1
|
Sarapultsev A, Komelkova M, Lookin O, Khatsko S, Gusev E, Trofimov A, Tokay T, Hu D. Rat Models in Post-Traumatic Stress Disorder Research: Strengths, Limitations, and Implications for Translational Studies. PATHOPHYSIOLOGY 2024; 31:709-760. [PMID: 39728686 DOI: 10.3390/pathophysiology31040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Post-Traumatic Stress Disorder (PTSD) is a multifaceted psychiatric disorder triggered by traumatic events, leading to prolonged psychological distress and varied symptoms. Rat models have been extensively used to explore the biological, behavioral, and neurochemical underpinnings of PTSD. This review critically examines the strengths and limitations of commonly used rat models, such as single prolonged stress (SPS), stress-re-stress (S-R), and predator-based paradigms, in replicating human PTSD pathology. While these models provide valuable insights into neuroendocrine responses, genetic predispositions, and potential therapeutic targets, they face challenges in capturing the full complexity of PTSD, particularly in terms of ethological relevance and translational validity. We assess the degree to which these models mimic the neurobiological and behavioral aspects of human PTSD, highlighting areas where they succeed and where they fall short. This review also discusses future directions in refining these models to improve their utility for translational research, aiming to bridge the gap between preclinical findings and clinical applications.
Collapse
Affiliation(s)
- Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 106 Pervomaiskaya Street, 620049 Ekaterinburg, Russia
| | - Maria Komelkova
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 76 Lenin Prospekt, 454080 Chelyabinsk, Russia
| | - Oleg Lookin
- National Scientific Medical Center, Astana 010000, Kazakhstan
| | - Sergey Khatsko
- Anatomical and Physiological Experimental Laboratory, Department of Experimental Biology and Biotechnology, Institute of Natural Sciences and Mathematics, 48 Kuybysheva Str., 620026 Ekaterinburg, Russia
| | - Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 106 Pervomaiskaya Street, 620049 Ekaterinburg, Russia
| | - Alexander Trofimov
- Biology Department, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbai Batyr Ave., Astana 010000, Kazakhstan
| | - Tursonjan Tokay
- Biology Department, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbai Batyr Ave., Astana 010000, Kazakhstan
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Key Laboratory of Biological Targeted Therapy, China-Russia Medical Research Center for Stress Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
2
|
Lauten TH, Natour T, Case AJ. Innate and adaptive immune system consequences of post-traumatic stress disorder. Auton Neurosci 2024; 252:103159. [PMID: 38428324 PMCID: PMC11494466 DOI: 10.1016/j.autneu.2024.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
In the field of psychiatry, biological markers are rarely, if ever, used in the diagnosis of mental health disorders. Clinicians rely primarily on patient histories and behavioral symptoms to identify specific psychopathologies, which makes diagnosis highly subjective. Moreover, therapies for mental health disorders are aimed specifically at attenuating behavioral manifestations, which overlooks the pathophysiological indices of the disease. This is highly evident in posttraumatic stress disorder (PTSD) where inflammation and immune system perturbations are becoming increasingly described. Further, patients with PTSD possess significantly elevated risks of developing comorbid inflammatory diseases such as autoimmune and cardiovascular diseases, which are likely linked (though not fully proven) to the apparent dysregulation of the immune system after psychological trauma. To date, there is little to no evidence that demonstrates current PTSD therapies are able to reverse the increased risk for psychological trauma-induced inflammatory diseases, which suggests the behavioral and somatic consequences of PTSD may not be tightly coupled. This observation provides an opportunity to explore unique mechanisms outside of the brain that contribute to the long-term pathology of PTSD. Herein, we provide an overview of neuroimmune mechanisms, describe what is known regarding innate and adaptive immunity in PTSD, and suggest new directions that are needed to advance the understanding, diagnosis, and treatment of PTSD moving forward.
Collapse
Affiliation(s)
- Tatlock H Lauten
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Tamara Natour
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Adam J Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States.
| |
Collapse
|
3
|
Teng Y, Niu J, Liu Y, Wang H, Chen J, Kong Y, Wang L, Lian B, Wang W, Sun H, Yue K. Ketamine alleviates fear memory and spatial cognition deficits in a PTSD rat model via the BDNF signaling pathway of the hippocampus and amygdala. Behav Brain Res 2024; 459:114792. [PMID: 38048914 DOI: 10.1016/j.bbr.2023.114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is associated with traumatic stress experiences. This condition can be accompanied by learning and cognitive deficits. Studies have demonstrated that ketamine can rapidly and significantly alleviate symptoms in patients with chronic PTSD. Nonetheless, the effects of ketamine on neurocognitive impairment and its mechanism of action in PTSD remain unclear. METHODS In this study, different concentrations of ketamine (5, 10, 15, and 20 mg/kg, i.p.) were evaluated in rat models of single prolonged stress and electrophonic shock (SPS&S). Expression levels of brain-derived neurotrophic factor (BDNF) and post-synaptic density-95 (PSD-95) in the hippocampus (HIP) and amygdala (AMG) were determined by Western blot analysis and immunohistochemistry. RESULTS The data showed that rats subjected to SPS&S exhibited significant PTSD-like cognitive impairment. The effect of ketamine on SPS&S-induced neurocognitive function showed a U-shaped dose effect in rats. A single administration of ketamine at a dosage of 10-15 mg/kg resulted in significant changes in behavioral outcomes. These manifestations of improvement in cognitive function and molecular changes were reversed at high doses (15-20 mg/kg). CONCLUSION Overall, ketamine reversed SPS&S-induced fear and spatial memory impairment and the down-regulation of BDNF and BDNF-related PSD-95 signaling in the HIP and AMG. A dose equal to 15 mg/kg rapidly reversed the behavioral and molecular changes and promoted the amelioration of cognitive dysfunction. The enhanced association of BDNF signaling with PSD-95 effects could be involved in the therapeutic efficiency of ketamine for PTSD.
Collapse
Affiliation(s)
- Yue Teng
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - JiaYao Niu
- School of Clinical Medicine, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Yang Liu
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Han Wang
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - JinHong Chen
- School of Continuing Education, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - YuJia Kong
- School of Public Health, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Ling Wang
- Clinical Competency Training Center, Medical experiment and training center, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Bo Lian
- Department of Bioscience and Technology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - WeiWen Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100864, PR China
| | - HongWei Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China.
| | - KuiTao Yue
- The Medical imaging Center, Affiliated Hospital of Weifang Medical University, 2428# Yuhe Road, Weifang, Shandong 261053, PR China.
| |
Collapse
|
4
|
Glucocorticoid-based pharmacotherapies preventing PTSD. Neuropharmacology 2023; 224:109344. [PMID: 36402246 DOI: 10.1016/j.neuropharm.2022.109344] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a highly disabling psychiatric condition that may arise after exposure to acute and severe trauma. It is a highly prevalent mental disorder worldwide, and the current treatment options for these patients remain limited due to low effectiveness. The time window right after traumatic events provides clinicians with a unique opportunity for preventive interventions against potential deleterious alterations in brain function that lead to PTSD. Some studies pointed out that PTSD patients present an abnormal function of the hypothalamic-pituitary-adrenal axis that may contribute to a vulnerability toward PTSD. Moreover, glucocorticoids have arisen as a promising option for preventing the disorder's development when administered in the aftermath of trauma. The present work compiles the recent findings of glucocorticoid administration for the prevention of a PTSD phenotype, from human studies to animal models of PTSD. Overall, glucocorticoid-based therapies for preventing PTSD demonstrated moderate evidence in terms of efficacy in both clinical and preclinical studies. Although clinical studies point out that glucocorticoids may not be effective for all patients' subpopulations, those with adequate traits might greatly benefit from them. Preclinical studies provide precise insight into the mechanisms mediating this preventive effect, showing glucocorticoid-based prevention to reduce long-lasting behavioral and neurobiological abnormalities caused by traumatic stress. However, further research is needed to delineate the precise mechanisms and the extent to which these interventions can translate into lower PTSD rates and morbidity. This article is part of the Special Issue on 'Fear, Anxiety and PTSD'.
Collapse
|
5
|
Chakraborty P, Chattarji S, Jeanneteau F. A salience hypothesis of stress in PTSD. Eur J Neurosci 2021; 54:8029-8051. [PMID: 34766390 DOI: 10.1111/ejn.15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/13/2021] [Accepted: 10/30/2021] [Indexed: 11/30/2022]
Abstract
Attention to key features of contexts and things is a necessary tool for all organisms. Detecting these salient features of cues, or simply, salience, can also be affected by exposure to traumatic stress, as has been widely reported in individuals suffering from post-traumatic stress disorder (PTSD). Interestingly, similar observations have been robustly replicated across many animal models of stress as well. By using evidence from such rodent stress paradigms, in the present review, we explore PTSD through the lens of salience processing. In this context, we propose that interaction between the neurotrophin brain-derived neurotrophic factor (BDNF) and glucocorticoids determines the long lasting cellular and behavioural consequences of stress salience. We also describe the dual effect of glucocorticoid therapy in the amelioration of PTSD symptoms. Finally, by integrating in vivo observations at multiple scales of plasticity, we propose a unifying hypothesis that pivots on a crucial role of glucocorticoid signalling in dynamically orchestrating stress salience.
Collapse
Affiliation(s)
- Prabahan Chakraborty
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France.,Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India
| | - Sumantra Chattarji
- Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Freddy Jeanneteau
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France
| |
Collapse
|
6
|
Nemoto T, Kakinuma Y. Prenatal and Postnatal Methyl-Modulator Intervention Corrects the Stress-Induced Glucocorticoid Response in Low-Birthweight Rats. Int J Mol Sci 2021; 22:ijms22189767. [PMID: 34575930 PMCID: PMC8466429 DOI: 10.3390/ijms22189767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/05/2023] Open
Abstract
Low body weight at birth has been shown to be a risk factor for future metabolic disorders, as well as stress response abnormalities and depression. We showed that low-birthweight rats had prolonged high blood corticosterone levels after stress exposure, and that an increase in Gas5 lncRNA, a decoy receptor for glucocorticoid receptors (GRs), reduces glucocorticoid responsiveness. Thus, we concluded that dampened pituitary glucocorticoid responsiveness disturbed the glucocorticoid feedback loop in low-birthweight rats. However, it remains unclear whether such glucocorticoid responsiveness is suppressed solely in the pituitary or systemically. The expression of Gas5 lncRNA increased only in the pituitary, and the intact induction of expression of the GR co-chaperone factor Fkbp5 against dexamethasone was seen in the liver, muscle, and adipose tissue. Intervention with a methyl-modulator diet (folate, VB12, choline, betaine, and zinc) immediately before or one week after delivery reversed the expression level of Gas5 lncRNA in the pituitary of the offspring. Consequently, it partially normalized the blood corticosterone levels after restraint stress exposure. In conclusion, the mode of glucocorticoid response in low-birthweight rats is impaired solely in the pituitary, and intervention with methyl-modulators ameliorates the impairment, but with a narrow therapeutic time window.
Collapse
|
7
|
Chakraborty P, Datta S, McEwen BS, Chattarji S. Corticosterone after acute stress prevents the delayed effects on the amygdala. Neuropsychopharmacology 2020; 45:2139-2146. [PMID: 32629457 PMCID: PMC7784883 DOI: 10.1038/s41386-020-0758-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/05/2020] [Accepted: 06/29/2020] [Indexed: 01/23/2023]
Abstract
Even a single 2-hour episode of immobilization stress is known to trigger anxiety-like behavior and increase spine-density in the basolateral amygdala (BLA) of rats 10 days later. This delayed build-up of morphological and behavioral effects offers a stress-free time window of intervention after acute stress, which we used to test a protective role for glucocorticoids against stress. We observed that post-stress corticosterone, given 1 day after acute stress in drinking water, reversed enhanced anxiety-like behavior 10 days later. Quantification of spine-density on Golgi-stained BLA principal neurons showed that the same intervention also prevented the increase in spine numbers in the amygdala, at the same delayed time-point. Further, stress elevated serum corticosterone levels in rats that received vehicle in the drinking water. However, when stress was followed 24 h later by corticosterone in the drinking water, the surge in corticosterone was prevented. Together, these observations suggest that corticosterone, delivered through drinking water even 24 h after acute stress, is capable of reversing the delayed enhancing effects on BLA synaptic connectivity and anxiety-like behavior. Strikingly, although the immobilization-induced surge in corticosterone by itself has delayed detrimental effects on amygdalar structure and function, there exists a window of opportunity even after stress to mitigate its impact with a second surge of exogenously administered corticosterone. This provides a framework in the amygdala for analyzing how the initial physiological and endocrine processes triggered by traumatic stress eventually give rise to debilitating emotional symptoms, as well as the protective effects of glucocorticoids against their development.
Collapse
Affiliation(s)
- Prabahan Chakraborty
- National Centre for Biological Sciences, Bangalore, 560065, India
- Institut de Genomique Fonctionnelle, Inserm U1191, CNRS UMR5203, University of Montpellier, Montpellier, 34090, France
| | - Siddhartha Datta
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India
| | - Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, 10065, USA
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Bangalore, 560065, India.
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India.
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, 10065, USA.
- Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH89XD, UK.
- National Centre for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, Karnataka, 560065, India.
| |
Collapse
|
8
|
Abdullahi PR, Raeis-Abdollahi E, Sameni H, Vafaei AA, Ghanbari A, Rashidy-Pour A. Protective effects of morphine in a rat model of post-traumatic stress disorder: Role of hypothalamic-pituitary-adrenal axis and beta- adrenergic system. Behav Brain Res 2020; 395:112867. [PMID: 32827567 DOI: 10.1016/j.bbr.2020.112867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/18/2020] [Accepted: 08/12/2020] [Indexed: 11/25/2022]
Abstract
Post-traumatic stress disorder (PTSD) arises after tremendous traumatic experiences. Recently, we have reported that morphine has time-dependent protective effects against behavioral and morphological deficits in the single prolonged stress (SPS) as an experimental model of PTSD in adult male rats. To find the mechanisms underlying the protective effects of morphine against SPS-induced PTSD-like symptoms, the present study investigated the interaction between morphine and hypothalamic-pituitary-adrenal (HPA) axis and beta - adrenergic system, which crucially involved in the stress response, on PTSD-like symptoms in male rats. The animals were exposed to the SPS procedure (restraint for 2 h, forced swimming for 20 min, and ether anesthesia) and morphine (10 mg/kg) or saline was injected 24 h following the SPS. The glucocorticoid receptor antagonist RU486 (20 mg/kg), the mineralocorticoid receptor antagonist spironolactone (50 mg/kg), and the corticosterone synthesis inhibitor metyrapone (50 mg/kg) were injected 90 min before morphine administration to block the HPA axis activity. The beta - adrenergic receptor blocker propranolol (10 mg/kg) and the peripheral beta-adrenergic receptor blocker nadolol (5 mg/kg) were administered 30 min before morphine injection to block the beta - adrenergic system. Anxiety-like behaviors were evaluated using the elevated plus maze (EPM) 11 days after the SPS. After that, animals were conditioned in a fear-conditioning task and extinction training was performed on days 1, 2, 3, 4 and 11 after fear conditioning. SPS increased anxiety-like behaviors and impaired fear extinction. Morphine injection 24 h after SPS significantly improved anxiety-like behaviors and enhanced fear extinction. The RU486, spironolactone and metyrapone prevented the protective effects of morphine on both SPS-induced anxiety-like behaviors and impaired fear extinction. The propranolol, and nadolol did not prevent the effect of morphine on anxiety-like behaviors, but the propranolol prevented morphine effects on fear extinction in SPS animals. These findings together suggest that the protective effects of morphine on PTSD-like symptoms in rats require a certain level of the HPA axis and central beta - adrenergic activity and any alteration in the function of these systems can impede the protective effects of morphine.
Collapse
Affiliation(s)
| | - Ehsan Raeis-Abdollahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
9
|
Sbarski B, Akirav I. Cannabinoids as therapeutics for PTSD. Pharmacol Ther 2020; 211:107551. [PMID: 32311373 DOI: 10.1016/j.pharmthera.2020.107551] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 03/08/2020] [Indexed: 02/09/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a complex disorder that involves dysregulation of multiple neurobiological systems. The traumatic stressor plays a causal role in producing psychological dysfunction and the pattern of findings suggests that the hypothalamic-pituitary-adrenal (HPA) axis, which is instrumental for stress adaptation, is critically dysfunctional in PTSD. Given the lack of understanding of the basic mechanisms and underlying pathways that cause the disorder and its heterogeneity, PTSD poses challenges for treatment. Targeting the endocannabinoid (ECB) system to treat mental disorders, and PTSD in particular, has been the focus of research and interest in recent years. The ECB system modulates multiple functions, and drugs enhancing ECB signaling have shown promise as potential therapeutic agents in stress effects and other psychiatric and medical conditions. In this review, we focus on the interaction between the ECB-HPA systems in animal models for PTSD and in patients with PTSD. We summarize evidence supporting the use of cannabinoids in preventing and treating PTSD in preclinical and clinical studies. As the HPA system plays a key role in the mediation of the stress response and the pathophysiology of PTSD, we describe preclinical studies suggesting that enhancing ECB signaling is consistent with decreasing PTSD symptoms and dysfunction of the HPA axis. Overall, we suggest that a pharmacological treatment targeted at one system (e.g., HPA) may not be very effective because of the heterogeneity of the disorder. There are abnormalities across different neurotransmitter systems in the pathophysiology of PTSD and none of these systems function uniformly among all patients with PTSD. Hence, conceptually, enhancing ECB signaling may be a more effective avenue for pharmacological treatment.
Collapse
Affiliation(s)
- Brenda Sbarski
- School of Psychological Sciences, Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- School of Psychological Sciences, Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
10
|
Silkis IG. The Possible Mechanism of the Appearance of Nightmares in Post-Traumatic Stress Disorder and Approaches to Their Prevention. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419030127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Zubedat S, Havkin E, Maoz I, Aga-Mizrachi S, Avital A. A probabilistic model of startle response reveals opposite effects of acute versus chronic Methylphenidate treatment. J Neurosci Methods 2019; 327:108389. [PMID: 31415846 DOI: 10.1016/j.jneumeth.2019.108389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/30/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND The startle response is considered as the major physio-behavioral indication of anxiety in health and disease conditions. However, due to different protocols of stimulation and measurement, the magnitude as well as the appearance of the startle response is inconsistent. NEW METHOD We postulate that the startle probability and not merely the amplitude may bare information that will form a consistent physiological measure of anxiety. RESULTS To examine the proof-of-concept of our suggested probability model, we evaluated the effects of acute (single) versus chronic (14 days) MPH administration on both startle amplitude and probability. We found that both acute and chronic MPH administration has yielded similar effects on startle amplitude. However, acute MPH increased the startle's probability while chronic MPH decreased it. Next, we evaluated the effects of acute versus chronic stress on the startle's parameters and found a complementary effect. Explicitly, acute stress increased the startle's probability while chronic stress increased the startle amplitude. In contrast, enriched environment had no significant effects. Finally, to further validate the probability measure, we show that Midazolam had significant anxiolytic effects. In the second part, we investigated the acoustic startle response parameters (e.g. background noise and pulse duration), to better understand the interplay between these parameters and the startle amplitude versus probability. CONCLUSIONS We show that the probabilistic element of the startle response does not only point to deeper physiologic relationships but may also serve as "hidden variables" congruent but not entirely identical to the commonly researched amplitude of the startle response.
Collapse
Affiliation(s)
- Salman Zubedat
- Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Evgeny Havkin
- Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Inon Maoz
- Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shlomit Aga-Mizrachi
- Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Avi Avital
- Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
12
|
Abstract
This review examines the putative link between glucocorticoid and hippocampal abnormalities in posttraumatic stress disorder (PTSD). Increased glucocorticoid receptor (GR) sensitivity in PTSD may permit enhanced negative feedback inhibition of cortisol at the pituitary, hypothalamus, or other brain regions comprising the hypothalamic-pituitary-adrenal (HPA) axis and would be expected to affect other physiological systems that are regulated by glucocorticoids. Molecular and transcriptional studies of cortisol are consistent with the hypothesis that cortisol actions may be amplified in PTSD as a result of enhanced GR sensitivity in monocytes and some brain regions, although cortisol levels themselves are unchanged and oftentimes lower than normal. Concurrently, magnetic resonance imaging studies have demonstrated that individuals with PTSD have smaller hippocampal volume than individuals without PTSD. Initial hypotheses regarding the mechanism underlying hippocampal alterations in PTSD focused on elevated glucocorticoid levels in combination with extreme stress as the primary cause, but this explanation has not been well supported in human studies. Lack of data from neuroimaging studies preclude a firm link between PTSD onset and hippocampal volume changes. Rather, the available evidence is consistent with the possibility that smaller hippocampal volume (like reduced cortisol levels and enhanced GR sensitivity) may be a vulnerability factor for developing the disorder; limitations of hippocampal-based models of PTSD are described. We further review neuroimaging studies examining hippocampal structure and function following manipulation of glucocorticoid levels and also examining changes in the hippocampus in relationship to other brain regions. Evidence that the GR may be an important therapeutic target for the treatment of PTSD, especially for functions subserved by the hippocampus, is discussed. Implications of the current review for future research are described, with an emphasis on the need to integrate findings of glucocorticoid abnormalities with functional-imaging paradigms to formulate a comprehensive model of HPA-axis functioning in PTSD.
Collapse
|
13
|
Pooley AE, Benjamin RC, Sreedhar S, Eagle AL, Robison AJ, Mazei-Robison MS, Breedlove SM, Jordan CL. Sex differences in the traumatic stress response: the role of adult gonadal hormones. Biol Sex Differ 2018; 9:32. [PMID: 30001741 PMCID: PMC6043950 DOI: 10.1186/s13293-018-0192-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/29/2018] [Indexed: 01/10/2023] Open
Abstract
Background Our previous study revealed that adult female rats respond differently to trauma than adult males, recapitulating sex differences in symptoms of post-traumatic stress disorder (PTSD) exhibited by women and men. Here, we asked two questions: does the female phenotype depend on (1) social housing condition and/or (2) circulating gonadal hormones? Methods For the first study, the effects of single prolonged stress (SPS) were compared for females singly or pair-housed. For the second study, adult male and female rats were gonadectomized or sham-gonadectomized 2 weeks prior to exposure to SPS, with half the gonadectomized rats given testosterone. In addition to the typical measures of the trauma response in rats, acoustic startle response (ASR), and the dexamethasone suppression test (DST), we also used two other measures typically used to assess depressive-like responses, social interaction and sucrose preference. Glucocorticoid receptor (GR) expression in the hypothalamus was also examined. Results We now report that the distinct trauma response of female rats is not influenced by social housing condition. Moreover, sex differences in the response to SPS based on ASR and DST, replicated in the current study, are independent of adult gonadal hormones. Regardless of hormonal status, traumatized males show a hyper-responsive phenotype whereas traumatized females do not. Moreover, testosterone treatment in adulthood did not masculinize the response to trauma in females. Notably, both sucrose preference and social interaction tests revealed an effect of trauma in females but not in males, with the effects of SPS on sucrose preference dependent on ovarian hormones. Effects of SPS on GR expression in the hypothalamus also depended on gonadal hormones in females. Conclusions We propose that the trauma response for female rats is depressive in nature, recapitulating the female bias in PTSD for internalizing symptoms and major depression in contrast to the externalizing symptoms of males. Presumed core markers of PTSD (enhanced ASR and negative feedback control of corticosterone) are apparently relevant only to males and are independent of adult gonadal hormones. Such sex differences in trauma responding are likely determined earlier in life. We conclude that males and females show fundamentally different responses to trauma that do not simply reflect differences in resilience. Electronic supplementary material The online version of this article (10.1186/s13293-018-0192-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Apryl E Pooley
- Neuroscience Program, Michigan State University, 108 Giltner Hall, 293 Farm Lane, East Lansing, MI, 48824, USA.
| | - Rebecca C Benjamin
- Neuroscience Program, Michigan State University, 108 Giltner Hall, 293 Farm Lane, East Lansing, MI, 48824, USA
| | - Susheela Sreedhar
- Neuroscience Program, Michigan State University, 108 Giltner Hall, 293 Farm Lane, East Lansing, MI, 48824, USA
| | - Andrew L Eagle
- Neuroscience Program, Michigan State University, 108 Giltner Hall, 293 Farm Lane, East Lansing, MI, 48824, USA.,Department of Physiology, Michigan State University, 2201 BPS, 567 Wilson Rd, East Lansing, MI, 48824, USA
| | - Alfred J Robison
- Neuroscience Program, Michigan State University, 108 Giltner Hall, 293 Farm Lane, East Lansing, MI, 48824, USA.,Department of Physiology, Michigan State University, 2201 BPS, 567 Wilson Rd, East Lansing, MI, 48824, USA
| | - Michelle S Mazei-Robison
- Neuroscience Program, Michigan State University, 108 Giltner Hall, 293 Farm Lane, East Lansing, MI, 48824, USA.,Department of Physiology, Michigan State University, 2201 BPS, 567 Wilson Rd, East Lansing, MI, 48824, USA
| | - S Marc Breedlove
- Neuroscience Program, Michigan State University, 108 Giltner Hall, 293 Farm Lane, East Lansing, MI, 48824, USA
| | - Cynthia L Jordan
- Neuroscience Program, Michigan State University, 108 Giltner Hall, 293 Farm Lane, East Lansing, MI, 48824, USA
| |
Collapse
|
14
|
Pooley AE, Benjamin RC, Sreedhar S, Eagle AL, Robison AJ, Mazei-Robison MS, Breedlove SM, Jordan CL. Sex differences in the traumatic stress response: PTSD symptoms in women recapitulated in female rats. Biol Sex Differ 2018; 9:31. [PMID: 29976248 PMCID: PMC6034295 DOI: 10.1186/s13293-018-0191-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/26/2018] [Indexed: 11/23/2022] Open
Abstract
Background Post-traumatic stress disorder (PTSD) affects men and women differently. Not only are women twice as likely as men to develop PTSD, they experience different symptoms and comorbidities associated with PTSD. Yet the dearth of preclinical research on females leaves a notable gap in understanding the underlying neuropathology of this sex difference. Methods Using two standard measures of PTSD-like responses in rats, the acoustic startle response (ASR) and dexamethasone suppression test (DST), we tested the effects of traumatic stress in adult male and female rats using two rodent models of PTSD, single prolonged stress and predator exposure. We then examined the neural correlates underlying these responses with cFos and glucocorticoid receptor immunohistochemistry in brain regions implicated in the traumatic stress response. Results We now report that adult male and female rats across two models of PTSD show consistent sex-specific responses that recapitulate fundamental differences of PTSD in men and women. Trauma-exposed males showed the well-established hyper-responsive phenotype of enhanced ASR and exaggerated negative feedback control of the hypothalamic-pituitary-adrenal axis, while the same traumatic event had little effect on these same measures in females. Dramatic sex differences in how trauma affected cFos and glucocorticoid receptor expression in the brain lend further support to the idea that the trauma response of male and female rats is fundamentally different. Conclusions Two standard measures, ASR and DST, might suggest that females are resilient to the effects of traumatic stress, but other measures make it clear that females are not resilient, but simply respond differently to trauma. The next important question to answer is why. We conclude that males and females show fundamentally different responses to trauma that do not simply reflect differences in resilience. The divergent effects of trauma in the brains of males and females begin to shed light on the neurobiological underpinnings of these sex differences, paving the way for improved diagnostics and therapeutics that effectively treat both men and women. Electronic supplementary material The online version of this article (10.1186/s13293-018-0191-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Apryl E Pooley
- Neuroscience Program, Michigan State University, 108 Giltner Hall, 293 Farm Lane, East Lansing, MI, 48824, USA.
| | - Rebecca C Benjamin
- Neuroscience Program, Michigan State University, 108 Giltner Hall, 293 Farm Lane, East Lansing, MI, 48824, USA
| | - Susheela Sreedhar
- Neuroscience Program, Michigan State University, 108 Giltner Hall, 293 Farm Lane, East Lansing, MI, 48824, USA
| | - Andrew L Eagle
- Neuroscience Program, Michigan State University, 108 Giltner Hall, 293 Farm Lane, East Lansing, MI, 48824, USA.,Department of Physiology, Michigan State University, 2201 BPS, 567 Wilson Rd, East Lansing, MI, 48824, USA
| | - Alfred J Robison
- Neuroscience Program, Michigan State University, 108 Giltner Hall, 293 Farm Lane, East Lansing, MI, 48824, USA.,Department of Physiology, Michigan State University, 2201 BPS, 567 Wilson Rd, East Lansing, MI, 48824, USA
| | - Michelle S Mazei-Robison
- Neuroscience Program, Michigan State University, 108 Giltner Hall, 293 Farm Lane, East Lansing, MI, 48824, USA.,Department of Physiology, Michigan State University, 2201 BPS, 567 Wilson Rd, East Lansing, MI, 48824, USA
| | - S Marc Breedlove
- Neuroscience Program, Michigan State University, 108 Giltner Hall, 293 Farm Lane, East Lansing, MI, 48824, USA
| | - Cynthia L Jordan
- Neuroscience Program, Michigan State University, 108 Giltner Hall, 293 Farm Lane, East Lansing, MI, 48824, USA
| |
Collapse
|
15
|
On the Developmental Timing of Stress: Delineating Sex-Specific Effects of Stress across Development on Adult Behavior. Brain Sci 2018; 8:brainsci8070121. [PMID: 29966252 PMCID: PMC6071226 DOI: 10.3390/brainsci8070121] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Stress, and the chronic overactivation of major stress hormones, is associated with several neuropsychiatric disorders. However, clinical literature on the exact role of stress either as a causative, triggering, or modulatory factor to mental illness remains unclear. We suggest that the impact of stress on the brain and behavior is heavily dependent on the developmental timing at which the stress has occurred, and as such, this may contribute to the overall variability reported on the association of stress and mental illness. Here, animal models provide a way to comprehensively assess the temporal impact of stress on behavior in a controlled manner. This review particularly focuses on the long-term impact of stress on behavior in various rodent stress models at three major developmental time points: early life, adolescence, and adulthood. We characterize the various stressor paradigms into physical, social, and pharmacological, and discuss commonalities and differences observed across these various stress-inducing methods. In addition, we discuss here how sex can influence the impact of stress at various developmental time points. We conclude here that early postnatal life and adolescence represent particular periods of vulnerability, but that stress exposure during early life can sometimes lead to resilience, particularly to fear-potentiated memories. In the adult brain, while shorter periods of stress tended to enhance spatial memory, longer periods caused impairments. Overall, males tended to be more vulnerable to the long-term effects of early life and adolescent stress, albeit very few studies incorporate both sexes, and further well-powered sex comparisons are needed.
Collapse
|
16
|
Corticosterone impairs flexible adjustment of spatial navigation in an associative place–reward learning task. Behav Pharmacol 2018; 29:351-364. [DOI: 10.1097/fbp.0000000000000370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Han C, Li F, Ma J, Liu Y, Li W, Mao Y, Song Y, Guo S, Liu J. Distinct behavioral and brain changes after different durations of the modified multiple platform method on rats: An animal model of central fatigue. PLoS One 2017; 12:e0176850. [PMID: 28493899 PMCID: PMC5426622 DOI: 10.1371/journal.pone.0176850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/18/2017] [Indexed: 12/25/2022] Open
Abstract
The modified multiple platform method (MMPM) is a classical sleep deprivation model. It has been widely used in behavioral and brain research, due to its effects on physical and mental functions. However, different MMPM protocols can promote distinct effects in rats. Although the MMPM has been proved to induce central fatigue, the effects of different durations of subjection to the MMPM remain undetermined. This study aims to investigate the changes in behavior, N-Methyl-d-Aspartate receptor 1 (NR1) and 2A (NR2A), as well as the ultrastructural alteration in the hippocampus after different MMPM modelling, to compare the central fatigue effect induced by dynamic MMPM. Rats were randomly divided into four groups: 5-, 14- and 21- day MMPM groups, and a control group. Each MMPM group underwent a 14-hour daily MMPM modelling. After each training session, open field and elevated plus maze tests were performed. Corticosterone levels were detected by ELISA, and the hippocampal NR1 and NR2A were measured by RT-PCR and Western blot analysis. In addition, ultrastructural changes in the hippocampal cornu ammonis 1(CA1) region were determined by transmission electron microscopy (TEM). The findings showed that the 5 and 14 days of MMPM induced a high-stress state, while the 21 days of MMPM induced anxiety and degenerative alteration in the hippocampal morphology. Additionally, hippocampal NR1 and NR2A gene expression decreased in all MMPM groups, whereas the protein expression only decreased in the 21-day group. Overall, different durations of MMPM caused distinct behavioral and brain changes, and the 21 days of MMPM could induce central fatigue.
Collapse
Affiliation(s)
- Chenxia Han
- Basic Medicine School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Feng Li
- Basic Medicine School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- * E-mail:
| | - Jie Ma
- Basic Medicine School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yan Liu
- Basic Medicine School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Weihong Li
- Basic Medicine School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yingqiu Mao
- Science Research Center of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yuehan Song
- Basic Medicine School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Siyuan Guo
- Basic Medicine School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jing Liu
- Basic Medicine School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Headrick JP, Peart JN, Budiono BP, Shum DH, Neumann DL, Stapelberg NJ. The heartbreak of depression: ‘Psycho-cardiac’ coupling in myocardial infarction. J Mol Cell Cardiol 2017; 106:14-28. [PMID: 28366738 DOI: 10.1016/j.yjmcc.2017.03.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/25/2022]
|
19
|
Lee BH, Park TY, Lin E, Li H, Yang CH, Choi KH. Altered Acoustic Startle Reflex, Prepulse Inhibition, and Peripheral Brain-Derived Neurotrophic Factor in Morphine Self-Administered Rats. Int J Neuropsychopharmacol 2016; 20:383-391. [PMID: 27927738 PMCID: PMC5417055 DOI: 10.1093/ijnp/pyw107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/23/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Previous studies suggested that opiate withdrawal may increase anxiety and disrupt brain-derived neurotrophic factor function, but the effects of i.v. morphine self-administration on these measures remain unclear. METHODS Adult male Sprague-Dawley rats were implanted with a catheter in the jugular vein. After 1 week of recovery, the animals were allowed to self-administer either i.v. morphine (0.5 mg/kg per infusion, 4 h/d) or saline in the operant conditioning chambers. The acoustic startle reflex and prepulse inhibition were measured at a baseline and on self-administration days 1, 3, 5, and 7 (1- and 3-hour withdrawal). Blood samples were collected on self-administration days 3, 5, and 7 from separate cohorts of animals, and the levels of brain-derived neurotrophic factor and corticosterone were assayed using the enzyme-linked immunosorbent assay method. RESULTS Compared with the saline group, the morphine self-administration group showed hyper-locomotor activity and reduced defecation during the self-administration. The morphine self-administration increased acoustic startle reflex at 1-hour but not 3-hour withdrawal from morphine and disrupted prepulse inhibition at 3-hour but not 1-hour withdrawal. The blood brain-derived neurotrophic factor levels were decreased in the morphine self-administration group at self-administration days 3 and 5, while the corticosterone levels remained unchanged throughout the study. CONCLUSIONS The current findings suggest that spontaneous withdrawal from i.v. morphine self-administration may have transient effects on acoustic startle, sensorimotor gating, and peripheral brain-derived neurotrophic factor levels, and these changes may contribute to the adverse effects of opiate withdrawal.
Collapse
Affiliation(s)
- Bong Hyo Lee
- Department of Acupuncture, Moxibustion and Acupoint, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea (Dr Lee); Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD (Dr Lee, Mr Park, Ms Lin, Dr Li, and Dr Choi); Center for Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD (Mr Park, Dr Li, and Dr Choi); Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea (Dr Yang); Daniel K. Inouye Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, MD (Dr Choi)
| | - Thomas Y. Park
- Department of Acupuncture, Moxibustion and Acupoint, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea (Dr Lee); Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD (Dr Lee, Mr Park, Ms Lin, Dr Li, and Dr Choi); Center for Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD (Mr Park, Dr Li, and Dr Choi); Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea (Dr Yang); Daniel K. Inouye Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, MD (Dr Choi)
| | - Erica Lin
- Department of Acupuncture, Moxibustion and Acupoint, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea (Dr Lee); Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD (Dr Lee, Mr Park, Ms Lin, Dr Li, and Dr Choi); Center for Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD (Mr Park, Dr Li, and Dr Choi); Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea (Dr Yang); Daniel K. Inouye Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, MD (Dr Choi)
| | - He Li
- Department of Acupuncture, Moxibustion and Acupoint, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea (Dr Lee); Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD (Dr Lee, Mr Park, Ms Lin, Dr Li, and Dr Choi); Center for Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD (Mr Park, Dr Li, and Dr Choi); Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea (Dr Yang); Daniel K. Inouye Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, MD (Dr Choi)
| | - Chae Ha Yang
- Department of Acupuncture, Moxibustion and Acupoint, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea (Dr Lee); Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD (Dr Lee, Mr Park, Ms Lin, Dr Li, and Dr Choi); Center for Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD (Mr Park, Dr Li, and Dr Choi); Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea (Dr Yang); Daniel K. Inouye Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, MD (Dr Choi)
| | - Kwang H. Choi
- Department of Acupuncture, Moxibustion and Acupoint, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea (Dr Lee); Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD (Dr Lee, Mr Park, Ms Lin, Dr Li, and Dr Choi); Center for Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD (Mr Park, Dr Li, and Dr Choi); Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea (Dr Yang); Daniel K. Inouye Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, MD (Dr Choi)
| |
Collapse
|
20
|
Michopoulos V, Vester A, Neigh G. Posttraumatic stress disorder: A metabolic disorder in disguise? Exp Neurol 2016; 284:220-229. [PMID: 27246996 PMCID: PMC5056806 DOI: 10.1016/j.expneurol.2016.05.038] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/30/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a heterogeneous psychiatric disorder that affects individuals exposed to trauma and is highly co-morbid with other adverse health outcomes, including cardiovascular disease and obesity. The unique pathophysiological feature of PTSD is the inability to inhibit fear responses, such that individuals suffering from PTSD re-experience traumatic memories and are unable to control psychophysiological responses to trauma-associated stimuli. However, underlying alterations in sympathetic nervous system activity, neuroendocrine systems, and metabolism associated with PTSD are similar to those present in traditional metabolic disorders, such as obesity and diabetes. The current review highlights existing clinical, translational, and preclinical data that support the notion that underneath the primary indication of impaired fear inhibition, PTSD is itself also a metabolic disorder and proposes altered function of inflammatory responses as a common underlying mechanism. The therapeutic implications of treating PTSD as a whole-body condition are significant, as targeting any underlying biological system whose activity is altered in both PTSD and metabolic disorders, (i.e. HPA axis, sympathetic nervous systems, inflammation) may elicit symptomatic relief in individuals suffering from these whole-body adverse outcomes.
Collapse
Affiliation(s)
- Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Aimee Vester
- Department of Environmental Health Sciences, Rollins School of Public Health, Atlanta, GA, United States
| | - Gretchen Neigh
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Atlanta, GA, United States; Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
21
|
Eisenmann ED, Rorabaugh BR, Zoladz PR. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents. Front Psychiatry 2016; 7:71. [PMID: 27199778 PMCID: PMC4843048 DOI: 10.3389/fpsyt.2016.00071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions.
Collapse
Affiliation(s)
- Eric D Eisenmann
- Department of Psychology, Sociology and Criminal Justice, Ohio Northern University , Ada, OH , USA
| | - Boyd R Rorabaugh
- Department of Pharmaceutical and Biomedical Sciences, Ohio Northern University , Ada, OH , USA
| | - Phillip R Zoladz
- Department of Psychology, Sociology and Criminal Justice, Ohio Northern University , Ada, OH , USA
| |
Collapse
|