1
|
Yang YS, Smucny J, Zhang H, Maddock RJ. Meta-analytic evidence of elevated choline, reduced N-acetylaspartate, and normal creatine in schizophrenia and their moderation by measurement quality, echo time, and medication status. Neuroimage Clin 2023; 39:103461. [PMID: 37406595 PMCID: PMC10509531 DOI: 10.1016/j.nicl.2023.103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Brain metabolite abnormalities measured with magnetic resonance spectroscopy (MRS) provide insight into pathological processes in schizophrenia. Prior meta-analyses have not yet answered important questions about the influence of clinical and technical factors on neurometabolite abnormalities and brain region differences. To address these gaps, we performed an updated meta-analysis of N-acetylaspartate (NAA), choline, and creatine levels in patients with schizophrenia and assessed the moderating effects of medication status, echo time, measurement quality, and other factors. METHODS We searched citations from three earlier meta-analyses and the PubMed database after the most recent meta-analysis to identify studies for screening. In total, 113 publications reporting 366 regional metabolite datasets met our inclusion criteria and reported findings in medial prefrontal cortex (MPFC), dorsolateral prefrontal cortex, frontal white matter, hippocampus, thalamus, and basal ganglia from a total of 4445 patient and 3944 control observations. RESULTS Patients with schizophrenia had reduced NAA in five of the six brain regions, with a statistically significant sparing of the basal ganglia. Patients had elevated choline in the basal ganglia and both prefrontal cortical regions. Patient creatine levels were normal in all six regions. In some regions, the NAA and choline differences were greater in studies enrolling predominantly medicated patients compared to studies enrolling predominantly unmedicated patients. Patient NAA levels were more reduced in hippocampus and frontal white matter in studies using longer echo times than those using shorter echo times. MPFC choline and NAA abnormalities were greater in studies reporting better metabolite measurement quality. CONCLUSIONS Choline is elevated in the basal ganglia and prefrontal cortical regions, suggesting regionally increased membrane turnover or glial activation in schizophrenia. The basal ganglia are significantly spared from the well-established widespread reduction of NAA in schizophrenia suggesting a regional difference in disease-associated factors affecting NAA. The echo time findings agree with prior reports and suggest microstructural changes cause faster NAA T2 relaxation in hippocampus and frontal white matter in schizophrenia. Separating the effects of medication status and illness chronicity on NAA and choline abnormalities will require further patient-level studies. Metabolite measurement quality was shown to be a critical factor in MRS studies of schizophrenia.
Collapse
Affiliation(s)
- Yvonne S Yang
- VISN22 Mental Illness Research, Education and Clinical Center, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Jason Smucny
- Imaging Research Center, University of California, Davis, 4701 X Street, Sacramento, CA 95817, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Davis, 2230 Stockton Blvd, Sacramento, CA 95817, USA
| | - Huailin Zhang
- Department of Internal Medicine, Adventist Health White Memorial, 1720 E Cesar E Chavez Ave, Los Angeles, CA 90033, USA
| | - Richard J Maddock
- Imaging Research Center, University of California, Davis, 4701 X Street, Sacramento, CA 95817, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Davis, 2230 Stockton Blvd, Sacramento, CA 95817, USA.
| |
Collapse
|
2
|
Mayeli A, Janssen SA, Huston CA, Rupp JS, Sharma K, Moon CH, Keihani A, Hetherington HP, Ferrarelli F. N-Acetylaspartate and Choline Metabolites in Cortical and Subcortical Regions in Clinical High Risk Relative to Healthy Control Subjects: An Exploratory 7T MRSI Study. Int J Mol Sci 2023; 24:ijms24097682. [PMID: 37175389 PMCID: PMC10178465 DOI: 10.3390/ijms24097682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
N-acetylaspartate (NAA) and choline (Cho) are two brain metabolites implicated in several key neuronal functions. Abnormalities in these metabolites have been reported in both early course and chronic patients with schizophrenia (SCZ). It is, however, unclear whether NAA and Cho's alterations occur even before the onset of the disorder. Clinical high risk (CHR) individuals are a population uniquely enriched for psychosis and SCZ. In this exploratory study, we utilized 7-Tesla magnetic resonance spectroscopic imaging (MRSI) to examine differences in total NAA (tNAA; NAA + N-acetylaspartylglutamate [NAAG]) and major choline-containing compounds, including glycerophosphorylcholine and phosphorylcholine [tCho], over the creatine (Cre) levels between 26 CHR and 32 healthy control (HC) subjects in the subcortical and cortical regions. While no tCho/Cre differences were found between groups in any of the regions of interest (ROIs), we found that CHR had significantly reduced tNAA/Cre in the right dorsal lateral prefrontal cortex (DLPFC) compared to HC, and that the right DLPFC tNAA/Cre reduction in CHR was negatively associated with their positive symptoms scores. No tNAA/Cre differences were found between CHR and HC in other ROIs. In conclusion, reduced tNAA/Cre in CHR vs. HC may represent a putative molecular biomarker for risk of psychosis and SCZ that is associated with symptom severity.
Collapse
Affiliation(s)
- Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sabine A Janssen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Chloe A Huston
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Julia S Rupp
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kamakashi Sharma
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Chan-Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ahmadreza Keihani
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hoby P Hetherington
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Bissonnette JN, Francis AM, MacNeil S, Crocker CE, Tibbo PG, Fisher DJ. Glutamate and N-Acetylaspartate Alterations Observed in Early Phase Psychosis: A Systematic Review of Proton Magnetic Resonance Spectroscopy Studies. Psychiatry Res Neuroimaging 2022; 321:111459. [PMID: 35183897 DOI: 10.1016/j.pscychresns.2022.111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
Abstract
Glutamate and N-acetylaspartate have been investigated in the neuropathology of chronic schizophrenia, with fewer studies focusing on early phase psychosis. Additionally, there has been little review and synthesis of the literature focused on multiple brain regions. This systematic review aims to provide a clear report of the current state of research on glutamate and n-acetylaspartate concentrations in early phase psychosis (defined as the first five years following psychosis onset) in multiple brain regions. Existing literature was searched systematically to compile reports of glutamate/glutamate+glutamine (Glx) and n-acetylaspartate absolute levels and ratios in both male and female individuals with early phase psychosis. Reports on glutamate/Glx concentrations in the medial prefrontal region and thalamus were varied, but the majority of reports suggested no alterations in EPP. No studies reported glutamate alterations in the hippocampus or cerebellum. There was no evidence for n-acetylaspartate alterations in the caudate, basal ganglia, and medial prefrontal cortex, and minimal evidence for NAA reductions in the thalamus, anterior cingulate cortex, and hippocampus. Future research should focus on the regions that are less commonly reported, and should aim to explore possible confounds, such as medication status and substance use.
Collapse
Affiliation(s)
- J N Bissonnette
- Department of Psychiatry, Dalhousie University, Halifax, NS.
| | - A M Francis
- Department of Psychology, Saint Mary's University, Halifax, NS.
| | - S MacNeil
- Department of Psychology, Mount Saint Vincent University, Halifax, NS.
| | - C E Crocker
- Department of Psychiatry, Dalhousie University, Halifax, NS; Nova Scotia Early Psychosis Program, Halifax, NS; Department of Diagnostic Imaging, Dalhousie University, Halifax, NS.
| | - P G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, NS; Nova Scotia Early Psychosis Program, Halifax, NS.
| | - D J Fisher
- Department of Psychiatry, Dalhousie University, Halifax, NS; Department of Psychology, Saint Mary's University, Halifax, NS; Department of Psychology, Mount Saint Vincent University, Halifax, NS.
| |
Collapse
|
4
|
Sydnor VJ, Roalf DR. A meta-analysis of ultra-high field glutamate, glutamine, GABA and glutathione 1HMRS in psychosis: Implications for studies of psychosis risk. Schizophr Res 2020; 226:61-69. [PMID: 32723493 PMCID: PMC7750272 DOI: 10.1016/j.schres.2020.06.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Ultra-high field proton magnetic resonance spectroscopy (1HMRS) offers a unique opportunity to measure the concentration of neurometabolites implicated in psychosis (PSY). The extant 7 T 1HMRS literature measuring glutamate-associated neurometabolites in the brain in PSY in vivo is small, but a comprehensive, quantitative summary of these data can offer insight and guidance to this emerging field. This meta-analysis examines proton spectroscopy (1HMRS) measures of glutamate (Glu), glutamine (Gln), glutamate+glutamine (Glx), gamma aminobutyric acid (GABA), and glutathione (GSH) across 255 individuals with PSY (121 first episode) and 293 healthy comparison participants (HC). While all five neurometabolites were lower in PSY as compared to HC, only Glu (Cohen's d = -0.18) and GSH (Cohen's d = -0.21) concentrations were significantly lower in PSY, whereas concentrations of Gln, Glx, and GABA did not significantly differ between groups. Notably, 1HMRS methodological choices and sample demographic characteristics did not impact study-specific effect sizes for PSY-related Glu or GSH differences. This review thus provides further evidence of neurometabolite dysfunction in first episode and chronic PSY, and thereby suggests that Glu and GSH abnormalities may additionally play a role in more incipient stages of the disorder: in clinical high risk stages. Additional 7 T neurochemical imaging studies in larger, longitudinal, and unmedicated samples and in youth at risk for developing psychosis are needed. Such studies will be critical for elucidating the neurodevelopmental and clinical time course of PSY-related neurometabolite alterations, and for assessing the potential for implicated metabolites to serve as druggable targets for decreasing PSY risk.
Collapse
Affiliation(s)
- Valerie J Sydnor
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Lifespan Brain Institute at the Children's Hospital of Philadelphia & the University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
5
|
Proton Magnetic Resonance Spectroscopy of N-acetyl Aspartate in Chronic Schizophrenia, First Episode of Psychosis and High-Risk of Psychosis: A Systematic Review and Meta-Analysis. Neurosci Biobehav Rev 2020; 119:255-267. [PMID: 33068555 DOI: 10.1016/j.neubiorev.2020.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/01/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
N-acetyl-aspartate (NAA) is a readily measured marker of neuronal metabolism. Previous analyses in schizophrenia have shown NAA levels are low in frontal, temporal and thalamic regions, but may be underpowered to detect effects in other regions, in high-risk states and in first episode psychosis. We searched for magnetic resonance spectroscopy studies comparing NAA in chronic schizophrenia, first episode psychosis and high risk of psychosis to controls. 182 studies were included and meta-analysed using a random-effects model for each region and illness stage. NAA levels were significantly lower than controls in the frontal lobe [Hedge's g = -0.36, p < 0.001], hippocampus [-0.52, p < 0.001], temporal lobe [-0.35, p = 0.031], thalamus [-0.32, p = 0.012] and parietal lobe [-0.25, p = 0.028] in chronic schizophrenia, and lower than controls in the frontal lobe [-0.26, p = 0.002], anterior cingulate cortex [-0.24, p = 0.016] and thalamus [-0.28, p = 0.028] in first episode psychosis. NAA was lower in high-risk of psychosis in the hippocampus [-0.20, p = 0.049]. In schizophrenia, NAA alterations appear to begin in hippocampus, frontal cortex and thalamus, and extend later to many other regions.
Collapse
|
6
|
Romeo B, Petillion A, Martelli C, Benyamina A. Magnetic resonance spectroscopy studies in subjects with high risk for psychosis: A meta-analysis and review. J Psychiatr Res 2020; 125:52-65. [PMID: 32203740 DOI: 10.1016/j.jpsychires.2020.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Even though anomalies on brain metabolites have been found in schizophrenia, researches about subjects with high risk (HR) show heterogeneous results. Thus, this meta-analysis aims to characterize the metabolic profile of HR subjects, first, compared to controls (HC) and then compared to people with schizophrenia. METHODS After a systematic database search, means and standard deviations were extracted to calculate standardized mean differences (SMD). Cerebral metabolites levels were compared between HR subjects and HC or patients with schizophrenia in all regions of interest investigated in included studies. Meta-regressions were performed to explore the influence of demographic and clinical variables on metabolites level's SMDs. RESULTS Thirty-nine studies were included in this meta-analysis. A higher level of glutamine + glutamate (Glx) was found in the medial prefrontal cortex (mPFC) (p < 0.01) and potentially in the basal ganglia (p = 0,05) as well as a higher level of myo-inositol (mI) in the dorsolateral prefrontal cortex (DLPFC) (p = 0.04) in HR subjects compared to HC. A higher level of choline (Cho) was found in people with schizophrenia compared to HR subjects in the DLPFC (p < 0.001) and the medial temporal lobe (p = 0.02). Meta-regression analyses showed negative associations between SMD for Cho concentration, the percentage of females or the age (p = 0.01). CONCLUSIONS The present meta-analysis provides evidence that some brain metabolites concentrations are disrupted before the transition to psychosis and could be considered like a vulnerability.
Collapse
Affiliation(s)
- Bruno Romeo
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800, Villejuif, France; Unité Psychiatrie-Comorbidités-Addictions-Unité de Recherche, PSYCOMADD Université Paris Sud - AP-HP, Université Paris Saclay, France.
| | - Amelie Petillion
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800, Villejuif, France; Unité Psychiatrie-Comorbidités-Addictions-Unité de Recherche, PSYCOMADD Université Paris Sud - AP-HP, Université Paris Saclay, France
| | - Catherine Martelli
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800, Villejuif, France; Unité Psychiatrie-Comorbidités-Addictions-Unité de Recherche, PSYCOMADD Université Paris Sud - AP-HP, Université Paris Saclay, France; Institut National de la Santé et de la Recherche Médicale U1000, Research unit, NeuroImaging and Psychiatry, Paris Sud University- Paris Saclay University, Paris Descartes University, Digiteo Labs, Bâtiment 660, Gif-sur- Yvette, France
| | - Amine Benyamina
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800, Villejuif, France; Unité Psychiatrie-Comorbidités-Addictions-Unité de Recherche, PSYCOMADD Université Paris Sud - AP-HP, Université Paris Saclay, France
| |
Collapse
|
7
|
Vingerhoets C, Bakker G, Schrantee A, van der Pluijm M, Bloemen OJN, Reneman L, Caan M, Booij J, van Amelsvoort TAMJ. Influence of muscarinic M 1 receptor antagonism on brain choline levels and functional connectivity in medication-free subjects with psychosis: A placebo controlled, cross-over study. Psychiatry Res Neuroimaging 2019; 290:5-13. [PMID: 31252222 DOI: 10.1016/j.pscychresns.2019.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 01/18/2023]
Abstract
An increasing number of studies implicate the muscarinic cholinergic system in cognitive dysfunction associated with psychosis. This study examined the effect of muscarinic M1 receptor modulation on anterior cingulate cortex (ACC) and striatal choline concentrations and the relation with cognitive performance, as well as functional connectivity of cognitive networks. Thirty medication-free subjects with a psychosis spectrum disorder and 30 gender, age and IQ-matched healthy control subjects underwent 1H-proton magnetic resonance spectroscopy (1H-MRS) twice, once after placebo and once after a single dose of biperiden (M1 receptor antagonist, 4 mg). A subset of 19 psychotic subjects and 28 controls underwent resting-state functional magnetic resonance imaging (rs-fMRI) as well. No significant differences were found in ACC and striatal choline levels, nor in functional connectivity, between the two groups after placebo. Moreover, M1 antagonism did not significantly affect choline levels or functional connectivity. No correlations were found between choline levels and cognition as well as psychotic symptoms. Our findings do not support an association between the cholinergic system and cognition and psychotic symptoms. However, the lack of group differences in choline concentrations and functional connectivity, both after biperiden and placebo, may indicate that there were no severe cholinergic abnormalities present in our sample.
Collapse
Affiliation(s)
- Claudia Vingerhoets
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam University medical center, location Academic Medical Center, Amsterdam, the Netherlands.
| | - Geor Bakker
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam University medical center, location Academic Medical Center, Amsterdam, the Netherlands; Development and Experimental Medicine, Sosei-Heptaris, Cambridge, United Kingdom
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University medical center, location Academic Medical Center, Amsterdam, the Netherlands; Spinoza Centre for Neuroimaging, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Marieke van der Pluijm
- Department of Radiology and Nuclear Medicine, Amsterdam University medical center, location Academic Medical Center, Amsterdam, the Netherlands
| | - Oswald J N Bloemen
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands; GGZ Centraal, Center for Mental Health Care Innova, Amersfoort, the Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam University medical center, location Academic Medical Center, Amsterdam, the Netherlands
| | - Matthan Caan
- Department of Radiology and Nuclear Medicine, Amsterdam University medical center, location Academic Medical Center, Amsterdam, the Netherlands; Department of Biomedical Engineering, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University medical center, location Academic Medical Center, Amsterdam, the Netherlands
| | | |
Collapse
|
8
|
Davies C, Rutigliano G, De Micheli A, Stone JM, Ramella-Cravaro V, Provenzani U, Cappucciati M, Scutt E, Paloyelis Y, Oliver D, Murguia S, Zelaya F, Allen P, Shergill S, Morrison P, Williams S, Taylor D, Lythgoe DJ, McGuire P, Fusar-Poli P. Neurochemical effects of oxytocin in people at clinical high risk for psychosis. Eur Neuropsychopharmacol 2019; 29:601-615. [PMID: 30928180 DOI: 10.1016/j.euroneuro.2019.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/10/2019] [Accepted: 03/07/2019] [Indexed: 01/12/2023]
Abstract
Alterations in neurochemical metabolites are thought to play a role in the pathophysiology of psychosis onset. Oxytocin, a neuropeptide with prosocial and anxiolytic properties, modulates glutamate neurotransmission in preclinical models but its neurochemical effects in people at high risk for psychosis are unknown. We used proton magnetic resonance spectroscopy (1H-MRS) to examine the effects of intranasal oxytocin on glutamate and other metabolites in people at Clinical High Risk for Psychosis (CHR-P) in a double-blind, placebo-controlled, crossover design. 30 CHR-P males were studied on two occasions, once after 40IU intranasal oxytocin and once after placebo. The effects of oxytocin on the concentration of glutamate, glutamate+glutamine and other metabolites (choline, N-acetylaspartate, myo-inositol) scaled to creatine were examined in the left thalamus, anterior cingulate cortex (ACC) and left hippocampus, starting approximately 75, 84 and 93 min post-dosing, respectively. Relative to placebo, administration of oxytocin was associated with an increase in choline levels in the ACC (p=.008, Cohen's d = 0.54). There were no other significant effects on metabolite concentrations (all p>.05). Our findings suggest that, at ∼75-99 min post-dosing, a single dose of intranasal oxytocin does not alter levels of neurochemical metabolites in the thalamus, ACC, or hippocampus in those at CHR-P, aside from potential effects on choline in the ACC.
Collapse
Affiliation(s)
- Cathy Davies
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK.
| | - Grazia Rutigliano
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Andrea De Micheli
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK; National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
| | - James M Stone
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Valentina Ramella-Cravaro
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Umberto Provenzani
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Marco Cappucciati
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Eleanor Scutt
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dominic Oliver
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Silvia Murguia
- Tower Hamlets Early Detection Service (THEDS), East London NHS Foundation Trust, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychology, University of Roehampton, London, UK
| | - Sukhi Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paul Morrison
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Steve Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - David Taylor
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Philip McGuire
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Outreach and Support in South London (OASIS) Service, South London and Maudsley NHS Foundation Trust, London, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK; National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Outreach and Support in South London (OASIS) Service, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
Newton R, Rouleau A, Nylander AG, Loze JY, Resemann HK, Steeves S, Crespo-Facorro B. Diverse definitions of the early course of schizophrenia-a targeted literature review. NPJ SCHIZOPHRENIA 2018; 4:21. [PMID: 30323274 PMCID: PMC6189105 DOI: 10.1038/s41537-018-0063-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 01/07/2023]
Abstract
Schizophrenia is a debilitating psychiatric disorder and patients experience significant comorbidity, especially cognitive and psychosocial deficits, already at the onset of disease. Previous research suggests that treatment during the earlier stages of disease reduces disease burden, and that a longer time of untreated psychosis has a negative impact on treatment outcomes. A targeted literature review was conducted to gain insight into the definitions currently used to describe patients with a recent diagnosis of schizophrenia in the early course of disease ('early' schizophrenia). A total of 483 relevant English-language publications of clinical guidelines and studies were identified for inclusion after searches of MEDLINE, MEDLINE In-Process, relevant clinical trial databases and Google for records published between January 2005 and October 2015. The extracted data revealed a wide variety of terminology and definitions used to describe patients with 'early' or 'recent-onset' schizophrenia, with no apparent consensus. The most commonly used criteria to define patients with early schizophrenia included experience of their first episode of schizophrenia or disease duration of less than 1, 2 or 5 years. These varied definitions likely result in substantial disparities of patient populations between studies and variable population heterogeneity. Better agreement on the definition of early schizophrenia could aid interpretation and comparison of studies in this patient population and consensus on definitions should allow for better identification and management of schizophrenia patients in the early course of their disease.
Collapse
Affiliation(s)
- Richard Newton
- Austin Health, University of Melbourne, Melbourne, VIC, Australia.,Peninsula Health, Frankston, VIC, Australia
| | | | | | | | | | | | - Benedicto Crespo-Facorro
- Department of Medicine & Psychiatry, University Hospital Marqués de Valdecilla, IDIVAL, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain
| |
Collapse
|
10
|
Roalf DR, Nanga RPR, Rupert PE, Hariharan H, Quarmley M, Calkins ME, Dress E, Prabhakaran K, Elliott MA, Moberg PJ, Gur RC, Gur RE, Reddy R, Turetsky BI. Glutamate imaging (GluCEST) reveals lower brain GluCEST contrast in patients on the psychosis spectrum. Mol Psychiatry 2017; 22:1298-1305. [PMID: 28115738 PMCID: PMC5822706 DOI: 10.1038/mp.2016.258] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 10/19/2016] [Accepted: 12/06/2016] [Indexed: 01/05/2023]
Abstract
Psychosis commonly develops in adolescence or early adulthood. Youths at clinical high risk (CHR) for psychosis exhibit similar, subtle symptoms to those with schizophrenia (SZ). Malfunctioning neurotransmitter systems, such as glutamate, are implicated in the disease progression of psychosis. Yet, in vivo imaging techniques for measuring glutamate across the cortex are limited. Here, we use a novel 7 Tesla MRI glutamate imaging technique (GluCEST) to estimate changes in glutamate levels across cortical and subcortical regions in young healthy individuals and ones on the psychosis spectrum. Individuals on the psychosis spectrum (PS; n=19) and healthy young individuals (HC; n=17) underwent MRI imaging at 3 and 7 T. At 7 T, a single slice GluCEST technique was used to estimate in vivo glutamate. GluCEST contrast was compared within and across the subcortex, frontal, parietal and occipital lobes. Subcortical (χ2 (1)=4.65, P=0.031) and lobular (χ2 (1)=5.17, P=0.023) GluCEST contrast levels were lower in PS compared with HC. Abnormal GluCEST contrast levels were evident in both CHR (n=14) and SZ (n=5) subjects, and correlated differentially, across regions, with clinical symptoms. Our findings describe a pattern of abnormal brain neurochemistry early in the course of psychosis. Specifically, CHR and young SZ exhibit diffuse abnormalities in GluCEST contrast attributable to a major contribution from glutamate. We suggest that neurochemical profiles of GluCEST contrast across cortex and subcortex may be considered markers of early psychosis. GluCEST methodology thus shows promise to further elucidate the progression of the psychosis disease state.
Collapse
Affiliation(s)
- David R. Roalf
- Neuropsychiatry Section, Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Ravi Prakash Reddy Nanga
- Department of Radiology & Center for Magnetic and Optical Imaging, University of Pennsylvania Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Petra E. Rupert
- Neuropsychiatry Section, Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Hari Hariharan
- Department of Radiology & Center for Magnetic and Optical Imaging, University of Pennsylvania Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Megan Quarmley
- Neuropsychiatry Section, Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Monica E. Calkins
- Neuropsychiatry Section, Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Erich Dress
- Neuropsychiatry Section, Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Karthik Prabhakaran
- Neuropsychiatry Section, Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Mark A. Elliott
- Department of Radiology & Center for Magnetic and Optical Imaging, University of Pennsylvania Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Paul J. Moberg
- Neuropsychiatry Section, Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Ruben C. Gur
- Neuropsychiatry Section, Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Raquel E. Gur
- Neuropsychiatry Section, Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Ravinder Reddy
- Department of Radiology & Center for Magnetic and Optical Imaging, University of Pennsylvania Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Bruce I. Turetsky
- Neuropsychiatry Section, Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA
| |
Collapse
|
11
|
Neuroprotective Effect of Modified Electroconvulsive Therapy for Schizophrenia: A Proton Magnetic Resonance Spectroscopy Study. J Nerv Ment Dis 2017; 205:480-486. [PMID: 28141630 DOI: 10.1097/nmd.0000000000000652] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The underlying mechanism of modified electroconvulsive therapy (MECT) treatment for drug-resistant and catatonic schizophrenia remains unclear. Here, we aim to investigate whether MECT exerts its antipsychotic effects through elevating N-acetylaspartate (NAA) concentration measured by proton magnetic resonance spectroscopy (H-MRS). Multiple-voxel H-MRS was acquired in the bilateral prefrontal cortex (PFC) and thalamus to obtain measures of neurochemistry in 32 MECT, 34 atypical antipsychotic-treated schizophrenic patients, and 34 healthy controls. We found that both MECT and atypical antipsychotic treatments showed significant antipsychotic efficacy. MECT and atypical antipsychotic treatments reversed the reduced NAA/creatine ratio (NAA/Cr) in the left PFC and left thalamus in schizophrenic patients compared with healthy controls. Furthermore, the NAA/Cr ratio after treatments was significant higher in the MECT group, but not in the medication group. Our findings demonstrate that eight times of MECT elevated the relative NAA concentration to display neuroprotective effect, which may be the underlying mechanism of rapid antipsychotic efficacy.
Collapse
|
12
|
Abstract
Relevant biochemicals of the brain can be quantified in vivo, non-invasively, using proton Magnetic Resonance Spectroscopy (¹H MRS). This includes metabolites associated with neural general functioning, energetics, membrane phospholipid metabolism and neurotransmission. Moreover, there is substantial evidence of implication of the frontal and prefrontal areas in the pathogenesis of psychotic disorders such as schizophrenia. In particular, the anterior cingulate cortex (ACC) plays an important role in cognitive control of emotional and non-emotional processes. Thus the study of its extent of biochemistry dysfunction in the early stages of psychosis is of particular interest in gaining a greater understanding of its aetiology. In this review, we selected ¹H MRS studies focused on the ACC of first-episode psychosis (FEP). Four studies reported increased glutamatergic levels in FEP, while other four showed preserved concentrations. Moreover, findings on FEP do not fully mirror those in chronic patients. Due to conflicting findings, larger longitudinal ¹H MRS studies are expected to further explore glutamatergic neurotransmission in ACC of FEP in order to have a better understanding of the glutamatergic mechanisms underlying psychosis, possibly using ultra high field MR scanners.
Collapse
|
13
|
Bernier D, Bartha R, McAllindon D, Hanstock CC, Marchand Y, Dillen KNH, Gallant M, Good KP, Tibbo PG. Illness versus substance use effects on the frontal white matter in early phase schizophrenia: A 4Tesla (1)H-MRS study. Schizophr Res 2016; 175:4-11. [PMID: 27161760 DOI: 10.1016/j.schres.2016.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Young adults with early phase schizophrenia often report a past or current pattern of illicit substance use and/or alcohol misuse. Still, little is known about the cumulative and separate effects of each stressor on white matter tissue, at this vulnerable period of brain development. METHODS Participants involved 24 healthy controls with a past or current history of sustained illicit drug use and/or alcohol misuse (users), 23 healthy controls without such history (normative data), and 27 users with early phase schizophrenia. (1)H-MRS data were acquired from a large frontal volume encompassing 95% of white matter, using a 4Tesla scanner (LASER sequence, TR/TE 3200/46ms). RESULTS Reduced levels of choline-containing compounds (Cho) were specific to the effect of illness (Cohen's d=0.68), with 22% of the variance in Cho levels accounted for by duration of illness. Reduced levels of myoInositol (d=1.10) and creatine plus phosphocreatine (d=1.07) were specific to the effects of illness plus substance use. Effect of substance use on its own was revealed by reductions in levels of glutamate plus glutamine (d=0.83) in control users relative to normative data. CONCLUSIONS The specific effect of illness on white matter might indicate a decreased synthesis of membrane phospholipids or alternatively, reduced membrane cellular density. In terms of limitations, this study did not include patients without a lifetime history of substance use (non-users), and the specific effect of each substance used could not be studied separately.
Collapse
Affiliation(s)
- Denise Bernier
- Department of Psychiatry, Dalhousie University, Nova Scotia, Canada
| | - Robert Bartha
- Robarts Research Institute, University of Western Ontario, Ontario, Canada
| | - David McAllindon
- Department of Psychiatry, Dalhousie University, Nova Scotia, Canada; Biomedical Translational Imaging Centre, Halifax, Nova Scotia, Canada
| | | | - Yannick Marchand
- Faculty of Computer Science, Department of Psychology and Neuroscience, Dalhousie University, Nova Scotia, Canada
| | - Kim N H Dillen
- Department of Psychiatry, Dalhousie University, Nova Scotia, Canada
| | - Michelle Gallant
- Department of Psychiatry, Dalhousie University, Nova Scotia, Canada
| | - Kimberly P Good
- Department of Psychiatry, Dalhousie University, Nova Scotia, Canada
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Nova Scotia, Canada.
| |
Collapse
|
14
|
Liemburg E, Sibeijn-Kuiper A, Bais L, Pijnenborg G, Knegtering H, van der Velde J, Opmeer E, de Vos A, Dlabac-De Lange J, Wunderink L, Aleman A. Prefrontal NAA and Glx Levels in Different Stages of Psychotic Disorders: a 3T 1H-MRS Study. Sci Rep 2016; 6:21873. [PMID: 26903078 PMCID: PMC4763193 DOI: 10.1038/srep21873] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/02/2016] [Indexed: 12/20/2022] Open
Abstract
H-Magnetic Resonance Spectroscopy ((1)H-MRS) can offer insights in various neuropathologies by measuring metabolite levels in the brain. In the current study we investigated the levels of glutamate + glutamine (Glx, neurotransmitter and precursor) and N-Acetyl Aspartate + glutamic acid (NAA + NAAG; neuronal viability) in the prefrontal cortex of patients with a psychotic disorder and people at Ultra High Risk (UHR) for psychosis. A (1)H-MRS spectrum was acquired in 31 patients with a recent onset psychotic disorder and 60 with a chronic state, 16 UHR patients and 36 healthy controls. Absolute metabolite levels were calculated using LCModel with a reference water peak. Groups were compared while taking into account age and partial volume effects. Moreover, we investigated associations with positive and negative symptoms, duration of illness, and antipsychotic treatment in patients. The most notable finding is that chronicity of schizophrenia was related to decreased levels of Glx and NAA. On the other hand, although on an exploratory note, UHR showed increased levels of prefrontal Glx and NAA levels with increasing age. Our results may indicate an initial Glx and NAA increase and subsequent decrease during illness progression that may be related to the neurotoxic effects of glutamate.
Collapse
Affiliation(s)
- Edith Liemburg
- Department of Neuroscience, and BCN Neuroimaging Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Rob Giel Research Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Lentis Research, Center for Mental Health, Groningen, the Netherlands
| | - Anita Sibeijn-Kuiper
- Department of Neuroscience, and BCN Neuroimaging Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Leonie Bais
- Department of Neuroscience, and BCN Neuroimaging Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Lentis Research, Center for Mental Health, Groningen, the Netherlands
| | - Gerdina Pijnenborg
- Department of Psychology, University of Groningen, Groningen, the Netherlands
- Department of Clinical Psychology and Experimental Psychopathology, Faculty of Behavioral and Social Sciences, University of Groningen, Groningen, the Netherlands
| | - Henderikus Knegtering
- Department of Neuroscience, and BCN Neuroimaging Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Rob Giel Research Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Lentis Research, Center for Mental Health, Groningen, the Netherlands
| | - Jorien van der Velde
- Department of Neuroscience, and BCN Neuroimaging Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Esther Opmeer
- Department of Neuroscience, and BCN Neuroimaging Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Annerieke de Vos
- Department of Neuroscience, and BCN Neuroimaging Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Clinical Psychology and Experimental Psychopathology, Faculty of Behavioral and Social Sciences, University of Groningen, Groningen, the Netherlands
| | - Jozarni Dlabac-De Lange
- Department of Neuroscience, and BCN Neuroimaging Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lex Wunderink
- Rob Giel Research Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Education and Research, Friesland Mental Health Care Services, Leeuwarden, the Netherlands
| | - André Aleman
- Department of Neuroscience, and BCN Neuroimaging Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Psychology, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
15
|
Vernon AC, So PW, Lythgoe DJ, Chege W, Cooper JD, Williams SCR, Kapur S. Longitudinal in vivo maturational changes of metabolites in the prefrontal cortex of rats exposed to polyinosinic-polycytidylic acid in utero. Eur Neuropsychopharmacol 2015; 25:2210-20. [PMID: 26475576 DOI: 10.1016/j.euroneuro.2015.09.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 08/28/2015] [Accepted: 09/29/2015] [Indexed: 01/10/2023]
Abstract
Proton magnetic resonance spectroscopy ((1)H MRS) studies in schizophrenia patients generally report decreased levels of N-acetyl-aspartate (NAA), glutamate and glutathione, particularly in frontal cortex. However, these data are inconsistent in part due to confounds associated with clinical samples. The lack of validated diagnostic biomarkers also hampers analysis of the neurodevelopmental trajectory of neurochemical abnormalities. Rodent models are powerful tools to address these issues, particularly when combined with (1)H MRS (clinically comparable technology). We investigated the trajectory of metabolic changes in the prefrontal cortex during brain maturation from adolescence to adulthood in vivo using (1)H MRS in rats exposed prenatally to polyinosinic-polycytidylic acid (POL), a rodent model of maternal immune activation (MIA), an epidemiological risk factor for several psychiatric disorders with a neurodevelopmental origin. Longitudinal in vivo (1)H MRS revealed a significant decrease in PFC levels of GSH and taurine in adult, but not adolescent rats. Significant age×MIA interactions for PFC levels of NAA were also observed. These data replicate some deficits observed in the PFC of patients with schizophrenia. There were no significant changes in the levels of glutamate or any other metabolite. These data suggest prenatal exposure to POL leads to subtle metabolic perturbations of the normal maturing PFC, which may be related to subsequent behavioural abnormalities. Further work is however required to examine any potential confound of shipping stress on the presumed imbalances in PFC metabolites in POL-exposed offspring. Testing the interactions between MIA with stress or genetic risk variants will also be an important advance.
Collapse
Affiliation(s)
- Anthony C Vernon
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychosis Studies, De Crespigny Park, London SE5 8AF, UK.
| | - Po-Wah So
- King's College London, Institute of Psychiatry, Department of Neuroimaging, Centre for Neuroimaging Sciences, De Crespigny Park, London SE5 8AF, UK
| | - David J Lythgoe
- King's College London, Institute of Psychiatry, Department of Neuroimaging, Centre for Neuroimaging Sciences, De Crespigny Park, London SE5 8AF, UK
| | - Winfred Chege
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychosis Studies, De Crespigny Park, London SE5 8AF, UK
| | - Jonathan D Cooper
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Steven C R Williams
- King's College London, Institute of Psychiatry, Department of Neuroimaging, Centre for Neuroimaging Sciences, De Crespigny Park, London SE5 8AF, UK
| | - Shitij Kapur
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychosis Studies, De Crespigny Park, London SE5 8AF, UK
| |
Collapse
|
16
|
Shendyapina MV, Omelchenko MA, Lebedeva IS, Kanonovich PS, Semenova NA, Ublinsky MV, Dmitrienko DM, Akhadov TA, Simonova OA, Kaleda VG. [Information processing and brain metabolic characteristics in patients at ultra-high risk for endogenous psychosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:24-29. [PMID: 25909785 DOI: 10.17116/jnevro20151151124-29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Functional and structural brain abnormalities in people at high risk for psychosis is a subject of intensive studies in biological psychiatry over the last decades. We studied correlations between neurophysiological and neuroimaging parameters in ultra-high risk patients. MATERIAL AND METHODS Fifty-six patients, aged 17-25 years, with nonpsychotic mental disorders were examined. The control group included 30 age- and sex-matched healthy people. Neurophysiological study measured sensory gating. Proton MR-spectroscopy was used to study metabolic processes in the brain (index for glutamate/glutamine, N-acetylaspartate and choline containing compounds in the dorsolateral prefrontal cortex and thalamus of both hemispheres as well as in the genu and splenium of the corpus callosum). RESULTS AND CONCLUSION We found the abnormality of sensory gating in patients at ultra-high risk for endogenous psychosis that was not correlated with the metabolic parameters. The latter were normal or were normalized during treatment.
Collapse
|
17
|
Gan JL, Cheng ZX, Duan HF, Yang JM, Zhu XQ, Gao CY. Atypical antipsychotic drug treatment for 6 months restores N-acetylaspartate in left prefrontal cortex and left thalamus of first-episode patients with early onset schizophrenia: A magnetic resonance spectroscopy study. Psychiatry Res 2014; 223:23-7. [PMID: 24831926 DOI: 10.1016/j.pscychresns.2014.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/18/2014] [Accepted: 04/19/2014] [Indexed: 01/24/2023]
Abstract
Early onset schizophrenia (EOS) is often associated with poorer outcomes, including lack of school education, higher risk of mental disability and resistance to treatment. But the knowledge of the neurobiological mechanism of EOS is limited. Here, using proton magnetic resonance spectroscopy, we investigated the possible neurochemical abnormalities in prefrontal cortex (PFC) and thalamus of first-episode drug-naïve patients with EOS, and followed up the effects of atypical antipsychotic treatment for 6 months on neurochemical metabolites and clinical symptoms. We measured the ratios of N-acetylaspartate (NAA), choline (Cho) to creatine (Cr) in 41 adolescents with first episode of EOS and in 28 healthy controls matched for age, gender, and years of education. The EOS patients presented with abnormally low NAA/Cr values in the left PFC and left thalamus with a reduced tendency in the right PFC compared with healthy controls. No significant differences were detected between groups for Cho/Cr in PFC and thalamus in any hemisphere. After atypical antipsychotic treatment for 6 months, the reduced NAA/Cr in the left PFC and left thalamus in EOS patients was elevated to the normal level in healthy controls, without any alteration in Cho/Cr. We also found that there was no significant correlation between the neurochemical metabolite ratios in the PFC and thalamus in patients with EOS, and clinical characteristics. Our results suggest that there was neurochemical metabolite abnormalities in PFC and thalamus in EOS patients, atypical antipsychotic treatment can effectively relieve the symptoms and restore the reduced NAA in PFC and thalamus.
Collapse
Affiliation(s)
- Jing-Li Gan
- Mental Diseases Prevention and Treatment Institute of Chinese PLA, PLA 91st Central Hospital, Jiaozuo 454003, PR China.
| | - Zheng-Xiang Cheng
- Mental Diseases Prevention and Treatment Institute of Chinese PLA, PLA 91st Central Hospital, Jiaozuo 454003, PR China
| | - Hui-Feng Duan
- Mental Diseases Prevention and Treatment Institute of Chinese PLA, PLA 91st Central Hospital, Jiaozuo 454003, PR China
| | - Jia-Ming Yang
- Center for Medical Imaging, PLA 91st Central Hospital, Jiaozuo 454003, PR China
| | - Xi-Quan Zhu
- Mental Diseases Prevention and Treatment Institute of Chinese PLA, PLA 91st Central Hospital, Jiaozuo 454003, PR China
| | - Cun-You Gao
- Mental Diseases Prevention and Treatment Institute of Chinese PLA, PLA 91st Central Hospital, Jiaozuo 454003, PR China
| |
Collapse
|
18
|
Bernier D, Cookey J, McAllindon D, Bartha R, Hanstock CC, Newman AJ, Stewart SH, Tibbo PG. Multimodal neuroimaging of frontal white matter microstructure in early phase schizophrenia: the impact of early adolescent cannabis use. BMC Psychiatry 2013; 13:264. [PMID: 24131511 PMCID: PMC3852698 DOI: 10.1186/1471-244x-13-264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 10/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A disturbance in connectivity between different brain regions, rather than abnormalities within the separate regions themselves, could be responsible for the clinical symptoms and cognitive dysfunctions observed in schizophrenia. White matter, which comprises axons and their myelin sheaths, provides the physical foundation for functional connectivity in the brain. Myelin sheaths are located around the axons and provide insulation through the lipid membranes of oligodendrocytes. Empirical data suggests oligodendroglial dysfunction in schizophrenia, based on findings of abnormal myelin maintenance and repair in regions of deep white matter. The aim of this in vivo neuroimaging project is to assess the impact of early adolescent onset of regular cannabis use on brain white matter tissue integrity, and to differentiate this impact from the white matter abnormalities associated with schizophrenia. The ultimate goal is to determine the liability of early adolescent use of cannabis on brain white matter, in a vulnerable brain. METHODS/DESIGN Young adults with schizophrenia at the early stage of the illness (less than 5 years since diagnosis) will be the focus of this project. Four magnetic resonance imaging measurements will be used to assess different cellular aspects of white matter: a) diffusion tensor imaging, b) localized proton magnetic resonance spectroscopy with a focus on the neurochemical N-acetylaspartate, c) the transverse relaxation time constants of regional tissue water, d) and of N-acetylaspartate. These four neuroimaging indices will be assessed within the same brain region of interest, that is, a large white matter fibre bundle located in the frontal region, the left superior longitudinal fasciculus. DISCUSSION We will expand our knowledge regarding current theoretical models of schizophrenia with a more comprehensive multimodal neuroimaging approach to studying the underlying cellular abnormalities of white matter, while taking into consideration the important confounding variable of early adolescent onset of regular cannabis use.
Collapse
Affiliation(s)
- Denise Bernier
- Department of Psychiatry, Dalhousie University, 5909 Veterans' Memorial Lane, Abbie J, Lane Building, Room 3030, Halifax B3H 2E2, Nova Scotia, Canada.
| | - Jacob Cookey
- Department of Psychiatry, Dalhousie University, 5909 Veterans’ Memorial Lane, Abbie J. Lane Building, Room 3030, Halifax B3H 2E2, Nova Scotia, Canada
| | - David McAllindon
- Department of Psychiatry, Dalhousie University, 5909 Veterans’ Memorial Lane, Abbie J. Lane Building, Room 3030, Halifax B3H 2E2, Nova Scotia, Canada
| | - Robert Bartha
- Robarts Research Institute, Western University, 100 Perth Drive, London N6A 5K8, Ontario, Canada
| | - Christopher C Hanstock
- Department of Biomedical Engineering, University of Alberta, 8308-114 Street, Edmonton T6G 2V2, Alberta, Canada
| | - Aaron J Newman
- Department of Psychiatry, Dalhousie University, 5909 Veterans’ Memorial Lane, Abbie J. Lane Building, Room 3030, Halifax B3H 2E2, Nova Scotia, Canada,Department of Psychology and Neuroscience, Dalhousie University, Box 15000, Life Sciences Centre, B3H 4R2 Halifax, Nova Scotia, Canada
| | - Sherry H Stewart
- Department of Psychiatry, Dalhousie University, 5909 Veterans’ Memorial Lane, Abbie J. Lane Building, Room 3030, Halifax B3H 2E2, Nova Scotia, Canada,Department of Psychology and Neuroscience, Dalhousie University, Box 15000, Life Sciences Centre, B3H 4R2 Halifax, Nova Scotia, Canada
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, 5909 Veterans’ Memorial Lane, Abbie J. Lane Building, Room 3030, Halifax B3H 2E2, Nova Scotia, Canada,Department of Psychology and Neuroscience, Dalhousie University, Box 15000, Life Sciences Centre, B3H 4R2 Halifax, Nova Scotia, Canada
| |
Collapse
|
19
|
Brain metabolite alterations in young adults at familial high risk for schizophrenia using proton magnetic resonance spectroscopy. Schizophr Res 2013; 148:59-66. [PMID: 23791389 DOI: 10.1016/j.schres.2013.05.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 05/19/2013] [Accepted: 05/22/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Proton magnetic resonance spectroscopy ((1)H MRS) enables in-vivo measurement of several relevant brain metabolites and has provided evidence of a range of neurochemical abnormalities in schizophrenia, especially in glutamate and N-acetyl-aspartate (NAA). While individuals at high familial risk for schizophrenia (HR) exhibit some neurobiological findings observed in the disorder, (1)H MRS findings and their clinical correlates are not well characterized in this population. METHODS We compared 23 adolescent and young adult offspring of schizophrenia patients with 24 age- and sex-matched healthy controls using (1)H MRS. We acquired multi-voxel, short TE (1)H MRS measurements at 1.5T and obtained metabolite concentrations of N-acetyl-aspartate (NAA), combined glutamate and glutamine (Glu+Gln) and choline-containing compounds (GPC+PC) for the left and right thalamus, anterior cingulate gyrus, and caudate. We also assessed the relationship between regional metabolite levels, clinical measures and brain volume in a subset of 16 high-risk and 15 control subjects. RESULTS Compared to healthy controls, high-risk subjects showed reductions in NAA levels in all three regions (thalamus, caudate, and anterior cingulate cortex), increases in Glu+Gln in the thalamus and caudate, and increases in GPC+PC in the anterior cingulate. In HR, thalamic Glu+Gln concentration was positively correlated and thalamic NAA inversely correlated with measures of schizotypy. Anterior cingulate GPC+PC and caudate Glu+Gln were significantly correlated with attenuated psychotic symptom severity. Anterior cingulate NAA was correlated with executive function. CONCLUSIONS Our data suggest the occurrence of metabolic alterations in young relatives of schizophrenia patients similar to those seen in patients with established illness. The observed correlations with cognitive deficits and psychosis-related psychopathology suggest that these metabolic measures may have value as biomarkers of risk for schizophrenia.
Collapse
|
20
|
Zimbrón J, Ruiz de Azúa S, Khandaker GM, Gandamaneni PK, Crane CM, González-Pinto A, Stochl J, Jones PB, Pérez J. Clinical and sociodemographic comparison of people at high-risk for psychosis and with first-episode psychosis. Acta Psychiatr Scand 2013; 127:210-6. [PMID: 22906094 DOI: 10.1111/acps.12000] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To compare clinical and sociodemographic characteristics previously associated with psychosis, between individuals at high-risk for psychosis (HR) and patients experiencing a first episode psychosis (FEP), to achieve a better understanding of factors associated with psychosis. METHOD Cross-sectional comparison of 30 individuals at HR with 30 age-gender matched FEP, presenting to an early intervention service for psychosis. Participants were followed-up for 2 years to establish the proportion of HR who made the transition into FEP. RESULTS Both groups showed similar socio-clinical characteristics, including immigration status, employment history, marital status, family history of psychotic illness, self-harm and alcohol and drug use. The HR group had a lower level of education, higher burden of trauma, earlier onset of psychiatric symptoms and a longer delay in accessing specialised services. A younger onset of symptoms was associated with a longer delay in accessing services in both groups. After a 2 year follow-up, only three (10%) of the HR group made a transition into FEP. CONCLUSION The similarities observed between individuals at HR and those with FEP suggest that known variables associated with psychosis may be equally prevalent in people at HR who do not develop a psychotic disorder.
Collapse
Affiliation(s)
- J Zimbrón
- Cameo Early Intervention Services, Cambridgeshire and Peterborough NHS Foundation Trust, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wood SJ, Reniers RLEP, Heinze K. Neuroimaging findings in the at-risk mental state: a review of recent literature. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2013; 58:13-8. [PMID: 23327751 DOI: 10.1177/070674371305800104] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The at-risk mental state (ARMS) has been the subject of much interest during the past 15 years. A great deal of effort has been expended to identify neuroimaging markers that can inform our understanding of the risk state and to help predict who will transition to frank psychotic illness. Recently, there has been an explosion of neuroimaging literature from people with an ARMS, which has meant that reviews and meta-analyses lack currency. Here we review papers published in the past 2 years, and contrast their findings with previous reports. While it is clear that people in the ARMS do show brain alterations when compared with healthy control subjects, there is an overall lack of consistency as to which of these alterations predict the development of psychosis. This problem arises because of variations in methodology (in patient recruitment, region of interest, method of analysis, and functional task employed), but there has also been too little effort put into replicating previous research. Nonetheless, there are areas of promise, notably that activation of the stress system and increased striatal dopamine synthesis seem to mark out patients in the ARMS most at risk for later transition. Future studies should focus on these areas, and on network-level analysis, incorporating graph theoretical approaches and intrinsic connectivity networks.
Collapse
Affiliation(s)
- Stephen J Wood
- Professor of Adolescent Brain Development and Mental Health, School of Psychology, University of Birmingham, Edgbaston, England.
| | | | | |
Collapse
|
22
|
Hermens DF, Lagopoulos J, Naismith SL, Tobias-Webb J, Hickie IB. Distinct neurometabolic profiles are evident in the anterior cingulate of young people with major psychiatric disorders. Transl Psychiatry 2012; 2:e110. [PMID: 22832954 PMCID: PMC3365254 DOI: 10.1038/tp.2012.35] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 03/15/2012] [Accepted: 04/05/2012] [Indexed: 12/30/2022] Open
Abstract
Currently, there are no validated neurobiological methods for distinguishing different pathophysiological pathways in young patients presenting in the early phases of major psychiatric disorders. Hence, treatments are delivered simply on the basis of their possible effects on nonspecific symptom constructs such as depression, cognitive change or psychotic symptoms. In this study, the ratios (relative to creatine) of key metabolites (N-acetyl aspartate, myoinositol, glutamate and glutathione) were measured with proton magnetic resonance spectroscopy ((1)H-MRS) within the anterior cingulate cortex of 88 young persons presenting with major mood or psychotic symptoms. We derived empirically (using a cluster analytical technique) three subgroups of subjects on the basis of their patterns of in vivo brain biochemistry. The three subgroups were distinguished (from each other) by all the four metabolites, in particular, glutathione and glutamate. By contrast, the groups could not be distinguished by differences in terms of other demographic, functional or clinical measures. We propose that this (1)H-MRS-based subclassification system could be used as the basis for much more specific tests of novel intervention strategies (notably, antioxidant and glutamatergic therapies) early in the course of major psychiatric disorders.
Collapse
Affiliation(s)
- D F Hermens
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
23
|
Tibbo PG, Bernier D, Hanstock CC, Seres P, Lakusta B, Purdon SE. 3-T proton magnetic spectroscopy in unmedicated first episode psychosis: a focus on creatine. Magn Reson Med 2012; 69:613-20. [PMID: 22511463 DOI: 10.1002/mrm.24291] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/22/2012] [Indexed: 11/07/2022]
Abstract
Different lines of evidence suggest an abnormal cerebral energy metabolism as being critical to the pathophysiology of schizophrenia. However, it is unknown as to whether levels of creatine (Cr) would be involved in these anomalies. The study involved 33 unmedicated first episode psychosis patients and 41 healthy controls. Proton magnetic resonance spectroscopy ((1) H-MRS) was performed at 3 T using a long TE (TE/TM/TR of 240/27/3000 ms) such that within the total phosphocreatine (PCr) plus Cr signal (tCr(240)), mainly Cr was detectable. The target region was an 18 cm(3) prefrontal volume. A negative association was found between age of patients and tCr(240) levels referenced to internal water, with 20% of the variance in tCr(240) accounted for by Age. A secondary finding revealed 16% reduction of tCr(240) levels in patients, solely when comparing participants older than the median age of patients. No association existed between tCr(240) levels and clinical variables. These findings support previous data reporting abnormalities in brain creatine kinase isoenzymes involved with the maintenance of energy pools in schizophrenia. The implications of using a long TE are discussed in terms of the relative proportions of Cr and PCr within the tCr(240) signal, and of potential group differences in T(2) times.
Collapse
Affiliation(s)
- Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | | | | | |
Collapse
|
24
|
Egerton A, Borgwardt SJ, Tognin S, Howes OD, McGuire P, Allen P. An overview of functional, structural and neurochemical imaging studies in individuals with a clinical high risk for psychosis. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/npy.11.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|