1
|
Peng Y, Zhu P, Zou Y, Gao Q, Xiong S, Liang B, Xiao B. Overview of Functionalized Porous Materials for Rare-Earth Element Separation and Recovery. Molecules 2024; 29:2824. [PMID: 38930888 PMCID: PMC11206383 DOI: 10.3390/molecules29122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
The exceptional photoelectromagnetic characteristics of rare-earth elements contribute significantly to their indispensable position in the high-tech industry. The exponential expansion of the demand for high-purity rare earth and related compounds can be attributed to the swift advancement of contemporary technology. Nevertheless, rare-earth elements are finite and limited resources, and their excessive mining unavoidably results in resource depletion and environmental degradation. Hence, it is crucial to establish a highly effective approach for the extraction and reclamation of rare-earth elements. Adsorption is regarded as a promising technique for the recovery of rare-earth elements owing to its simplicity, environmentally friendly nature, and cost-effectiveness. The efficacy of adsorption is contingent upon the performance characteristics of the adsorbent material. Presently, there is a prevalent utilization of porous adsorbent materials with substantial specific surface areas and plentiful surface functional groups in the realm of selectively separating and recovering rare-earth elements. This paper presents a thorough examination of porous inorganic carbon materials, porous inorganic silicon materials, porous organic polymers, and metal-organic framework materials. The adsorption performance and processes for rare-earth elements are the focal points of discussion about these materials. Furthermore, this work investigates the potential applications of porous materials in the domain of the adsorption of rare-earth elements.
Collapse
Affiliation(s)
- Yong Peng
- Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (Y.P.); (P.Z.); (Y.Z.); (Q.G.); (B.L.)
| | - Pingxin Zhu
- Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (Y.P.); (P.Z.); (Y.Z.); (Q.G.); (B.L.)
| | - Yin Zou
- Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (Y.P.); (P.Z.); (Y.Z.); (Q.G.); (B.L.)
| | - Qingyi Gao
- Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (Y.P.); (P.Z.); (Y.Z.); (Q.G.); (B.L.)
| | - Shaohui Xiong
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Binjun Liang
- Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (Y.P.); (P.Z.); (Y.Z.); (Q.G.); (B.L.)
| | - Bin Xiao
- Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (Y.P.); (P.Z.); (Y.Z.); (Q.G.); (B.L.)
- Key Laboratory of Ionic Rare Earth Resources and Environment, Ministry of Natural Resources of the People’s Republic of China, Jiangxi College of Applied Technology, Ganzhou 341000, China
| |
Collapse
|
2
|
Lin G, Wang G, Xiong Y, Li S, Jiang R, Lu B, Huang B, Xie H. High-performance electrosorption of lanthanum ion by Mn 3O 4-loaded phosphorus-doped porous carbon electrodes via capacitive deionization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120856. [PMID: 38608574 DOI: 10.1016/j.jenvman.2024.120856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Transition-metal-oxide@heteroatom doped porous carbon composites have attracted considerable research interest because of their large theoretical adsorption capacity, excellent electrical conductivity and well-developed pore structure. Herein, Mn3O4-loaded phosphorus-doped porous carbon composites (Mn3O4@PC-900) were designed and fabricated for the electrosorption of La3+ in aqueous solutions. Due to the synergistic effect between Mn3O4 and PC-900, and the active sites provided by Mn-O-Mn, C/PO, C-P-O and Mn-OH, Mn3O4@PC-900 exhibits high electrosorption performance. The electrosorption value of Mn3O4@PC-900 was 45.34% higher than that of PC-900, reaching 93.02 mg g-1. Moreover, the adsorption selectivity reached 87.93% and 89.27% in La3+/Ca2+ and La3+/Na+ coexistence system, respectively. After 15 adsorption-desorption cycles, its adsorption capacity and retention rate were 50.34 mg g-1 and 54.12%, respectively. The electrosorption process is that La3+ first accesses the pores of Mn3O4@PC-900 to generate an electric double layer (EDL), and then undergoes further Faradaic reaction with Mn3O4 and phosphorus-containing functional groups through intercalation, surface adsorption and complexation. This work is hoped to offer a new idea for exploring transition-metal-oxide @ heteroatom doped porous carbon composites for separation and recovery of rare earth elements (REEs) by capacitive deionization.
Collapse
Affiliation(s)
- Guanfeng Lin
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Jinshan College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Guilong Wang
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongzhi Xiong
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Simin Li
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongyuan Jiang
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Beili Lu
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Biao Huang
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou, 310003, China
| |
Collapse
|
3
|
Zhan W, Zhang X, Yuan Y, Weng Q, Song S, Martínez-López MDJ, Arauz-Lara JL, Jia F. Regulating Chemisorption and Electrosorption Activity for Efficient Uptake of Rare Earth Elements in Low Concentration on Oxygen-Doped Molybdenum Disulfide. ACS NANO 2024; 18:7298-7310. [PMID: 38375824 DOI: 10.1021/acsnano.4c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Recovery of rare earth elements (REEs) with trace amount in environmental applications and nuclear energy is becoming an increasingly urgent issue due to their genotoxicity and important role in society. Here, highly efficient recovery of low-concentration REEs from aqueous solutions by an enhanced chemisorption and electrosorption process of oxygen-doped molybdenum disulfide (O-doped MoS2) electrodes is performed. All REEs could be extremely recovered through a chemisorption and electrosorption coupling (CEC) method, and sorption behaviors were related with their outer-shell electrons. Light, medium, and heavy ((La(III), Gd(III), and Y(III)) rare earth elements were chosen for further investigating the adsorption and recovery performances under low-concentration conditions. Recovery of REEs could approach 100% under a low initial concentration condition where different recovery behaviors occurred with variable chemisorption interactions between REEs and O-doped MoS2. Experimental and theoretical results proved that doping O in MoS2 not only reduced the transfer resistance and improved the electrical double layer thickness of ion storage but also enhanced the chemical interaction of REEs and MoS2. Various outer-shell electrons of REEs performed different surficial chemisorption interactions with exposed sulfur and oxygen atoms of O-doped MoS2. Effects of variants including environmental conditions and operating parameters, such as applied voltage, initial concentration, pH condition, and electrode distance on adsorption capacity and recovery of REEs were examined to optimize the recovery process in order to achieve an ideal selective recovery of REEs. The total desorption of REEs from the O-doped MoS2 electrode was realized within 120 min while the electrode demonstrated a good cycling performance. This work presented a prospective way in establishing a CEC process with a two-dimensional metal sulfide electrode through structure engineering for efficient recovery of REEs within a low concentration range.
Collapse
Affiliation(s)
- Weiquan Zhan
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan, Hubei 430070, People's Republic of China
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, People's Republic of China
- Instituto de Fisica, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, Zona Universitaria, C.P. 78290, San Luis Potosi, S.L.P. Mexico
| | - Xuan Zhang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan, Hubei 430070, People's Republic of China
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, People's Republic of China
| | - Yuan Yuan
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan, Hubei 430070, People's Republic of China
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, People's Republic of China
- Doctorado Institucional de Ingeniería y Ciencia de Materiales, Universidad Autonoma de San Luis Potosi, Av. Sierra Leona 530, San Luis Potosi 78210, Mexico
| | - Qizheng Weng
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan, Hubei 430070, People's Republic of China
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, People's Republic of China
| | - Shaoxian Song
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan, Hubei 430070, People's Republic of China
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, People's Republic of China
| | - María de Jesús Martínez-López
- Universidad de la Costa, Carretera al Libramiento Paraje de Las Pulgas, C.P. 71600, Santiago Pinotepa Nacional, Distrito Jamiltepec, Mexico
| | - José Luis Arauz-Lara
- Instituto de Fisica, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, Zona Universitaria, C.P. 78290, San Luis Potosi, S.L.P. Mexico
| | - Feifei Jia
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan, Hubei 430070, People's Republic of China
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
4
|
Zhang X, Luo S, Duan J, Lan T, Wei Y. Fabrication of sodium alginate-doped carbon dot composite hydrogel and its application for La (III) adsorption and enhanced the removal of phosphorus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108230-108246. [PMID: 37749475 DOI: 10.1007/s11356-023-29958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Adsorption is an effective method for the removal of hazardous substances from wastewater. In this work, a low-cost and environmental-friendly composite hydrogel material of sodium alginate doped with nitrogen doped carbon dots (SA@NCDs) was fabricated by impregnation for lanthanide and enhanced phosphorus adsorption in wastewater. The effects of NCDs doping amount, dosage, pH, initial solution concentration, adsorption time and temperature on the process of La (III) adsorption by SA@NCDs were investigated. The adsorption isotherms fitted to Langmuir isotherm model (R2 = 0.9970-0.9989) and the adsorption kinetics followed pseudo-second-order kinetic model (R2 = 0.9992). The maximum adsorption capacity of the adsorbent for La (III) was 217.39 mg/g according to the Langmuir model at 298.15 K. After five cycles, the removal efficiency of La (III) adsorbed by SA@NCDs was still 85.1%. Moreover, the loaded La (III) enhanced the adsorption of phosphorus. The La (III)-SA@NCDs-5 hydrogel adsorbent greatly improved the adsorption capacity for phosphorus compared with the La (III)-free adsorbent, and the adsorption amount can reach 9.64 mg-P/g. The SA@NCDs complex hydrogels for rare earth adsorption were prepared by introducing NCDs rich in amino group into SA hydrogels. The introduction of NCDs increases the adsorption sites of hydrogels, and also overcomes the problem that NCDs itself is difficult to recover in wastewater treatment applications. The lanthanide adsorbed material has a stable structure and can be used to remove phosphorus to deal with waste using the waste. It indicates the SA@NCDs hydrogel composite adsorbent have good potential for wastewater treatment.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rdRing North East Road, Chaoyang District, Beijing, 100029, China
| | - Shiwen Luo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rdRing North East Road, Chaoyang District, Beijing, 100029, China
| | - Jiaxin Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rdRing North East Road, Chaoyang District, Beijing, 100029, China
| | - Tao Lan
- China National Institute of Standardization, Zhong Guancun South Avenue, Haidian District, Beijing, 100081, China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rdRing North East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
5
|
Zhang Y, Guo W, Liu D, Ding Y. Tuning the Dual Active Sites of Functionalized UiO-66 for Selective Adsorption of Yb(III). ACS APPLIED MATERIALS & INTERFACES 2023; 15:17233-17244. [PMID: 36962007 DOI: 10.1021/acsami.3c00938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The recovery of rare earth elements (REEs) from discharged electronic devices or mineral waste water is highly essential but still facing challenges. In this work, two amino-functionalized carboxyl-UiO-66 (UiO-66-COOH-TETA and UiO-66-(COOH)2-ED) prepared via the postmodification method were employed as the adsorbents for Yb(III) capture. The experimental results revealed their superior adsorption capacities of 161.5 and 202.6 mg/g, respectively. Meanwhile, their adsorption processes can be described by the pseudo-second-order kinetic model and Langmuir model. Effects of initial pH and temperature on adsorptions were systematically evaluated, affording an optimal operating condition (i.e., pH of 5.5-6, T of 65 °C, t of 10 h). Moreover, the fabricated materials exhibited great reusability after five adsorption-regeneration cycles. UiO-66-COOH-TETA demonstrated good separation selectivity for Yb(III) over light REEs (i.e., 3.98 of Yb/Ce, 3.51 of Yb/Nd). Based on the density functional theory calculations and characterization analysis (XPS, Zeta, mapping, and IR), the adsorption mechanisms were mainly attributed to significant electrostatic attraction and strong surface complexation between N and O sites and Yb(III).
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430073, China
| | - Weidong Guo
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430073, China
| | - Donghao Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430073, China
| | - Yigang Ding
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|
6
|
Zhang Y, Guo W, Liu D, Ding Y. Tailoring abundant active-oxygen sites of Prussian blue analogues-derived adsorbents for highly efficient Yb(III) capture. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130457. [PMID: 36444809 DOI: 10.1016/j.jhazmat.2022.130457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/27/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
The removal of rare earth elements in mineral processing wastewater is highly desirable but still challenging. In this study, three bimetallic Prussian blue analogues (PBA) and six corresponding oxides are prepared by co-precipitation and calcination methods, and then utilized to adsorb aqueous Yb(III) solution. The results of XRD, SEM, BET, and XPS indicate the successful synthesis of all the adsorbents. Among them, three PBA-oxide samples (PBO-800) exhibit the superior adsorption capacities (˃250 mg/g). The adsorption processes of Yb(III) are in accordance with the pseudo-second-order kinetic model and Langmuir model, simultaneously showing the spontaneous and endothermic thermodynamics. Moreover, PBO-800 can be reused after alkaline solution regeneration with less than 10% degradation after five consecutive adsorption-desorption cycles. More importantly, PBO-800 exhibits the impressive separation selectivity of Yb(III) and most light rare earth ions (e.g., 5.51 of Yb/La, 4.03 of Yb/Pr), as well as the selectivity of Yb(III) and alkali metal ions (e.g., 300.5 of Yb/Na, 256.2 of Yb/Ca). According to the characterization analysis and DFT calculation, the adsorption mechanism of Yb(III) by PBO-800 is mainly attributed to the strong interaction between the abundant active-oxygen sites and Yb(III), and the significant electrostatic attraction.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemical Technology, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China; Key Laboratory of Coal Processing and Efficient Utilization, (China University of Mining and Technology), Ministry of Education, Xuzhou 221008, China.
| | - Weidong Guo
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemical Technology, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Donghao Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemical Technology, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Yigang Ding
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemical Technology, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|
7
|
Wu L, Yang M, Yao L, He Z, Yu JX, Yin W, Chi RA. Polyaminophosphoric Acid-Modified Ion-Imprinted Chitosan Aerogel with Enhanced Antimicrobial Activity for Selective La(III) Recovery and Oil/Water Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53947-53959. [PMID: 36416789 DOI: 10.1021/acsami.2c18163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, polyaminophosphoric acid (PA)-functionalized ion-imprinted chitosan (CS) aerogel was fabricated for the first time, exhibiting good antibacterial property for selective La(III) recovery and oil/water separation. The as-prepared PA-CS-IIA-2 shows a remarkable adsorption capacity of 114.6 mg/g toward La(III) and high selectivity in the competitive adsorption systems, which is attributed to its abundant imprinting sites and surface functional groups. Benefiting from the amphiphilic property, the PA-CS-IIA-2 also exhibits an excellent adsorption performance for the extractant, oils, and organic solvents. Besides, the PA-CS-IIA-2 presents excellent regeneration and reusability characteristics. Moreover, compared with CS, the PA-CS-IIA-2 exhibits a significantly improved antibacterial activity originating from the PA component. Most importantly, the PA-CS-IIA-2 aerogel is capable of removing multiple pollutants all together and effectively inhibiting bacteria in the complex wastewater environments. Therefore, this study paves the way for developing high-performance rare-earth capture materials with multiple functions to meet diverse applications.
Collapse
Affiliation(s)
- Liqiong Wu
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
- National Engineering Research Center of Phosphorus Resource Exploitation, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China
| | - Ming Yang
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Lifeng Yao
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Zhangyang He
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Jun-Xia Yu
- National Engineering Research Center of Phosphorus Resource Exploitation, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China
| | - Weiyan Yin
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Ru-An Chi
- School of Xing Fa Mining Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|
8
|
Youssef MA, Sami NM, Hassan HS. Extraction and separation feasibility of cerium (III) and lanthanum (III) from aqueous solution using modified graphite adsorbent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79649-79666. [PMID: 35713835 PMCID: PMC9587071 DOI: 10.1007/s11356-022-20823-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Graphite (GR) and graphite/alginate (GRA) composite were synthesized utilizing the thermal annealing technique and used as a new adsorbent material for the selective separation and removal of La(III) and Ce(III) from aqueous solutions. Fourier transform infrared (FTIR) spectroscopy, thermal analysis (DTA, TGA), X-ray diffraction (XRD), surface area, porosity, and scanning electron microscope (SEM) were also used to characterize the generated material. Distinct experiments were performed to test the ability of the GRA to La(III) and Ce(III) removal, which include the effect of pH, shaken time, initial concentration of La(III), and Ce(III) at different temperatures range. After 20 min, both ions have reached equilibrium. The pseudo second-order kinetic model was chosen as one which best fits the experimental evidence and better reflects the chemical sorption process. Adsorption isotherm was studied using the Langmuir, Freundlich, and D-R models. The Langmuir model was used to better fit the results obtained. At 25 °C, Ce(III) and La(III) have maximum monolayer capacities of 200 and 83.3 mg/g, respectively. The sorption was endothermic reaction and spontaneous, as illustrated by the data of thermodynamics studies. GRA has the ability to be used as a novel lanthanide adsorbent material, especially for selective separation between Ce(III) and La(III).
Collapse
Affiliation(s)
- Maha A Youssef
- Hot Laboratories Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| | - Nesreen M Sami
- Hot Laboratories Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt.
| | - Hisham S Hassan
- Hot Laboratories Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| |
Collapse
|
9
|
Ali SM, Emran KM, Alrashedee FM. Removal of organic pollutants by lanthanide-doped MIL-53 (Fe) metal-organic frameworks: Effect of dopant type in magnetite precursor. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Ammari Allahyari S, Saberi R, Sadjadi S, Mehraban O. Intensive adsorption of strontium ions by using the synthesized [Zn(bim)
2
(bdc)]
n
: Metal–organic framework in batch and fixed‐bed column experiments. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sareh Ammari Allahyari
- Nuclear Fuel Cycle School Nuclear Science and Technology Research Institute (NSTRI) Tehran Iran
| | - Reza Saberi
- Reactor and Nuclear Safety Research School Nuclear Science and Technology Research Institute (NSTRI) Tehran Iran
| | - Sodeh Sadjadi
- Radiation Application Research School Nuclear Science and Technology Research Institute Tehran Iran
| | - Omid Mehraban
- School of Chemistry, College of Science University of Tehran Tehran Iran
| |
Collapse
|