1
|
Lu CL, Ren J, Cao X. An Astroglial Basis of Major Depressive Disorder: Molecular, Cellular, and Circuit Features. Biol Psychiatry 2025; 97:217-226. [PMID: 39084500 DOI: 10.1016/j.biopsych.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Major depressive disorder is a common psychiatric disorder and a leading cause of disability worldwide. Astrocytes play a role in the maintenance of the function of the central nervous system, both physiologically and pathologically. Accumulated evidence indicates that the astrocyte is an important contributor to the pathophysiology of major depressive disorder including blood-brain barrier integrity, gap junctions, gliotransmission, glutamate homeostasis, and energy metabolism. Here, we comprehensively summarize an astroglial basis for major depressive disorder based on molecular, cellular, and circuit properties, suggesting that astrocytes appear to be highly sensitive to stress and are likely to be uniquely positioned to integrate peripheral and central stress responses.
Collapse
Affiliation(s)
- Cheng-Lin Lu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Ren
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Whitehouse DP, Wilson L, Czeiter E, Buki A, Wang KKW, von Steinbüchel N, Zeldovich M, Steyerberg E, Maas AIR, Menon DK, Newcombe VFJ. Association of Blood-Based Biomarkers and 6-Month Patient-Reported Outcomes in Patients With Mild TBI: A CENTER-TBI Analysis. Neurology 2025; 104:e210040. [PMID: 39652812 DOI: 10.1212/wnl.0000000000210040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/19/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND AND OBJECTIVES There is seemingly contradictory evidence concerning relationships between day-of-injury biomarkers and outcomes after mild traumatic brain injury (mTBI). To address this issue, we examined the association between a panel of biomarkers and multidimensional TBI outcomes. METHODS Participants with mTBI (Glasgow coma scores [GCSs] 13-15) were selected from Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury, a European observational study recruiting patients with TBI with indication for brain CT and presentation within 24 hours. Exclusion criteria for this secondary analysis were age younger than 16 years, incomplete biomarker panel, death, or no recorded outcomes. Participants were separated into 2 groups, CT-negative and CT-positive. Multivariable binary logistic regression was used to assess the relation between the log biomarker level (glial fibrillary acidic protein [GFAP], neurofilament light [NfL], neuron-specific enolase [NSE], S100 calcium-binding protein B [S100B], tau, ubiquitin C-terminal hydrolase L1 [UCH-L1]) and dichotomized 6-month outcomes (functional outcomes [GOSE score <8], health-related quality of life [HRQoL; Quality of Life after Brain Injury-Overall Scale (QOLIBRI-OS) score <52, Short-Form 12-Item Survey version 2 Mental Component Summary (SF12v2 MCS) score <40, Short-Form 12-Item Survey version 2 Physical Component Summary (SF12v2 PCS) score <40], persistent postconcussion symptoms [Rivermead Post-Concussion Symptoms Questionnaire score ≥16], anxiety disorder [Generalized Anxiety Disorder-7 (GAD-7) score ≥8], depression [Patient Health Questionnaire-9 (PHQ-9) score ≥10], and post-traumatic stress disorder [PTSD Checklist for DSM-5 (PCL-5) score ≥33]). RESULTS A total of 1,589 participants (865 CT-negative, 724 CT-positive) were included (77% GCS 15, median age 52 years, 66% male). Higher biomarker levels were associated with a GOSE score <8: CT-negative: S100B (odds ratio [OR] 1.78, 95% CI 1.43-2.23) and UCH-L1 (OR 1.16, 95% CI 1.01-1.33); CT-positive: GFAP (OR 1.22, 95% CI 1.11-1.36), NfL (OR 1.30, 95% CI 1.11-1.52), S100B (OR 1.51, 95% CI 1.23-1.86), tau (OR 1.36, 95% CI 1.17-1.59), and UCH-L1 (OR 1.34, 95% CI 1.17-1.53). In CT-positive participants, positive association was seen between NfL (OR 1.3, 95% CI 1.06-1.60) and UCH-L1 (OR 1.28, 95% CI 1.07-1.54) with QOLIBRI-OS; S100B (OR 1.32, 95% CI 1.02-1.70) with SF12v2 PCS; and NSE (OR 1.52, 95% CI 1.06-2.18) and UCH-L1 (OR 1.21, 95% CI 1.01-1.46) with the GAD-7. However, in CT-negative participants only, negative associations were seen between GFAP and impairment on the QOLIBRI-OS (OR 0.76, 95% CI 0.66-0.88), SF12v2 MCS (OR 0.71, 95% CI 0.61-0.82), SF12v2 PCS (OR 0.79, 95% CI 0.68-0.91), GAD-7 (OR 0.80, 0.68-0.95), PHQ-9 (OR 0.80, 95% CI 0.68-0.93), and PCL-5 (OR 0.80, 95% CI 0.66-0.97). DISCUSSION Participants with higher biomarker levels had greater odds of impaired functional recovery. However, in CT-negative participants, higher GFAP concentrations were associated with better HRQoL and less impaired mental health. Further exploration is required of the patient phenotypes that may explain the relationships observed in this analysis.
Collapse
Affiliation(s)
- Daniel P Whitehouse
- From the Perioperative, Acute, Critical Care and Emergency Medicine (PACE) (D.P.W., D.M., V.F.J.N.), Department of Medicine, University of Cambridge, Addenbrooke's Hospital; Division of Psychology (L.W.), University of Stirling, United Kingdom; Department of Neurosurgery (E.C.), Medical School, and Neurotrauma Research Group (E.C.), Szentagothai Research Centre, University of Pecs, Hungary; Department of Neurosurgery (A.B.), Faculty of Medicine and Health, Örebro University, Sweden; Department of Neurobiology (K.K.W.W.), Center for Neurotrauma, Multiomics & Biomarkers (CNMB) Neuroscience Institute, Morehouse School of Medicine (MSM), Atlanta, GA; Program for Neurotrauma, Neuroproteomics and Biomarker Research (K.K.W.W.), Departments of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, McKnight Brain Institute, Gainesville; Institute of Psychology (N.v.S., M.Z.), University of Innsbruck; Faculty of Psychotherapy Science (M.Z.), Sigmund Freud University, Vienna, Austria; Department of Biomedical Data Sciences (E.S.), Leiden University Medical Center, the Netherlands; Department of Neurosurgery (A.I.R.M.), Antwerp University Hospital, Edegem; and Department of Translational Neuroscience (A.I.R.M.), Faculty of Medicine and Health Science, University of Antwerp, Belgium
| | - Lindsay Wilson
- From the Perioperative, Acute, Critical Care and Emergency Medicine (PACE) (D.P.W., D.M., V.F.J.N.), Department of Medicine, University of Cambridge, Addenbrooke's Hospital; Division of Psychology (L.W.), University of Stirling, United Kingdom; Department of Neurosurgery (E.C.), Medical School, and Neurotrauma Research Group (E.C.), Szentagothai Research Centre, University of Pecs, Hungary; Department of Neurosurgery (A.B.), Faculty of Medicine and Health, Örebro University, Sweden; Department of Neurobiology (K.K.W.W.), Center for Neurotrauma, Multiomics & Biomarkers (CNMB) Neuroscience Institute, Morehouse School of Medicine (MSM), Atlanta, GA; Program for Neurotrauma, Neuroproteomics and Biomarker Research (K.K.W.W.), Departments of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, McKnight Brain Institute, Gainesville; Institute of Psychology (N.v.S., M.Z.), University of Innsbruck; Faculty of Psychotherapy Science (M.Z.), Sigmund Freud University, Vienna, Austria; Department of Biomedical Data Sciences (E.S.), Leiden University Medical Center, the Netherlands; Department of Neurosurgery (A.I.R.M.), Antwerp University Hospital, Edegem; and Department of Translational Neuroscience (A.I.R.M.), Faculty of Medicine and Health Science, University of Antwerp, Belgium
| | - Endre Czeiter
- From the Perioperative, Acute, Critical Care and Emergency Medicine (PACE) (D.P.W., D.M., V.F.J.N.), Department of Medicine, University of Cambridge, Addenbrooke's Hospital; Division of Psychology (L.W.), University of Stirling, United Kingdom; Department of Neurosurgery (E.C.), Medical School, and Neurotrauma Research Group (E.C.), Szentagothai Research Centre, University of Pecs, Hungary; Department of Neurosurgery (A.B.), Faculty of Medicine and Health, Örebro University, Sweden; Department of Neurobiology (K.K.W.W.), Center for Neurotrauma, Multiomics & Biomarkers (CNMB) Neuroscience Institute, Morehouse School of Medicine (MSM), Atlanta, GA; Program for Neurotrauma, Neuroproteomics and Biomarker Research (K.K.W.W.), Departments of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, McKnight Brain Institute, Gainesville; Institute of Psychology (N.v.S., M.Z.), University of Innsbruck; Faculty of Psychotherapy Science (M.Z.), Sigmund Freud University, Vienna, Austria; Department of Biomedical Data Sciences (E.S.), Leiden University Medical Center, the Netherlands; Department of Neurosurgery (A.I.R.M.), Antwerp University Hospital, Edegem; and Department of Translational Neuroscience (A.I.R.M.), Faculty of Medicine and Health Science, University of Antwerp, Belgium
| | - Andras Buki
- From the Perioperative, Acute, Critical Care and Emergency Medicine (PACE) (D.P.W., D.M., V.F.J.N.), Department of Medicine, University of Cambridge, Addenbrooke's Hospital; Division of Psychology (L.W.), University of Stirling, United Kingdom; Department of Neurosurgery (E.C.), Medical School, and Neurotrauma Research Group (E.C.), Szentagothai Research Centre, University of Pecs, Hungary; Department of Neurosurgery (A.B.), Faculty of Medicine and Health, Örebro University, Sweden; Department of Neurobiology (K.K.W.W.), Center for Neurotrauma, Multiomics & Biomarkers (CNMB) Neuroscience Institute, Morehouse School of Medicine (MSM), Atlanta, GA; Program for Neurotrauma, Neuroproteomics and Biomarker Research (K.K.W.W.), Departments of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, McKnight Brain Institute, Gainesville; Institute of Psychology (N.v.S., M.Z.), University of Innsbruck; Faculty of Psychotherapy Science (M.Z.), Sigmund Freud University, Vienna, Austria; Department of Biomedical Data Sciences (E.S.), Leiden University Medical Center, the Netherlands; Department of Neurosurgery (A.I.R.M.), Antwerp University Hospital, Edegem; and Department of Translational Neuroscience (A.I.R.M.), Faculty of Medicine and Health Science, University of Antwerp, Belgium
| | - Kevin K W Wang
- From the Perioperative, Acute, Critical Care and Emergency Medicine (PACE) (D.P.W., D.M., V.F.J.N.), Department of Medicine, University of Cambridge, Addenbrooke's Hospital; Division of Psychology (L.W.), University of Stirling, United Kingdom; Department of Neurosurgery (E.C.), Medical School, and Neurotrauma Research Group (E.C.), Szentagothai Research Centre, University of Pecs, Hungary; Department of Neurosurgery (A.B.), Faculty of Medicine and Health, Örebro University, Sweden; Department of Neurobiology (K.K.W.W.), Center for Neurotrauma, Multiomics & Biomarkers (CNMB) Neuroscience Institute, Morehouse School of Medicine (MSM), Atlanta, GA; Program for Neurotrauma, Neuroproteomics and Biomarker Research (K.K.W.W.), Departments of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, McKnight Brain Institute, Gainesville; Institute of Psychology (N.v.S., M.Z.), University of Innsbruck; Faculty of Psychotherapy Science (M.Z.), Sigmund Freud University, Vienna, Austria; Department of Biomedical Data Sciences (E.S.), Leiden University Medical Center, the Netherlands; Department of Neurosurgery (A.I.R.M.), Antwerp University Hospital, Edegem; and Department of Translational Neuroscience (A.I.R.M.), Faculty of Medicine and Health Science, University of Antwerp, Belgium
| | - Nicole von Steinbüchel
- From the Perioperative, Acute, Critical Care and Emergency Medicine (PACE) (D.P.W., D.M., V.F.J.N.), Department of Medicine, University of Cambridge, Addenbrooke's Hospital; Division of Psychology (L.W.), University of Stirling, United Kingdom; Department of Neurosurgery (E.C.), Medical School, and Neurotrauma Research Group (E.C.), Szentagothai Research Centre, University of Pecs, Hungary; Department of Neurosurgery (A.B.), Faculty of Medicine and Health, Örebro University, Sweden; Department of Neurobiology (K.K.W.W.), Center for Neurotrauma, Multiomics & Biomarkers (CNMB) Neuroscience Institute, Morehouse School of Medicine (MSM), Atlanta, GA; Program for Neurotrauma, Neuroproteomics and Biomarker Research (K.K.W.W.), Departments of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, McKnight Brain Institute, Gainesville; Institute of Psychology (N.v.S., M.Z.), University of Innsbruck; Faculty of Psychotherapy Science (M.Z.), Sigmund Freud University, Vienna, Austria; Department of Biomedical Data Sciences (E.S.), Leiden University Medical Center, the Netherlands; Department of Neurosurgery (A.I.R.M.), Antwerp University Hospital, Edegem; and Department of Translational Neuroscience (A.I.R.M.), Faculty of Medicine and Health Science, University of Antwerp, Belgium
| | - Marina Zeldovich
- From the Perioperative, Acute, Critical Care and Emergency Medicine (PACE) (D.P.W., D.M., V.F.J.N.), Department of Medicine, University of Cambridge, Addenbrooke's Hospital; Division of Psychology (L.W.), University of Stirling, United Kingdom; Department of Neurosurgery (E.C.), Medical School, and Neurotrauma Research Group (E.C.), Szentagothai Research Centre, University of Pecs, Hungary; Department of Neurosurgery (A.B.), Faculty of Medicine and Health, Örebro University, Sweden; Department of Neurobiology (K.K.W.W.), Center for Neurotrauma, Multiomics & Biomarkers (CNMB) Neuroscience Institute, Morehouse School of Medicine (MSM), Atlanta, GA; Program for Neurotrauma, Neuroproteomics and Biomarker Research (K.K.W.W.), Departments of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, McKnight Brain Institute, Gainesville; Institute of Psychology (N.v.S., M.Z.), University of Innsbruck; Faculty of Psychotherapy Science (M.Z.), Sigmund Freud University, Vienna, Austria; Department of Biomedical Data Sciences (E.S.), Leiden University Medical Center, the Netherlands; Department of Neurosurgery (A.I.R.M.), Antwerp University Hospital, Edegem; and Department of Translational Neuroscience (A.I.R.M.), Faculty of Medicine and Health Science, University of Antwerp, Belgium
| | - Ewout Steyerberg
- From the Perioperative, Acute, Critical Care and Emergency Medicine (PACE) (D.P.W., D.M., V.F.J.N.), Department of Medicine, University of Cambridge, Addenbrooke's Hospital; Division of Psychology (L.W.), University of Stirling, United Kingdom; Department of Neurosurgery (E.C.), Medical School, and Neurotrauma Research Group (E.C.), Szentagothai Research Centre, University of Pecs, Hungary; Department of Neurosurgery (A.B.), Faculty of Medicine and Health, Örebro University, Sweden; Department of Neurobiology (K.K.W.W.), Center for Neurotrauma, Multiomics & Biomarkers (CNMB) Neuroscience Institute, Morehouse School of Medicine (MSM), Atlanta, GA; Program for Neurotrauma, Neuroproteomics and Biomarker Research (K.K.W.W.), Departments of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, McKnight Brain Institute, Gainesville; Institute of Psychology (N.v.S., M.Z.), University of Innsbruck; Faculty of Psychotherapy Science (M.Z.), Sigmund Freud University, Vienna, Austria; Department of Biomedical Data Sciences (E.S.), Leiden University Medical Center, the Netherlands; Department of Neurosurgery (A.I.R.M.), Antwerp University Hospital, Edegem; and Department of Translational Neuroscience (A.I.R.M.), Faculty of Medicine and Health Science, University of Antwerp, Belgium
| | - Andrew I R Maas
- From the Perioperative, Acute, Critical Care and Emergency Medicine (PACE) (D.P.W., D.M., V.F.J.N.), Department of Medicine, University of Cambridge, Addenbrooke's Hospital; Division of Psychology (L.W.), University of Stirling, United Kingdom; Department of Neurosurgery (E.C.), Medical School, and Neurotrauma Research Group (E.C.), Szentagothai Research Centre, University of Pecs, Hungary; Department of Neurosurgery (A.B.), Faculty of Medicine and Health, Örebro University, Sweden; Department of Neurobiology (K.K.W.W.), Center for Neurotrauma, Multiomics & Biomarkers (CNMB) Neuroscience Institute, Morehouse School of Medicine (MSM), Atlanta, GA; Program for Neurotrauma, Neuroproteomics and Biomarker Research (K.K.W.W.), Departments of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, McKnight Brain Institute, Gainesville; Institute of Psychology (N.v.S., M.Z.), University of Innsbruck; Faculty of Psychotherapy Science (M.Z.), Sigmund Freud University, Vienna, Austria; Department of Biomedical Data Sciences (E.S.), Leiden University Medical Center, the Netherlands; Department of Neurosurgery (A.I.R.M.), Antwerp University Hospital, Edegem; and Department of Translational Neuroscience (A.I.R.M.), Faculty of Medicine and Health Science, University of Antwerp, Belgium
| | - David K Menon
- From the Perioperative, Acute, Critical Care and Emergency Medicine (PACE) (D.P.W., D.M., V.F.J.N.), Department of Medicine, University of Cambridge, Addenbrooke's Hospital; Division of Psychology (L.W.), University of Stirling, United Kingdom; Department of Neurosurgery (E.C.), Medical School, and Neurotrauma Research Group (E.C.), Szentagothai Research Centre, University of Pecs, Hungary; Department of Neurosurgery (A.B.), Faculty of Medicine and Health, Örebro University, Sweden; Department of Neurobiology (K.K.W.W.), Center for Neurotrauma, Multiomics & Biomarkers (CNMB) Neuroscience Institute, Morehouse School of Medicine (MSM), Atlanta, GA; Program for Neurotrauma, Neuroproteomics and Biomarker Research (K.K.W.W.), Departments of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, McKnight Brain Institute, Gainesville; Institute of Psychology (N.v.S., M.Z.), University of Innsbruck; Faculty of Psychotherapy Science (M.Z.), Sigmund Freud University, Vienna, Austria; Department of Biomedical Data Sciences (E.S.), Leiden University Medical Center, the Netherlands; Department of Neurosurgery (A.I.R.M.), Antwerp University Hospital, Edegem; and Department of Translational Neuroscience (A.I.R.M.), Faculty of Medicine and Health Science, University of Antwerp, Belgium
| | - Virginia F J Newcombe
- From the Perioperative, Acute, Critical Care and Emergency Medicine (PACE) (D.P.W., D.M., V.F.J.N.), Department of Medicine, University of Cambridge, Addenbrooke's Hospital; Division of Psychology (L.W.), University of Stirling, United Kingdom; Department of Neurosurgery (E.C.), Medical School, and Neurotrauma Research Group (E.C.), Szentagothai Research Centre, University of Pecs, Hungary; Department of Neurosurgery (A.B.), Faculty of Medicine and Health, Örebro University, Sweden; Department of Neurobiology (K.K.W.W.), Center for Neurotrauma, Multiomics & Biomarkers (CNMB) Neuroscience Institute, Morehouse School of Medicine (MSM), Atlanta, GA; Program for Neurotrauma, Neuroproteomics and Biomarker Research (K.K.W.W.), Departments of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, McKnight Brain Institute, Gainesville; Institute of Psychology (N.v.S., M.Z.), University of Innsbruck; Faculty of Psychotherapy Science (M.Z.), Sigmund Freud University, Vienna, Austria; Department of Biomedical Data Sciences (E.S.), Leiden University Medical Center, the Netherlands; Department of Neurosurgery (A.I.R.M.), Antwerp University Hospital, Edegem; and Department of Translational Neuroscience (A.I.R.M.), Faculty of Medicine and Health Science, University of Antwerp, Belgium
| |
Collapse
|
3
|
Jy Kang M, Grewal J, Eratne D, Malpas C, Chiu WH, Katisko K, Solje E, Santillo AF, Mitchell PB, Hopwood M, Velakoulis D. Neurofilament light and glial fibrillary acidic protein in mood and anxiety disorders: A systematic review and meta-analysis. Brain Behav Immun 2025; 123:1091-1102. [PMID: 39510417 DOI: 10.1016/j.bbi.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/15/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024] Open
Abstract
Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) are biomarkers of neuronal injury measurable in cerebrospinal fluid (CSF) and blood. Despite their potential as diagnostic tests for neurodegenerative disorders, it is unclear how they behave in mood and anxiety disorders. We conducted a systematic review and meta-analysis to investigate whether NfL and GFAP concentrations were altered in adults with mood and anxiety disorders compared to healthy controls. We searched PubMed, Web of Science, PsycINFO, MEDLINE and Embase through August 20, 2024, and assessed relevant studies and their risk of bias. The primary outcome was the standardised mean difference (SMD) and 95 % confidence interval (95 % CI) of NfL and GFAP concentrations. Twenty-nine studies comprising 2,962 individuals (927majordepression,804bipolardisorder,and1,231controls). When we compared individuals with major depression and healthy controls, there was no difference in NfL nor GFAP levels. In individuals with bipolar disorder, NfL was significantly elevated compared to controls (SMD = 0.53; 95 % CI: 0.20, 0.85; p = 0.005). Only one study reported on NfL levels anxiety disorders. Our study informs clinicians about how to interpret these emerging biomarkers in determining whether a person's symptoms are caused by a neurodegenerative or mood disorder. The mild elevation of NfL in bipolar disorder may suggest underlying neuroaxonal injury, warranting further research into its clinical and prognostic significance.
Collapse
Affiliation(s)
- Matthew Jy Kang
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Australia.
| | - Jasleen Grewal
- Alfred Mental and Addiction Health, Alfred Health, Melbourne, Australia.
| | - Dhamidhu Eratne
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Australia.
| | - Charles Malpas
- Department of Medicine, Royal Melbourne Hospital, Melbourne, Australia; Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia.
| | - Wei-Hsuan Chiu
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Australia.
| | - Kasper Katisko
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland; Neuro Center - Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Alexander F Santillo
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Malmö, Sweden.
| | - Philip B Mitchell
- Discipline of Psychiatry & Mental Health, Faculty of Medicine and Health, UNSW, Sydney, Australia.
| | - Malcolm Hopwood
- Department of Psychiatry, University of Melbourne, Melbourne, Australia.
| | - Dennis Velakoulis
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
4
|
Eratne D, Kang MJY, Lewis C, Dang C, Malpas C, Ooi S, Brodtmann A, Darby D, Zetterberg H, Blennow K, Berk M, Dean O, Bousman C, Thomas N, Everall I, Pantelis C, Wannan C, Cicognola C, Hansson O, Janelidze S, Santillo AF, Velakoulis D. Plasma neurofilament light outperforms glial fibrillary acidic protein in differentiating behavioural variant frontotemporal dementia from primary psychiatric disorders. J Neurol Sci 2024; 467:123291. [PMID: 39577322 DOI: 10.1016/j.jns.2024.123291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/24/2024]
Abstract
OBJECTIVE Timely, accurate distinction between behavioural variant frontotemporal dementia (bvFTD) and primary psychiatric disorders (PPD) is a clinical challenge. Blood biomarkers such as neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) have shown promise. Prior work has shown NfL helps distinguish FTD from PPD. Few studies have assessed NfL together with GFAP. METHODS We investigated plasma GFAP and NfL levels in participants with bvFTD, bipolar affective disorder (BPAD), major depressive disorder (MDD), treatment-resistant schizophrenia (TRS), healthy controls (HC), adjusting for age and sex. We compared ability of GFAP and NfL to distinguish bvFTD from PPD. RESULTS Plasma GFAP levels were significantly (all p < 0.001) elevated in bvFTD (n = 22, mean (M) = 273 pg/mL) compared to BPAD (n = 121, M = 96 pg/mL), MDD (n = 42, M = 105 pg/mL), TRS (n = 82, M = 67.9 pg/mL), and HC (n = 120, M = 76.8 pg/mL). GFAP distinguished bvFTD from all PPD with an area under the curve (AUC) of 0.85, 95 % confidence interval [0.76, 0.95]. The optimal cut-off of 105 pg/mL was associated with 73 % specificity and 86 % sensitivity. NfL had AUC 0.95 [0.91, 0.99], 13.3 pg/mL cut-off, 88 % specificity, 86 % sensitivity, and was superior to GFAP (p = 0.02863) and combination of GFAP and NfL (p = 0.04726). CONCLUSIONS This study found elevated GFAP levels in bvFTD compared to a large cohort of PPD, but NfL levels exhibited better performance in this distinction. These findings extend the literature on GFAP in bvFTD and build evidence for plasma NfL as a useful biomarker to assist with distinguishing bvFTD from PPD. Utilisation of NfL may improve timely and accurate diagnosis of bvFTD.
Collapse
Affiliation(s)
- Dhamidhu Eratne
- Neuropsychiatry, Royal Melbourne Hospital, 300 Grattan, St Parkville, VIC 3052, Australia; Department of Psychiatry, University of Melbourne, Grattan St Parkville, 3052 Melbourne, VIC, Australia; The Florey Institute, 30 Royal Parade, Parkville, VIC 3052, Australia.
| | - Matthew J Y Kang
- Neuropsychiatry, Royal Melbourne Hospital, 300 Grattan, St Parkville, VIC 3052, Australia; Department of Psychiatry, University of Melbourne, Grattan St Parkville, 3052 Melbourne, VIC, Australia
| | - Courtney Lewis
- The Florey Institute, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Christa Dang
- The Florey Institute, 30 Royal Parade, Parkville, VIC 3052, Australia; National Ageing Research Institute, 34-54 Poplar Rd, Parkville, VIC 3052, Australia; Department of General Practice, University of Melbourne, Grattan St Parkville VIC, 3052 Melbourne, Australia
| | - Charles Malpas
- Department of Medicine, Royal Melbourne Hospital, Grattan St Parkville, VIC 3052, Melbourne, Australia; University of Melbourne, Grattan St Parkville, VIC, Melbourne 3052, Australia
| | - Suyi Ooi
- The Florey Institute, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Amy Brodtmann
- School of Translational Medicine, Monash University, Melbourne, Australia; Department of Neurology, RMH, Eastern Cognitive Disorders Clinic, Box Hill Hospital, Melbourne 3050, Australia
| | - David Darby
- School of Translational Medicine, Monash University, Melbourne, Australia; Department of Neurology, RMH, Eastern Cognitive Disorders Clinic, Box Hill Hospital, Melbourne 3050, Australia
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Universitetsplatsen 1, 405 30, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal SE-43180, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; UK Dementia Research Institute at UCL, London WC1N 3BG, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Universitetsplatsen 1, 405 30, Sweden
| | - Michael Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Olivia Dean
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Chad Bousman
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | | | | | - Chris Pantelis
- Department of Psychiatry, University of Melbourne, Grattan St Parkville, 3052 Melbourne, VIC, Australia; Western Centre for Health Research & Education, University of Melbourne & Western Health, Sunshine Hospital, St Albans, Victoria, Australia; Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, Parkville, Melbourne, Victoria, Australia
| | - Cassandra Wannan
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia; Orygen, Parkville, VIC, Australia
| | - Claudia Cicognola
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Alexander F Santillo
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Dennis Velakoulis
- Neuropsychiatry, Royal Melbourne Hospital, 300 Grattan, St Parkville, VIC 3052, Australia; Department of Psychiatry, University of Melbourne, Grattan St Parkville, 3052 Melbourne, VIC, Australia
| |
Collapse
|
5
|
Fernández-Pereira C, Fernández-Ceballos MDLÁ, Olivares JM, Prieto-González JM, Agís-Balboa RC. Neurofilament light chain plasma levels in major depressive disorder: a brief research report. Front Psychiatry 2024; 15:1476248. [PMID: 39611129 PMCID: PMC11602450 DOI: 10.3389/fpsyt.2024.1476248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction Peripheral neurofilament light chain (NfL) reflect neuronal and axonal damage. Most studies have been focused on NfL cerebrospinal fluid measures since peripheral levels were difficult to detect. However, with recent advent of single molecule array (SIMOA) technology, NfL is now detectable peripherally at small concentrations (pg/ml). In neurodegenerative disorders, NfL peripheral levels have been found significantly elevated compared against psychiatric disorders. However, there is still controversy of whether NfL peripheral levels might be altered in psychiatric disorders like major depressive disorder (MDD) when compared against a normal population. Methods We have measured NfL plasma levels by using single molecule array (SIMOA) technology in a Spanish small cohort of MDD patients (n = 15) and a HC group (n = 15). We have used subjective scales to estimate depression severity (HDRS), anhedonia (SAAS), the general cognitive state (MMSE) and episodic memory (FCSRT) in MDD patients. Results We have not detected a significant alteration in NfL plasma levels in MDD patients when compared against the HC subjects (U = 97, p-value = 0.532). Moreover, we have not detected any significant correlation between NfL plasma levels with any subjective scales. The only parameter that significantly and positively correlated with NfL plasma levels was age in both MDD and HC. Discussion Significant alteration in NfL plasma levels in MDD patients might reflect neurobiological changes behind the predisposition to develop future neurodegenerative disorders such as Alzheimer's or Parkinson's diseases for which depression represents a risk factor. However, whether there is an increase in NfL due to MDD regardless of the ageing process is still a matter of debate.
Collapse
Affiliation(s)
- Carlos Fernández-Pereira
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS-Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCII, Vigo, Spain
- NeuroEpigenetics Lab, Health Research Institute of Santiago of Compostela (IDIS), Santiago University Hospital Complex, Santiago de Compostela, Spain
- Transalational Research in Neurological Diseases Group (ITEN), Health Research Institute of Santiago de Compostela (IDIS), Santiago University Complex, SERGAS-USC, Santiago de Compostela, Spain
| | - María de los Ángeles Fernández-Ceballos
- NeuroEpigenetics Lab, Health Research Institute of Santiago of Compostela (IDIS), Santiago University Hospital Complex, Santiago de Compostela, Spain
- Transalational Research in Neurological Diseases Group (ITEN), Health Research Institute of Santiago de Compostela (IDIS), Santiago University Complex, SERGAS-USC, Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, Santiago de Compostela, Spain
| | - José Manuel Olivares
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS-Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCII, Vigo, Spain
| | - José M. Prieto-González
- NeuroEpigenetics Lab, Health Research Institute of Santiago of Compostela (IDIS), Santiago University Hospital Complex, Santiago de Compostela, Spain
- Transalational Research in Neurological Diseases Group (ITEN), Health Research Institute of Santiago de Compostela (IDIS), Santiago University Complex, SERGAS-USC, Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, Santiago de Compostela, Spain
| | - Roberto Carlos Agís-Balboa
- NeuroEpigenetics Lab, Health Research Institute of Santiago of Compostela (IDIS), Santiago University Hospital Complex, Santiago de Compostela, Spain
- Transalational Research in Neurological Diseases Group (ITEN), Health Research Institute of Santiago de Compostela (IDIS), Santiago University Complex, SERGAS-USC, Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, Santiago de Compostela, Spain
| |
Collapse
|
6
|
Jeon SY, Yang HW, Son BR, Baek J, Kim JL. Caregiving-Related Depression Increases Neuroinflammation in Spousal Caregivers to Individuals With Cognitive Impairment: A Longitudinal Study. J Gerontol A Biol Sci Med Sci 2024; 79:glae235. [PMID: 39297507 PMCID: PMC11638088 DOI: 10.1093/gerona/glae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND The caregiving burden of the spousal caregivers (SCGs) to individuals with cognitive impairment poses public health challenges with adverse psychosocial and physiological effects. However, few studies have investigated the neurobiological impact of caregiving, particularly through the investigation of neuroinflammation and neurodegeneration. METHODS Using data from a longitudinal cohort at Chungnam National University Hospital, the relationship between caregiving burden, neuroinflammation, and neurodegeneration was examined in 38 older adult couples over a 16-month period. Caregiving burden was assessed through a multifaceted approach. For factors related to the care recipient, we assessed cognitive function and neuropsychiatric symptoms. Factors regarding the SCGs included the measurement of perceived depression. Glial fibrillary acidic protein (GFAP) was used as a plasma biomarker for neuroinflammation and neurofilament light chain (NfL) for neurodegeneration. Regression analyses were adjusted for age, sex, apolipoprotein E status, follow-up interval, vascular risk factors, and physical activity. RESULTS Changes in depression among SCGs were significantly correlated with increased GFAP levels (p = .003), indicating that greater depressive symptoms during caregiving are associated with increased neuroinflammation. In contrast, no significant correlations were found between changes in cognitive function or neuropsychiatric symptoms in care recipients and the plasma biomarker levels of SCGs. Additionally, there was no significant association between changes in depression and NfL levels in SCGs. CONCLUSIONS The psychological stress experienced by SCGs while caring for partners with cognitive impairment actively contributes to neuroinflammation, a well-known risk factor for various diseases. This study emphasizes the need to address psychological stress experienced by older adult caregivers.
Collapse
Affiliation(s)
- So Yeon Jeon
- Department of Psychiatry, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Psychiatry, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hee Won Yang
- Department of Psychiatry, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Bo Ran Son
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jimin Baek
- Department of Psychiatry, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jeong Lan Kim
- Department of Psychiatry, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Psychiatry, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Costanza A, Amerio A, Aguglia A, Rossi M, Parise A, Magnani L, Serafini G, Amore M, Martins D, Nguyen KD. Reactive Astrocytosis-A Potential Contributor to Increased Suicide in Long COVID-19 Patients? Brain Sci 2024; 14:973. [PMID: 39451987 PMCID: PMC11505806 DOI: 10.3390/brainsci14100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Long COVID-19 is an emerging chronic illness of significant public health concern due to a myriad of neuropsychiatric sequelae, including increased suicidal ideation (SI) and behavior (SB). METHODS This review provides a concise synthesis of clinical evidence that points toward the dysfunction of astrocytes, the most abundant glial cell type in the central nervous system, as a potential shared pathology between SI/SB and COVID-19. RESULTS Depression, a suicide risk factor, and SI/SB were both associated with reduced frequencies of various astrocyte subsets and complex proteomic/transcriptional changes of astrocyte-related markers in a brain-region-specific manner. Astrocyte-related circulating markers were increased in depressed subjects and, to a less consistent extent, in COVID-19 patients. Furthermore, reactive astrocytosis was observed in subjects with SI/SB and those with COVID-19. CONCLUSIONS Astrocyte dysfunctions occurred in depression, SI/SB, and COVID-19. Reactive-astrocyte-mediated loss of the blood-brain barrier (BBB) integrity and subsequent neuroinflammation-a factor previously linked to SI/SB development-might contribute to increased suicide in individuals with long COVID-19. As such, the formulation of new therapeutic strategies to restore astrocyte homeostasis, enhance BBB integrity, and mitigate neuroinflammation may reduce SI/SB-associated neuropsychiatric manifestations among long COVID-19 patients.
Collapse
Affiliation(s)
- Alessandra Costanza
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), 24 Rue du Général-Dufour, 1211 Geneva, Switzerland
- Department of Psychiatry, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), Via Giuseppe Buffi 13, 6900 Lugano, Switzerland
- Department of Psychiatry, Adult Psychiatry Service, University Hospitals of Geneva (HUG), Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
- “Nel Chiostro”, Medical and Study Center, Via Camillo Leone 29, 13100 Vercelli, Italy
| | - Andrea Amerio
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Via Balbi, 5, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Polyclinic Hospital San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Andrea Aguglia
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Via Balbi, 5, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Polyclinic Hospital San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Martina Rossi
- “Nel Chiostro”, Medical and Study Center, Via Camillo Leone 29, 13100 Vercelli, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, University Hospital of Parma, 43126 Parma, Italy;
| | - Luca Magnani
- Department of Psychiatry, San Maurizio Hospital of Bolzano, Via Lorenz Böhler, 5, 39100 Bolzano, Italy;
| | - Gianluca Serafini
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Via Balbi, 5, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Polyclinic Hospital San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Mario Amore
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Via Balbi, 5, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Polyclinic Hospital San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN)—King’s College London (KCL), Strand Campus, London WC2R 2LS, UK;
- NIHR Maudesley BRC, 16 De Crespigny Park, SE5 8AF South London and Maudesley NHS Trust, Denmark Hill, London SE5 8AZ, UK
| | - Khoa D. Nguyen
- Program in Immunology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA;
- Department of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Habibzadeh A, Ostovan VR, Ghezel MA, Kavari K, Kardeh S, Tabrizi R. Neurofilament light chain as a promising biomarker for depression diagnosis: a systematic review and meta-analysis. BMC Psychiatry 2024; 24:617. [PMID: 39285369 PMCID: PMC11403956 DOI: 10.1186/s12888-024-06051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Depression is a prevalent and serious mental health disorder that significantly impacts daily life and functioning. Neurofilament Light chain (NfL), associated with axonal neuronal damage, has been identified as a promising biomarker, potentially aiding in early diagnosis of depression, personalized treatment, and tracking disease progression. This study used meta-analysis to evaluate the potential of plasma NfL as a biomarker for depression patients. METHODS A systematic search following the PRISMA guidelines was conducted across PubMed, Web of Science, Scopus, and Google Scholar databases to find relevant studies on plasma NfL levels in patients with depression. A random effects model meta-analysis was applied to determine its potential as a biomarker for differentiating patients from controls. RESULTS Our meta-analysis, based on four articles with six datasets, revealed that plasma NfL levels were notably higher in individuals with depression (228 cases) compared to healthy controls (118 individuals). The weighted mean difference (WMD) was 8.78 (95% CI: 5.28, 12.28; P < 0.01), indicating a significant effect size. Given the diverse confounding factors inherent in the included observational studies, the observed variability can be attributed to these influences. Due to the observed heterogeneity (heterogeneity Chi-Square: 54.91, p < 0.05), we performed a subgroup analysis. Subgroup analyses based on depression type and analysis method consistently supported the association between NfL and depression, strengthening the evidence. CONCLUSION Our meta-analysis demonstrates that elevated NfL levels may serve as a promising biomarker for diagnosing depressive disorders. Further research on diverse subtypes and longitudinal changes is needed to validate its clinical utility.
Collapse
Affiliation(s)
- Adrina Habibzadeh
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| | - Vahid Reza Ostovan
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Kiarash Kavari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Kardeh
- Central Clinical School, Monash University, Melbourne, Australia
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
- Clinical Research Development Unit, Valiasr Hospital, Fasa University of Medical Sciences, Fasa, Iran.
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
He P, Lu X, Zhong M, Weng H, Wang J, Zhang X, Jiang C, Geng F, Shi Y, Zhang G. Plasma alpha-trypsin inhibitor heavy chain 4 as an age-specific biomarker in the diagnosis and treatment of major depressive disorder. Front Psychiatry 2024; 15:1449202. [PMID: 39323962 PMCID: PMC11422199 DOI: 10.3389/fpsyt.2024.1449202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background The diagnosis of major depressive disorder (MDD) mainly depends on subjective clinical symptoms, without an acceptable objective biomarker for the clinical application of MDD. Inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) showed a high specificity as biomarker for the diagnosis and treatment of MDD. The present study aimed to investigate differences in plasma ITIH4 in two different aged MDD patients and underlying pathological mechanisms of plasma ITIH4 in the occurrence and development of MDD. Methods Sixty-five adult MDD patients, 51 adolescent MDD patients, and 64 healthy controls (HCs) were included in the present study. A 14-days' antidepressive treatment was conducted in all MDD patients. Psychological assessments were performed and plasma ITIH4 and astrocyte-related markers were detected for all participants. Results (1) Plasma levels of ITIH4 in adult MDD patients were significantly higher than adolescent MDD patients and HCs, and significantly increased plasma ITIH4 levels was observed in adolescent MDD patients compared with HCs (2). There were positive correlations between plasma ITIH4 levels and 24-item Hamilton Depression Scale (HAMD-24) scores and plasma glial fibrillary acidic protein (GFAP) levels in MDD patients, however, plasma ITIH4 levels were significantly correlated with age just in adult MDD patients (3). Plasma ITIH4 showed area under the curve values of 0.824 and 0.729 to differentiate adult MDD patients and adolescent MDD patients from HCs, respectively (4). There was significant decrease in plasma levels of ITIH4 between before and after antidepressive treatment in adult MDD patients, but not in adolescent MDD patients (5). Changed value of ITIH4 levels were correlated with the changed value of GFAP levels and changed rate of HAMD-24 scores in adult MDD patients following antidepressive treatment. Conclusion Plasma ITIH4 may be potential plasma biomarkers of MDD with age-related specificity, which was associated with depressive symptoms astrocyte-related pathologic changes, and antidepressive treatment efficacy.
Collapse
Affiliation(s)
- Ping He
- Department of Neurosurgery Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xuefang Lu
- Department of Rehabilitation Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Mengmeng Zhong
- Department of Functional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Hui Weng
- Department of Psychology and Sleep Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jialu Wang
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xiaoxuan Zhang
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Chen Jiang
- Department of Neurosurgery Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Feng Geng
- Department of Psychology and Sleep Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yachen Shi
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Gaojia Zhang
- Department of Psychology and Sleep Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Twait EL, Kamarioti M, Verberk IMW, Teunissen CE, Nooyens ACJ, Monique Verschuren WM, Visser PJ, Huisman M, Kok AAL, Eline Slagboom P, Beekman M, Vojinovic D, Lakenberg N, Arfan Ikram M, Schuurmans IK, Wolters FJ, Moonen JEF, Gerritsen L, van der Flier WM, Geerlings MI. Depressive Symptoms and Plasma Markers of Alzheimer's Disease and Neurodegeneration: A Coordinated Meta-Analysis of 8 Cohort Studies. Am J Geriatr Psychiatry 2024; 32:1141-1153. [PMID: 38553327 DOI: 10.1016/j.jagp.2024.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 08/11/2024]
Abstract
BACKGROUND Depressive symptoms are associated with an increased risk of Alzheimer's disease (AD). There has been a recent emergence in plasma biomarkers for AD pathophysiology, such as amyloid-beta (Aβ) and phosphorylated tau (p-tau), as well as for axonal damage (neurofilament light, NfL) and astrocytic activation (glial fibrillary acidic protein, GFAP). Hypothesizing that depressive symptoms may occur along the AD process, we investigated associations between plasma biomarkers of AD with depressive symptoms in individuals without dementia. METHODS A two-stage meta-analysis was performed on 2 clinic-based and 6 population-based cohorts (N = 7210) as part of the Netherlands Consortium of Dementia Cohorts. Plasma markers (Aβ42/40, p-tau181, NfL, and GFAP) were measured using Single Molecular Array (Simoa; Quanterix) assays. Depressive symptoms were measured with validated questionnaires. We estimated the cross-sectional association of each standardized plasma marker (determinants) with standardized depressive symptoms (outcome) using linear regressions, correcting for age, sex, education, and APOE ε4 allele presence, as well as subgrouping by sex and APOE ε4 allele. Effect estimates were entered into a random-effects meta-analysis. RESULTS Mean age of participants was 71 years. The prevalence of clinically relevant depressive symptoms ranged from 1% to 22%. None of the plasma markers were associated with depressive symptoms in the meta-analyses. However, NfL was associated with depressive symptoms only in APOE ε4 carriers (β 0.11; 95% CI: 0.05-0.17). CONCLUSIONS Late-life depressive symptoms did not show an association to plasma biomarkers of AD pathology. However, in APOE ε4 allele carriers, a more profound role of neurodegeneration was suggested with depressive symptoms.
Collapse
Affiliation(s)
- Emma L Twait
- Julius Center for Health Sciences and Primary Care (ELT, MK, WMMV, MIG), University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Amsterdam UMC, Location Vrije Universiteit (ELT), Department of General Practice, Amsterdam Public Health, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Maria Kamarioti
- Julius Center for Health Sciences and Primary Care (ELT, MK, WMMV, MIG), University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Inge M W Verberk
- Neurochemistry Laboratory (IMWV, CET), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory (IMWV, CET), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Astrid C J Nooyens
- National Institute for Public Health and the Environment (ACJN, WMMV), Bilthoven, The Netherlands
| | - W M Monique Verschuren
- Julius Center for Health Sciences and Primary Care (ELT, MK, WMMV, MIG), University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; National Institute for Public Health and the Environment (ACJN, WMMV), Bilthoven, The Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam (PJV, JEFM, WMF), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands; Department of Psychiatry and Neuropsychology (PJV), School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Martijn Huisman
- Amsterdam UMC Location Vrije Universiteit Amsterdam (MH, AALK, WMF), Epidemiology and Data Science, Amsterdam, The Netherlands; Department of Sociology, Faculty of Social Sciences (MH), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health (MH, AALK), Ageing and Later Life, Amsterdam, The Netherlands
| | - Almar A L Kok
- Amsterdam UMC Location Vrije Universiteit Amsterdam (MH, AALK, WMF), Epidemiology and Data Science, Amsterdam, The Netherlands; Amsterdam Public Health (MH, AALK), Ageing and Later Life, Amsterdam, The Netherlands
| | - P Eline Slagboom
- Molecular Epidemiology (PES, MB, DV, NL), Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Marian Beekman
- Molecular Epidemiology (PES, MB, DV, NL), Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Dina Vojinovic
- Molecular Epidemiology (PES, MB, DV, NL), Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands; Department of Epidemiology (DV, MAI, IKS, FJW), Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nico Lakenberg
- Molecular Epidemiology (PES, MB, DV, NL), Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology (DV, MAI, IKS, FJW), Erasmus University Medical Center, Rotterdam, Netherlands; Harvard T.H. Chan School of Public Health (MAI), Boston, MA
| | - Isabel K Schuurmans
- Department of Epidemiology (DV, MAI, IKS, FJW), Erasmus University Medical Center, Rotterdam, Netherlands
| | - Frank J Wolters
- Department of Epidemiology (DV, MAI, IKS, FJW), Erasmus University Medical Center, Rotterdam, Netherlands; Department of Radiology & Nuclear Medicine (FJW), Erasmus MC, Rotterdam The Netherlands
| | - Justine E F Moonen
- Alzheimer Center Amsterdam (PJV, JEFM, WMF), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Lotte Gerritsen
- Department of Psychology (LG) Utrecht University, Utrecht, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam (PJV, JEFM, WMF), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam (MH, AALK, WMF), Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Mirjam I Geerlings
- Julius Center for Health Sciences and Primary Care (ELT, MK, WMMV, MIG), University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Amsterdam UMC (MIG), Location University of Amsterdam, Department of General Practice, Amsterdam Public Health, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Pocevičiūtė D, Wennström M, Ohlsson B. Okinawa-Based Nordic Diet Decreases Plasma Glial Fibrillary Acidic Protein Levels in Type 2 Diabetes Patients. Nutrients 2024; 16:2847. [PMID: 39275164 PMCID: PMC11396978 DOI: 10.3390/nu16172847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Elevated levels of glial fibrillary acidic protein (GFAP) in plasma reflect neuroinflammation and are linked to cognitive decline. Preclinical studies show that dietary change can attenuate astrocyte reactivity and neuroinflammation. In the current study, we investigate if the Okinawa-based Nordic (O-BN) diet alters plasma GFAP levels in patients with Type 2 Diabetes (T2D), a metabolic disorder associated with cognitive disturbances and an increased risk of dementia. Plasma GFAP levels were measured in T2D patients (n = 30) at baseline, after 3 months of the diet, and after a subsequent 4 months of unrestricted diets. The GFAP levels decreased significantly after 3 months of the diet (p = 0.048) but reverted to baseline levels after 4 months of unrestricted diets. At baseline, the GFAP levels correlated significantly with levels of the neurodegeneration marker neurofilament light polypeptide (r = 0.400*) and, after correcting for age, sex, and body mass index, with proinflammatory plasma cytokines (ranging from r = 0.440* to r = 0.530**) and the metabolic hormone islet amyloid polypeptide (r = 0.478*). We found no correlation with psychological well-being. These results suggest that the O-BN diet reduces neuroinflammation in T2D patients and may thus be an important preventive measure for managing T2D and reducing the risk of neurodegenerative disorders.
Collapse
Affiliation(s)
- Dovilė Pocevičiūtė
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden;
| | - Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden;
| | - Bodil Ohlsson
- Department of Internal Medicine, Lund University, Skåne University Hospital, 214 28 Malmö, Sweden;
| |
Collapse
|
12
|
Bavato F, Barro C, Schnider LK, Simrén J, Zetterberg H, Seifritz E, Quednow BB. Introducing neurofilament light chain measure in psychiatry: current evidence, opportunities, and pitfalls. Mol Psychiatry 2024; 29:2543-2559. [PMID: 38503931 PMCID: PMC11412913 DOI: 10.1038/s41380-024-02524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
The recent introduction of new-generation immunoassay methods allows the reliable quantification of structural brain markers in peripheral matrices. Neurofilament light chain (NfL), a neuron-specific cytoskeletal component released in extracellular matrices after neuroaxonal impairment, is considered a promising blood marker of active brain pathology. Given its sensitivity to a wide range of neuropathological alterations, NfL has been suggested for the use in clinical practice as a highly sensitive, but unspecific tool to quantify active brain pathology. While large efforts have been put in characterizing its clinical profile in many neurological conditions, NfL has received far less attention as a potential biomarker in major psychiatric disorders. Therefore, we briefly introduce NfL as a marker of neuroaxonal injury, systematically review recent findings on cerebrospinal fluid and blood NfL levels in patients with primary psychiatric conditions and highlight the opportunities and pitfalls. Current evidence suggests an elevation of blood NfL levels in patients with major depression, bipolar disorder, psychotic disorders, anorexia nervosa, and substance use disorders compared to physiological states. However, blood NfL levels strongly vary across diagnostic entities, clinical stage, and patient subgroups, and are influenced by several demographic, clinical, and analytical factors, which require accurate characterization. Potential clinical applications of NfL measure in psychiatry are seen in diagnostic and prognostic algorithms, to exclude neurodegenerative disease, in the assessment of brain toxicity for different pharmacological compounds, and in the longitudinal monitoring of treatment response. The high inter-individual variability of NfL levels and the lack of neurobiological understanding of its release are some of the main current limitations. Overall, this primer aims to introduce researchers and clinicians to NfL measure in the psychiatric field and to provide a conceptual framework for future research directions.
Collapse
Affiliation(s)
- Francesco Bavato
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Christian Barro
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura K Schnider
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Laird AE, Le AA, Kulbe JR, Umlauf A, Sagarian M, Spencer M, Sathe A, Grelotti DJ, Iudicello J, Henry B, Ellis RJ, Fields JA. Sera from people with HIV and depression induce commensurate metabolic alterations in astrocytes: toward precision diagnoses and therapies. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:113-128. [PMID: 39175522 PMCID: PMC11338010 DOI: 10.1515/nipt-2024-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/07/2024] [Indexed: 08/24/2024]
Abstract
Objectives People with HIV (PWH) have high rates of depression and neurocognitive impairment (NCI) despite viral suppression on antiretroviral therapy (ART). Mounting evidence suggests that immunometabolic disruptions may contribute to these conditions in some PWH. We hypothesized that metabolic dysfunction in astrocytes is associated with depressive symptoms and cognitive function in PWH. Methods Human astrocytes were exposed to sera from PWH (n=40) with varying degrees of depressive symptomatology and cognitive function. MitoTrackerTM Deep Red FM (MT) was used to visualize mitochondrial activity and glial fibrillary acidic protein (GFAP) as an indicator of astrocyte reactivity using the high-throughput fluorescent microscopy and image analyses platform, CellInsight CX5 (CX5). The Seahorse platform was used to assess glycolytic and mitochondrial metabolism. Results More severe depression, as indexed by higher Beck's Depression Inventory (BDI-II) scores, was associated with lower MT signal measures. Better cognitive function, as assessed by neuropsychiatric testing t-scores, was associated with increased MT signal measures. GFAP intensity negatively correlated with several cognitive t-scores. Age positively correlated with (higher) MT signal measures and GFAP intensity. Worse depressive symptoms (higher BDI-II scores) were associated with decreased oxygen consumption rate and spare respiratory capacity, concomitant with increased extracellular acidification rate in astrocytes. Conclusions These findings show that factors in the sera of PWH alter mitochondrial activity in cultured human astrocytes, suggesting that mechanisms that alter mitochondrial and astrocyte homeostasis can be detected peripherally. Thus, in vitro cultures may provide a model to identify neuropathogenic mechanisms of depression or neurocognitive impairment in PWH and test personalized therapeutics for neurologic and psychiatric disorders.
Collapse
Affiliation(s)
| | - Alexandra Anh Le
- Department of Psychiatry, University of California, San Diego, CA, USA
| | | | - Anya Umlauf
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Melody Sagarian
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Matthew Spencer
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Anish Sathe
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - David J. Grelotti
- Department of Psychiatry, University of California, San Diego, CA, USA
| | | | - Brook Henry
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Ronald J. Ellis
- Department of Psychiatry, University of California, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Jerel Adam Fields
- Department of Psychiatry, University of California, San Diego, CA, USA
| |
Collapse
|
14
|
Liu Y, Chen L, Lin L, Xu C, Xiong Y, Qiu H, Li X, Li S, Cao H. Unveiling the hidden pathways: Exploring astrocytes as a key target for depression therapy. J Psychiatr Res 2024; 174:101-113. [PMID: 38626560 DOI: 10.1016/j.jpsychires.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Depressive disorders are widely debilitating psychiatric disease. Despite the considerable progress in the field of depression therapy, extensive research spanning many decades has failed to uncover pathogenic pathways that might aid in the creation of long-acting and rapid-acting antidepressants. Consequently, it is imperative to reconsider existing approaches and explore other targets to improve this area of study. In contemporary times, several scholarly investigations have unveiled that persons who have received a diagnosis of depression, as well as animal models employed to study depression, demonstrate a decrease in both the quantity as well as density of astrocytes, accompanied by alterations in gene expression and morphological attributes. Astrocytes rely on a diverse array of channels and receptors to facilitate their neurotransmitter transmission inside tripartite synapses. This study aimed to investigate the potential processes behind the development of depression, specifically focusing on astrocyte-associated neuroinflammation and the involvement of several molecular components such as connexin 43, potassium channel Kir4.1, aquaporin 4, glutamatergic aspartic acid transporter protein, SLC1A2 or GLT-1, glucocorticoid receptors, 5-hydroxytryptamine receptor 2B, and autophagy, that localized on the surface of astrocytes. The study also explores novel approaches in the treatment of depression, with a focus on astrocytes, offering innovative perspectives on potential antidepressant medications.
Collapse
Affiliation(s)
- Ying Liu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Gastroenterology, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Lin Lin
- Scientific Research Management Department, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Caijuan Xu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Yifan Xiong
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Sixin Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Hui Cao
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| |
Collapse
|
15
|
Chan L, Hallett M, Zalewski CK, Brewer CC, Zampieri C, Hoa M, Lippa SM, Fitzgibbon E, French LM, Moses AD, van der Merwe AJ, Pierpaoli C, Turtzo LC, Yonter S, Shahim P. Clinical, Biomarker, and Research Tests Among US Government Personnel and Their Family Members Involved in Anomalous Health Incidents. JAMA 2024; 331:1109-1121. [PMID: 38497797 PMCID: PMC10949151 DOI: 10.1001/jama.2024.2413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Importance Since 2015, US government and related personnel have reported dizziness, pain, visual problems, and cognitive dysfunction after experiencing intrusive sounds and head pressure. The US government has labeled these anomalous health incidents (AHIs). Objective To assess whether participants with AHIs differ significantly from US government control participants with respect to clinical, research, and biomarker assessments. Design, Setting, and Participants Exploratory study conducted between June 2018 and July 2022 at the National Institutes of Health Clinical Center, involving 86 US government staff and family members with AHIs from Cuba, Austria, China, and other locations as well as 30 US government control participants. Exposures AHIs. Main Outcomes and Measures Participants were assessed with extensive clinical, auditory, vestibular, balance, visual, neuropsychological, and blood biomarkers (glial fibrillary acidic protein and neurofilament light) testing. The patients were analyzed based on the risk characteristics of the AHI identifying concerning cases as well as geographic location. Results Eighty-six participants with AHIs (42 women and 44 men; mean [SD] age, 42.1 [9.1] years) and 30 vocationally matched government control participants (11 women and 19 men; mean [SD] age, 43.8 [10.1] years) were included in the analyses. Participants with AHIs were evaluated a median of 76 days (IQR, 30-537) from the most recent incident. In general, there were no significant differences between participants with AHIs and control participants in most tests of auditory, vestibular, cognitive, or visual function as well as levels of the blood biomarkers. Participants with AHIs had significantly increased fatigue, depression, posttraumatic stress, imbalance, and neurobehavioral symptoms compared with the control participants. There were no differences in these findings based on the risk characteristics of the incident or geographic location of the AHIs. Twenty-four patients (28%) with AHI presented with functional neurological disorders. Conclusions and Relevance In this exploratory study, there were no significant differences between individuals reporting AHIs and matched control participants with respect to most clinical, research, and biomarker measures, except for objective and self-reported measures of imbalance and symptoms of fatigue, posttraumatic stress, and depression. This study did not replicate the findings of previous studies, although differences in the populations included and the timing of assessments limit direct comparisons.
Collapse
Affiliation(s)
- Leighton Chan
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
- The Military Traumatic Brain Injury Initiative, Bethesda, Maryland
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Chris K. Zalewski
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Carmen C. Brewer
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Cris Zampieri
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Michael Hoa
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Sara M. Lippa
- National Intrepid Center of Excellence Walter Reed National Military Medical Center, Bethesda, Maryland
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Edmond Fitzgibbon
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Louis M. French
- National Intrepid Center of Excellence Walter Reed National Military Medical Center, Bethesda, Maryland
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Anita D. Moses
- The Military Traumatic Brain Injury Initiative, Bethesda, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, Maryland
| | - André J. van der Merwe
- The Military Traumatic Brain Injury Initiative, Bethesda, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, Maryland
| | - Carlo Pierpaoli
- Laboratory on Quantitative Medical Imaging, National Institute of Biomedical Imaging and Bioengineering, Bethesda, Maryland
| | - L. Christine Turtzo
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Simge Yonter
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Pashtun Shahim
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
- The Military Traumatic Brain Injury Initiative, Bethesda, Maryland
| | | |
Collapse
|
16
|
Zhao E, Yu Q, Wang M, Wang Z, Jiang B, Ma X, Zhou B, Dai Q, Li J, Wang S, Chen F, Yang X. Value of serum brain-derived neurotrophic factor and glial fibrillary acidic protein for detecting depression in patients with Helicobacter pylori infection. Neurosci Lett 2024; 825:137687. [PMID: 38403261 DOI: 10.1016/j.neulet.2024.137687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE Infection with helicobacter pylori (H. pylori) is associated with depression, and depression can affect the outcome of H. pylori treatment. This study aimed to evaluate the value of serum brain-derived neurotrophic factor (BDNF) and glial fibrillary acidic protein (GFAP) for predicting depression in H. pylori-positive patients. METHOD A total of 82H. pylori-positive and 82H. pylori-negative patients were recruited for this study. All patients underwent neuropsychological and gastrointestinal assessments and blood sampling. BDNF and GFAP levels were measured in serum. The least absolute shrinkage and selection operator (LASSO) model was used to determine a composite marker. RESULTS H. pylori-positive patients showed significantly increased serum GFAP levels and significantly decreased serum BDNF levels compared to H. pylori-negative patients. Among H. pylori-positive patients, serum levels of gastrin 17 (G-17), pepsinogen (PG) I/PGII, BDNF, and GFAP, as well as Gastrointestinal Symptom Rating Scale (GSRS) scores, were significantly correlated with Hamilton Depression Scale (HAMD-24) overall scores and factor scores. Interactions between serum BDNF/GFAP and gastrointestinal serum indices or GSRS scores were significantly associated with HAMD-24 scores in H. pylori-positive patients. The LASSO model indicated that the combination of serum BDNF, GFAP, and G-17 and GSRS scores could identify H. pylori-positive patients with depression with an area under the curve of 0.879. CONCLUSION Circulating changes in BDNF and GFAP were associated with the occurrence of depression in H. pylori-positive patients. A composite marker including neural and gastrointestinal function-related indices may be of value for identifying depression among H. pylori-positive patients.
Collapse
Affiliation(s)
- En Zhao
- Department of Gastroenterology, Xishan People's Hospital of Wuxi City, Wuxi 214105, China.
| | - Qian Yu
- Department of Gastroenterology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Meilei Wang
- Department of Neurology, Xishan People's Hospital of Wuxi City, Wuxi 214105, China
| | - Zhengqiu Wang
- Department of Gastroenterology, Xishan People's Hospital of Wuxi City, Wuxi 214105, China
| | - Bin Jiang
- Department of Gastroenterology, Xishan People's Hospital of Wuxi City, Wuxi 214105, China
| | - Xiang Ma
- Department of Gastroenterology, Xishan People's Hospital of Wuxi City, Wuxi 214105, China
| | - Bin Zhou
- Department of Gastroenterology, Xishan People's Hospital of Wuxi City, Wuxi 214105, China
| | - Qingyong Dai
- Department of Neurology, Xishan People's Hospital of Wuxi City, Wuxi 214105, China
| | - Jinyu Li
- Department of Gastroenterology, Xishan People's Hospital of Wuxi City, Wuxi 214105, China
| | - Shiming Wang
- Department of Gastroenterology, Xishan People's Hospital of Wuxi City, Wuxi 214105, China
| | - Fengjuan Chen
- Department of Gastroenterology, Xishan People's Hospital of Wuxi City, Wuxi 214105, China.
| | - Xiaojun Yang
- Department of Gastroenterology, Xishan People's Hospital of Wuxi City, Wuxi 214105, China.
| |
Collapse
|
17
|
Al-Hakeim HK, Twaij BAAR, Al-Naqeeb TH, Moustafa SR, Maes M. Neuronal damage and inflammatory biomarkers are associated with the affective and chronic fatigue-like symptoms due to end-stage renal disease. J Affect Disord 2024; 347:220-229. [PMID: 38007104 DOI: 10.1016/j.jad.2023.11.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Many biochemical, immunological, and neuropsychiatric changes are associated with end-stage renal disease (ESRD). Neuronal damage biomarkers such as glial fibrillary acidic protein (GFAP), neurofilament light chain (NFL), S100 calcium-binding protein B (S100B), ionized calcium-binding adaptor molecule-1 (IBA1), and myelin basic protein (MBP) are among the less-studied biomarkers of ESRD. AIM We examined the associations between these neuro-axis biomarkers, inflammatory biomarkers, e.g., C-reactive protein (CRP), interleukin (IL-6), IL-10, and zinc, copper, and neuropsychiatric symptoms due to ERSD. METHODS ELISA techniques were used to measure serum levels of neuronal damage biomarkers in 70 ESRD patients, and 46 healthy controls. RESULTS ESRD patients have higher scores of depression, anxiety, fatigue, and physiosomatic symptoms than healthy controls. Aberrations in kidney function tests and the number of dialysis interventions are associated with the severity of depression, anxiety, fibro-fatigue and physiosomatic symptoms, peripheral inflammation, nestin, and NFL. Serum levels of neuronal damage biomarkers (NFL, MBP, and nestin), CRP, and interleukin (IL)-10 are elevated, and serum zinc is decreased in ESRD patients as compared with controls. The neuronal damage biomarkers NFL, nestin, S100B and MBP are associated with the severity of one or more neuropsychiatric symptom domains. Around 50 % of the variance in the neuropsychiatric symptoms is explained by NFL, nestin, S00B, copper, and an inflammatory index. CONCLUSIONS The severity of renal dysfunction and/or the number of dialysis interventions may induce peripheral inflammation and, consequently, neurotoxicity to intermediate filament proteins, astrocytes, and the blood-brain barrier, leading to the neuropsychiatric symptoms of ESRD.
Collapse
Affiliation(s)
| | | | - Tabarek Hadi Al-Naqeeb
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Shatha Rouf Moustafa
- Clinical Analysis Department, College of Pharmacy, Hawler Medical University, Havalan City, Erbil, Iraq
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China.
| |
Collapse
|
18
|
Cui L, Li S, Wang S, Wu X, Liu Y, Yu W, Wang Y, Tang Y, Xia M, Li B. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther 2024; 9:30. [PMID: 38331979 PMCID: PMC10853571 DOI: 10.1038/s41392-024-01738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
Worldwide, the incidence of major depressive disorder (MDD) is increasing annually, resulting in greater economic and social burdens. Moreover, the pathological mechanisms of MDD and the mechanisms underlying the effects of pharmacological treatments for MDD are complex and unclear, and additional diagnostic and therapeutic strategies for MDD still are needed. The currently widely accepted theories of MDD pathogenesis include the neurotransmitter and receptor hypothesis, hypothalamic-pituitary-adrenal (HPA) axis hypothesis, cytokine hypothesis, neuroplasticity hypothesis and systemic influence hypothesis, but these hypothesis cannot completely explain the pathological mechanism of MDD. Even it is still hard to adopt only one hypothesis to completely reveal the pathogenesis of MDD, thus in recent years, great progress has been made in elucidating the roles of multiple organ interactions in the pathogenesis MDD and identifying novel therapeutic approaches and multitarget modulatory strategies, further revealing the disease features of MDD. Furthermore, some newly discovered potential pharmacological targets and newly studied antidepressants have attracted widespread attention, some reagents have even been approved for clinical treatment and some novel therapeutic methods such as phototherapy and acupuncture have been discovered to have effective improvement for the depressive symptoms. In this work, we comprehensively summarize the latest research on the pathogenesis and diagnosis of MDD, preventive approaches and therapeutic medicines, as well as the related clinical trials.
Collapse
Affiliation(s)
- Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Shu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Xiafang Wu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yingyu Liu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yijun Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China.
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Centre of Forensic Investigation, Shenyang, China.
| |
Collapse
|
19
|
Desai P, Krueger KR, Mendes de Leon C, Wilson RS, Evans DA, Rajan KB. Depressive Symptoms, Glial Fibrillary Acid Protein Concentrations, and Cognitive Decline in a Cohort Study. J Gerontol A Biol Sci Med Sci 2024; 79:glad129. [PMID: 37209409 PMCID: PMC10799753 DOI: 10.1093/gerona/glad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Little is known about how depressive symptoms and glial fibrillary acid protein (GFAP) concentrations taken together may influence cognitive functioning. Understanding this relationship may inform strategies for screening and early intervention to decrease the rate of cognitive decline. METHODS This study sample includes 1 169 participants from the Chicago Health and Aging Project (CHAP), consisting of 60% Black participants and 40% White participants, and 63% female participants and 37% male participants. CHAP is a population-based cohort study of older adults with a mean age of 77 years. Linear mixed-effects regression models tested the main effects of depressive symptoms and GFAP concentrations and their interactions on baseline cognitive function and cognitive decline over time. Models included adjustments for age, race, sex, education, chronic medical conditions, body mass index, smoking status, alcohol use, and their interactions with time. RESULTS The interaction of depressive symptomology and GFAP (β = -0.105 [standard error = 0.038], p = .006) on global cognitive function was statistically significant. Participants with depressive symptoms including and above the cutoff and high log of GFAP concentrations had more cognitive decline over time, followed by participants with depressive symptoms below the cutoff and high log of GFAP concentrations, depressive symptom scores including and above the cutoff and low log of GFAP concentrations, and depressive symptom scores below the cutoff and low log of GFAP concentrations. CONCLUSIONS Depressive symptoms have an additive effect on the association between the log of GFAP and baseline global cognitive function.
Collapse
Affiliation(s)
- Pankaja Desai
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois, USA
| | - Kristin R Krueger
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Robert S Wilson
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Denis A Evans
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois, USA
| | - Kumar B Rajan
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurology, University of California at Davis, Davis, USA
| |
Collapse
|
20
|
Zhang J, Liu D, Xiang J, Yang M. Combining Glial Fibrillary Acidic Protein and Neurofilament Light Chain for the Diagnosis of Major Depressive Disorder. Anal Chem 2024; 96:1693-1699. [PMID: 38231554 DOI: 10.1021/acs.analchem.3c04825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Major depressive disorder (MDD) is a prevalent brain disorder affecting more than 2% of the world's population. Due to the lack of well-specific biomarkers, it is difficult to distinguish MDD from other diseases with similar clinical symptoms (such as Alzheimer's disease and cerebral thrombosis). In this work, we provided a strategy to address this issue by constructing a combinatorial biomarker of serum glial fibrillary acidic protein (GFAP) and neurofilament light chain (NFL). To achieve the convenient and sensitive detection of two proteins, we developed an electrochemical immunosandwich sensor using two metal-ion-doped carbon dots (Pb-CDs and Cu-CDs) as probes for signal output. Each probe contains approximately 300 Pb2+ or 200 Cu2+, providing excellent signal amplification. This method achieved detection limits of 0.3 pg mL-1 for GFAP and 0.2 pg mL-1 for NFL, lower than most of the reported detection limits. Analysis of real serum samples showed that the concentration ratio of GFAP to NFL, which is associated with the relative degree of brain inflammation and neurodegeneration, is suitable for not only distinguishing MDD from healthy individuals but also specifically distinguishing MDD from Alzheimer's disease and cerebral thrombosis. The good specificity gives the combinatorial GFAP/NFL biomarker broad application prospects in the screening, diagnosis, and treatment of MDD.
Collapse
Affiliation(s)
- JinXia Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Dan Liu
- Eye Center of Xiangya Hospital, Central South University, Changsha 410083, P. R. China
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
21
|
Perna L, Stocker H, Burow L, Beyer L, Trares K, Kurz C, Gürsel S, Holleczek B, Tatò M, Beyreuther K, Mons U, Gerwert K, Perneczky R, Schöttker B, Brenner H. Subjective cognitive complaints and blood biomarkers of neurodegenerative diseases: a longitudinal cohort study. Alzheimers Res Ther 2023; 15:198. [PMID: 37951931 PMCID: PMC10638700 DOI: 10.1186/s13195-023-01341-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Subjective cognitive complaints (SCC) have been mostly studied in the context of Alzheimer's disease in memory clinic settings. The potential of combining SCC with genetic information and blood biomarkers of neurodegenerative diseases for risk assessment of dementia and depression in the absence of dementia among community-dwelling older adults has so far not been explored. METHODS Data were based on a population-based cohort of 6357 participants with a 17-year follow-up (ESTHER study) and a clinic-based cohort of 422 patients. Participants of both cohorts were grouped according to the diagnosis of dementia (yes/no) and the diagnosis of depression in the absence of dementia (yes/no). Participants without dementia included both cognitively unimpaired participants and cognitively impaired participants. Genetic information (APOE ε4 genotype) and blood-based biomarkers of neurodegenerative diseases (glial fibrillary acidic protein; GFAP, neurofilament light chain; NfL, phosphorylated tau181; p-tau181) were available in the ESTHER study and were determined with Simoa Technology in a nested case-control design. Logistic regression models adjusted for relevant confounders were run for the outcomes of all-cause dementia and depression in the absence of dementia. RESULTS The results showed that persistent SCC were associated both with increased risk of all-cause dementia and of depression without dementia, independently of the diagnostic setting. However, the results for the ESTHER study also showed that the combination of subjective complaints with APOE ε4 and with increased GFAP concentrations in the blood yielded a substantially increased risk of all-cause dementia (OR 5.35; 95%CI 3.25-8.81, p-value < 0.0001 and OR 7.52; 95%CI 2.79-20.29, p-value < 0.0001, respectively) but not of depression. Associations of NfL and p-tau181 with risk of all-cause dementia and depression were not statistically significant, either alone or in combination with SCC, but increased concentrations of p-tau181 seemed to be associated with an increased risk for depression. CONCLUSION In community and clinical settings, SCC predict both dementia and depression in the absence of dementia. The addition of GFAP could differentiate between the risk of all-cause dementia and the risk of depression among individuals without dementia.
Collapse
Affiliation(s)
- Laura Perna
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
- Division of Mental Health of Older Adults, Department of Psychiatry and Psychotherapy, University Hospital, LMU, Munich, Germany.
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Lena Burow
- Division of Mental Health of Older Adults, Department of Psychiatry and Psychotherapy, University Hospital, LMU, Munich, Germany
| | - Léon Beyer
- Faculty of Biology and Biotechnology, Department of Biophysics, Ruhr-University Bochum, 44801, Bochum, Germany
- Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, 44801, Bochum, Germany
| | - Kira Trares
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carolin Kurz
- Division of Mental Health of Older Adults, Department of Psychiatry and Psychotherapy, University Hospital, LMU, Munich, Germany
| | - Selim Gürsel
- Division of Mental Health of Older Adults, Department of Psychiatry and Psychotherapy, University Hospital, LMU, Munich, Germany
| | - Bernd Holleczek
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Saarland Cancer Registry, 66117, Saarbrücken, Germany
| | - Maia Tatò
- Division of Mental Health of Older Adults, Department of Psychiatry and Psychotherapy, University Hospital, LMU, Munich, Germany
| | - Konrad Beyreuther
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Ute Mons
- Department of Cardiology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Klaus Gerwert
- Faculty of Biology and Biotechnology, Department of Biophysics, Ruhr-University Bochum, 44801, Bochum, Germany
- Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, 44801, Bochum, Germany
| | - Robert Perneczky
- Division of Mental Health of Older Adults, Department of Psychiatry and Psychotherapy, University Hospital, LMU, Munich, Germany
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
22
|
Jing D, Hou X, Guo X, Zhao X, Zhang K, Zhang J, Kan C, Han F, Liu J, Sun X. Astrocytes in Post-Stroke Depression: Roles in Inflammation, Neurotransmission, and Neurotrophin Signaling. Cell Mol Neurobiol 2023; 43:3301-3313. [PMID: 37470888 DOI: 10.1007/s10571-023-01386-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023]
Abstract
Post-stroke depression (PSD) is a frequent and disabling complication of stroke that affects up to one-third of stroke survivors. The pathophysiology of PSD involves multiple mechanisms, including neurochemical, neuroinflammatory, neurotrophic, and neuroplastic changes. Astrocytes are a type of glial cell that is plentiful and adaptable in the central nervous system. They play key roles in various mechanisms by modulating neurotransmission, inflammation, neurogenesis, and synaptic plasticity. This review summarizes the latest evidence of astrocyte involvement in PSD from human and animal studies, focusing on the alterations of astrocyte markers and functions in relation to monoamine neurotransmitters, inflammatory cytokines, brain-derived neurotrophic factor, and glutamate excitotoxicity. We also discuss the potential therapeutic implications of targeting astrocytes for PSD prevention and treatment. Astrocytes could be new candidates for antidepressant medications and other interventions that aim to restore astrocyte homeostasis and function in PSD. Astrocytes could be new candidates for antidepressant medications and other interventions that aim to restore astrocyte homeostasis and function in PSD.
Collapse
Affiliation(s)
- Dongqing Jing
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaoli Hou
- Department of General Practice, Weifang Sixth People's Hospital, Weifang, China
| | - Xiao Guo
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xin Zhao
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Jingwen Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Chengxia Kan
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junling Liu
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China.
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China.
| |
Collapse
|
23
|
Hviid CVB, Benros ME, Krogh J, Nordentoft M, Christensen SH. Serum glial fibrillary acidic protein and neurofilament light chain in treatment-naïve patients with unipolar depression. J Affect Disord 2023; 338:341-348. [PMID: 37336248 DOI: 10.1016/j.jad.2023.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Unipolar depression has been associated with increased levels of glial dysfunction and neurodegeneration biomarkers, such as Glial Fibrillary Acidic Protein (GFAP) and Neurofilament light chain (NfL). However, previous studies were conducted on patients taking psychotropic medication and did not monitor longitudinal associations between disease status and GFAP/NfL. METHODS Treatment-naïve patients with unipolar depression (n = 110) and healthy controls (n = 33) were included. GFAP/NfL serum levels were analyzed by Single Molecule Array at baseline and 3-month follow-up. The primary endpoint was GFAP/NfL levels in patients with depression compared with healthy controls. The secondary endpoint was the associations between GFAP/NfL with depression severity and cognitive function. RESULTS The patients' mean HAM-D17 score was 18.9 (SD 3.9) at baseline and improved by 7.9 (SD 6.8) points during follow-up. GFAP/NfL was quantified in all individuals. At baseline, the adjusted GFAP levels were -16.8 % (95 % CI: -28.8 to -1.9, p = 0.03) lower among patients with depression compared to healthy controls, while NfL levels were comparable between the groups (p = 0.57). In patients with depression, mean NfL levels increased from baseline to follow-up (0.68 pg/ml, p = 0.03), while GFAP levels were unchanged (p = 0.24). We did not find consistent associations between NfL/GFAP with depression scores or cognitive function. CONCLUSION This largest study of serum NfL/GFAP levels in patients with depression did not support previous findings of elevated GFAP/NfL in patients with depression or positive associations with depression severity. Although limited by a small control group, our study may support the presence of glial dysfunction but not damage to neurons in depression.
Collapse
Affiliation(s)
- Claus V B Hviid
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Michael E Benros
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jesper Krogh
- Department of Endocrinology and Metabolism, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Merete Nordentoft
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Denmark
| | - Silje H Christensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
24
|
Levchuk LA, Roschina OV, Mikhalitskaya EV, Epimakhova EV, Simutkin GG, Bokhan NA, Ivanova SA. Serum Levels of S100B Protein and Myelin Basic Protein as a Potential Biomarkers of Recurrent Depressive Disorders. J Pers Med 2023; 13:1423. [PMID: 37763190 PMCID: PMC10532562 DOI: 10.3390/jpm13091423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Nowadays, nervous tissue damage proteins in serum are considered promising drug targets and biomarkers of Mood Disorders. In a cross-sectional naturalistic study, the S100B, MBP and GFAP levels in the blood serum were compared between two diagnostic groups (patients with Depressive Episode (DE, n = 28) and patients with Recurrent Depressive Disorder (RDD, n = 21)), and healthy controls (n = 25). The diagnostic value of serum markers was assessed by ROC analysis. In the DE group, we did not find changed levels of S100B, MBP and GFAP compared with controls. In the RDD group, we found decreased S100B level (p = 0.011) and increased MBP level (p = 0.015) in comparison to those in healthy controls. Provided ROC analysis indicates that MBP contributes to the development of a DE (AUC = 0.676; 95%Cl 0.525-0.826; p = 0.028), and S100B and MBP have a significant effect on the development of RDD (AUC = 0.732; 95%Cl 0.560-0.903; p = 0.013 and AUC = 0.712; 95%Cl 0.557-0.867; p = 0.015, correspondingly). The study of serum markers of nervous tissue damage in patients with a current DE indicates signs of disintegration of structural and functional relationships, dysfunction of gliotransmission, and impaired secretion of neurospecific proteins. Modified functions of astrocytes and oligodendrocytes are implicated in the pathophysiology of RDD.
Collapse
Affiliation(s)
- Lyudmila A. Levchuk
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (O.V.R.); (E.V.M.); (E.V.E.); (G.G.S.); (N.A.B.)
| | - Olga V. Roschina
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (O.V.R.); (E.V.M.); (E.V.E.); (G.G.S.); (N.A.B.)
| | - Ekaterina V. Mikhalitskaya
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (O.V.R.); (E.V.M.); (E.V.E.); (G.G.S.); (N.A.B.)
| | - Elena V. Epimakhova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (O.V.R.); (E.V.M.); (E.V.E.); (G.G.S.); (N.A.B.)
| | - German G. Simutkin
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (O.V.R.); (E.V.M.); (E.V.E.); (G.G.S.); (N.A.B.)
| | - Nikolay A. Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (O.V.R.); (E.V.M.); (E.V.E.); (G.G.S.); (N.A.B.)
- Psychiatry, Addictology and Psychotherapy Department, Siberian State Medical University, Tomsk 634050, Russia
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (O.V.R.); (E.V.M.); (E.V.E.); (G.G.S.); (N.A.B.)
- Psychiatry, Addictology and Psychotherapy Department, Siberian State Medical University, Tomsk 634050, Russia
| |
Collapse
|
25
|
Luarte A, Nardocci G, Chakraborty A, Batiz LF, Pino-Lagos K, Wyneken Ú. Astrocyte-derived extracellular vesicles in stress-associated mood disorders. Does the immune system get astrocytic? Pharmacol Res 2023; 194:106833. [PMID: 37348692 DOI: 10.1016/j.phrs.2023.106833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Life stressors can wreak havoc on our health, contributing to mood disorders like major depressive disorder (MDD), a widespread and debilitating condition. Unfortunately, current treatments and diagnostic strategies fall short of addressing these disorders, highlighting the need for new approaches. In this regard, the relationship between MDD, brain inflammation (neuroinflammation), and systemic inflammation in the body may offer novel insights. Recent research has uncovered the crucial role of astrocytes in coordinating the inflammatory response through the release of extracellular vesicles (ADEVs) during different neuroinflammatory conditions. While the contribution of ADEVs to stress and MDD remains largely unexplored, their potential to modulate immune cells and contribute to MDD pathogenesis is significant. In this article, we delve into the immunomodulatory role of ADEVs, their potential impact on peripheral immune cells, and how their microRNA (miRNA) landscape may hold the key to controlling immune cell activity. Together, these mechanisms may constitute an opportunity to develop novel therapeutic pharmacological approaches to tackle mood disorders.
Collapse
Affiliation(s)
- Alejandro Luarte
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile.
| | - Gino Nardocci
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Molecular Biology and Bioinformatics Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile
| | - Ankush Chakraborty
- Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile
| | - Luis Federico Batiz
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile
| | - Karina Pino-Lagos
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Program in Immunology, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile
| | - Úrsula Wyneken
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile.
| |
Collapse
|
26
|
Terracciano A, Walker K, An Y, Luchetti M, Stephan Y, Moghekar AR, Sutin AR, Ferrucci L, Resnick SM. The association between personality and plasma biomarkers of astrogliosis and neuronal injury. Neurobiol Aging 2023; 128:65-73. [PMID: 37210782 PMCID: PMC10247521 DOI: 10.1016/j.neurobiolaging.2023.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/31/2023] [Accepted: 04/22/2023] [Indexed: 05/23/2023]
Abstract
Personality traits have been associated with the risk of dementia and Alzheimer's disease neuropathology, including amyloid and tau. This study examines whether personality traits are concurrently related to plasma glial fibrillary acidic protein (GFAP), a marker of astrogliosis, and neurofilament light (NfL), a marker of neuronal injury. Cognitively unimpaired participants from the Baltimore Longitudinal Study on Aging (N = 786; age: 22-95) were assayed for plasma GFAP and NfL and completed the Revised NEO Personality Inventory, which measures 5 domains and 30 facets of personality. Neuroticism (particularly vulnerability to stress, anxiety, and depression) was associated with higher GFAP and NfL. Conscientiousness was associated with lower GFAP. Extraversion (particularly positive emotions, assertiveness, and activity) was related to lower GFAP and NfL. These associations were independent of demographic, behavioral, and health covariates and not moderated by age, sex, or apolipoprotein E genotype. The personality correlates of astrogliosis and neuronal injury tend to be similar, are found in individuals without cognitive impairment, and point to potential neurobiological underpinnings of the association between personality traits and neurodegenerative diseases.
Collapse
Affiliation(s)
- Antonio Terracciano
- Department of Geriatrics, Florida State University College of Medicine, Tallahassee, FL, USA; Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Keenan Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Martina Luchetti
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| | | | - Abhay R Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelina R Sutin
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Luigi Ferrucci
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
27
|
Chatterjee P, Vermunt L, Gordon BA, Pedrini S, Boonkamp L, Armstrong NJ, Xiong C, Singh AK, Li Y, Sohrabi HR, Taddei K, Molloy MP, Benzinger TL, Morris JC, Karch CM, Berman SB, Chhatwal J, Cruchaga C, Graff-Radford NR, Day GS, Farlow M, Fox NC, Goate AM, Hassenstab J, Lee JH, Levin J, McDade E, Mori H, Perrin RJ, Sanchez-Valle R, Schofield PR, Levey A, Jucker M, Masters CL, Fagan AM, Bateman RJ, Martins RN, Teunissen CE. Plasma glial fibrillary acidic protein in autosomal dominant Alzheimer's disease: Associations with Aβ-PET, neurodegeneration, and cognition. Alzheimers Dement 2023; 19:2790-2804. [PMID: 36576155 PMCID: PMC10300233 DOI: 10.1002/alz.12879] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/22/2022] [Accepted: 10/21/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Glial fibrillary acidic protein (GFAP) is a promising candidate blood-based biomarker for Alzheimer's disease (AD) diagnosis and prognostication. The timing of its disease-associated changes, its clinical correlates, and biofluid-type dependency will influence its clinical utility. METHODS We evaluated plasma, serum, and cerebrospinal fluid (CSF) GFAP in families with autosomal dominant AD (ADAD), leveraging the predictable age at symptom onset to determine changes by stage of disease. RESULTS Plasma GFAP elevations appear a decade before expected symptom onset, after amyloid beta (Aβ) accumulation and prior to neurodegeneration and cognitive decline. Plasma GFAP distinguished Aβ-positive from Aβ-negative ADAD participants and showed a stronger relationship with Aβ load in asymptomatic than symptomatic ADAD. Higher plasma GFAP was associated with the degree and rate of neurodegeneration and cognitive impairment. Serum GFAP showed similar relationships, but these were less pronounced for CSF GFAP. CONCLUSION Our findings support a role for plasma GFAP as a clinical biomarker of Aβ-related astrocyte reactivity that is associated with cognitive decline and neurodegeneration. HIGHLIGHTS Plasma glial fibrillary acidic protein (GFAP) elevations appear a decade before expected symptom onset in autosomal dominant Alzheimer's disease (ADAD). Plasma GFAP was associated to amyloid positivity in asymptomatic ADAD. Plasma GFAP increased with clinical severity and predicted disease progression. Plasma and serum GFAP carried similar information in ADAD, while cerebrospinal fluid GFAP did not.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- Macquarie Medical School, Macquarie University, North Ryde, NSW 2019, Australia; School of Medical Sciences, Edith Cowan University, Sarich Neuroscience Research Institute, Nedlands, WA 6009, Australia
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Brian A. Gordon
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Steve Pedrini
- School of Medical Sciences, Edith Cowan University, Sarich Neuroscience Research Institute, Nedlands, WA 6009, Australia
| | - Lynn Boonkamp
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Nicola J. Armstrong
- Department of Mathematics & Statistics, Curtin University, Bentley, WA, Australia
| | - Chengjie Xiong
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA; Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Abhay K. Singh
- Macquarie Business School, Macquarie University, North Ryde, NSW, Australia
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hamid R. Sohrabi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW 2019, Australia; School of Medical Sciences, Edith Cowan University, Sarich Neuroscience Research Institute, Nedlands, WA 6009, Australia; School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia; Australian Alzheimer’s Research Foundation, Nedlands, WA, Australia; Centre for Healthy Ageing, Health Future Institute, Murdoch University, Murdoch, WA, Australia
| | - Kevin Taddei
- School of Medical Sciences, Edith Cowan University, Sarich Neuroscience Research Institute, Nedlands, WA 6009, Australia; Australian Alzheimer’s Research Foundation, Nedlands, WA, Australia
| | - Mark P. Molloy
- Bowel Cancer and Biomarker Laboratory, Kolling Institute, The University of Sydney, St Leonards, NSW, Australia; Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia
| | - Tammie L.S. Benzinger
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - John C. Morris
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Celeste M. Karch
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Sarah B. Berman
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jasmeer Chhatwal
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos Cruchaga
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Gregory S Day
- Department of Neurology, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Martin Farlow
- Department of Neurology, Indiana University, Indianapolis, IN, USA
| | - Nick C. Fox
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Alison M. Goate
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jae-Hong Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul05505, Republic of Korea
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hiroshi Mori
- Osaka Metropolitan University, Nagaoka Sutoku University, Osaka, Japan
| | - Richard J. Perrin
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA; Dominantly Inherited Alzheimer Network, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Raquel Sanchez-Valle
- Alzheimer’s Disease and other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Barcelona, Spain
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Allan Levey
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany. Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; University of Melbourne, Melbourne, Victoria, Australia
| | - Anne M. Fagan
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Randall J. Bateman
- Dominantly Inherited Alzheimer Network, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ralph N. Martins
- Macquarie Medical School, Macquarie University, North Ryde, NSW 2019, Australia; School of Medical Sciences, Edith Cowan University, Sarich Neuroscience Research Institute, Nedlands, WA 6009, Australia; The Cooperative Research Centre for Mental Health, Carlton South, Australia; KaRa Institute of Neurological Disease, Sydney, Macquarie Park, Australia; Australian Alzheimer’s Research Foundation, Nedlands, WA, Australia
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
28
|
Hassamal S. Chronic stress, neuroinflammation, and depression: an overview of pathophysiological mechanisms and emerging anti-inflammatories. Front Psychiatry 2023; 14:1130989. [PMID: 37252156 PMCID: PMC10213648 DOI: 10.3389/fpsyt.2023.1130989] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
In a subset of patients, chronic exposure to stress is an etiological risk factor for neuroinflammation and depression. Neuroinflammation affects up to 27% of patients with MDD and is associated with a more severe, chronic, and treatment-resistant trajectory. Inflammation is not unique to depression and has transdiagnostic effects suggesting a shared etiological risk factor underlying psychopathologies and metabolic disorders. Research supports an association but not necessarily a causation with depression. Putative mechanisms link chronic stress to dysregulation of the HPA axis and immune cell glucocorticoid resistance resulting in hyperactivation of the peripheral immune system. The chronic extracellular release of DAMPs and immune cell DAMP-PRR signaling creates a feed forward loop that accelerates peripheral and central inflammation. Higher plasma levels of inflammatory cytokines, most consistently interleukin IL-1β, IL-6, and TNF-α, are correlated with greater depressive symptomatology. Cytokines sensitize the HPA axis, disrupt the negative feedback loop, and further propagate inflammatory reactions. Peripheral inflammation exacerbates central inflammation (neuroinflammation) through several mechanisms including disruption of the blood-brain barrier, immune cellular trafficking, and activation of glial cells. Activated glial cells release cytokines, chemokines, and reactive oxygen and nitrogen species into the extra-synaptic space dysregulating neurotransmitter systems, imbalancing the excitatory to inhibitory ratio, and disrupting neural circuitry plasticity and adaptation. In particular, microglial activation and toxicity plays a central role in the pathophysiology of neuroinflammation. Magnetic resonance imaging (MRI) studies most consistently show reduced hippocampal volumes. Neural circuitry dysfunction such as hypoactivation between the ventral striatum and the ventromedial prefrontal cortex underlies the melancholic phenotype of depression. Chronic administration of monoamine-based antidepressants counters the inflammatory response, but with a delayed therapeutic onset. Therapeutics targeting cell mediated immunity, generalized and specific inflammatory signaling pathways, and nitro-oxidative stress have enormous potential to advance the treatment landscape. Future clinical trials will need to include immune system perturbations as biomarker outcome measures to facilitate novel antidepressant development. In this overview, we explore the inflammatory correlates of depression and elucidate pathomechanisms to facilitate the development of novel biomarkers and therapeutics.
Collapse
Affiliation(s)
- Sameer Hassamal
- California University of Sciences and Medicine, Colton, CA, United States
- Clinicaltriallink, Los Angeles, CA, United States
- California Neuropsychiatric Institute, Ontario, CA, United States
| |
Collapse
|
29
|
Al-hakeim HK, Al-raheem Twaij BA, Al-naqeeb TH, Moustafa SR, Maes M. Neuronal damage and inflammatory biomarkers are associated with the affective and chronic fatigue-like symptoms due to end-stage renal disease.. [DOI: 10.1101/2023.05.03.23289492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractBackgroundMany biochemical, immunological, and neuropsychiatric changes are associated with end-stage renal disease (ESRD). Neuronal damage biomarkers such as glial fibrillary acidic protein (GFAP), neurofilament light chain (NFL), S100 calcium-binding protein B (S100B), ionized calcium-binding adaptor molecule-1 (IBA1), and myelin basic protein (MBP) are among the less-studied biomarkers of ESRD.AimWe examined the associations between these neuro-axis biomarkers, inflammatory biomarkers, e.g., C-reactive protein (CRP), interleukin (IL-6), IL-10, and zinc, copper, and neuropsychiatric symptoms due to ERSD.MethodsELISA techniques were used to measure serum levels of neuronal damage biomarkers in 70 ESRD patients, and 46 healthy controls.ResultsESRD patients have higher scores of depression, anxiety, fatigue, and physiosomatic symptoms than healthy controls. Aberrations in kidney function tests and the number of dialysis interventions are associated with the severity of depression, anxiety, fibro-fatigue and physiosomatic symptoms, peripheral inflammation, nestin, and NFL. Serum levels of neuronal damage biomarkers (NFL, MBP, and nestin), CRP, and interleukin (IL)-10 are elevated, and serum zinc is decreased in ESRD patients as compared with controls. The neuronal damage biomarkers NFL, nestin, S100B and MBP are associated with the severity of one or more neuropsychiatric symptom domains. Around 50% of the variance in the neuropsychiatric symptoms is explained by NFL, nestin, S00B, copper, and an inflammatory index.ConclusionsThe severity of renal dysfunction and/or the number of dialysis interventions may induce peripheral inflammation and, consequently, neurotoxicity to intermediate filament proteins, astrocytes, and the blood-brain barrier, leading to the neuropsychiatric symptoms of ESRD.
Collapse
|
30
|
Al-Hakeim HK, Al-Naqeeb TH, Almulla AF, Maes M. The physio-affective phenome of major depression is strongly associated with biomarkers of astroglial and neuronal projection toxicity which in turn are associated with peripheral inflammation, insulin resistance and lowered calcium. J Affect Disord 2023; 331:300-312. [PMID: 36996718 DOI: 10.1016/j.jad.2023.03.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/28/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by elevated activity of peripheral neuro-immune and neuro-oxidative pathways, which may cause neuro-affective toxicity by disrupting neuronal circuits in the brain. No study has explored peripheral indicators of neuroaxis damage in MDD in relation to serum inflammatory and insulin resistance (IR) biomarkers, calcium, and the physio-affective phenome consisting of depressive, anxious, chronic fatigue, and physiosomatic symptoms. METHODS Serum levels of phosphorylated tau protein 217 (P-tau217), platelet-derived growth factor receptor beta (PDGFR), neurofilament light chain (NF-L), glial fibrillary acidic protein (GFAP), C-reactive protein (CRP), calcium and the HOMA2-insulin resistance (IR) index were measured in 94 MDD patients and 47 controls. RESULTS 61.1 % of the variance in the physio-affective phenome (conceptualized as a factor extracted from depression, anxiety, fatigue and physiosomatic symptoms) is explained by the regression on GFAP, NF-L, P-tau2017, PDGFRβ and HOMA2-IR (all positively associated), and decreased calcium. In addition, CRP and HOMA2-IR predicted 28.9 % of the variance in the neuroaxis index. We observed significant indirect effects of CRP and calcium on the physio-affective phenome which were partly mediated by the four neuroaxis biomarkers. Annotation and enrichment analysis revealed that the enlarged GFAP, P-tau217, PDGFR, and NF-L network was enriched in glial cell and neuronal projections, the cytoskeleton and axonal transport, including a mitochondrion. CONCLUSIONS Peripheral inflammation and IR may damage the astroglial and neuronal projections thereby interfering with mitochondrial transport. This neurotoxicity, combined with inflammation, IR and lowered calcium, may, at least in part, induce the phenome of MDD.
Collapse
Affiliation(s)
| | | | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, Australia; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
31
|
Yu C, Ruan Y, Sun X, Chen C, Shen T, Liu C, Qiu W, Lu Z, Chan SO, Wang L. rTMS ameliorates depression/anxiety-like behaviors in experimental autoimmune encephalitis by inhibiting neurotoxic reactive astrocytes. J Affect Disord 2023; 331:352-361. [PMID: 36958487 DOI: 10.1016/j.jad.2023.03.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
One third of patients with multiple sclerosis (MS) suffered from depressive symptoms. The pathogenesis of depression in MS patients has been related to innate immune activation in certain regions of the brain such as hippocampus. However, pharmacotherapy lacks sufficient evidence for beneficial effects on depression in MS patients, urging for a novel treatment modality for this mental disorder. Treatment effects of rTMS on depression/anxiety-like behaviors in mice with experimental autoimmune encephalomyelitis (EAE) were assessed by behavioral tests. The role of innate immune response was examined by RNA sequencing, quantitative RT-PCR, and immunofluorescence techniques. Depressive symptom severity and astroglial activation in patients with MS were assessed by Beck Depression Inventory and serum glial fibrillary acidic protein (GFAP), respectively. EAE mice displayed depression/anxiety-like behaviors, which were ameliorated by rTMS. Transcriptome and gene-specific expression analysis of the hippocampus showed significant reduction in transcript levels associated with neurotoxic reactive astrocytes in EAE mice after rTMS treatment. This was confirmed by immunofluorescence studies. Complement component 3d, a marker of neurotoxic reactive astrocytes, was highly expressed in EAE hippocampus, but was reduced to a basal level after rTMS treatment. In patients with MS, astroglial activation, indicated by serum GFAP levels, was significantly elevated in those with moderate or major depressive symptoms. These findings support that the suppression of neurotoxic reactive astrocytes might be a potential target for treatment of depression in patients with MS, and suggest the potential of using rTMS as a potential therapeutic treatment for this disorder.
Collapse
Affiliation(s)
- Chao Yu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China; Medical Examination Center, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Yiwen Ruan
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiaobo Sun
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Chen Chen
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Ting Shen
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Chunxin Liu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Wei Qiu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Zhengqi Lu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Sun On Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Liqing Wang
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
32
|
Chatterjee P, Doré V, Pedrini S, Krishnadas N, Thota R, Bourgeat P, Ikonomovic MD, Rainey-Smith SR, Burnham SC, Fowler C, Taddei K, Mulligan R, Ames D, Masters CL, Fripp J, Rowe CC, Martins RN, Villemagne VL. Plasma Glial Fibrillary Acidic Protein Is Associated with 18F-SMBT-1 PET: Two Putative Astrocyte Reactivity Biomarkers for Alzheimer's Disease. J Alzheimers Dis 2023; 92:615-628. [PMID: 36776057 PMCID: PMC10041433 DOI: 10.3233/jad-220908] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND Astrocyte reactivity is an early event along the Alzheimer's disease (AD) continuum. Plasma glial fibrillary acidic protein (GFAP), posited to reflect astrocyte reactivity, is elevated across the AD continuum from preclinical to dementia stages. Monoamine oxidase-B (MAO-B) is also elevated in reactive astrocytes observed using 18F-SMBT-1 PET in AD. OBJECTIVE The objective of this study was to evaluate the association between the abovementioned astrocyte reactivity biomarkers. METHODS Plasma GFAP and Aβ were measured using the Simoa ® platform in participants who underwent brain 18F-SMBT-1 and Aβ-PET imaging, comprising 54 healthy control (13 Aβ-PET+ and 41 Aβ-PET-), 11 mild cognitively impaired (3 Aβ-PET+ and 8 Aβ-PET-) and 6 probable AD (5 Aβ-PET+ and 1 Aβ-PET-) individuals. Linear regressions were used to assess associations of interest. RESULTS Plasma GFAP was associated with 18F-SMBT-1 signal in brain regions prone to early Aβ deposition in AD, such as the supramarginal gyrus (SG), posterior cingulate (PC), lateral temporal (LT) and lateral occipital cortex (LO). After adjusting for age, sex, APOE ɛ4 genotype, and soluble Aβ (plasma Aβ 42/40 ratio), plasma GFAP was associated with 18F-SMBT-1 signal in the SG, PC, LT, LO, and superior parietal cortex (SP). On adjusting for age, sex, APOE ɛ4 genotype and insoluble Aβ (Aβ-PET), plasma GFAP was associated with 18F-SMBT-1 signal in the SG. CONCLUSION There is an association between plasma GFAP and regional 18F-SMBT-1 PET, and this association appears to be dependent on brain Aβ load.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- Macquarie Medical School, Macquarie University, North Ryde, New South Wales, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Vincent Doré
- The Australian eHealth Research Centre, CSIRO, Brisbane, Queensland, Australia.,Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia
| | - Steve Pedrini
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| | - Natasha Krishnadas
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Rohith Thota
- Macquarie Medical School, Macquarie University, North Ryde, New South Wales, Australia.,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia
| | - Pierrick Bourgeat
- Health and Biosecurity Flagship, The Australian eHealth Research Centre, Queensland, Australia
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh, Pennsylvania, PA, USA.,Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, PA, USA
| | - Stephanie R Rainey-Smith
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia.,School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Samantha C Burnham
- Health and Biosecurity Flagship, The Australian eHealth Research Centre, Queensland, Australia
| | - Christopher Fowler
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Kevin Taddei
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| | - Rachel Mulligan
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, Victoria, Australia.,Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne, Victoria, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Jürgen Fripp
- The Australian eHealth Research Centre, CSIRO, Brisbane, Queensland, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia.,The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ralph N Martins
- Macquarie Medical School, Macquarie University, North Ryde, New South Wales, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Victor L Villemagne
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia.,Department of Psychiatry, University of Pittsburgh, Pennsylvania, PA, USA
| | | |
Collapse
|
33
|
Bai YM, Liu YL, Kuo HW, Tsai SJ, Hsu JW, Huang KL, Tu PC, Chen MH. Procollagen type 1 N-terminal propeptide, neurofilament light chain, proinflammatory cytokines, and cognitive function in bipolar and major depressive disorders: An exploratory study of brain- bone axis and systemic inflammation. J Psychiatr Res 2023; 158:403-408. [PMID: 36657346 DOI: 10.1016/j.jpsychires.2023.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/08/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Higher levels of neurofilament light chain (NfL) and proinflammatory cytokines (i.e., tumor necrosis factor [TNF]-α) were observed in patients with bipolar disorder (BD) and major depressive disorder (MDD). Procollagen type 1 N-terminal propeptide (P1NP), a bone turnover biomarker, is related to MDD. The association among the brain-bone axis, systemic inflammation, and cognitive function remains unclear in severe affective disorders. METHODS Overall, 25 patients with BD, 24 with MDD, and 29 matched controls were enrolled in the current study and underwent the measurements of the NfL, P1NP, and proinflammatory cytokine levels and 1-back and 2-back working memory tasks. Generalized linear models (GLMs) were used to examine the aforementioned biomarkers between the groups and clarify the association with each other. RESULTS GLMs showed increased levels of NfL (p = 0.001, p = 0.020) and P1NP (p = 0.050, p = 0.032) in the patients with BD and MDD than in the controls and suggested significant correlations between the NfL level and the mean time of the 2-back working memory task (p = 0.038) and between P1NL and TNF-α levels (p < 0.001). DISCUSSION Our study revealed the dysregulated brain-bone axis, indicated by elevated NfL and P1NP levels, and related cognitive impairment and systemic inflammation in the patients with BD and MDD. Additional studies are necessary to elucidate definite pathomechanisms underlying those conditions.
Collapse
Affiliation(s)
- Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Hsiang-Wei Kuo
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ju-Wei Hsu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kai-Lin Huang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Chi Tu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
34
|
Li Y, Yang L, Li J, Gao W, Zhao Z, Dong K, Duan W, Dai B, Guo R. Antidepression of Xingpijieyu formula targets gut microbiota derived from depressive disorder. CNS Neurosci Ther 2022; 29:669-681. [PMID: 36550591 PMCID: PMC9873506 DOI: 10.1111/cns.14049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE This investigation aims to determine the antidepressant role of Xingpijieyu formula (XPJYF) mediated via gut microbiota (GM)-brain axis. METHODS We collected fecal microbiota from patients with depressive disorder (DD) and cultured microbiota in vitro. Some of microbiota were transplanted into germ-free rats with the intragastric administration of XPJYF grain at the dose of 1.533 g/kg/day. The behaviors were studied by forced swimming test, open field test, sucrose preference test, and body weight. Products of hypothalamus-pituitary-adrenocortical (HPA) axis, neurotransmitter, and serum cytokines were investigated by enzyme linked immunosorbent assay. Glial fibrillary acidic protein (GFAP), a biomarker of astrocyte, was quantified using immunofluorescence. Microbiota culturing in vitro after XPJYF treatment was analyze by 16 s RNA sequencing technology. We used lipopolysaccharide (LPS) to mimic activated rat primary astrocyte in vitro. Brain-derived neurotrophic factor (BDNF), cytokines, and oxidative stress factors were determined by western blotting, and glycometabolism in astrocyte was investigated by 2-deoxy-D-glucose (2-DG) uptake, adenosine triphosphate (ATP), and glucose-1-phosphate (G1P) kits. RESULTS Microbiota composition during 8 mg/ml of XPJYF (H12-8) for 12 h showed the more consistency. Lactococcus is enriched in DD-derived microbiota composition, and Biffdobacterium and Lactobacillus in H12-8 group. GLUCOSE1PMETAB-PWY and PWY-7328 of which biofunctions were dominantly encoded by Biffdobacterium were the top two of altered pathways. XPJYF improved behaviors and repressed astrocyte activation in depression rats. XPJYF elevated 2-DG uptake, ATP, glucose-1-phosphate, and brain-derived neurotrophic factor (BDNF), and inhibited cytokines and oxidative stress in LPS-induced astrocyte. CONCLUSION XPJYF treatment targets inflammation, activation, and glycometabolim in astrocyte via gut microbiota modulation, thereby improve animal behaviors, HPA axis dysfunction, and neurotransmitter synthesis in depression rats.
Collapse
Affiliation(s)
- Yannan Li
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Lixuan Yang
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Junnan Li
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Wei Gao
- Department of Mental HealthTsinghua University Yuquan HospitalBeijingChina
| | - Zhonghui Zhao
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Kaiqiang Dong
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Wenzhe Duan
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Baoan Dai
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Rongjuan Guo
- Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| |
Collapse
|
35
|
Gómez de San José N, Goossens J, Al Shweiki MR, Halbgebauer S, Oeckl P, Steinacker P, Danzer KM, Graf H, Schönfeldt-Lecuona C, Belbin O, Lleó A, Vanmechelen E, Otto M. Glutamate receptor 4 as a fluid biomarker for the diagnosis of psychiatric disorders. J Psychiatr Res 2022; 156:390-397. [PMID: 36323141 DOI: 10.1016/j.jpsychires.2022.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Psychiatric disorders are widely underreported diseases, especially in their early stages. So far, there is no fluid biomarker to confirm the diagnosis of these disorders. Proteomics data suggest the synaptic protein glutamate receptor 4 (GluR4), part of the AMPA receptor, as a potential diagnostic biomarker of major depressive disorder (MDD). A novel sandwich ELISA was established and analytically validated to detect GluR4 in cerebrospinal fluid (CSF) samples. A total of 85 subjects diagnosed with MDD (n = 36), bipolar disorder (BD, n = 12), schizophrenia (SCZ, n = 12) and neurological controls (CON, n = 25) were analysed. The data exhibited a significant correlation (r = 0.74; CI:0.62 to 0.82; p < 0.0001) with the antibody-free multiple reaction monitoring (MRM) mass spectrometry (MS) data. CSF GluR4 levels were lower in MDD (p < 0.002) and BD (p = 0.012) than in CON. Moreover, subjects with SCZ described a trend towards lower levels than CON (p = 0.13). The novel GluR4 ELISA may favour the clinical application of this protein as a potential diagnostic biomarker of psychiatric disorders and may facilitate the understanding of the pathophysiological mechanisms behind these disorders.
Collapse
Affiliation(s)
| | | | | | - Steffen Halbgebauer
- Department of Neurology, University of Ulm, 89075, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany.
| | - Patrick Oeckl
- Department of Neurology, University of Ulm, 89075, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany.
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Karin M Danzer
- Department of Neurology, University of Ulm, 89075, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany.
| | - Heiko Graf
- Department of Psychiatry and Psychotherapy III, University of Ulm, 89075, Ulm, Germany.
| | | | - Olivia Belbin
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Sant Antoni Maria Claret, 167, 08025, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Sant Antoni Maria Claret, 167, 08025, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| | | | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
36
|
Christensen SH, Hviid CVB, Madsen AT, Parkner T, Winther-Larsen A. Short-term biological variation of serum glial fibrillary acidic protein. Clin Chem Lab Med 2022; 60:1813-1819. [PMID: 35962632 DOI: 10.1515/cclm-2022-0480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/29/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Serum glial fibrillary acidic protein (GFAP) is an emerging biomarker for intracerebral diseases and is approved for clinical use in traumatic brain injury. GFAP is also being investigated for several other applications, where the GFAP changes are not always outstanding. It is thus essential for the interpretation of GFAP to distinguish clinical relevant changes from natural occurring biological variation. This study aimed at estimating the biological variation of serum GFAP. METHODS Apparently healthy subjects (n=33) had blood sampled for three consecutive days. On the second day, blood was also drawn every third hour from 9 AM to 9 PM. Serum GFAP was measured by Single Molecule Array (Simoa™). Components of biological variation were estimated in a linear mixed-effects model. RESULTS The overall median GFAP value was 92.5 pg/mL (range 34.4-260.3 pg/mL). The overall within- (CVI) and between-subject variations (CVG) were 9.7 and 39.5%. The reference change value was 36.9% for an increase. No day-to-day variation was observed, however semidiurnal variation was observed with increasing GFAP values between 9 AM and 12 PM (p<0.00001) and decreasing from 12 to 9 PM (p<0.001). CONCLUSIONS Serum GFAP exhibits a relatively low CVI but a considerable CVG and a marked semidiurnal variation. This implies caution on the timing of blood sampling and when interpreting GFAP in relation to reference intervals, especially in conditions where only small GFAP differences are observed.
Collapse
Affiliation(s)
| | - Claus Vinter Bødker Hviid
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Biochemistry, Aalborg University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne Tranberg Madsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Tina Parkner
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne Winther-Larsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
37
|
Clinical Value of Inflammatory and Neurotrophic Biomarkers in Bipolar Disorder: A Systematic Review and Meta-Analysis. Biomedicines 2022; 10:biomedicines10061368. [PMID: 35740389 PMCID: PMC9220136 DOI: 10.3390/biomedicines10061368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Bipolar disorder (BD) is a multifactorial chronic psychiatric disease highly defined by genetic, clinical, environmental and social risk factors. The present systematic review and meta-analysis aimed to examine the relationship between inflammatory and neurotrophic factors and clinical, social and environmental factors involved in the development and the characterization of BD. Web of Science, PubMed, PsycINFO, Scopus and Science Direct were searched by two independent reviewers. The systematic review was registered in PROSPERO (CRD42020180626). A total of 51 studies with 4547 patients with a diagnosis of BD were selected for systematic review. Among them, 18 articles were included for meta-analysis. The study found some evidence of associations between BDNF and/or inflammatory factors and different stressors and functional and cognitive impairment, but limitations prevented firm conclusions. The main finding of the meta-analysis was a negative correlation between circulating levels of BDNF and depression severity score (standardized mean difference = −0.22, Confidence Interval 95% = −0.38, −0.05, p = 0.01). Evidence indicates that BDNF has a role in the depressive component of BD. However, the poor consistency found for other inflammatory mediators clearly indicates that highly controlled studies are needed to identity precise biomarkers of this disorder.
Collapse
|
38
|
Serum glial fibrillary acidic protein is a body fluid biomarker: A valuable prognostic for neurological disease – A systematic review. Int Immunopharmacol 2022; 107:108624. [DOI: 10.1016/j.intimp.2022.108624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
|
39
|
Traub J, Otto M, Sell R, Homola GA, Steinacker P, Oeckl P, Morbach C, Frantz S, Pham M, Störk S, Stoll G, Frey A. Serum glial fibrillary acidic protein indicates memory impairment in patients with chronic heart failure. ESC Heart Fail 2022; 9:2626-2634. [PMID: 35611842 PMCID: PMC9288738 DOI: 10.1002/ehf2.13986] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/28/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Aims Cognitive dysfunction occurs frequently in patients with heart failure (HF), but early detection remains challenging. Serum glial fibrillary acidic protein (GFAP) is an emerging biomarker of cognitive decline in disorders of primary neurodegeneration such as Alzheimer's disease. We evaluated the utility of serum GFAP as a biomarker for cognitive dysfunction and structural brain damage in patients with stable chronic HF. Methods and results Using bead‐based single molecule immunoassays, we quantified serum levels of GFAP in patients with HF participating in the prospective Cognition.Matters‐HF study. Participants were extensively phenotyped, including cognitive testing of five separate domains and magnetic resonance imaging (MRI) of the brain. Univariable and multivariable models, also accounting for multiple testing, were run. One hundred and forty‐six chronic HF patients with a mean age of 63.8 ± 10.8 years were included (15.1% women). Serum GFAP levels (median 246 pg/mL, quartiles 165, 384 pg/mL; range 66 to 1512 pg/mL) did not differ between sexes. In the multivariable adjusted model, independent predictors of GFAP levels were age (T = 5.5; P < 0.001), smoking (T = 3.2; P = 0.002), estimated glomerular filtration rate (T = −4.7; P < 0.001), alanine aminotransferase (T = −2.1; P = 0.036), and the left atrial end‐systolic volume index (T = 3.4; P = 0.004). NT‐proBNP but not serum GFAP explained global cerebral atrophy beyond ageing. However, serum GFAP levels were associated with the cognitive domain visual/verbal memory (T = −3.0; P = 0.003) along with focal hippocampal atrophy (T = 2.3; P = 0.025). Conclusions Serum GFAP levels are affected by age, smoking, and surrogates of the severity of HF. The association of GFAP with memory dysfunction suggests that astroglial pathologies, which evade detection by conventional MRI, may contribute to memory loss beyond ageing in patients with chronic HF.
Collapse
Affiliation(s)
- Jan Traub
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Würzburg, Würzburg, Germany
| | - Markus Otto
- Department of Neurology, University Hospital Ulm, Ulm, Germany.,Department of Neurology, University Hospital Halle-Wittenberg, Halle, Germany
| | - Roxane Sell
- Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany.,Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - György A Homola
- Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany.,Department of Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | - Petra Steinacker
- Department of Neurology, University Hospital Ulm, Ulm, Germany.,Department of Neurology, University Hospital Halle-Wittenberg, Halle, Germany
| | - Patrick Oeckl
- Department of Neurology, University Hospital Ulm, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE e.V.), Ulm, Germany
| | - Caroline Morbach
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany
| | - Mirko Pham
- Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany.,Department of Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Störk
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany
| | - Guido Stoll
- Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany.,Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Anna Frey
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
40
|
Dolotov OV, Inozemtseva LS, Myasoedov NF, Grivennikov IA. Stress-Induced Depression and Alzheimer's Disease: Focus on Astrocytes. Int J Mol Sci 2022; 23:4999. [PMID: 35563389 PMCID: PMC9104432 DOI: 10.3390/ijms23094999] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases and depression are multifactorial disorders with a complex and poorly understood physiopathology. Astrocytes play a key role in the functioning of neurons in norm and pathology. Stress is an important factor for the development of brain disorders. Here, we review data on the effects of stress on astrocyte function and evidence of the involvement of astrocyte dysfunction in depression and Alzheimer's disease (AD). Stressful life events are an important risk factor for depression; meanwhile, depression is an important risk factor for AD. Clinical data indicate atrophic changes in the same areas of the brain, the hippocampus and prefrontal cortex (PFC), in both pathologies. These brain regions play a key role in regulating the stress response and are most vulnerable to the action of glucocorticoids. PFC astrocytes are critically involved in the development of depression. Stress alters astrocyte function and can result in pyroptotic death of not only neurons, but also astrocytes. BDNF-TrkB system not only plays a key role in depression and in normalizing the stress response, but also appears to be an important factor in the functioning of astrocytes. Astrocytes, being a target for stress and glucocorticoids, are a promising target for the treatment of stress-dependent depression and AD.
Collapse
Affiliation(s)
- Oleg V. Dolotov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Ludmila S. Inozemtseva
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| | - Nikolay F. Myasoedov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| | - Igor A. Grivennikov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| |
Collapse
|