1
|
Singer M, Husseiny MI. Immunological Considerations for the Development of an Effective Herpes Vaccine. Microorganisms 2024; 12:1846. [PMID: 39338520 PMCID: PMC11434158 DOI: 10.3390/microorganisms12091846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Research is underway to develop a vaccine to prevent and cure infection from herpes simplex virus (HSV). It emphasizes the critical need for immunization to address public health issues and the shortcomings of existing treatment options. Furthermore, studies on the HSV vaccine advance the field of immunology and vaccine creation, which may help in the battle against other viral illnesses. The current lack of such a vaccine is, in part, due to herpes viral latency in sensory ganglions. Current vaccines rely on tissue-resident memory CD8+ T cells, which are known to provide protection against subsequent HSV reinfection and reactivation without correlating with other immune subsets. For that reason, there is no effective vaccine that can provide protection against latent or recurrent herpes infection. This review focuses on conventional methods for evaluating the efficacy of a herpes vaccine using differential CD8+ T cells and important unaccounted immune aspects for designing an effective vaccine against herpes.
Collapse
Affiliation(s)
- Mahmoud Singer
- School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Mohamed I. Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Bourne N, Keith CA, Miller AL, Pyles RB, Milligan GN. Impact of CD4 + T lymphocytes on the cellular and molecular milieu of the vaginal mucosa following HSV-2 challenge of immune guinea pigs. Virology 2023; 588:109907. [PMID: 39492229 DOI: 10.1016/j.virol.2023.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2024]
Abstract
CD4+ and CD8+ tissue resident memory cells (TRM) express many shared anti-viral activities upon re-exposure to virus. CD4+ T cells were depleted from HSV-immune guinea pigs to identify CD4-dependent functions in the vaginal mucosa following HSV-2 challenge. The incidence of animals shedding HSV-2 fell rapidly after challenge in control animals but remained significantly higher through day four post infection in CD4-depleted animals. Genes encoding CD14, IFN-γ, CCL2, and CCL5 were up-regulated in the vaginal mucosa of both groups following challenge. However, significantly higher expression of CD107b, IL-15, and TLR9 but lower expression of CD20, IL-21, and CCL5 was detected in CD4-depleted- compared to control-treated animals. Further, antigen stimulation of CD4+ TRM increased the expression of IFN-γ, IL-2, IL-21, IL-17A, and CCL5. The impact of these gene expression patterns on the recruitment and maintenance of the cellular milieu of the vaginal mucosa upon virus challenge is discussed.
Collapse
Affiliation(s)
- Nigel Bourne
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA.
| | - Celeste A Keith
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA
| | - Aaron L Miller
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA
| | - Richard B Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA
| | - Gregg N Milligan
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA.
| |
Collapse
|
3
|
Yüzen D, Urbschat C, Schepanski S, Thiele K, Arck PC, Mittrücker H. Pregnancy-induced transfer of pathogen-specific T cells from mother to fetus in mice. EMBO Rep 2023; 24:e56829. [PMID: 37610043 PMCID: PMC10561172 DOI: 10.15252/embr.202356829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Neonatal health is determined by the transfer of maternal antibodies from the mother to the fetus. Besides antibodies, maternal cells cross the placental barrier and seed into fetal organs. Contrary to maternal antibodies, maternal microchimeric cells (MMc) show a high longevity, as they can persist in the offspring until adulthood. Recent evidence highlights that MMc leukocytes promote neonatal immunity against early-life infections in mice and humans. As shown in mice, this promotion of immunity was attributable to an improved fetal immune development. Besides this indirect effect, MMc may be pathogen-specific and thus, directly clear pathogen threats in the offspring postnatally. By using ovalbumin recombinant Listeria monocytogenes (LmOVA), we here provide evidence that OVA-specific T cells are transferred from the mother to the fetus, which is associated with increased activation of T cells and a milder course of postnatal infection in the offspring. Our data highlight that maternally-derived passive immunity of the neonate is not limited to antibodies, as MMc have the potential to transfer immune memory between generations.
Collapse
Affiliation(s)
- Dennis Yüzen
- Division of Experimental Feto‐Maternal Medicine, Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of ImmunologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christopher Urbschat
- Division of Experimental Feto‐Maternal Medicine, Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Steven Schepanski
- Division of Experimental Feto‐Maternal Medicine, Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Kristin Thiele
- Division of Experimental Feto‐Maternal Medicine, Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Petra C Arck
- Division of Experimental Feto‐Maternal Medicine, Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | |
Collapse
|
4
|
Bourne N, Keith CA, Miller AL, Pyles RB, Cohen G, Milligan GN. Boosting of vaginal HSV-2-specific B and T cell responses by intravaginal therapeutic immunization results in diminished recurrent HSV-2 disease. J Virol 2023; 97:e0066923. [PMID: 37655939 PMCID: PMC10537585 DOI: 10.1128/jvi.00669-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/02/2023] [Indexed: 09/02/2023] Open
Abstract
Boosting herpes simplex virus (HSV)-specific immunity in the genital tissues of HSV-positive individuals to increase control of HSV-2 recurrent disease and virus shedding is an important goal of therapeutic immunization and would impact HSV-2 transmission. Experimental therapeutic HSV-2 vaccines delivered by a parenteral route have resulted in decreased recurrent disease in experimental animals. We used a guinea pig model of HSV-2 infection to test if HSV-specific antibody and cell-mediated responses in the vaginal mucosa would be more effectively increased by intravaginal (Ivag) therapeutic immunization compared to parenteral immunization. Therapeutic immunization with HSV glycoproteins and CpG adjuvant increased glycoprotein-specific IgG titers in vaginal secretions and serum to comparable levels in Ivag- and intramuscular (IM)-immunized animals. However, the mean numbers of HSV glycoprotein-specific antibody secreting cells (ASCs) and IFN-γ SCs were greater in Ivag-immunized animals demonstrating superior boosting of immunity in the vaginal mucosa compared to parenteral immunization. Therapeutic Ivag immunization also resulted in a significant decrease in the cumulative mean lesion days compared to IM immunization. There was no difference in the incidence or magnitude of HSV-2 shedding in either therapeutic immunization group compared to control-treated animals. Collectively, these data demonstrated that Ivag therapeutic immunization was superior compared to parenteral immunization to boost HSV-2 antigen-specific ASC and IFN-γ SC responses in the vagina and control recurrent HSV-2 disease. These results suggest that novel antigen delivery methods providing controlled release of optimized antigen/adjuvant combinations in the vaginal mucosa would be an effective approach for therapeutic HSV vaccines. IMPORTANCE HSV-2 replicates in skin cells before it infects sensory nerve cells where it establishes a lifelong but mostly silent infection. HSV-2 occasionally reactivates, producing new virus which is released back at the skin surface and may be transmitted to new individuals. Some HSV-specific immune cells reside at the skin site of the HSV-2 infection that can quickly activate and clear new virus. Immunizing people already infected with HSV-2 to boost their skin-resident immune cells and rapidly control the new HSV-2 infection is logical, but we do not know the best way to administer the vaccine to achieve this goal. In this study, a therapeutic vaccine given intravaginally resulted in significantly better protection against HSV-2 disease than immunization with the same vaccine by a conventional route. Immunization by the intravaginal route resulted in greater stimulation of vaginal-resident, virus-specific cells that produced antibody and produced immune molecules to rapidly clear virus.
Collapse
Affiliation(s)
- Nigel Bourne
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Celeste A. Keith
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aaron L. Miller
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Richard B. Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Gary Cohen
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregg N. Milligan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
5
|
Dhanushkodi NR, Prakash S, Quadiri A, Zayou L, Srivastava R, Tran J, Dang V, Shaik AM, Chilukurri A, Suzer B, De Vera P, Sun M, Nguyen P, Lee A, Salem A, Loi J, Singer M, Nakayama T, Vahed H, Nesburn AB, BenMohamed L. Mucosal CCL28 Chemokine Improves Protection against Genital Herpes through Mobilization of Antiviral Effector Memory CCR10+CD44+ CD62L-CD8+ T Cells and Memory CCR10+B220+CD27+ B Cells into the Infected Vaginal Mucosa. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:118-129. [PMID: 37222480 PMCID: PMC10330291 DOI: 10.4049/jimmunol.2300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/26/2023] [Indexed: 05/25/2023]
Abstract
Four major mucosal-associated chemokines, CCL25, CCL28, CXCL14, and CXCL17, play an important role in protecting mucosal surfaces from infectious pathogens. However, their role in protection against genital herpes remains to be fully explored. The CCL28 is a chemoattractant for the CCR10 receptor-expressing immune cells and is produced homeostatically in the human vaginal mucosa (VM). In this study, we investigated the role of the CCL28/CCR10 chemokine axis in mobilizing protective antiviral B and T cell subsets into the VM site of herpes infection. We report a significant increase in the frequencies of HSV-specific memory CCR10+CD44+CD8+ T cells, expressing high levels of CCR10, in herpes-infected asymptomatic (ASYMP) women compared with symptomatic women. Similarly, a significant increase in the CCL28 chemokine (a ligand of CCR10), was detected in the VM of herpes-infected ASYMP C57BL/6 mice, associated with the mobilization of high frequencies of HSV-specific effector memory CCR10+CD44+CD62L-CD8+ TEM cells and memory CCR10+B220+CD27+ B cells in the VM of HSV-infected ASYMP mice. Inversely, compared with wild-type C57BL/6 mice, the CCL28 knockout (CCL28-/-) mice (1) appeared to be more susceptible to intravaginal infection and reinfection with HSV type 2, and (2) exhibited a significant decrease in the frequencies of HSV-specific effector memory CCR10+CD44+CD62L-CD8+ TEM cells and of memory CD27+B220+ B cells in the infected VM. These findings suggest a critical role of the CCL28/CCR10 chemokine axis in the mobilization of antiviral memory B and T cells within the VM to protect against genital herpes infection and disease.
Collapse
Affiliation(s)
- Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Jennifer Tran
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Vivian Dang
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Amruth Chilukurri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Phil De Vera
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Miyo Sun
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Pauline Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Ashley Lee
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Amirah Salem
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Joyce Loi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | | | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry
- Institute for Immunology; the University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| |
Collapse
|
6
|
Dhanushkodi NR, Prakash S, Quadiri A, Zayou L, Singer M, Takashi N, Vahed H, BenMohamed L. High Frequencies of Antiviral Effector Memory T EM Cells and Memory B Cells Mobilized into Herpes Infected Vaginal Mucosa Associated With Protection Against Genital Herpes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.542021. [PMID: 37292784 PMCID: PMC10245907 DOI: 10.1101/2023.05.23.542021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vaginal mucosa-resident anti-viral effector memory B- and T cells appeared to play a crucial role in protection against genital herpes. However, how to mobilize such protective immune cells into the vaginal tissue close to infected epithelial cells remains to be determined. In the present study, we investigate whether and how, CCL28, a major mucosal-associated chemokine, mobilizes effector memory B- and T cells in leading to protecting mucosal surfaces from herpes infection and disease. The CCL28 is a chemoattractant for the CCR10 receptor-expressing immune cells and is produced homeostatically in the human vaginal mucosa (VM). We found the presence of significant frequencies of HSV-specific memory CCR10+CD44+CD8+ T cells, expressing high levels of CCR10 receptor, in herpes-infected asymptomatic (ASYMP) women compared to symptomatic (SYMP) women. A significant amount of the CCL28 chemokine (a ligand of CCR10), was detected in the VM of herpes-infected ASYMP B6 mice, associated with the mobilization of high frequencies of HSV-specific effector memory CCR10+CD44+ CD62L- CD8+ TEM cells and memory CCR10+B220+CD27+ B cells in the VM of HSV-infected asymptomatic mice. In contrast, compared to wild-type (WT) B6 mice, the CCL28 knockout (CCL28(-/-)) mice: (i) Appeared more susceptible to intravaginal infection and re-infection with HSV-2; (ii) Exhibited a significant decrease in the frequencies of HSV-specific effector memory CCR10+CD44+ CD62L- CD8+ TEM cells and of memory CD27+B220+ B cells in the infected VM. The results imply a critical role of the CCL28/CCR10 chemokine axis in the mobilization of anti-viral memory B and T cells within the VM to protect against genital herpes infection and disease.
Collapse
Affiliation(s)
- Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | | | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry; the University of California Irvine, School of Medicine, Irvine, CA 92697
- Institute for Immunology; the University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| |
Collapse
|
7
|
Collins MK, McCutcheon CR, Petroff MG. Impact of Estrogen and Progesterone on Immune Cells and Host–Pathogen Interactions in the Lower Female Reproductive Tract. THE JOURNAL OF IMMUNOLOGY 2022; 209:1437-1449. [DOI: 10.4049/jimmunol.2200454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/05/2022] [Indexed: 11/05/2022]
|
8
|
Chentoufi AA, Dhanushkodi NR, Srivastava R, Prakash S, Coulon PGA, Zayou L, Vahed H, Chentoufi HA, Hormi-Carver KK, BenMohamed L. Combinatorial Herpes Simplex Vaccine Strategies: From Bedside to Bench and Back. Front Immunol 2022; 13:849515. [PMID: 35547736 PMCID: PMC9082490 DOI: 10.3389/fimmu.2022.849515] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/18/2022] [Indexed: 12/19/2022] Open
Abstract
The development of vaccines against herpes simplex virus type 1 and type 2 (HSV1 and HSV-2) is an important goal for global health. In this review we reexamined (i) the status of ocular herpes vaccines in clinical trials; and (ii) discusses the recent scientific advances in the understanding of differential immune response between HSV infected asymptomatic and symptomatic individuals that form the basis for the new combinatorial vaccine strategies targeting HSV; and (iii) shed light on our novel "asymptomatic" herpes approach based on protective immune mechanisms in seropositive asymptomatic individuals who are "naturally" protected from recurrent herpetic diseases. We previously reported that phenotypically and functionally distinct HSV-specific memory CD8+ T cell subsets in asymptomatic and symptomatic HSV-infected individuals. Moreover, a better protection induced following a prime/pull vaccine approach that consists of first priming anti-viral effector memory T cells systemically and then pulling them to the sites of virus reactivation (e.g., sensory ganglia) and replication (e.g., eyes and vaginal mucosa), following mucosal administration of vectors expressing T cell-attracting chemokines. In addition, we reported that a combination of prime/pull vaccine approach with approaches to reverse T cell exhaustion led to even better protection against herpes infection and disease. Blocking PD-1, LAG-3, TIGIT and/or TIM-3 immune checkpoint pathways helped in restoring the function of antiviral HSV-specific CD8+ T cells in latently infected ganglia and increased efficacy and longevity of the prime/pull herpes vaccine. We discussed that a prime/pull vaccine strategy that use of asymptomatic epitopes, combined with immune checkpoint blockade would prove to be a successful herpes vaccine approach.
Collapse
Affiliation(s)
- Aziz A. Chentoufi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Pierre-Gregoire A. Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, Limited Liability Company (LLC), University Lab Partners, Irvine, CA, United States
| | | | - Kathy K. Hormi-Carver
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
- Biomedical Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Molecular Biology & Biochemistry, Institute for Immunology, School of Medicine, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
9
|
Tantengco OAG, Menon R. Breaking Down the Barrier: The Role of Cervical Infection and Inflammation in Preterm Birth. Front Glob Womens Health 2022; 2:777643. [PMID: 35118439 PMCID: PMC8803751 DOI: 10.3389/fgwh.2021.777643] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/27/2021] [Indexed: 01/06/2023] Open
Abstract
Approximately 40% of cases of spontaneous preterm birth (sPTB) are associated with ascending intrauterine infections. The cervix serves as a physical and immunological gatekeeper, preventing the ascent of microorganisms from the vagina to the amniotic cavity. The cervix undergoes remodeling during pregnancy. It remains firm and closed from the start until the late third trimester of pregnancy and then dilates and effaces to accommodate the passage of the fetus during delivery. Remodeling proceeds appropriately and timely to maintain the pregnancy until term delivery. However, risk factors, such as acute and chronic infection and local inflammation in the cervix, may compromise cervical integrity and result in premature remodeling, predisposing to sPTB. Previous clinical studies have established bacterial (i.e., chlamydia, gonorrhea, mycoplasma, etc.) and viral infections (i.e., herpesviruses and human papillomaviruses) as risk factors of PTB. However, the exact mechanism leading to PTB is still unknown. This review focuses on: (1) the epidemiology of cervical infections in pregnant patients; (2) cellular mechanisms that may explain the association of cervical infections to premature cervical ripening and PTB; (3) endogenous defense mechanisms of the cervix that protect the uterine cavity from infection and inflammation; and (4) potential inflammatory biomarkers associated with cervical infection that can serve as prognostic markers for premature cervical ripening and PTB. This review will provide mechanistic insights on cervical functions to assist in managing cervical infections during pregnancy.
Collapse
Affiliation(s)
- Ourlad Alzeus G. Tantengco
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- *Correspondence: Ramkumar Menon
| |
Collapse
|
10
|
Wijesinghe VN, Farouk IA, Zabidi NZ, Puniyamurti A, Choo WS, Lal SK. Current vaccine approaches and emerging strategies against herpes simplex virus (HSV). Expert Rev Vaccines 2021; 20:1077-1096. [PMID: 34296960 DOI: 10.1080/14760584.2021.1960162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Vaccine development for the disease caused by the herpes simplex virus (HSV) has been challenging over the years and is always in dire need of novel approaches for prevention and cure. To date, the HSV disease remains incurable and challenging to prevent. The disease is extremely widespread due to its high infection rate, resulting in millions of infection cases worldwide.Areas covered: This review first explains the diverse forms of HSV-related disease presentations and reports past vaccine history for the disease. Next, this review examines current and novel HSV vaccine approaches being studied and tested for efficacy and safety as well as vaccines in clinical trial phases I to III. Modern approaches to vaccine design using bioinformatics are described. Finally, we discuss measures to enhance new vaccine development pipelines for HSV.Expert opinion: Modernized approaches using in silico analysis and bioinformatics are emerging methods that exhibit potential for producing vaccines with enhanced targets and formulations. Although not yet fully established for HSV disease, we describe current studies using these approaches for HSV vaccine design to shed light on these methods. In addition, we provide up-to-date requirements of immunogenicity, adjuvant selection, and routes of administration.
Collapse
Affiliation(s)
| | - Isra Ahmad Farouk
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
| | | | | | - Wee Sim Choo
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
| | - Sunil Kumar Lal
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia.,Tropical Medicine & Biology Platform, Monash University, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
11
|
Mora-Buch R, Bromley SK. Discipline in Stages: Regulating CD8 + Resident Memory T Cells. Front Immunol 2021; 11:624199. [PMID: 33815352 PMCID: PMC8017121 DOI: 10.3389/fimmu.2020.624199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Resident memory CD8+ T (TRM) cells are a lymphocyte lineage distinct from circulating memory CD8+ T cells. TRM lodge within peripheral tissues and secondary lymphoid organs where they provide rapid, local protection from pathogens and control tumor growth. However, dysregulation of CD8+ TRM formation and/or activation may contribute to the pathogenesis of autoimmune diseases. Intrinsic mechanisms, including transcriptional networks and inhibitory checkpoint receptors control TRM differentiation and response. Additionally, extrinsic stimuli such as cytokines, cognate antigen, fatty acids, and damage signals regulate TRM formation, maintenance, and expansion. In this review, we will summarize knowledge of CD8+ TRM generation and highlight mechanisms that regulate the persistence and responses of heterogeneous TRM populations in different tissues and distinct microenvironments.
Collapse
Affiliation(s)
- Rut Mora-Buch
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shannon K Bromley
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Monin L, Whettlock EM, Male V. Immune responses in the human female reproductive tract. Immunology 2019; 160:106-115. [PMID: 31630394 DOI: 10.1111/imm.13136] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
Mucosal surfaces are key interfaces between the host and its environment, but also constitute ports of entry for numerous pathogens. The gut and lung mucosae act as points of nutrient and gas exchange, respectively, but the physiological purpose of the female reproductive tract (FRT) is to allow implantation and development of the fetus. Our understanding of immune responses in the FRT has traditionally lagged behind our grasp of the situation at other mucosal sites, but recently reproductive immunologists have begun to make rapid progress in this challenging area. Here, we review current knowledge of immune responses in the human FRT and their heterogeneity within and between compartments. In the commensal-rich vagina, the immune system must allow the growth of beneficial microbes, whereas the key challenge in the uterus is allowing the growth of the semi-allogeneic fetus. In both compartments, these objectives must be balanced with the need to eliminate pathogens. Our developing understanding of immune responses in the FRT will help us develop interventions to prevent the spread of sexually transmitted diseases and to improve outcomes of pregnancy for mothers and babies.
Collapse
Affiliation(s)
- Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Emily M Whettlock
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Victoria Male
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
13
|
Kelemen RK, Rajakaruna H, Cockburn IA, Ganusov VV. Clustering of Activated CD8 T Cells Around Malaria-Infected Hepatocytes Is Rapid and Is Driven by Antigen-Specific Cells. Front Immunol 2019; 10:2153. [PMID: 31616407 PMCID: PMC6764016 DOI: 10.3389/fimmu.2019.02153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/28/2019] [Indexed: 01/23/2023] Open
Abstract
Malaria, a disease caused by parasites of the Plasmodium genus, begins when Plasmodium-infected mosquitoes inject malaria sporozoites while searching for blood. Sporozoites migrate from the skin via blood to the liver, infect hepatocytes, and form liver stages which in mice 48 h later escape into blood and cause clinical malaria. Vaccine-induced activated or memory CD8 T cells are capable of locating and eliminating all liver stages in 48 h, thus preventing the blood-stage disease. However, the rules of how CD8 T cells are able to locate all liver stages within a relatively short time period remains poorly understood. We recently reported formation of clusters consisting of variable numbers of activated CD8 T cells around Plasmodium yoelii (Py)-infected hepatocytes. Using a combination of experimental data and mathematical models we now provide additional insights into mechanisms of formation of these clusters. First, we show that a model in which cluster formation is driven exclusively by T-cell-extrinsic factors, such as variability in "attractiveness" of different liver stages, cannot explain distribution of cluster sizes in different experimental conditions. In contrast, the model in which cluster formation is driven by the positive feedback loop (i.e., larger clusters attract more CD8 T cells) can accurately explain the available data. Second, while both Py-specific CD8 T cells and T cells of irrelevant specificity (non-specific CD8 T cells) are attracted to the clusters, we found no evidence that non-specific CD8 T cells play a role in cluster formation. Third and finally, mathematical modeling suggested that formation of clusters occurs rapidly, within few hours after adoptive transfer of CD8 T cells, thus illustrating high efficiency of CD8 T cells in locating their targets in complex peripheral organs, such as the liver. Taken together, our analysis provides novel insights into and attempts to discriminate between alternative mechanisms driving the formation of clusters of antigen-specific CD8 T cells in the liver.
Collapse
Affiliation(s)
- Reka K. Kelemen
- Institute of Science and Technology, Vienna, Austria
- Genome Science and Technology Program, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Harshana Rajakaruna
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Ian A. Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Vitaly V. Ganusov
- Genome Science and Technology Program, University of Tennessee, Knoxville, Knoxville, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
14
|
Increased Frequency of Virus Shedding by Herpes Simplex Virus 2-Infected Guinea Pigs in the Absence of CD4 + T Lymphocytes. J Virol 2019; 93:JVI.01721-18. [PMID: 30463981 DOI: 10.1128/jvi.01721-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/16/2018] [Indexed: 01/29/2023] Open
Abstract
Reactivation of herpes simplex virus 2 (HSV-2) results in infection of epithelial cells at the neuro-epithelial junction and shedding of virus at the epithelial surface. Virus shedding can occur in either the presence or absence of clinical disease and is usually of short duration, although the shedding frequency varies among individuals. The basis for host control of virus shedding is not well understood, although adaptive immune mechanisms are thought to play a central role. To determine the importance of CD4+ T cells in control of HSV-2 shedding, this subset of immune cells was depleted from HSV-2-infected guinea pigs by injection of an anti-CD4 monoclonal antibody (MAb). Guinea pigs were treated with the depleting MAb after establishment of a latent infection, and vaginal swabs were taken daily to monitor shedding by quantitative PCR. The cumulative number of HSV-2 shedding days and the mean number of days virus was shed were significantly increased in CD4-depleted compared to control-treated animals. However, there was no difference in the incidence of recurrent disease between the two treatment groups. Serum antibody levels and the number of HSV-specific antibody-secreting cells in secondary lymphoid tissues were unaffected by depletion of CD4+ T cells; however, the frequency of functional HSV-specific, CD8+ gamma interferon-secreting cells was significantly decreased. Together, these results demonstrate an important role for CD4+ T lymphocytes in control of virus shedding that may be mediated in part by maintenance of HSV-specific CD8+ T cell populations. These results have important implications for development of therapeutic vaccines designed to control HSV-2 shedding.IMPORTANCE Sexual transmission of HSV-2 results from viral shedding following reactivation from latency. The immune cell populations and mechanisms that control HSV-2 shedding are not well understood. This study examined the role of CD4+ T cells in control of virus shedding using a guinea pig model of genital HSV-2 infection that recapitulates the shedding of virus experienced by humans. We found that the frequency of virus-shedding episodes, but not the incidence of clinical disease, was increased by depletion of CD4+ T cells. The HSV-specific antibody response was not diminished, but frequency of functional HSV-reactive CD8+ T cells was significantly diminished by CD4 depletion. These results confirm the role of cell-mediated immunity and highlight the importance of CD4+ T cells in controlling HSV shedding, suggesting that therapeutic vaccines designed to reduce transmission by controlling HSV shedding should include specific enhancement of HSV-specific CD4+ T cell responses.
Collapse
|
15
|
Development of disease and immunity at the genital epithelium following intrarectal inoculation of male guinea pigs with herpes simplex virus type 2. Virology 2018; 526:180-188. [PMID: 30412859 DOI: 10.1016/j.virol.2018.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 01/15/2023]
Abstract
Most analyses of genital immunity to herpes simplex virus type 2 (HSV-2) have been performed in females, consequently immune protection of the male genital epithelium is incompletely understood. We developed a model of male genital HSV-2 infection resulting from intrarectal inoculation of guinea pigs. Vesicular lesions developed transiently on the perineum and foreskin concurrent with acute virus shedding. Virus shedding and recurrent genital lesions were also detected after establishment of a latent infection. Analysis of perineum and foreskin RNA detected transcripts for IFNγ, proinflammatory and regulatory cytokines, and for genes involved in migration and regulation of leukocytes. HSV-specific T cells were detected in lymphoid and genital tissues after resolution of the primary infection whereas virus-specific antibody secreting cells were detected only in lymphoid tissue. Taken together, the ability to quantify pathogenesis and local immunity in this guinea pig model represent an important advance towards understanding immunity to HSV-2 in males.
Collapse
|
16
|
Srivastava R, Hernández-Ruiz M, Khan AA, Fouladi MA, Kim GJ, Ly VT, Yamada T, Lam C, Sarain SAB, Boldbaatar U, Zlotnik A, Bahraoui E, BenMohamed L. CXCL17 Chemokine-Dependent Mobilization of CXCR8 +CD8 + Effector Memory and Tissue-Resident Memory T Cells in the Vaginal Mucosa Is Associated with Protection against Genital Herpes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:2915-2926. [PMID: 29549178 PMCID: PMC5893430 DOI: 10.4049/jimmunol.1701474] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/16/2018] [Indexed: 12/27/2022]
Abstract
Circulating conventional memory CD8+ T cells (i.e., the CD8+ effector memory T [TEM] cell and CD8+ central memory T [TCM] cell subsets) and the noncirculating CD8+ tissue-resident memory T (TRM) cell subset play a critical role in mucosal immunity. Mucosal chemokines, including the recently discovered CXCL17, are also important in mucosal immunity because they are homeostatically expressed in mucosal tissues. However, whether the CXCL17 chemokine contributes to the mobilization of memory CD8+ T cell subsets to access infected mucosal tissues remains to be elucidated. In this study, we report that after intravaginal HSV type 1 infection of B6 mice, we detected high expression levels of CXCL17 and increased numbers of CD44highCD62LlowCD8+ TEM and CD103highCD8+ TRM cells expressing CXCR8, the cognate receptor of CXCL17, in the vaginal mucosa (VM) of mice with reduced genital herpes infection and disease. In contrast to wild-type B6 mice, the CXCL17-/- mice developed 1) fewer CXCR8+CD8+ TEM and TRM cells associated with more virus replication in the VM and more latency established in dorsal root ganglia, and 2) reduced numbers and frequencies of functional CD8+ T cells in the VM. These findings suggest that the CXCL17/CXCR8 chemokine pathway plays a crucial role in mucosal vaginal immunity by promoting the mobilization of functional protective CD8+ TEM and CD8+ TRM cells, within this site of acute and recurrent herpes infection.
Collapse
Affiliation(s)
- Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Marcela Hernández-Ruiz
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Arif A Khan
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Mona A Fouladi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Grace J Kim
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Vincent T Ly
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Taikun Yamada
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Cynthia Lam
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Sheilouise A B Sarain
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Undariya Boldbaatar
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Albert Zlotnik
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Elmostafa Bahraoui
- INSERM, U1043, 31000 Toulouse, France
- CNRS, U5282, 31000 Toulouse, France
- Université Paul Sabatier Toulouse, 31000 Toulouse, France
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697;
- Department of Molecular Biology and Biochemistry, University of California, Irvine School of Medicine, Irvine, CA 92697; and
- Institute for Immunology, University of California, Irvine School of Medicine, Irvine, CA 92697
| |
Collapse
|
17
|
A combined carrier-adjuvant system of peptide nanofibers and toll-like receptor agonists potentiates robust CD8+ T cell responses. Vaccine 2017; 36:438-441. [PMID: 29248267 DOI: 10.1016/j.vaccine.2017.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/27/2017] [Accepted: 12/07/2017] [Indexed: 01/05/2023]
Abstract
Improving CD8+ T cell responses activated by subunit vaccination is crucial for improving vaccine efficacy and safety. Here we report a carrier-adjuvant system composed of self-assembling peptide nanofibers presenting an immunodominant antigen from herpes simplex virus (HSV) and toll-like receptor (TLR) agonists that induces robust effector and memory CD8+ T cell responses in mice. The effector function of vaccine-induced CD8+ T cells was influenced by the type of TLR agonist. The use of CpG (TLR9 agonist) resulted in significantly greater specific in vivo cytotoxicity and trended towards more cells producing both IFN-γ and TNF-α compared to gardiquimod (TLR7 agonist). Prime-boost immunization with peptide nanofibers combined with either adjuvant resulted in development of HSV-specific CD8+ memory T cells further demonstrating the capability of the carrier-adjuvant system to induce strong HSV-specific CD8+ T cell responses. Inclusion of peptide epitope-nanofibers in protein-based subunit vaccines should increase the functional spectrum of the vaccine-elicited immune response and protection.
Collapse
|
18
|
Moylan DC, Goepfert PA, Kempf MC, Saag MS, Richter HE, Mestecky J, Sabbaj S. Diminished CD103 (αEβ7) Expression on Resident T Cells from the Female Genital Tract of HIV-Positive Women. Pathog Immun 2017; 1:371-387. [PMID: 28164171 PMCID: PMC5288734 DOI: 10.20411/pai.v1i2.166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Tissue resident memory T cells (TrM) provide an enhanced response against infection at mucosal surfaces, yet their function has not been extensively studied in humans, including the female genital tract (FGT). Methods: Using polychromatic flow cytometry, we studied TrM cells, defined as CD62L-CCR7-CD103+CD69+ CD4+ and CD8+ T cells in mucosa-derived T cells from healthy and HIV-positive women. Results: We demonstrate that TrM are present in the FGT of healthy and HIV-positive women. The expression of the mucosal retention receptor, CD103, from HIV-positive women was reduced compared to healthy women and was lowest in women with CD4 counts < 500 cells/mm3. Furthermore, CD103 expression on mucosa-derived CD8+ T cells correlated with antigen-specific IFN-γ production by mucosal CD4+ T cells and was inversely correlated with T-bet from CD8+CD103+ mucosa-derived T cells. Conclusions: These data suggest that CD4+ T cells, known to be impaired during HIV-1 infection and necessary for the expression of CD103 in murine models, may play a role in the expression of CD103 on resident T cells from the human FGT.
Collapse
Affiliation(s)
- David C Moylan
- Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Paul A Goepfert
- Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Mirjam-Colette Kempf
- School of Nursing and Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL
| | - Michael S Saag
- Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Holly E Richter
- Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL
| | - Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Steffanie Sabbaj
- Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
19
|
Li J, Olshansky M, Carbone FR, Ma JZ. Transcriptional Analysis of T Cells Resident in Human Skin. PLoS One 2016; 11:e0148351. [PMID: 26824609 PMCID: PMC4732610 DOI: 10.1371/journal.pone.0148351] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 01/18/2016] [Indexed: 11/18/2022] Open
Abstract
Human skin contains various populations of memory T cells in permanent residence and in transit. Arguably, the best characterized of the skin subsets are the CD8(+) permanently resident memory T cells (TRM) expressing the integrin subunit, CD103. In order to investigate the remaining skin T cells, we isolated skin-tropic (CLA(+)) helper T cells, regulatory T cells, and CD8(+) CD103(-) T cells from skin and blood for RNA microarray analysis to compare the transcriptional profiles of these groups. We found that despite their common tropism, the T cells isolated from skin were transcriptionally distinct from blood-derived CLA(+) T cells. A shared pool of genes contributed to the skin/blood discrepancy, with substantial overlap in differentially expressed genes between each T cell subset. Gene set enrichment analysis further showed that the differential gene profiles of each human skin T cell subset were significantly enriched for previously identified TRM core signature genes. Our results support the hypothesis that human skin may contain additional TRM or TRM-like populations.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Antigens, CD/genetics
- Antigens, CD/immunology
- CD8 Antigens/genetics
- CD8 Antigens/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation
- Humans
- Immunophenotyping
- Integrin alpha Chains/genetics
- Integrin alpha Chains/immunology
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Middle Aged
- Molecular Sequence Annotation
- Oligonucleotide Array Sequence Analysis
- Organ Specificity
- Skin/cytology
- Skin/immunology
- Skin/metabolism
- T-Lymphocytes, Helper-Inducer/cytology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Jane Li
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Department of Medicine (St Vincent’s Hospital), The University of Melbourne, Fitzroy, Victoria, Australia
- * E-mail: (JL); (JZM)
| | - Moshe Olshansky
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Francis R. Carbone
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Joel Z. Ma
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- * E-mail: (JL); (JZM)
| |
Collapse
|
20
|
Geerman S, Hickson S, Brasser G, Pascutti MF, Nolte MA. Quantitative and Qualitative Analysis of Bone Marrow CD8(+) T Cells from Different Bones Uncovers a Major Contribution of the Bone Marrow in the Vertebrae. Front Immunol 2016; 6:660. [PMID: 26793197 PMCID: PMC4710685 DOI: 10.3389/fimmu.2015.00660] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/24/2015] [Indexed: 12/23/2022] Open
Abstract
Bone marrow (BM) plays an important role in the long-term maintenance of memory T cells. Yet, BM is found in numerous bones throughout the body, which are not equal in structure, as they differ in their ratio of cortical and trabecular bone. This implies that BM cells within different bones are subjected to different microenvironments, possibly leading to differences in their frequencies and function. To address this, we examined BM from murine tibia, femur, pelvis, sternum, radius, humerus, calvarium, and the vertebrae and analyzed the presence of effector memory (TEM), central memory (TCM), and naïve (TNV) CD8(+) T cells. During steady-state conditions, the frequency of the total CD8(+) T cell population was comparable between all bones. Interestingly, most CD8(+) T cells were located in the vertebrae, as it contained the highest amount of BM cells. Furthermore, the frequencies of TEM, TCM, and TNV cells were similar between all bones, with a majority of TNV cells. Additionally, CD8(+) T cells collected from different bones similarly expressed the key survival receptors IL-7Rα and IL-15Rβ. We also examined BM for memory CD8(+) T cells with a tissue-resident memory phenotype and observed that approximately half of all TEM cells expressed the retention marker CD69. Remarkably, in the memory phase of acute infection with the lymphocytic choriomeningitis virus (LCMV), we found a massive compositional change in the BM CD8(+) T cell population, as the TEM cells became the dominant subset at the cost of TNV cells. Analysis of Ki-67 expression established that these TEM cells were in a quiescent state. Finally, we detected higher frequencies of LCMV-specific CD8(+) T cells in BM compared to spleen and found that BM in its entirety contained fivefold more LCMV-specific CD8(+) T cells. In conclusion, although infection with LCMV caused a dramatic change in the BM CD8(+) T cell population, this did not result in noticeable differences between BM collected from different bones. Our findings suggest that in respect to CD8(+) T cells, BM harvested from a single bone is a fair reflection of the rest of the BM present in the murine body.
Collapse
Affiliation(s)
- Sulima Geerman
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands; Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sarah Hickson
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands; Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Giso Brasser
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands; Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Maria Fernanda Pascutti
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands; Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Martijn A Nolte
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands; Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
21
|
Nizard M, Diniz MO, Roussel H, Tran T, Ferreira LC, Badoual C, Tartour E. Mucosal vaccines: novel strategies and applications for the control of pathogens and tumors at mucosal sites. Hum Vaccin Immunother 2015; 10:2175-87. [PMID: 25424921 DOI: 10.4161/hv.29269] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mucosal immune system displays several adaptations reflecting the exposure to the external environment. The efficient induction of mucosal immune responses also requires specific approaches, such as the use of appropriate administration routes and specific adjuvants and/or delivery systems. In contrast to vaccines delivered via parenteral routes, experimental, and clinical evidences demonstrated that mucosal vaccines can efficiently induce local immune responses to pathogens or tumors located at mucosal sites as well as systemic response. At least in part, such features can be explained by the compartmentalization of mucosal B and T cell populations that play important roles in the modulation of local immune responses. In the present review, we discuss molecular and cellular features of the mucosal immune system as well as novel immunization approaches that may lead to the development of innovative and efficient vaccines targeting pathogens and tumors at different mucosal sites.
Collapse
Affiliation(s)
- Mevyn Nizard
- a INSERM U970; Universite Paris Descartes; Sorbonne Paris-Cité; Paris, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Vukmanovic-Stejic M, Sandhu D, Seidel JA, Patel N, Sobande TO, Agius E, Jackson SE, Fuentes-Duculan J, Suárez-Fariñas M, Mabbott NA, Lacy KE, Ogg G, Nestle FO, Krueger JG, Rustin MHA, Akbar AN. The Characterization of Varicella Zoster Virus-Specific T Cells in Skin and Blood during Aging. J Invest Dermatol 2015; 135:1752-1762. [PMID: 25734814 PMCID: PMC4471118 DOI: 10.1038/jid.2015.63] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/14/2015] [Accepted: 02/03/2015] [Indexed: 12/12/2022]
Abstract
Reactivation of the varicella zoster virus (VZV) increases during aging. Although the effects of VZV reactivation are observed in the skin (shingles), the number and functional capacity of cutaneous VZV-specific T cells have not been investigated. The numbers of circulating IFN-γ-secreting VZV-specific CD4(+) T cells are significantly decreased in old subjects. However, other measures of VZV-specific CD4(+) T cells, including proliferative capacity to VZV antigen stimulation and identification of VZV-specific CD4(+) T cells with an major histocompatibility complex class II tetramer (epitope of IE-63 protein), were similar in both age groups. The majority of T cells in the skin of both age groups expressed CD69, a characteristic of skin-resident T cells. VZV-specific CD4(+) T cells were significantly increased in the skin compared with the blood in young and old subjects, and their function was similar in both age groups. In contrast, the number of Foxp3(+) regulatory T cells and expression of the inhibitory receptor programmed cell death -1 PD-1 on CD4(+) T cells were significantly increased in the skin of older humans. Therefore, VZV-specific CD4(+) T cells in the skin of older individuals are functionally competent. However, their activity may be restricted by multiple inhibitory influences in situ.
Collapse
Affiliation(s)
| | - Daisy Sandhu
- Division of Infection and Immunity, University College London, London, UK; Department of Dermatology, Royal Free Hospital, London, UK
| | - Judith A Seidel
- Division of Infection and Immunity, University College London, London, UK
| | - Neil Patel
- Division of Infection and Immunity, University College London, London, UK; Department of Dermatology, Royal Free Hospital, London, UK
| | - Toni O Sobande
- Division of Infection and Immunity, University College London, London, UK
| | - Elaine Agius
- Division of Infection and Immunity, University College London, London, UK; Department of Dermatology, Royal Free Hospital, London, UK
| | - Sarah E Jackson
- Division of Infection and Immunity, University College London, London, UK
| | | | | | - Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, UK
| | - Katie E Lacy
- St Johns Institute of Dermatology, Guys and St Thomas' Hospital, London, UK
| | - Graham Ogg
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Frank O Nestle
- St Johns Institute of Dermatology, Guys and St Thomas' Hospital, London, UK
| | - James G Krueger
- Laboratory for Investigative Dermatology, Rockefeller University, New York, USA
| | | | - Arne N Akbar
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
23
|
Wang Y, Sui Y, Kato S, Hogg AE, Steel JC, Morris JC, Berzofsky JA. Vaginal type-II mucosa is an inductive site for primary CD8⁺ T-cell mucosal immunity. Nat Commun 2015; 6:6100. [PMID: 25600442 PMCID: PMC4348041 DOI: 10.1038/ncomms7100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023] Open
Abstract
The structured lymphoid tissues are considered the only inductive sites where primary T-cell immune responses occur. The naïve T cells in structured lymphoid tissues, once being primed by antigen-bearing dendritic cells, differentiate into memory T cells and traffic back to the mucosal sites through the bloodstream. Contrary to this belief, here we show that the vaginal type-II mucosa itself, despite the lack of structured lymphoid tissues, can act as an inductive site during primary CD8(+) T-cell immune responses. We provide evidence that the vaginal mucosa supports both the local immune priming of naïve CD8(+) T cells and the local expansion of antigen-specific CD8(+) T cells, thereby demonstrating a different paradigm for primary mucosal T-cell immune induction.
Collapse
Affiliation(s)
- Yichuan Wang
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20892, USA
| | - Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20892, USA
| | - Shingo Kato
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20892, USA
| | - Alison E Hogg
- 1] Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20892, USA [2] Aeras, 1405 Research Boulevard, Rockville, Maryland 20850, USA
| | - Jason C Steel
- 1] The University of Queensland, Brisbane, Queensland 4120, Australia [2] Gallipoli Medical Research Foundation, Greenslopes, Queensland 4120, Australia
| | - John C Morris
- University of Cincinnati Cancer Institute, Cincinnati, Ohio 45267, USA
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
24
|
Ramjee G, Abbai NS, Naidoo S. Women and Sexually Transmitted Infections in Africa. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojog.2015.57056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Xia J, Veselenak RL, Gorder SR, Bourne N, Milligan GN. Virus-specific immune memory at peripheral sites of herpes simplex virus type 2 (HSV-2) infection in guinea pigs. PLoS One 2014; 9:e114652. [PMID: 25485971 PMCID: PMC4259353 DOI: 10.1371/journal.pone.0114652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/12/2014] [Indexed: 12/30/2022] Open
Abstract
Despite its importance in modulating HSV-2 pathogenesis, the nature of tissue-resident immune memory to HSV-2 is not completely understood. We used genital HSV-2 infection of guinea pigs to assess the type and location of HSV-specific memory cells at peripheral sites of HSV-2 infection. HSV-specific antibody-secreting cells were readily detected in the spleen, bone marrow, vagina/cervix, lumbosacral sensory ganglia, and spinal cord of previously-infected animals. Memory B cells were detected primarily in the spleen and to a lesser extent in bone marrow but not in the genital tract or neural tissues suggesting that the HSV-specific antibody-secreting cells present at peripheral sites of HSV-2 infection represented persisting populations of plasma cells. The antibody produced by these cells isolated from neural tissues of infected animals was functionally relevant and included antibodies specific for HSV-2 glycoproteins and HSV-2 neutralizing antibodies. A vigorous IFN-γ-secreting T cell response developed in the spleen as well as the sites of HSV-2 infection in the genital tract, lumbosacral ganglia and spinal cord following acute HSV-2 infection. Additionally, populations of HSV-specific tissue-resident memory T cells were maintained at these sites and were readily detected up to 150 days post HSV-2 infection. Unlike the persisting plasma cells, HSV-specific memory T cells were also detected in uterine tissue and cervicothoracic region of the spinal cord and at low levels in the cervicothoracic ganglia. Both HSV-specific CD4+ and CD8+ resident memory cell subsets were maintained long-term in the genital tract and sensory ganglia/spinal cord following HSV-2 infection. Together these data demonstrate the long-term maintenance of both humoral and cellular arms of the adaptive immune response at the sites of HSV-2 latency and virus shedding and highlight the utility of the guinea pig infection model to investigate tissue-resident memory in the setting of HSV-2 latency and spontaneous reactivation.
Collapse
Affiliation(s)
- Jingya Xia
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ronald L. Veselenak
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Summer R. Gorder
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nigel Bourne
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Gregg N. Milligan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
26
|
Iijima N, Iwasaki A. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 2014; 346:93-8. [PMID: 25170048 DOI: 10.1126/science.1257530] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD8 tissue-resident memory T (T(RM)) cells provide efficient local control of viral infection, but the role of CD4 T(RM) is less clear. Here, by using parabiotic mice, we show that a preexisting pool of CD4 T(RM) cells in the genital mucosa was required for full protection from a lethal herpes simplex virus 2 (HSV-2) infection. Chemokines secreted by a local network of macrophages maintained vaginal CD4 T(RM) in memory lymphocyte clusters (MLCs), independently of circulating memory T cells. CD4 T(RM) cells within the MLCs were enriched in clones that expanded in response to HSV-2. Our results highlight the need for vaccine strategies that enable establishment of T(RM) cells for protection from a sexually transmitted virus and provide insights as to how such a pool might be established.
Collapse
Affiliation(s)
- Norifumi Iijima
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Akiko Iwasaki
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
27
|
Zhu XP, Muhammad ZS, Wang JG, Lin W, Guo SK, Zhang W. HSV-2 vaccine: current status and insight into factors for developing an efficient vaccine. Viruses 2014; 6:371-90. [PMID: 24469503 PMCID: PMC3939461 DOI: 10.3390/v6020371] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 01/08/2023] Open
Abstract
Herpes simplex virus type 2 (HSV-2), a globally sexually transmitted virus, and also one of the main causes of genital ulcer diseases, increases susceptibility to HIV-1. Effective vaccines to prevent HSV-2 infection are not yet available, but are currently being developed. To facilitate this process, the latest progress in development of these vaccines is reviewed in this paper. A summary of the most promising HSV-2 vaccines tested in animals in the last five years is presented, including the main factors, and new ideas for developing an effective vaccine from animal experiments and human clinical trials. Experimental results indicate that future HSV-2 vaccines may depend on a strategy that targets mucosal immunity. Furthermore, estradiol, which increases the effectiveness of vaccines, may be considered as an adjuvant. Therefore, this review is expected to provide possible strategies for development of future HSV-2 vaccines.
Collapse
Affiliation(s)
- Xiao-Peng Zhu
- The 2nd Clinical Medical College, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| | - Zaka S Muhammad
- School of International Studies, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| | - Jian-Guang Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| | - Wu Lin
- The 2nd Clinical Medical College, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| | - Shi-Kun Guo
- The 2nd Clinical Medical College, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| | - Wei Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| |
Collapse
|
28
|
Vaccination with a HSV-2 UL24 mutant induces a protective immune response in murine and guinea pig vaginal infection models. Vaccine 2014; 32:1398-406. [PMID: 24462481 DOI: 10.1016/j.vaccine.2013.10.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 09/25/2013] [Accepted: 10/24/2013] [Indexed: 11/21/2022]
Abstract
The rational design and development of genetically attenuated HSV-2 mutant viruses represent an attractive approach for developing both prophylactic and therapeutic vaccines for genital herpes. Previously, HSV-2 UL24 was shown to be a virulence determinant in both murine and guinea pig vaginal infection models. An UL24-βgluc insertion mutant produced syncytial plaques and replicated to nearly wild type levels in tissue culture, but induced little or no pathological effects in recipient mice or guinea pigs following vaginal infection. Here we report that immunization of mice or guinea pigs with high or low doses of UL24-βgluc elicited a highly protective immune response. UL24-βgluc immunization via the vaginal or intramuscular routes was demonstrated to protect mice from a lethal vaginal challenge with wild type HSV-2. Moreover, antigen re-stimulated splenic lymphocytes harvested from immunized mice exhibited both HSV-2 specific CTL activity and IFN-γ expression. Humoral anti-HSV-2 responses in serum were Th1-polarized (IgG2a>IgG1) and contained high-titer anti-HSV-2 neutralizing activity. Guinea pigs vaccinated subcutaneously with UL24-βgluc or the more virulent parental strain (186) were challenged with a heterologous HSV-2 strain (MS). Acute disease scores were nearly indistinguishable in guinea pigs immunized with either virus. Recurrent disease scores were reduced in UL24-βgluc immunized animals but not to the same extent as those immunized with strain 186. In addition, challenge virus was not detected in 75% of guinea pigs subcutaneously immunized with UL24-βgluc. In conclusion, disruption of the UL24 gene is a prime target for the development of a genetically attenuated live HSV-2 vaccine.
Collapse
|
29
|
The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat Immunol 2013; 14:1294-301. [PMID: 24162776 DOI: 10.1038/ni.2744] [Citation(s) in RCA: 934] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/20/2013] [Indexed: 12/12/2022]
Abstract
Tissue-resident memory T cells (T(RM) cells) provide superior protection against infection in extralymphoid tissues. Here we found that CD103(+)CD8(+) T(RM) cells developed in the skin from epithelium-infiltrating precursor cells that lacked expression of the effector-cell marker KLRG1. A combination of entry into the epithelium plus local signaling by interleukin 15 (IL-15) and transforming growth factor-β (TGF-β) was required for the formation of these long-lived memory cells. Notably, differentiation into T(RM) cells resulted in the progressive acquisition of a unique transcriptional profile that differed from that of circulating memory cells and other types of T cells that permanently reside in skin epithelium. We provide a comprehensive molecular framework for the local differentiation of a distinct peripheral population of memory cells that forms a first-line immunological defense system in barrier tissues.
Collapse
|
30
|
Zhang N, Bevan MJ. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 2013; 39:687-96. [PMID: 24076049 DOI: 10.1016/j.immuni.2013.08.019] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 07/01/2013] [Indexed: 01/19/2023]
Abstract
Tissue-resident memory T (Trm) cells represent a population of memory CD8⁺ T cells that can act as first responders to local infection. The mechanisms regulating the formation and maintenance of intestinal Trm cells remain elusive. Here we showed that transforming growth factor-β (TGF-β) controlled both stages of gut Trm cell differentiation through different mechanisms. During the formation phase of Trm cells, TGF-β signaling inhibited the migration of effector CD8⁺ T cells from the spleen to the gut by dampening the expression of integrin α4β7. During the maintenance phase, TGF-β was required for the retention of intestinal Trm cells at least in part through the induction of integrins αEβ7 and α1, as well as CD69. Thus, the cytokine acts to control cytotoxic T cell differentiation in lymphoid and peripheral organs.
Collapse
Affiliation(s)
- Nu Zhang
- Department of Immunology and the Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109, USA
| | | |
Collapse
|
31
|
Immunological control of herpes simplex virus infections. J Neurovirol 2013; 19:328-45. [PMID: 23943467 PMCID: PMC3758505 DOI: 10.1007/s13365-013-0189-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 07/08/2013] [Accepted: 07/17/2013] [Indexed: 12/24/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is capable of causing a latent infection in sensory neurons that lasts for the lifetime of the host. The primary infection is resolved following the induction of the innate immune response that controls replication of the virus until the adaptive immune response can clear the active infection. HSV-1-specific CD8+ T cells survey the ganglionic regions containing latently infected neurons and participate in preventing reactivation of HSV from latency. The long-term residence and migration dynamics of the T cells in the trigeminal ganglia appear to distinguish them from the traditional memory T cell subsets. Recently described tissue resident memory (TRM) T cells establish residence and survive for long periods in peripheral tissue compartments following antigen exposure. This review focuses on the immune system response to HSV-1 infection. Particular emphasis is placed on the evidence pointing to the HSV-1-specific CD8+ T cells in the trigeminal belonging to the TRM class of memory T cells and the role of TRM cells in virus infection, pathogenesis, latency, and disease.
Collapse
|
32
|
Delayed but effective induction of mucosal memory immune responses against genital HSV-2 in the absence of secondary lymphoid organs. Mucosal Immunol 2013; 6:56-68. [PMID: 22718264 DOI: 10.1038/mi.2012.48] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To examine whether local immunization in the absence of secondary lymphoid organs (SLOs) could establish effective antiviral memory responses in the female genital tract, we examined immunity in the vaginal tracts of LTα-/- mice, LTα-/- SPL (splenectomized), and control C57BL/6 (WT) mice. All three groups of mice were immunized intravaginally (IVAG) with attenuated thymidine kinase-negative (TK(-)) Herpes simplex virus type 2 (HSV-2) and challenged 4-6 weeks later with wild-type (WT) HSV-2. Both groups of LTα-/- mice exhibited delayed viral clearance and prolonged genital pathology after immunization. Following IVAG WT HSV-2 challenge, LTα-/- and LTα-/- SPL mice had significantly lower levels of HSV-2-specific IgG and IgA in the vaginal secretions. Although the frequency of B and T cells in the vaginal mucosa was comparable or higher in both groups of LTα-/- mice, lower frequency of HSV-2-specific interferon-γ (IFNγ)-producing CD3+ T cells was seen after immunization and after challenge, compared with WT group. Despite this, immunized mice in all three groups showed complete sterile protection against IVAG WT HSV-2 challenge. These results show that even in the absence of SLOs, IVAG immunization generates effector memory immune responses at genital mucosa that can provide antiviral protection against subsequent viral exposures. This will inform new strategies to design mucosal vaccines against sexually transmitted infections.
Collapse
|
33
|
Mueller SN, Gebhardt T, Carbone FR, Heath WR. Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol 2012; 31:137-61. [PMID: 23215646 DOI: 10.1146/annurev-immunol-032712-095954] [Citation(s) in RCA: 580] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissues such as the skin and mucosae are frequently exposed to microbial pathogens. Infectious agents must be quickly and efficiently controlled by our immune system, but the low frequency of naive T cells specific for any one pathogen means dependence on primary responses initiated in draining lymph nodes, often allowing time for serious infection to develop. These responses imprint effectors with the capacity to home to infected tissues; this process, combined with inflammatory signals, ensures the effective targeting of primary immunity. Upon vaccination or previous pathogen exposure, increased pathogen-specific T cell numbers together with altered migratory patterns of memory T cells can greatly improve immune efficacy, ensuring infections are prevented or at least remain subclinical. Until recently, memory T cell populations were considered to comprise central memory T cells (TCM), which are restricted to the secondary lymphoid tissues and blood, and effector memory T cells (TEM), which broadly migrate between peripheral tissues, the blood, and the spleen. Here we review evidence for these two memory populations, highlight a relatively new player, the tissue-resident memory T cell (TRM), and emphasize the potential differences between the migratory patterns of CD4(+) and CD8(+) T cells. This new understanding raises important considerations for vaccine design and for the measurement of immune parameters critical to the control of infectious disease, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
34
|
Çuburu N, Graham BS, Buck CB, Kines RC, Pang YYS, Day PM, Lowy DR, Schiller JT. Intravaginal immunization with HPV vectors induces tissue-resident CD8+ T cell responses. J Clin Invest 2012; 122:4606-20. [PMID: 23143305 DOI: 10.1172/jci63287] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The induction of persistent intraepithelial CD8+ T cell responses may be key to the development of vaccines against mucosally transmitted pathogens, particularly for sexually transmitted diseases. Here we investigated CD8+ T cell responses in the female mouse cervicovaginal mucosa after intravaginal immunization with human papillomavirus vectors (HPV pseudoviruses) that transiently expressed a model antigen, respiratory syncytial virus (RSV) M/M2, in cervicovaginal keratinocytes. An HPV intravaginal prime/boost with different HPV serotypes induced 10-fold more cervicovaginal antigen-specific CD8+ T cells than priming alone. Antigen-specific T cell numbers decreased only 2-fold after 6 months. Most genital antigen-specific CD8+ T cells were intra- or subepithelial, expressed αE-integrin CD103, produced IFN-γ and TNF-α, and displayed in vivo cytotoxicity. Using a sphingosine-1-phosphate analog (FTY720), we found that the primed CD8+ T cells proliferated in the cervicovaginal mucosa upon HPV intravaginal boost. Intravaginal HPV prime/boost reduced cervicovaginal viral titers 1,000-fold after intravaginal challenge with vaccinia virus expressing the CD8 epitope M2. In contrast, intramuscular prime/boost with an adenovirus type 5 vector induced a higher level of systemic CD8+ T cells but failed to induce intraepithelial CD103+CD8+ T cells or protect against recombinant vaccinia vaginal challenge. Thus, HPV vectors are attractive gene-delivery platforms for inducing durable intraepithelial cervicovaginal CD8+ T cell responses by promoting local proliferation and retention of primed antigen-specific CD8+ T cells.
Collapse
Affiliation(s)
- Nicolas Çuburu
- Laboratory of Cellular Oncology, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gebhardt T, Mackay LK. Local immunity by tissue-resident CD8(+) memory T cells. Front Immunol 2012; 3:340. [PMID: 23162555 PMCID: PMC3493987 DOI: 10.3389/fimmu.2012.00340] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/23/2012] [Indexed: 12/18/2022] Open
Abstract
Microbial infection primes a CD8+ cytotoxic T cell response that gives rise to a long-lived population of circulating memory cells able to provide protection against systemic reinfection. Despite this, effective CD8+ T cell surveillance of barrier tissues such as skin and mucosa typically wanes with time, resulting in limited T cell-mediated protection in these peripheral tissues. However, recent evidence suggests that a specialized subset of CD103+ memory T cells can permanently lodge and persist in peripheral tissues, and that these cells can compensate for the loss of peripheral immune surveillance by circulating memory T cells. Here, we review evolving concepts regarding the generation and long-term persistence of these tissue-resident memory T cells (TRM) in epithelial and neuronal tissues. We further discuss the role of TRM cells in local infection control and their contribution to localized immune phenomena, in both mice and humans.
Collapse
Affiliation(s)
- Thomas Gebhardt
- Department of Microbiology and Immunology, The University of Melbourne Melbourne, VIC, Australia
| | | |
Collapse
|
36
|
Jiang J, Kelly KA. Isolation of lymphocytes from mouse genital tract mucosa. J Vis Exp 2012:e4391. [PMID: 22972306 DOI: 10.3791/4391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Mucosal surfaces, including in the gastrointestinal, urogenital, and respiratory tracts, provide portals of entry for pathogens, such as viruses and bacteria. Mucosae are also inductive sites in the host to generate immunity against pathogens, such as the Peyers patches in the intestinal tract and the nasal-associated lymphoreticular tissue in the respiratory tract. This unique feature brings mucosal immunity as a crucial player of the host defense system. Many studies have been focused on gastrointestinal and respiratory mucosal sites. However, there has been little investigation of reproductive mucosal sites. The genital tract mucosa is the primary infection site for sexually transmitted diseases (STD), including bacterial and viral infections. STDs are one of the most critical health challenges facing the world today. Centers for Disease Control and Prevention estimates that there are 19 million new infectious every year in the United States. STDs cost the U.S. health care system $17 billion every year, and cost individuals even more in immediate and life-long health consequences. In order to confront this challenge, a greater understanding of reproductive mucosal immunity is needed and isolating lymphocytes is an essential component of these studies. Here, we present a method to reproducibly isolate lymphocytes from murine female genital tracts for immunological studies that can be modified for adaption to other species. The method described below is based on one mouse.
Collapse
Affiliation(s)
- Janina Jiang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
37
|
Anjuère F, Bekri S, Bihl F, Braud VM, Cuburu N, Czerkinsky C, Hervouet C, Luci C. B cell and T cell immunity in the female genital tract: potential of distinct mucosal routes of vaccination and role of tissue-associated dendritic cells and natural killer cells. Clin Microbiol Infect 2012; 18 Suppl 5:117-22. [PMID: 22882377 DOI: 10.1111/j.1469-0691.2012.03995.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The female genital mucosa constitutes the major port of entry of sexually transmitted infections. Most genital microbial pathogens represent an enormous challenge for developing vaccines that can induce genital immunity that will prevent their transmission. It is now established that long-lasting protective immunity at mucosal surfaces has to involve local B-cell and T-cell effectors as well as local memory cells. Mucosal immunization constitutes an attractive way to generate systemic and genital B-cell and T-cell immune responses that can control early infection by sexually transmitted pathogens. Nevertheless, no mucosal vaccines against sexually transmitted infections are approved for human use. The mucosa-associated immune system is highly compartmentalized and the selection of any particular route or combinations of routes of immunization is critical when defining vaccine strategies against genital infections. Furthermore, mucosal surfaces are complex immunocompetent tissues that comprise antigen-presenting cells and also innate immune effectors and non-immune cells that can act as 'natural adjuvants' or negative immune modulators. The functions of these cells have to be taken into account when designing tissue-specific antigen-delivery systems and adjuvants. Here, we will discuss data that compare different mucosal routes of immunization to generate B-cell and T-cell responses in the genital tract, with a special emphasis on the newly described sublingual route of immunization. We will also summarize data on the understanding of the effector and induction mechanisms of genital immunity that may influence the development of vaccine strategies against genital infections.
Collapse
Affiliation(s)
- F Anjuère
- CNRS, UMR7275 CNRS/UNS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kumamoto Y, Iwasaki A. Unique features of antiviral immune system of the vaginal mucosa. Curr Opin Immunol 2012; 24:411-6. [PMID: 22673876 DOI: 10.1016/j.coi.2012.05.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/10/2012] [Indexed: 12/20/2022]
Abstract
A vast majority of human vaccines rely on neutralizing antibodies for protection. With the exception of vaccines against human papillomavirus, despite a great amount of dedicated effort by the scientific community, development of vaccines against sexually transmitted viruses has generally been unsuccessful. Understanding the immunobiology of the genital tract is key to designing vaccines that prevent spreading of these viruses. Recent studies demonstrate that adaptive immunity in the vaginal mucosa is uniquely regulated compared to other mucosal organs. In particular, development of virus-specific CD4+ and CD8+ T cells is critically important for antiviral defense in vagina. In this review, we provide an overview of our current understanding of a wide spectrum of immune responses in vagina--from innate viral sensing to memory development.
Collapse
Affiliation(s)
- Yosuke Kumamoto
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, United States
| | | |
Collapse
|
39
|
A lentiviral vector-based, herpes simplex virus 1 (HSV-1) glycoprotein B vaccine affords cross-protection against HSV-1 and HSV-2 genital infections. J Virol 2012; 86:6563-74. [PMID: 22491465 DOI: 10.1128/jvi.00302-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genital herpes is caused by herpes simplex virus 1 (HSV-1) and HSV-2, and its incidence is constantly increasing in the human population. Regardless of the clinical manifestation, HSV-1 and HSV-2 infections are highly transmissible to sexual partners and enhance susceptibility to other sexually transmitted infections. An effective vaccine is not yet available. Here, HSV-1 glycoprotein B (gB1) was delivered by a feline immunodeficiency virus (FIV) vector and tested against HSV-1 and HSV-2 vaginal challenges in C57BL/6 mice. The gB1 vaccine elicited cross-neutralizing antibodies and cell-mediated responses that protected 100 and 75% animals from HSV-1- and HSV-2-associated severe disease, respectively. Two of the eight fully protected vaccinees underwent subclinical HSV-2 infection, as demonstrated by deep immunosuppression and other analyses. Finally, vaccination prevented death in 83% of the animals challenged with a HSV-2 dose that killed 78 and 100% naive and mock-vaccinated controls, respectively. Since this FIV vector can accommodate two or more HSV immunogens, this vaccine has ample potential for improvement and may become a candidate for the development of a truly effective vaccine against genital herpes.
Collapse
|
40
|
Lee AJ, Ashkar AA. Herpes simplex virus-2 in the genital mucosa: insights into the mucosal host response and vaccine development. Curr Opin Infect Dis 2012; 25:92-9. [PMID: 22143115 DOI: 10.1097/qco.0b013e32834e9a56] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Herpes simplex virus (HSV)-2 is the predominant cause of genital herpes and has been implicated in HIV infection and transmission. Thus far, vaccines developed against HSV-2 have been clinically ineffective in preventing infection. This review aims to summarize the innate and adaptive immune responses against HSV-2 and examines the current status of vaccine development. RECENT FINDINGS Both innate and adaptive immune responses are essential for an effective primary immune response and the generation of immunity. The innate response involves Toll-like receptors, natural killer cells, plasmacytoid dendritic cells, and type I, II, and III interferons. The adaptive response requires a balance between CD4+ and CD8+ T-cells for optimal viral clearance. T-regulatory cells may be involved, although their exact function has yet to be determined. Current vaccine development involves the use of HSV-2 peptides or attenuated/replication-defective HSV-2 to generate adaptive anti-HSV-2 immune responses, however the generation of innate responses may also be an important consideration. SUMMARY Although vaccine development has primarily focused on the adaptive response, arguments for innate involvement are emerging. A greater understanding of the innate and adaptive processes underlying the response to HSV-2 infection will provide the foundation for the development of an effective vaccine.
Collapse
Affiliation(s)
- Amanda J Lee
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics and Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
41
|
Marks E, Helgeby A, Andersson JO, Schön K, Lycke NY. CD4⁺ T-cell immunity in the female genital tract is critically dependent on local mucosal immunization. Eur J Immunol 2011; 41:2642-53. [PMID: 21681740 DOI: 10.1002/eji.201041297] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Immunizations via the i.n. and intravaginal (ivag) routes effectively generate strong genital tract antibody-mediated immunity. To what extent the same is true for T-cell responses is incompletely known. Therefore, we set out to investigate optimal conditions for stimulation of genital tract CD4(+) T-cell responses, using adoptive transfer of mouse DO11.10 TCR transgenic T cells specific for OVA and OVA conjugated to cholera toxin (CT) as an immunogen. We observed that progesterone was required for a T-cell response following ivag immunization, whereas estradiol prevented a response. Although i.n. immunization stimulated OVA-specific CD4(+) T-cell responses in the draining LNs, it was substantially less effective compared to ivag. More importantly, an ivag booster immunization was absolutely required to attract T cells to the genital tract mucosa itself. While clinical use of CT is precluded because of its toxicity, we developed a combined adjuvant vector based on a non-toxic derivative of CT and immune-stimulating complexes. The CTA1-DD/immune-stimulating complexes (ISCOMs) adjuvant together with major outer membrane protein was effective at stimulating genital tract CD4(+) T-cell immunity and protection against a live chlamydial infection, which holds promise for the development of mucosal vaccines against sexually transmitted infections.
Collapse
Affiliation(s)
- Ellen Marks
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
42
|
Kaushic C, Roth KL, Anipindi V, Xiu F. Increased prevalence of sexually transmitted viral infections in women: the role of female sex hormones in regulating susceptibility and immune responses. J Reprod Immunol 2011; 88:204-9. [PMID: 21296427 DOI: 10.1016/j.jri.2010.12.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 11/16/2022]
Abstract
Sexually transmitted infections (STIs) caused by viruses, including HSV-2, HIV-1, HPV, are among the most prevalent infectious diseases worldwide and a major cause of morbidity and mortality. Despite decades of effort, the attempts to develop efficacious vaccines against viral STIs have failed repeatedly, with the exception of the recent HPV vaccine. Given the higher prevalence rates of STIs in women, it is becoming clear that a better understanding of gender-specific differences in STIs may be critical for the development of preventative strategies for these diseases. In order to gain this insight, it is important to examine the distinct microenvironment of the female reproductive tract, the site of primary infection, since it can significantly influence the outcome of infection. An important biological factor in the female reproductive tract is the presence of female sex hormones, estrogen and progesterone, which are produced endogenously primarily by the ovaries and commonly provided exogenously via the use of hormonal contraceptives. Here we review our current knowledge of the role played by the female sex hormones in regulating susceptibility and immune responses to viral sexually transmitted infections and whether this could contribute to higher prevalence of STIs in women. Manipulating the microenvironment of the female genital tract with sex hormones may contribute to the development of improved immunization strategies against sexually transmitted infections.
Collapse
Affiliation(s)
- Charu Kaushic
- Department of Pathology and Molecular Medicine, Michael DeGroote Center for Learning and Discovery, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|