p.) injection of two pharmacologically different DNMTi (5-AzaD 0.2 and 0.6 mg/kg or RG108 0.6 mg/kg) or vehicle (1 ml/kg), 1 h or 7 days before the learned helplessness test (LH). DNA methylation in target genes and the correspondent transcript levels were measured in the hippocampus (HPC) and prefrontal cortex (PFC) using meDIP-qPCR. In parallel separate groups, the antidepressant-like effect of 5-AzaD and RG108 was investigated in the forced swimming test (FST). The involvement of cortical BDNF-TrkB-mTOR pathways was assessed by intra-ventral medial PFC (vmPFC) injections of rapamycin (mTOR inhibitor), K252a (TrkB receptor antagonist), or vehicle (0.2 μl/side). RESULTS We found that both 5-AzaD and RG108 acutely and 7 days before the test decreased escape failures in the LH. LH stress increased DNA methylation and decreased transcript levels of BDNF IV and TrkB in the PFC, effects that were not significantly attenuated by RG108 treatment. The systemic administration of 5-AzaD (0.2 mg/kg) and RG108 (0.2 mg/kg) induced an antidepressant-like effect in FST, which was, however, attenuated by TrkB and mTOR inhibition into the vmPFC. CONCLUSION These findings suggest that acute inhibition of stress-induced DNA methylation promotes rapid and sustained antidepressant effects associated with increased BDNF-TrkB-mTOR signaling in the PFC.
Collapse
Affiliation(s)
- Amanda J Sales
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
- FMRP-USP, Av Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| | - Izaque S Maciel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Angélica C D R Suavinha
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sâmia R L Joca
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- FCFRP-USP, Av Café, sn, Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
27
|
Endocannabinoids and aging-Inflammation, neuroplasticity, mood and pain. VITAMINS AND HORMONES 2021; 115:129-172. [PMID: 33706946 DOI: 10.1016/bs.vh.2020.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aging is associated with changes in hormones, slowing of metabolism, diminished physiological processes, chronic inflammation and high exposure to oxidative stress factors, generally described as the biological cost of living. Lifestyle interventions of diet and exercise can improve the quality of life during aging and lower diet-related chronic disease. The endocannabinoid system (ECS) has important effects on systemic metabolism and physiological systems, including the central and peripheral nervous systems. Exercise can reduce the loss of muscle mass and improve strength, and increase the levels of endocannabinoids (eCB) in brain and blood. Although the ECS exerts controls on multiple systems throughout life it affords benefits to natural aging. The eCB are synthesized from polyunsaturated fatty acids (PUFA) and the primary ones are produced from arachidonic acid (n-6 PUFA) and others from the n-3 PUFA, namely eicosapentaenoic and docosahexaenoic acids. The eCB ligands bind to their receptors, CB1 and CB2, with effects on appetite stimulation, metabolism, immune functions, and brain physiology and neuroplasticity. Dietary families of PUFA are a primary factor that can influence the types and levels of eCB and as a consequence, the downstream actions when the ligands bind to their receptors. Furthermore, the association of eCB with the synthesis of oxylipins (OxL) is a connection between the physiological actions of eCB and the lipid derived immunological OxL mediators of inflammation. OxL are ubiquitous and influence neuroinflammation and inflammatory processes. The emerging actions of eCB on neuroplasticity, well-being and pain are important to aging. Herein, we present information about the ECS and its components, how exercise and diet affects specific eCB, their role in neuroplasticity, neuroinflammation, pain, mood, and relationship to OxL. Poor nutrition status and low nutrient intakes observed with many elderly are reasons to examine the role of dietary PUFA actions on the ECS to improve health.
Collapse
|
28
|
Brattico E, Bonetti L, Ferretti G, Vuust P, Matrone C. Putting Cells in Motion: Advantages of Endogenous Boosting of BDNF Production. Cells 2021; 10:cells10010183. [PMID: 33477654 PMCID: PMC7831493 DOI: 10.3390/cells10010183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
Motor exercise, such as sport or musical activities, helps with a plethora of diseases by modulating brain functions in neocortical and subcortical regions, resulting in behavioural changes related to mood regulation, well-being, memory, and even cognitive preservation in aging and neurodegenerative diseases. Although evidence is accumulating on the systemic neural mechanisms mediating these brain effects, the specific mechanisms by which exercise acts upon the cellular level are still under investigation. This is particularly the case for music training, a much less studied instance of motor exercise than sport. With regards to sport, consistent neurobiological research has focused on the brain-derived neurotrophic factor (BDNF), an essential player in the central nervous system. BDNF stimulates the growth and differentiation of neurons and synapses. It thrives in the hippocampus, the cortex, and the basal forebrain, which are the areas vital for memory, learning, and higher cognitive functions. Animal models and neurocognitive experiments on human athletes converge in demonstrating that physical exercise reliably boosts BDNF levels. In this review, we highlight comparable early findings obtained with animal models and elderly humans exposed to musical stimulation, showing how perceptual exposure to music might affect BDNF release, similar to what has been observed for sport. We subsequently propose a novel hypothesis that relates the neuroplastic changes in the human brains after musical training to genetically- and exercise-driven BDNF levels.
Collapse
Affiliation(s)
- Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
- Department of Education, Psychology, Communication, University of Bari “Aldo Moro”, 70121 Bari, Italy
- Correspondence: (E.B.); (C.M.)
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
| | - Gabriella Ferretti
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
| | - Carmela Matrone
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
- Correspondence: (E.B.); (C.M.)
| |
Collapse
|
29
|
Mustard Leaf Extract Suppresses Psychological Stress in Chronic Restraint Stress-Subjected Mice by Regulation of Stress Hormone, Neurotransmitters, and Apoptosis. Nutrients 2020; 12:nu12123640. [PMID: 33256231 PMCID: PMC7760211 DOI: 10.3390/nu12123640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022] Open
Abstract
Mustard leaf (Brassica juncea var. crispifolia L. H. Bailey) has been reported to have psychological properties such as anti-depressant activities. However, studies on chronic stress and depression caused by restraint have not been conducted. Therefore, this study aimed to evaluate the effects of a mustard leaf (ML) extract on chronic restraint stress (CRS) in mice. Male mice were subjected to a CRS protocol for a period of four weeks to induce stress. The results showed that the ML extract (100 and 500 mg/kg/perorally administered for four weeks) significantly decreased corticosterone levels and increased neurotransmitters levels in stressed mice. Apoptosis by CRS exposure was induced by Bcl-2 and Bax expression regulation and was suppressed by reducing caspase-3 and poly (ADP-ribose) polymerase expression after treatment with the ML extract. Our results confirmed that apoptosis was regulated by increased expression of brain-derived neurotrophic factor (BDNF). Additionally, cytokine levels were regulated by the ML extract. In conclusion, our results showed that the ML extract relieved stress effects by regulating hormones and neurotransmitters in CRS mice, BDNF expression, and apoptosis in the brain. Thus, it can be suggested that the studied ML extract is an agonist that can help relieve stress and depression.
Collapse
|
30
|
Brivio P, Sbrini G, Corsini G, Paladini MS, Racagni G, Molteni R, Calabrese F. Chronic Restraint Stress Inhibits the Response to a Second Hit in Adult Male Rats: A Role for BDNF Signaling. Int J Mol Sci 2020; 21:ijms21176261. [PMID: 32872446 PMCID: PMC7503736 DOI: 10.3390/ijms21176261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Depression is a recurrent disorder, with about 50% of patients experiencing relapse. Exposure to stressful events may have an adverse impact on the long-term course of the disorder and may alter the response to a subsequent stressor. Indeed, not all the systems impaired by stress may normalize during symptoms remission, facilitating the relapse to the pathology. Hence, we investigated the long-lasting effects of chronic restraint stress (CRS) and its influence on the modifications induced by the exposure to a second hit on brain-derived neurotrophic factor (BDNF) signaling in the prefrontal cortex (PFC). We exposed adult male Sprague Dawley rats to 4 weeks of CRS, we left them undisturbed for the subsequent 3 weeks, and then we exposed animals to one hour of acute restraint stress (ARS). We found that CRS influenced the release of corticosterone induced by ARS and inhibited the ability of ARS to activate mature BDNF, its receptor Tropomyosin receptor kinase B (TRKB), and their associated intracellular cascades: the TRKB-PI3K-AKT), the MEK-MAPK/ERK, and the Phospholipase C γ (PLCγ) pathways, positively modulated by ARS in non-stressed animals. These results suggest that CRS induces protracted and detrimental consequences that interfere with the ability of PFC to cope with a challenging situation.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università deglI Studi di Milano, 20133 Milan, Italy; (P.B.); (G.S.); (G.C.); (G.R.)
| | - Giulia Sbrini
- Department of Pharmacological and Biomolecular Sciences, Università deglI Studi di Milano, 20133 Milan, Italy; (P.B.); (G.S.); (G.C.); (G.R.)
| | - Giulia Corsini
- Department of Pharmacological and Biomolecular Sciences, Università deglI Studi di Milano, 20133 Milan, Italy; (P.B.); (G.S.); (G.C.); (G.R.)
| | - Maria Serena Paladini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy; (M.S.P.); (R.M.)
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular Sciences, Università deglI Studi di Milano, 20133 Milan, Italy; (P.B.); (G.S.); (G.C.); (G.R.)
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy; (M.S.P.); (R.M.)
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università deglI Studi di Milano, 20133 Milan, Italy; (P.B.); (G.S.); (G.C.); (G.R.)
- Correspondence:
| |
Collapse
|
31
|
Anderzhanova E, Hafner K, Genewsky AJ, Soliman A, Pöhlmann ML, Schmidt MV, Blum R, Wotjak CT, Gassen NC. The stress susceptibility factor FKBP51 controls S-ketamine-evoked release of mBDNF in the prefrontal cortex of mice. Neurobiol Stress 2020; 13:100239. [PMID: 33344695 PMCID: PMC7739030 DOI: 10.1016/j.ynstr.2020.100239] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022] Open
Abstract
We report here the involvement of the stress-responsive glucocorticoid receptor co-chaperone FKBP51 in the mechanism of in vivo secretion of mature BDNF (mBDNF). We used a novel method combining brain microdialysis with a capillary electrophoresis-based immunoassay, to examine mBDNF secretion in the medial prefrontal cortex (mPFC) in vivo in freely moving mice. By combining optogenetic, neurochemical (KCl-evoked depolarization), and transgenic (conditional BDNF knockout mice) means, we have shown that the increase in extracellular mBDNF in vivo is determined by neuronal activity. Withal, mBDNF secretion in the mPFC of mice was stimulated by a systemic administration of S-ketamine (10 or 50 mg/kg) or S-hydroxynorketamine (10 mg/kg). KCl- and S-ketamine-evoked mBDNF secretion was strongly dependent on the expression of FKBP51. Moreover, the inability of S-ketamine to evoke a transient secretion in mBDNF in the mPFC in FKBP51- knockout mice matched the lack of antidepressant-like effect of S-ketamine in the tail suspension test. Our data reveal a critical role of FKBP51 in mBDNF secretion and suggest the involvement of mBDNF in the realization of immediate stress-coping behavior induced by acute S-ketamine.
Collapse
Affiliation(s)
- Elmira Anderzhanova
- Neurohomeostatis Research Group, Clinic of Psychiatry and Psychotherapy University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinst. 2-10, 80804, Munich, Germany.,BAU International University, Fridon Khalvashi st. 237, Batumi, 6010, Georgia
| | - Kathrin Hafner
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Andreas J Genewsky
- Research Group Neuroplasticity, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.,Department Biology II Cognition and Neural Plasticity, Faculty of Medicine Ludwig-Maximilians Universität München, Großhaderner str. 2, 82152, Planegg-Martinsried, Germany
| | - Azza Soliman
- Research Group Neuroplasticity, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.,Institute of Human Genetics University Medical Centre, Mainz Langenbeckstr, 155131 Mainz, Germany
| | - Max L Pöhlmann
- Research Group Neurobiology of Stress Resilience, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital Würzburg, Versbacherstraße 2, 97080, Würzburg, Germany
| | - Carsten T Wotjak
- Research Group Neuroplasticity, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.,Boehringer Ingelheim Pharma GmbH & Co. KG, Dept. CNS Discovery Research, Birkendorfer Str. 65, 88397, Biberach an der Riß, Germany
| | - Nils C Gassen
- Neurohomeostatis Research Group, Clinic of Psychiatry and Psychotherapy University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| |
Collapse
|
32
|
Lama A, Pirozzi C, Annunziata C, Morgese MG, Senzacqua M, Severi I, Calignano A, Trabace L, Giordano A, Meli R, Mattace Raso G. Palmitoylethanolamide counteracts brain fog improving depressive-like behaviour in obese mice: Possible role of synaptic plasticity and neurogenesis. Br J Pharmacol 2020; 178:845-859. [PMID: 32346865 DOI: 10.1111/bph.15071] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/28/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE High-fat diet (HFD)-induced obesity is accompanied by metabolic and neurochemical changes that have been associated with depression. Recent studies indicate that palmitoylethanolamide (PEA) exerts metabolic effects and holds neuroprotective potential. However, studies on HFD exposure in mice which investigate the effects of PEA on monoamine system and synaptic plasticity are limited. EXPERIMENTAL APPROACH In C57Bl/6J male mice, obesity was established by HFD feeding for 12 weeks. Then, mice were treated with ultra-micronized PEA (30 mg·kg-1 daily p.o.) or vehicle for 7 weeks along with HFD. Mice receiving chow diet and vehicle served as controls. Thereafter, depressive-, anhedonic-like behaviour and cognitive performance were measured. Monoamine analyses were performed on brain areas (nucleus accumbens, Nac; prefrontal cortex, PFC; hippocampus), and markers of synaptic plasticity and neurogenesis were evaluated in hippocampus. KEY RESULTS PEA limited depressive- and anhedonic-like behaviour, and cognitive deficits induced by HFD. PEA induced an increase in 5-HT levels in PFC, and a reduction of dopamine and 5-HT turnover in Nac and PFC, respectively. Moreover, PEA increased dopamine levels in the hippocampus and PFC. At a molecular level, PEA restored brain-derived neurotrophic factor signalling pathway in hippocampus and PFC, indicating an improvement of synaptic plasticity. In particular, PEA counteracted the reduction of glutamatergic synaptic density induced by HFD in the stratum radiatum of the CA1 of the hippocampus, where it also exhibited neurogenesis-promoting abilities. CONCLUSION AND IMPLICATIONS PEA may represent an adjuvant therapy to limit depressive-like behaviours and memory deficit, affecting monoamine homeostasis, synaptic plasticity and neurogenesis. LINKED ARTICLES This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Adriano Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Chiara Annunziata
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Antonio Calignano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Rosaria Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
33
|
Reduction in BDNF from Inefficient Precursor Conversion Influences Nest Building and Promotes Depressive-Like Behavior in Mice. Int J Mol Sci 2020; 21:ijms21113984. [PMID: 32492978 PMCID: PMC7312902 DOI: 10.3390/ijms21113984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/17/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022] Open
Abstract
We generated a knock-in mouse line in which the gene encoding brain-derived neurotrophic factor (Bdnf) was replaced with a sequence for proBDNF containing human single nucleotide polymorphisms encoding arginines proximal to the cleavage site (R125M and R127L). The ratio of the mature form of BDNF (mBDNF) to precursor BDNF (proBDNF) in hippocampal tissue lysates was decreased in a manner dependent on the number of copies of the mutant gene, indicating that the mutations inhibited proteolytic conversion of proBDNF into mBDNF. Although homozygous mice had a proBDNF/mBDNF ratio of ~9:1, they survived until adulthood. The levels of mBDNF were reduced by 57% in heterozygous mutant mice, which exhibited a depressive-like behavior in the tail suspension test and weight gain when housed in social isolation, showing that impaired proBDNF cleavage contributes to stress-induced depressive-like phenotypes. Furthermore, socially isolated heterozygous mice displayed a pronounced deficit in daily nest-building behaviors. These findings suggest that the decreased production of mBDNF by impaired proBDNF cleavage disturbs daily activities in mice.
Collapse
|
34
|
Deng ZF, Zheng HL, Chen JG, Luo Y, Xu JF, Zhao G, Lu JJ, Li HH, Gao SQ, Zhang DZ, Zhu LQ, Zhang YH, Wang F. miR-214-3p Targets β-Catenin to Regulate Depressive-like Behaviors Induced by Chronic Social Defeat Stress in Mice. Cereb Cortex 2020. [PMID: 29522177 DOI: 10.1093/cercor/bhy047] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
β-Catenin has been implicated in major depressive disorder (MDD), which is associated with synaptic plasticity and dendritic arborization. MicroRNAs (miRNA) are small noncoding RNAs containing about 22 nucleotides and involved in a variety of physiological and pathophysiological process, but their roles in MDD remain largely unknown. Here, we investigated the expression and function of miRNAs in the mouse model of chronic social defeat stress (CSDS). The regulation of β-catenin by selected miRNA was validated by silico prediction, target gene luciferase reporter assay, and transfection experiment in neurons. We demonstrated that the levels of miR-214-3p, which targets β-catenin transcripts were significantly increased in the medial prefrontal cortex (mPFC) of CSDS mice. Antagomir-214-3p, a neutralizing inhibitor of miR-214-3p, increased the levels of β-catenin and reversed the depressive-like behavior in CSDS mice. Meanwhile, antagomir-214-3p increased the amplitude of miniature excitatory postsynaptic current (mEPSC) and the number of dendritic spines in mPFC of CSDS mice, which may be related to the elevated expression of cldn1. Furthermore, intranasal administered antagomir-214-3p also significantly increased the level of β-catenin and reversed the depressive-like behaviors in CSDS mice. These results may represent a new therapeutic target for MDD.
Collapse
Affiliation(s)
- Zhi-Fang Deng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Ling Zheng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.,The Collaborative-Innovation Center for Brain Science, Wuhan, China
| | - Yi Luo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Feng Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Zhao
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Jing Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou-Hong Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang-Qi Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deng-Zheng Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Qiang Zhu
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China
| | - Yong-Hui Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.,The Collaborative-Innovation Center for Brain Science, Wuhan, China
| |
Collapse
|
35
|
Major depressive disorder and accelerated aging from a peripheral IGF-1 overexpression perspective. Med Hypotheses 2020; 138:109610. [DOI: 10.1016/j.mehy.2020.109610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 12/14/2022]
|
36
|
Troyan AS, Levada OA. The Diagnostic Value of the Combination of Serum Brain-Derived Neurotrophic Factor and Insulin-Like Growth Factor-1 for Major Depressive Disorder Diagnosis and Treatment Efficacy. Front Psychiatry 2020; 11:800. [PMID: 32922315 PMCID: PMC7457028 DOI: 10.3389/fpsyt.2020.00800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/24/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Last decades of psychiatric investigations have been marked by a search for biological markers that can clarify etiology and pathogenesis, confirm the diagnosis, screen individuals at risk, define the severity, and predict the course of mental disorders. In our study, we aimed to evaluate if BDNF and IGF-1 serum concentrations separately and in combination might be used as biomarkers for major depressive disorder (MDD) diagnosis and treatment efficacy and to evaluate the relationships among those proteins and clinical parameters of MDD. METHODS Forty-one MDD patients (according to DSM-5) and 32 healthy controls (HC) were included in this study. BDNF and IGF-1 serum concentrations, psychopathological (MADRS, CGI) and neuropsychological parameters (PDQ-5, RAVLT, TMT-B, DSST), functioning according to Sheehan Disability Scale were analyzed in all subjects at admission and 30 MDD patients after 8 weeks of vortioxetine treatment. Correlational analyses were performed to explore relationships between BDNF and IGF-1 and clinical characteristics. AUC-ROCs were calculated to determine if the value of serum BDNF and IGF-1 levels could serve for MDD diagnosis. RESULTS MDD patients had significantly lower serum BDNF (727.6 ± 87.9 pg/ml vs. 853.0 ± 93.9 pg/ml) and higher serum IGF-1 levels (289.15 ± 125.3 ng/ml vs. 170.2 ± 58.2 ng/ml) compared to HC. Significant correlations were obtained between BDNF levels and MDD status, depressive episode (DE) severity, precipitating factors, executive functions disruption (TMT-B, RAVLT immediate recall scores) and all subdomains of functioning. As for IGF-1, correlations were found between IGF-1 level and MDD status, DE severity, number and duration of DE, parameters of subjective and objective cognitive functioning (PDQ-5, RAVLT, TMT-B, DSST scores), and all subdomains of functioning. The associations between IGF-1 concentrations and cognitive tests' performance were stronger than those of BDNF. Separately both BDNF and IGF-1 demonstrated good discriminating ability for MDD diagnosis with AUC of 0.840 and 0.824, respectively. However, the combination of those neurotrophins had excellent diagnostic power to discriminate MDD patients from HC, providing an AUC of 0.916. Vortioxetine treatment significantly increased BDNF and attenuated IGF-1 serum concentrations, improved all psychopathological and neuropsychological parameters and functioning. CONCLUSIONS The combination of IGF-1 and BDNF might be considered as a diagnostic combination for MDD.
Collapse
Affiliation(s)
- Alexandra S Troyan
- Psychiatry Course, State Institution "Zaporizhzhia Medical Academy of Postgraduate Education Ministry of Health of Ukraine", Zaporizhzhia, Ukraine
| | - Oleg A Levada
- Psychiatry Course, State Institution "Zaporizhzhia Medical Academy of Postgraduate Education Ministry of Health of Ukraine", Zaporizhzhia, Ukraine
| |
Collapse
|
37
|
Deyama S, Duman RS. Neurotrophic mechanisms underlying the rapid and sustained antidepressant actions of ketamine. Pharmacol Biochem Behav 2020; 188:172837. [PMID: 31830487 PMCID: PMC6997025 DOI: 10.1016/j.pbb.2019.172837] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022]
Abstract
Clinical and preclinical studies have demonstrated that depression, one of the most common psychiatric illnesses, is associated with reduced levels of neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF), contributing to neuronal atrophy in the prefrontal cortex (PFC) and hippocampus, and reduced hippocampal adult neurogenesis. Conventional monoaminergic antidepressants can block/reverse, at least partially, these deficits in part via induction of BDNF and/or VEGF, although these drugs have significant limitations, notably a time lag for therapeutic response and low response rates. Recent studies reveal that ketamine, an N-methyl-d-aspartate receptor antagonist produces rapid (within hours) and sustained (up to a week) antidepressant actions in both patients with treatment-resistant depression and rodent models of depression. Rodent studies also demonstrate that ketamine rapidly increases BDNF and VEGF release and/or expression in the medial PFC (mPFC) and hippocampus, leading to increase in the number and function of spine synapses in the mPFC and enhancement of hippocampal neurogenesis. These neurotrophic effects of ketamine are associated with the antidepressant effects of this drug. Together, these findings provide evidence for a neurotrophic mechanism underlying the rapid and sustained antidepressant actions of ketamine and pave the way for the development of rapid and more effective antidepressants with fewer side effects than ketamine.
Collapse
Affiliation(s)
- Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan.
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
38
|
Camilleri JA, Hoffstaedter F, Zavorotny M, Zöllner R, Wolf RC, Thomann P, Redlich R, Opel N, Dannlowski U, Grözinger M, Demirakca T, Sartorius A, Eickhoff SB, Nickl-Jockschat T. Electroconvulsive therapy modulates grey matter increase in a hub of an affect processing network. NEUROIMAGE-CLINICAL 2019; 25:102114. [PMID: 31884221 PMCID: PMC6939059 DOI: 10.1016/j.nicl.2019.102114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 02/09/2023]
Abstract
We here present a structural neuroimaging study reporting on a large multi-site patient sample with unipolar depression that underwent ECT. Patients showed grey matter increases in the medial temporal lobe. Connectivity modeling revealed that this altered brain region was involved in networks related to affect processing and memory. This provides a potential explanation, how these structural changes during ECT are involved in both main and side effects of the treatment.
A growing number of recent studies has suggested that the neuroplastic effects of electroconvulsive therapy (ECT) might be prominent enough to be detected through changes of regional gray matter volumes (GMV) during the course of the treatment. Given that ECT patients are difficult to recruit for imaging studies, most publications, however, report only on small samples. Addressing this challenge, we here report results of a structural imaging study on ECT patients that pooled patients from five German sites. Whole-brain voxel-based morphometry (VBM) analysis was performed to detect structural differences in 85 patients with unipolar depression before and after ECT, when compared to 86 healthy controls. Both task-independent and task-dependent physiological whole-brain functional connectivity patterns of these regions were modeled using additional data from healthy subjects. All emerging regions were additionally functionally characterized using the BrainMap database. Our VBM analysis detected a significant increase of GMV in the right hippocampus/amygdala region in patients after ECT compared to healthy controls. In healthy subjects this region was found to be enrolled in a network associated with emotional processing and memory. A region in the left fusiform gyrus was additionally found to have higher GMV in controls when compared with patients at baseline. This region showed minor changes after ECT. Our data points to a GMV increase in patients post ECT in regions that seem to constitute a hub of an emotion processing network. This appears as a plausible antidepressant mechanism and could explain the efficacy of ECT not only in the treatment of unipolar depression, but also of affective symptoms across heterogeneous disorders.
Collapse
Affiliation(s)
- Julia A Camilleri
- Institute of Neuroscience and Medicine-7, Juelich Research Center, Juelich, Germany; Institute of Systems Neuroscience, Heinrich Heine University, Duesseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine-7, Juelich Research Center, Juelich, Germany; Institute of Systems Neuroscience, Heinrich Heine University, Duesseldorf, Germany
| | - Maxim Zavorotny
- Department of Psychiatry and Psychotherapy, Marburg Center for Mind, Brain and Behavior - MCMBB, Philipps-University Marburg, 35043 Marburg, Germany
| | - Rebecca Zöllner
- Department of Psychiatry and Psychotherapy, Marburg Center for Mind, Brain and Behavior - MCMBB, Philipps-University Marburg, 35043 Marburg, Germany
| | - Robert Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany; Center for Mental Health, Odenwald District Healthcare Center, Erbach, Germany
| | - Philipp Thomann
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Ronny Redlich
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Michael Grözinger
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | | | | | - Simon B Eickhoff
- Institute of Neuroscience and Medicine-7, Juelich Research Center, Juelich, Germany; Institute of Systems Neuroscience, Heinrich Heine University, Duesseldorf, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany; Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, USA.
| |
Collapse
|
39
|
Park JY, Chae S, Kim CS, Kim YJ, Yi HJ, Han E, Joo Y, Hong S, Yun JW, Kim H, Shin KH. Role of nociceptin/orphanin FQ and nociceptin opioid peptide receptor in depression and antidepressant effects of nociceptin opioid peptide receptor antagonists. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:427-448. [PMID: 31680765 PMCID: PMC6819898 DOI: 10.4196/kjpp.2019.23.6.427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/11/2019] [Accepted: 08/26/2019] [Indexed: 01/28/2023]
Abstract
Nociceptin/orphanin FQ (N/OFQ) and its receptor, nociceptin opioid peptide (NOP) receptor, are localized in brain areas implicated in depression including the amygdala, bed nucleus of the stria terminalis, habenula, and monoaminergic nuclei in the brain stem. N/OFQ inhibits neuronal excitability of monoaminergic neurons and monoamine release from their terminals by activation of G protein-coupled inwardly rectifying K+ channels and inhibition of voltage sensitive calcium channels, respectively. Therefore, NOP receptor antagonists have been proposed as a potential antidepressant. Indeed, mounting evidence shows that NOP receptor antagonists have antidepressant-like effects in various preclinical animal models of depression, and recent clinical studies again confirmed the idea that blockade of NOP receptor signaling could provide a novel strategy for the treatment of depression. In this review, we describe the pharmacological effects of N/OFQ in relation to depression and explore the possible mechanism of NOP receptor antagonists as potential antidepressants.
Collapse
Affiliation(s)
- Jong Yung Park
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Suji Chae
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Chang Seop Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Yoon Jae Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Hyun Joo Yi
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Eunjoo Han
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Youngshin Joo
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Surim Hong
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Jae Won Yun
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Hyojung Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Kyung Ho Shin
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
40
|
Zhang L, Hu XZ, Benedek DM, Fullerton CS, Forsten RD, Naifeh JA, Li X. Genetic predictor of current suicidal ideation in US service members deployed to Iraq and Afghanistan. J Psychiatr Res 2019; 113:65-71. [PMID: 30904785 DOI: 10.1016/j.jpsychires.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Suicide is one of the ten leading causes of death in United States and the suicide rate in the military population has increased since the start of the Iraq and Afghanistan wars. However, few biomarkers for current suicidal ideation (CSI) have been identified. The current study examined the association of four candidate genes with CSI in active duty US Army Special Operations Command and National Guard units (n = 3,889) who served in Iraq and Afghanistan between November 2009 and July 2014. METHODS Current PTSD symptoms and CSI were assessed using the PTSD Checklist (PCL) and PHQ-9, respectively. Traumatic events were assessed using items from the Life Events Checklist (LEC) that met the DSM-IV PTSD criteria of a traumatic stressor. All genotypes of saliva DNA were discriminated using the TaqMan 5'-exonuclease assay. RESULTS The associations between CSI and brain-derived neurotrophic factor (BDNF), FK506 binding protein (FKBP5), catechol-O-methyltransferase (COMT), or S100A10 (p11) were examined. We found CSI was associated with BDNF (OR = 1.5, 95% CI = 1.5-1.8, P = 0.0002), but not FKBP5, COMT and p11. Female soldiers reported CSI more often than males (χ2 = 7.403, p = 0.0065), although gender did not affect CSI severity. In addition, associations were found between CSI and depression, PTSD, and BDNF, but not traumatic events. The BDNF Val66Met contributed to the severity of CSI even after adjusting to PTSD, depression and LEC. CONCLUSIONS The associations of BDNF with CSI and its severity suggest that BDNF may be a predictor of suicidal risk and present an opportunity to develop laboratory tools with clinical implications in suicide prevention and treatment.
Collapse
Affiliation(s)
- Lei Zhang
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, USA.
| | - Xian-Zhang Hu
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, USA
| | - David M Benedek
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, USA
| | - Carol S Fullerton
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, USA
| | - Robert D Forsten
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, USA
| | - James A Naifeh
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, USA
| | - Xiaoxia Li
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, USA
| | -
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, USA
| |
Collapse
|
41
|
Brivio P, Corsini G, Riva MA, Calabrese F. Chronic vortioxetine treatment improves the responsiveness to an acute stress acting through the ventral hippocampus in a glucocorticoid-dependent way. Pharmacol Res 2019; 142:14-21. [DOI: 10.1016/j.phrs.2019.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
|
42
|
The Role of Dendritic Brain-Derived Neurotrophic Factor Transcripts on Altered Inhibitory Circuitry in Depression. Biol Psychiatry 2019; 85:517-526. [PMID: 30449530 PMCID: PMC6380918 DOI: 10.1016/j.biopsych.2018.09.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/24/2018] [Accepted: 09/08/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND A parallel downregulation of brain-derived neurotrophic factor (BDNF) and somatostatin (SST), a marker of inhibitory gamma-aminobutyric acid interneurons that target pyramidal cell dendrites, has been reported in several brain areas of subjects with major depressive disorder (MDD). Rodent genetic studies suggest that they are linked and that both contribute to the illness. However, the mechanism by which they contribute to the pathophysiology of the illness has remained elusive. METHODS With quantitative polymerase chain reaction, we determined the expression level of BDNF transcript variants and synaptic markers in the prefrontal cortex of patients with MDD and matched control subjects (n = 19/group) and of C57BL/6J mice exposed to chronic stress or control conditions (n = 12/group). We next suppressed Bdnf transcripts with long 3' untranslated region (L-3'-UTR) using short hairpin RNA and investigated changes in cell morphology, gene expression, and behavior. RESULTS L-3'-UTRs containing BDNF messenger RNAs, which migrate to distal dendrites of pyramidal neurons, are selectively reduced, and their expression was highly correlated with SST expression in the prefrontal cortex of subjects with MDD. A similar downregulation occurs in mice submitted to chronic stress. We next show that Bdnf L-3'-UTR knockdown is sufficient to induce 1) dendritic shrinkage in cortical neurons, 2) cell-specific MDD-like gene changes (including Sst downregulation), and 3) depressive- and anxiety-like behaviors. The translational validity of the Bdnf L-3'-UTR short hairpin RNA-treated mice was confirmed by significant cross-species correlation of changes in MDD-associated gene expression. CONCLUSIONS These findings provide evidence for a novel MDD-related pathological mechanism linking local neurotrophic support, pyramidal cell structure, dendritic inhibition, and mood regulation.
Collapse
|
43
|
Wyrobek J, LaFlam A, Max L, Tian J, Neufeld KJ, Kebaish KM, Walston JD, Hogue CW, Riley LH, Everett AD, Brown CH. Association of intraoperative changes in brain-derived neurotrophic factor and postoperative delirium in older adults. Br J Anaesth 2018; 119:324-332. [PMID: 28854532 DOI: 10.1093/bja/aex103] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2017] [Indexed: 01/19/2023] Open
Abstract
Background Delirium is common after surgery, although the aetiology is poorly defined. Brain-derived neurotrophic factor (BDNF) is a neurotrophin important in neurotransmission and neuroplasticity. Decreased levels of BDNF have been associated with poor cognitive outcomes, but few studies have characterized the role of BDNF perioperatively. We hypothesized that intraoperative decreases in BDNF levels are associated with postoperative delirium. Methods Patients undergoing spine surgery were enrolled in a prospective cohort study. Plasma BDNF was collected at baseline and at least hourly intraoperatively. Delirium was assessed using rigorous methods, including the Confusion Assessment Method (CAM) and CAM for the intensive care unit. Associations of changes in BDNF and delirium were examined using regression models. Results Postoperative delirium developed in 32 of 77 (42%) patients. The median baseline BDNF level was 7.6 ng ml -1 [interquartile range (IQR) 3.0-11.2] and generally declined intraoperatively [median decline 61% (IQR 31-80)]. There was no difference in baseline BDNF levels by delirium status. However, the percent decline in BDNF was greater in patients who developed delirium [median 74% (IQR 51-82)] vs in those who did not develop delirium [median 50% (IQR 14-79); P =0.03]. Each 1% decline in BDNF was associated with increased odds of delirium in unadjusted {odds ratio [OR] 1.02 [95% confidence interval (CI) 1.00-1.04]; P =0.01}, multivariable-adjusted [OR 1.02 (95% CI 1.00-1.03); P =0.03], and propensity score-adjusted models [OR 1.02 (95% CI 1.00-1.04); P =0.03]. Conclusions We observed an association between intraoperative decline in plasma BDNF and delirium. These preliminary results need to be confirmed but suggest that plasma BDNF levels may be a biomarker for postoperative delirium.
Collapse
Affiliation(s)
- J Wyrobek
- Department of Anesthesiology and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
| | - A LaFlam
- Tufts University School of Medicine, Boston, MA, USA
| | - L Max
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - J Tian
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - K J Neufeld
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - K M Kebaish
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J D Walston
- Department of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - C W Hogue
- Department of Anesthesiology and Critical Care Medicine, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - L H Riley
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A D Everett
- Department of Pediatrics, Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - C H Brown
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
44
|
Sartorius A, Demirakca T, Böhringer A, Clemm von Hohenberg C, Aksay SS, Bumb JM, Kranaster L, Nickl-Jockschat T, Grözinger M, Thomann PA, Wolf RC, Zwanzger P, Dannlowski U, Redlich R, Zavorotnyy M, Zöllner R, Methfessel I, Besse M, Zilles D, Ende G. Electroconvulsive therapy induced gray matter increase is not necessarily correlated with clinical data in depressed patients. Brain Stimul 2018; 12:335-343. [PMID: 30554869 DOI: 10.1016/j.brs.2018.11.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) and depression have been associated with brain volume changes, especially in the hippocampus and the amygdala. METHODS In this retrospective study we collected data from individual pre-post ECT whole brain magnetic resonance imaging scans of depressed patients from six German university hospitals. Gray matter volume (GMV) changes were quantified via voxel-based morphometry in a total sample of 92 patients with major depressive episodes (MDE). Additionally, 43 healthy controls were scanned twice within a similar time interval. RESULTS Most prominently longitudinal GMV increases occurred in temporal lobe regions. Within specific region of interests we detected significant increases of GMV in the hippocampus and the amygdala. These results were more pronounced in the right hemisphere. Decreases in GMV were not observed. GMV changes did not correlate with psychopathology, age, gender or number of ECT sessions. We ruled out white matter reductions as a possible indirect cause of the detected GMV increase. CONCLUSION The present findings support the notion of hippocampus and amygdala modulation following an acute ECT series in patients with MDE. These results corroborate the hypothesis that ECT enables primarily unspecific and regionally dependent neuroplasticity effects to the brain.
Collapse
Affiliation(s)
- Alexander Sartorius
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany.
| | - Traute Demirakca
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Andreas Böhringer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Christian Clemm von Hohenberg
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Suna Su Aksay
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Jan Malte Bumb
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Laura Kranaster
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany; Department of Psychiatry, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael Grözinger
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Philipp A Thomann
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Germany; Center for Mental Health, Odenwald District Healthcare Center, Uniklinik RWTH, Aachen, Germany
| | - Robert Christian Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Germany
| | - Peter Zwanzger
- kbo-Inn-Salzach-Hospital, Gabersee 7, 83512, Wasserburg am Inn, Germany; Department of Psychiatry and Psychotherapy, Albert-Schweitzer-Campus 1, University of Muenster, Germany; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University of Munich, Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, Albert-Schweitzer-Campus 1, University of Muenster, Germany
| | - Ronny Redlich
- Department of Psychiatry and Psychotherapy, Albert-Schweitzer-Campus 1, University of Muenster, Germany
| | - Maxim Zavorotnyy
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany; Marburg Center for Mind, Brain and Behavior - MCMBB, University of Marburg, Germany
| | - Rebecca Zöllner
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Isabel Methfessel
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Germany
| | - Matthias Besse
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Germany
| | - David Zilles
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Germany
| | - Gabriele Ende
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| |
Collapse
|
45
|
Prusty BK, Gulve N, Govind S, Krueger GRF, Feichtinger J, Larcombe L, Aspinall R, Ablashi DV, Toro CT. Active HHV-6 Infection of Cerebellar Purkinje Cells in Mood Disorders. Front Microbiol 2018; 9:1955. [PMID: 30186267 PMCID: PMC6110891 DOI: 10.3389/fmicb.2018.01955] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022] Open
Abstract
Early-life infections and associated neuroinflammation is incriminated in the pathogenesis of various mood disorders. Infection with human roseoloviruses, HHV-6A and HHV-6B, allows viral latency in the central nervous system and other tissues, which can later be activated causing cognitive and behavioral disturbances. Hence, this study was designed to evaluate possible association of HHV-6A and HHV-6B activation with three different groups of psychiatric patients. DNA qPCR, immunofluorescence and FISH studies were carried out in post-mortem posterior cerebellum from 50 cases each of bipolar disorder (BPD), schizophrenia, 15 major depressive disorder (MDD) and 50 appropriate control samples obtained from two well-known brain collections (Stanley Medical Research Institute). HHV-6A and HHV-6B late proteins (indicating active infection) and viral DNA were detected more frequently (p < 0.001 for each virus) in human cerebellum in MDD and BPD relative to controls. These roseolovirus proteins and DNA were found less frequently in schizophrenia cases. Active HHV-6A and HHV-6B infection in cerebellar Purkinje cells were detected frequently in BPD and MDD cases. Furthermore, we found a significant association of HHV-6A infection with reduced Purkinje cell size, suggesting virus-mediated abnormal Purkinje cell function in these disorders. Finally, gene expression analysis of cerebellar tissue revealed changes in pathways reflecting an inflammatory response possibly to HHV-6A infection. Our results provide molecular evidence to support a role for active HHV-6A and HHV-6B infection in BPD and MDD.
Collapse
Affiliation(s)
- Bhupesh K Prusty
- Biocenter, Department of Microbiology, University of Würzburg, Würzburg, Germany.,Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Nitish Gulve
- Biocenter, Department of Microbiology, University of Würzburg, Würzburg, Germany
| | - Sheila Govind
- Division of Virology, National Institute for Biological Standards and Control, Hertfordshire, United Kingdom
| | - Gerhard R F Krueger
- Department of Pathology and Laboratory Medicine, UT-Houston Medical School, Houston, TX, United States
| | - Julia Feichtinger
- Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria.,BioTechMed Omics Center, Graz, Austria
| | - Lee Larcombe
- Applied Exomics Ltd., Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - Richard Aspinall
- Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | | | - Carla T Toro
- HHV-6 Foundation, Santa Barbara, CA, United States.,The Institute of Digital Healthcare, The University of Warwick, Warwick, United Kingdom
| |
Collapse
|
46
|
Levy MJF, Boulle F, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology (Berl) 2018; 235:2195-2220. [PMID: 29961124 PMCID: PMC6061771 DOI: 10.1007/s00213-018-4950-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Abstract
Depression is a major health problem with a high prevalence and a heavy socioeconomic burden in western societies. It is associated with atrophy and impaired functioning of cortico-limbic regions involved in mood and emotion regulation. It has been suggested that alterations in neurotrophins underlie impaired neuroplasticity, which may be causally related to the development and course of depression. Accordingly, mounting evidence suggests that antidepressant treatment may exert its beneficial effects by enhancing trophic signaling on neuronal and synaptic plasticity. However, current antidepressants still show a delayed onset of action, as well as lack of efficacy. Hence, a deeper understanding of the molecular and cellular mechanisms involved in the pathophysiology of depression, as well as in the action of antidepressants, might provide further insight to drive the development of novel fast-acting and more effective therapies. Here, we summarize the current literature on the involvement of neurotrophic factors in the pathophysiology and treatment of depression. Further, we advocate that future development of antidepressants should be based on the neurotrophin theory.
Collapse
Affiliation(s)
- Marion J F Levy
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Fabien Boulle
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Harry W Steinbusch
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Daniël L A van den Hove
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Laurence Lanfumey
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France.
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands.
| |
Collapse
|
47
|
Jiménez JP, Botto A, Herrera L, Leighton C, Rossi JL, Quevedo Y, Silva JR, Martínez F, Assar R, Salazar LA, Ortiz M, Ríos U, Barros P, Jaramillo K, Luyten P. Psychotherapy and Genetic Neuroscience: An Emerging Dialog. Front Genet 2018; 9:257. [PMID: 30065751 PMCID: PMC6056612 DOI: 10.3389/fgene.2018.00257] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022] Open
Abstract
Recent research in psychiatric genetics has led to a move away from simple diathesis-stress models to more complex models of psychopathology incorporating a focus on gene–environment interactions and epigenetics. Our increased understanding of the way biology encodes the impact of life events on organisms has also generated more sophisticated theoretical models concerning the molecular processes at the interface between “nature” and “nurture.” There is also increasing consensus that psychotherapy entails a specific type of learning in the context of an emotional relationship (i.e., the therapeutic relationship) that may also lead to epigenetic modifications across different therapeutic treatment modalities. This paper provides a systematic review of this emerging body of research. It is concluded that, although the evidence is still limited at this stage, extant research does indeed suggest that psychotherapy may be associated with epigenetic changes. Furthermore, it is argued that epigenetic studies may play a key role in the identification of biomarkers implicated in vulnerability for psychopathology, and thus may improve diagnosis and open up future research opportunities regarding the mechanism of action of psychotropic drugs as well as psychotherapy. We review evidence suggesting there may be important individual differences in susceptibility to environmental input, including psychotherapy. In addition, given that there is increasing evidence for the transgenerational transmission of epigenetic modifications in animals and humans exposed to trauma and adversity, epigenetic changes produced by psychotherapy may also potentially be passed on to the next generation, which opens up new perspective for prevention science. We conclude this paper stressing the limitations of current research and by proposing a set of recommendations for future research in this area.
Collapse
Affiliation(s)
- Juan P Jiménez
- Department of Psychiatry and Mental Health - East, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alberto Botto
- Department of Psychiatry and Mental Health - East, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Luisa Herrera
- Human Genetics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Caroline Leighton
- Department of Psychiatry and Mental Health - East, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - José L Rossi
- Department of Psychology, Faculty of Social Sciences, Universidad de Chile, Santiago, Chile
| | - Yamil Quevedo
- Department of Psychiatry and Mental Health - East, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jaime R Silva
- Center for Attachment and Emotional Regulation (CARE), Faculty of Psychology, Universidad del Desarrollo, Santiago, Chile
| | - Felipe Martínez
- Center for Intercultural and Indigenous Research, Anthropology Program, Institute of Sociology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Assar
- ICBM Human Genetics Program, Centre for Medical Informatics and Telemedicine, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Manuel Ortiz
- Department of Psychology, Faculty of Education, Social Sciences and Humanities, Universidad de La Frontera, Temuco, Chile
| | - Ulises Ríos
- Department of Psychiatry, Universidad de Valparaíso, Valparaíso, Chile
| | - Paulina Barros
- Department of Psychiatry and Mental Health - East, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Karina Jaramillo
- Ph.D. Program in Public Health, School of Public Health, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Patrick Luyten
- Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Research Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom
| |
Collapse
|
48
|
Hing B, Sathyaputri L, Potash JB. A comprehensive review of genetic and epigenetic mechanisms that regulate BDNF expression and function with relevance to major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 2018; 177:143-167. [PMID: 29243873 DOI: 10.1002/ajmg.b.32616] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is a mood disorder that affects behavior and impairs cognition. A gene potentially important to this disorder is the brain derived neurotrophic factor (BDNF) as it is involved in processes controlling neuroplasticity. Various mechanisms exist to regulate BDNF's expression level, subcellular localization, and sorting to appropriate secretory pathways. Alterations to these processes by genetic factors and negative stressors can dysregulate its expression, with possible implications for MDD. Here, we review the mechanisms governing the regulation of BDNF expression, and discuss how disease-associated single nucleotide polymorphisms (SNPs) can alter these mechanisms, and influence MDD. As negative stressors increase the likelihood of MDD, we will also discuss the impact of these stressors on BDNF expression, the cellular effect of such a change, and its impact on behavior in animal models of stress. We will also describe epigenetic processes that mediate this change in BDNF expression. Similarities in BDNF expression between animal models of stress and those in MDD will be highlighted. We will also contrast epigenetic patterns at the BDNF locus between animal models of stress, and MDD patients, and address limitations to current clinical studies. Future work should focus on validating current genetic and epigenetic findings in tightly controlled clinical studies. Regions outside of BDNF promoters should also be explored, as should other epigenetic marks, to improve identification of biomarkers for MDD.
Collapse
Affiliation(s)
- Benjamin Hing
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Leela Sathyaputri
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - James B Potash
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
49
|
He B, Xu D, Zhang C, Zhang L, Wang H. Prenatal food restriction induces neurobehavioral abnormalities in adult female offspring rats and alters intrauterine programming. Toxicol Res (Camb) 2018; 7:293-306. [PMID: 30090583 DOI: 10.1039/c7tx00133a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 01/21/2018] [Indexed: 12/25/2022] Open
Abstract
The higher risk of adult neuropsychiatric diseases in individuals with low fetal birth weight may be related to brain-derived neurotrophic factor (BDNF) signaling pathway inhibition. Here, we investigated whether prenatal food restriction (PFR) induces neurobehavioral alterations in adult female offspring and explored the underlying intrauterine programming mechanism. Pregnant Wistar rats in the PFR group were fed 50% of the daily food intake of control rats from gestational day (GD) 11 to 20; some pregnant rats were sacrificed at GD20, and the remaining female pups had normal delivery and were fed a post-weaning high-fat diet (HFD) and half of them were exposed to an unpredictable chronic stress (UCS) from postnatal week (PW) 21. All adult female offspring were sacrificed at PW24. At GD20, PFR altered fetal hippocampal structure and function, increased glucocorticoid receptor (GR) expression, and decreased mineralocorticoid receptor (MR), BDNF and synaptic plasticity-related gene expressions. At PW24, PFR induced depression-like behavioral abnormalities in adult rat offspring fed an HFD. These rats exhibited depression- and anxiety-like behavioral changes after HFD/UCS. Furthermore, the hippocampal morphology of the PFR group showed abnormal changes in adult offspring fed an HFD and more serious damage after HFD/UCS. These changes were accompanied by increased serum corticosterone levels, elevated GR expression, and reduced expression of the BDNF signaling pathway and synaptic plasticity-related genes in the hippocampus. In conclusion, PFR may induce neurobehavioral abnormalities in adult offspring, especially those exposed to UCS, through high levels of glucocorticoids, which increase hippocampal GR expression and decrease BDNF expression.
Collapse
Affiliation(s)
- Bo He
- Department of Pharmacology , Wuhan University School of Basic Medical Sciences , Wuhan 430071 , China . ; ; ; Tel: +86 27 68758665.,Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan 430071 , China
| | - Dan Xu
- Department of Pharmacology , Wuhan University School of Basic Medical Sciences , Wuhan 430071 , China . ; ; ; Tel: +86 27 68758665.,Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan 430071 , China
| | - Chong Zhang
- Department of Pharmacology , Wuhan University School of Basic Medical Sciences , Wuhan 430071 , China . ; ; ; Tel: +86 27 68758665
| | - Li Zhang
- Department of Pharmacology , Wuhan University School of Basic Medical Sciences , Wuhan 430071 , China . ; ; ; Tel: +86 27 68758665
| | - Hui Wang
- Department of Pharmacology , Wuhan University School of Basic Medical Sciences , Wuhan 430071 , China . ; ; ; Tel: +86 27 68758665.,Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan 430071 , China
| |
Collapse
|
50
|
Corrêa-Velloso JC, Gonçalves MC, Naaldijk Y, Oliveira-Giacomelli Á, Pillat MM, Ulrich H. Pathophysiology in the comorbidity of Bipolar Disorder and Alzheimer's Disease: pharmacological and stem cell approaches. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:34-53. [PMID: 28476640 DOI: 10.1016/j.pnpbp.2017.04.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/28/2017] [Indexed: 12/22/2022]
Abstract
Neuropsychiatric disorders involve various pathological mechanisms, resulting in neurodegeneration and brain atrophy. Neurodevelopmental processes have shown to be critical for the progression of those disorders, which are based on genetic and epigenetic mechanisms as well as on extrinsic factors. We review here common mechanisms underlying the comorbidity of Bipolar Disorders and Alzheimer's Disease, such as aberrant neurogenesis and neurotoxicity, reporting current therapeutic approaches. The understanding of these mechanisms precedes stem cell-based strategies as a new therapeutic possibility for treatment and prevention of Bipolar and Alzheimer's Disease progression. Taking into account the difficulty of studying the molecular basis of disease progression directly in patients, we also discuss the importance of stem cells for effective drug screening, modeling and treating psychiatric diseases, once in vitro differentiation of patient-induced pluripotent stem cells provides relevant information about embryonic origins, intracellular pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Juliana C Corrêa-Velloso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Maria Cb Gonçalves
- Departamento de Neurologia e Neurociências, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, São Paulo, SP 04039-032, Brazil
| | - Yahaira Naaldijk
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Ágatha Oliveira-Giacomelli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Micheli M Pillat
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|