1
|
Lemineur C, Blain GM, Piche E, Gerus P. Relationship between metabolic cost, muscle moments and co-contraction during walking and running. Gait Posture 2024; 113:345-351. [PMID: 39053123 DOI: 10.1016/j.gaitpost.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/21/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The metabolic cost of locomotion is a key factor in walking and running performance. It has been studied by analysing the activation and co-activation of the muscles of the lower limbs. However, these measures do not comprehensively address muscle mechanics, in contrast to approaches using muscle moments and co-contraction. RESEARCH QUESTION What is the effect of speed and type of locomotion on muscle moments and co-contraction, and their relationship with metabolic cost during walking and running? METHODS Eleven recreational athletes (60.5 ± 7.1 kg; 169.0 ± 6.6 cm; 23.6 ± 3.3 years) walked and ran on a treadmill at different speeds, including a similar speed of 1.75 m.s-1. Metabolic cost was estimated from gas exchange measurements. Muscle moments and co-contraction of ankle and knee flexors and extensors during the stance and swing phases were estimated using an electromyographic-driven model. RESULTS Both the slowest and fastest walking speeds had significantly higher metabolic costs than intermediate ones (p < 0.05). The metabolic cost of walking was correlated with plantarflexors moment during swing phase (r = 0.62 at 0.5 m.s-1, r = 0.67 at 1,25 m.s-1), dorsiflexors moment during stance phase (r = 0.65 at 1.25 m.s-1, r = 0.67 at 1.5 and 1.75 m.s-1), and ankle co-contraction during the stance phase (r = 0.63 at 1.25 and 1.75 m.s-1). The metabolic cost of running at 3.25 m.s-1 during the swing phase was correlated with the dorsiflexors moment (r = 0.63), plantarflexors moment (r = 0.61) and ankle co-contraction (r = 0.60). DISCUSSION AND CONCLUSION Fluctuations in metabolic cost of walking and running could be explained, at least in part, by increased ankle antagonist moments and co-contraction.
Collapse
Affiliation(s)
| | | | - Elodie Piche
- Université Côte d'Azur, LAMHESS, Nice, France; Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Clinique Gériatrique du Cerveau et du Mouvement, Nice, France
| | | |
Collapse
|
2
|
Kubo S, Yaeshima K, Suzuki T, Daigo E, Kitaoka Y, Kinugasa R. Influence of foot strike pattern on co-contraction around the ankle and oxygen uptake during running at 19 km/h. Physiol Rep 2024; 12:e70023. [PMID: 39245807 PMCID: PMC11381186 DOI: 10.14814/phy2.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
This study investigated the coactivation of plantar flexor and dorsiflexor muscles and oxygen uptake during running with forefoot and rearfoot strikes at 15 and 19 km/h. We included 16 male runners in this study. The participants ran each foot strike pattern for 5 min at 15 and 19 km/h on a treadmill. During the running, respiratory gas exchange data and surface electromyographic (EMG) activity of the medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus, and tibialis anterior muscles of the right lower limb were continuously recorded. The indices of oxygen uptake, energy expenditure (EE), and muscle activation were calculated during the last 2 min in each condition. During the stance phase of running at 15 and 19 km/h, activation of the tibialis anterior and MG muscles was lower and higher, respectively, with forefoot strike than with rearfoot strike. The foot strike pattern did not influence the oxygen uptake. These results suggest that the foot strike pattern has no clear effect on the oxygen uptake when running at 15 and 19 km/h. However, forefoot strike leads to plantar flexion dominance during co-contraction of the tibialis anterior and MG muscles, which are an antagonist and agonist for plantar flexion, respectively, during the stance phase.
Collapse
Affiliation(s)
- Shimpei Kubo
- Department of Human Science, Kanagawa University, Yokohama, Japan
| | | | - Takahito Suzuki
- Department of Welfare and Culture, Okinawa University, Okinawa, Japan
| | - Eiji Daigo
- Department of Human Science, Kanagawa University, Yokohama, Japan
| | - Yu Kitaoka
- Department of Human Science, Kanagawa University, Yokohama, Japan
| | - Ryuta Kinugasa
- Department of Human Science, Kanagawa University, Yokohama, Japan
| |
Collapse
|
3
|
Glover NA, Chaudhari AM. Neuromuscular and trunk control mediate factors associated with injury in fatigued runners. J Biomech 2024; 170:112176. [PMID: 38820995 DOI: 10.1016/j.jbiomech.2024.112176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
This study aimed to determine how fatigue affects factors associated with injury, neuromuscular activity, and control in recreational runners. Previously identified injury risk factors were defined as peak vertical instantaneous loading rates (pVILR) for tibial stress fracture (TSF) and peak hip adduction (pHADD) for patellofemoral pain syndrome and iliotibial band syndrome. Kinematics, kinetics, and electromyography data were collected from 11 recreational runners throughout a fatiguing run. Three trials were collected in the first and final minutes of the run. Coactivation was quantified about the knee and ankle for the entire stance phase and anticipatory, weight acceptance (WA), and propulsion sub-phases of stance. Trunk control was quantified by the peak mediolateral lean, peak forward lean, and flexion range of motion (ROM). There were significant increases in pHADD and pVILR when fatigued. Significant decreases in coactivation around the knee were found over the entire stance phase, in the anticipatory phase, and WA phase. Coactivation decreased about the ankle during WA. Lateral trunk lean significantly increased when fatigued, but no significant changes were found in flexion ROM or lean. Mediation analyses showed changes in ankle coactivation during WA, and lateral trunk lean are significant influences on pVILR, a measure associated with TSF. Fatigue-induced adaptations of decreasing ankle coactivation during WA and increased lateral trunk lean may increase the likelihood of TSF. In this study, a fatiguing run influenced changes in control in recreational runners. Further investigation of causal fatigue-induced injuries is necessary to better understand the effects of coactivation and trunk control.
Collapse
Affiliation(s)
- Nelson A Glover
- Department of Bioengineering, George Mason University, Fairfax, VA, United States.
| | - Ajit Mw Chaudhari
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Williams J, Watso JC. Faster Club Hockey Athletes Have Reduced Upper Leg Muscular Co-contraction During Maximal-Speed Sprinting. RESEARCH SQUARE 2024:rs.3.rs-4283161. [PMID: 38765988 PMCID: PMC11100901 DOI: 10.21203/rs.3.rs-4283161/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Most electromyographic (EMG) data for muscular activation patterns during ambulation is limited to older adults with existing chronic disease(s) walking at slow velocities. However, we know much less about the lower extremity muscle co-contraction patterns during sprinting and its relation to running velocity (i.e., performance). Therefore, we compared lower extremity muscular activation patterns during sprinting between slower and faster collegiate club hockey athletes. We hypothesized that faster athletes would have lower EMG-assessed co-contraction index (CCI) values in the lower extremities during over-ground sprinting. Results Twenty-two males (age = 21[1] yrs (median[IQR]); body mass = 77.1 ± 8.6 kg (mean ± SD)) completed two 20-m over-ground sprints with concomitant EMG and asynchronous force plate testing. We split participants using median running velocity (FAST: 8.5 ± 0.3 vs. SLOW: 7.7 ± 0.3. Conclusions m/s, p < 0.001). Faster athletes had lower CCI between the rectus femoris and biceps femoris (group: p = 0.05), particularly during the late swing phase of the gait cycle (post hoc p = 0.02). In agreement with our hypothesis, we found lower CCI values in the upper leg musculature during maximal-speed over-ground sprinting. These data from collegiate club hockey athletes corroborate other reports in clinical populations that the coordination between the rectus femoris and biceps femoris is associated with linear over-ground sprinting velocity.
Collapse
|
5
|
Van Hooren B, Jukic I, Cox M, Frenken KG, Bautista I, Moore IS. The Relationship Between Running Biomechanics and Running Economy: A Systematic Review and Meta-Analysis of Observational Studies. Sports Med 2024; 54:1269-1316. [PMID: 38446400 PMCID: PMC11127892 DOI: 10.1007/s40279-024-01997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Running biomechanics is considered an important determinant of running economy (RE). However, studies examining associations between running biomechanics and RE report inconsistent findings. OBJECTIVE The aim of this systematic review was to determine associations between running biomechanics and RE and explore potential causes of inconsistency. METHODS Three databases were searched and monitored up to April 2023. Observational studies were included if they (i) examined associations between running biomechanics and RE, or (ii) compared running biomechanics between groups differing in RE, or (iii) compared RE between groups differing in running biomechanics during level, constant-speed, and submaximal running in healthy humans (18-65 years). Risk of bias was assessed using a modified tool for observational studies and considered in the results interpretation using GRADE. Meta-analyses were performed when two or more studies reported on the same outcome. Meta-regressions were used to explore heterogeneity with speed, coefficient of variation of height, mass, and age as continuous outcomes, and standardization of running shoes, oxygen versus energetic cost, and correction for resting oxygen or energy cost as categorical outcomes. RESULTS Fifty-one studies (n = 1115 participants) were included. Most spatiotemporal outcomes showed trivial and non-significant associations with RE: contact time r = - 0.02 (95% confidence interval [CI] - 0.15 to 0.12); flight time r = 0.11 (- 0.09 to 0.32); stride time r = 0.01 (- 0.8 to 0.50); duty factor r = - 0.06 (- 0.18 to 0.06); stride length r = 0.12 (- 0.15 to 0.38), and swing time r = 0.12 (- 0.13 to 0.36). A higher cadence showed a small significant association with a lower oxygen/energy cost (r = - 0.20 [- 0.35 to - 0.05]). A smaller vertical displacement and higher vertical and leg stiffness showed significant moderate associations with lower oxygen/energy cost (r = 0.35, - 0.31, - 0.28, respectively). Ankle, knee, and hip angles at initial contact, midstance or toe-off as well as their range of motion, peak vertical ground reaction force, mechanical work variables, and electromyographic activation were not significantly associated with RE, although potentially relevant trends were observed for some outcomes. CONCLUSIONS Running biomechanics can explain 4-12% of the between-individual variation in RE when considered in isolation, with this magnitude potentially increasing when combining different variables. Implications for athletes, coaches, wearable technology, and researchers are discussed in the review. PROTOCOL REGISTRATION https://doi.org/10.17605/OSF.IO/293 ND (OpenScience Framework).
Collapse
Affiliation(s)
- Bas Van Hooren
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Ivan Jukic
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
- School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Maartje Cox
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Koen G Frenken
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Iker Bautista
- Institute of Sport, Nursing and Allied Health, University of Chichester, Chichester, UK
- Department of Physiotherapy, Catholic University of Valencia, Valencia, Spain
| | - Isabel S Moore
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
6
|
Fiori L, Castiglia SF, Chini G, Draicchio F, Sacco F, Serrao M, Tatarelli A, Varrecchia T, Ranavolo A. The Lower Limb Muscle Co-Activation Map during Human Locomotion: From Slow Walking to Running. Bioengineering (Basel) 2024; 11:288. [PMID: 38534562 DOI: 10.3390/bioengineering11030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
The central nervous system (CNS) controls movements and regulates joint stiffness with muscle co-activation, but until now, few studies have examined muscle pairs during running. This study aims to investigate differences in lower limb muscle coactivation during gait at different speeds, from walking to running. Nineteen healthy runners walked and ran at speeds ranging from 0.8 km/h to 9.3 km/h. Twelve lower limb muscles' co-activation was calculated using the time-varying multi-muscle co-activation function (TMCf) with global, flexor-extension, and rostro-caudal approaches. Spatiotemporal and kinematic parameters were also measured. We found that TMCf, spatiotemporal, and kinematic parameters were significantly affected by gait speed for all approaches. Significant differences were observed in the main parameters of each co-activation approach and in the spatiotemporal and kinematic parameters at the transition between walking and running. In particular, significant differences were observed in the global co-activation (CIglob, main effect F(1,17) = 641.04, p < 0.001; at the transition p < 0.001), the stride length (main effect F(1,17) = 253.03, p < 0.001; at the transition p < 0.001), the stride frequency (main effect F(1,17) = 714.22, p < 0.001; at the transition p < 0.001) and the Center of Mass displacement in the vertical (CoMy, main effect F(1,17) = 426.2, p < 0.001; at the transition p < 0.001) and medial-lateral (CoMz, main effect F(1,17) = 120.29 p < 0.001; at the transition p < 0.001) directions. Regarding the correlation analysis, the CoMy was positively correlated with a higher CIglob (r = 0.88, p < 0.001) and negatively correlated with Full Width at Half Maximum (FWHMglob, r = -0.83, p < 0.001), whereas the CoMz was positively correlated with the global Center of Activity (CoAglob, r = 0.97, p < 0.001). Positive and negative strong correlations were found between global co-activation parameters and center of mass displacements, as well as some spatiotemporal parameters, regardless of gait speed. Our findings suggest that walking and running have different co-activation patterns and kinematic characteristics, with the whole-limb stiffness exerted more synchronously and stably during running. The co-activation indexes and kinematic parameters could be the result of global co-activation, which is a sensory-control integration process used by the CNS to deal with more demanding and potentially unstable tasks like running.
Collapse
Affiliation(s)
- Lorenzo Fiori
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
- Behavioral Neuroscience PhD Program, Department of Physiology and Pharmacology, Sapienza University, Viale dell'Università 30, 00185 Rome, Italy
| | - Stefano Filippo Castiglia
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, Via Franco Faggiana 1668, 04100 Latina, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Giorgia Chini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Francesco Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Floriana Sacco
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, Via Franco Faggiana 1668, 04100 Latina, Italy
| | - Antonella Tatarelli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Tiwana Varrecchia
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Alberto Ranavolo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| |
Collapse
|
7
|
Lai J, Ye Y, Huang D, Zhang X. Age-related differences in the capacity and neuromuscular control of the foot core system during quiet standing. Scand J Med Sci Sports 2024; 34:e14522. [PMID: 37872662 DOI: 10.1111/sms.14522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
The foot core system is essential for upright stability. However, aging-induced changes in the foot core function remain poorly understood. The present study aimed to examine age-related differences in postural stability from the perspective of foot core capacity and neuromuscular control during quiet standing. Thirty-six older and 25 young adults completed foot core capacity tests including toe flexion strength, muscle ultrasonography, and plantar cutaneous sensitivity. The center of pressure (COP) and electromyography (EMG) of abductor hallucis (ABH), peroneus longus (PL), tibialis anterior (TA) and medial gastrocnemius (GM) were simultaneously recorded during double-leg and single-leg standing (SLS). EMG data were used to calculate muscle synergy and intermuscular coherence across three frequency bands. Compared to young adults, older adults exhibited thinner hallucis flexors, weaker toe strength, and lower plantar cutaneous sensitivity. The ABH thickness and plantar cutaneous sensitivity were negatively associated with the COP mean peak velocity in older adults, but not in young adults. Besides, older adults had higher cocontraction of muscles spanning the arch (ABH-PL) and ankle (TA-GM), and had lower beta- and gamma-band coherence of the ABH-PL and TA-PL during SLS. Foot core capacities became compromised with advancing age, and the balance control of older adults was susceptible to foot core than young adults in balance tasks. To compensate for the weakened foot core, older adults may adopt arch and ankle stiffening strategies via increasing muscle cocontraction. Furthermore, coherence analysis indicated that aging may increase the demand for cortical brain resources during SLS.
Collapse
Affiliation(s)
- Jiaqi Lai
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yinyan Ye
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dongfeng Huang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, Guangdong, China
| | - Xianyi Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Udin G, Fernandez Menendez A, Hoyois J, Chevalier M, Malatesta D. Time course of muscle activation, energetics and mechanics of running in minimalist and traditional cushioned shoes during level running. Sci Rep 2023; 13:5007. [PMID: 36973387 PMCID: PMC10043033 DOI: 10.1038/s41598-023-31984-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The study aimed to compare the ankle muscles activation, biomechanics and energetics of running in male runners during submaximal level run using minimalist (MinRS) and traditional cushioned (TrdRS) running shoes. During 45-min running in MinRS and TrdRS, the ankle muscles pre- and co-activation, biomechanics, and energetics of running of 16 male endurance runners (25.5 ± 3.5 yr) were assessed using surface electromyography (tibialis anterior and gastrocnemius lateralis), instrumented treadmill and indirect calorimetry, respectively. The net energy cost of running (Cr) was similar for both conditions (P = 0.25) with a significant increase over time (P < 0.0001). Step frequency (P < 0.001), and total mechanical work (P = 0.001) were significantly higher in MinRS than in TrdRS with no evolution over time (P = 0.28 and P = 0.85, respectively). The ankle muscles pre- and co-activation during the contact phase did not differ between the two shoe conditions (P ≥ 0.33) or over time (P ≥ 0.15). In conclusion, during 45-min running, Cr and muscle pre- and co-activation were not significantly different between MinRS and TrdRS with significantly higher step frequency and total mechanical work noted in the former than in the latter. Moreover, Cr significantly increased during the 45-min trial in both shoe conditions along with no significant change over time in muscle activation and biomechanical variables.
Collapse
Affiliation(s)
- Gilles Udin
- Institute of Sport Sciences of University of Lausanne (ISSUL), University of Lausanne, Bâtiment Synathlon, 1015, Lausanne, Switzerland
| | - Aitor Fernandez Menendez
- Institute of Sport Sciences of University of Lausanne (ISSUL), University of Lausanne, Bâtiment Synathlon, 1015, Lausanne, Switzerland
| | - Jonas Hoyois
- Institute of Sport Sciences of University of Lausanne (ISSUL), University of Lausanne, Bâtiment Synathlon, 1015, Lausanne, Switzerland
| | - Mathias Chevalier
- Institute of Sport Sciences of University of Lausanne (ISSUL), University of Lausanne, Bâtiment Synathlon, 1015, Lausanne, Switzerland
| | - Davide Malatesta
- Institute of Sport Sciences of University of Lausanne (ISSUL), University of Lausanne, Bâtiment Synathlon, 1015, Lausanne, Switzerland.
| |
Collapse
|
9
|
Yaserifar M, Oliveira AS. Inter-muscular coordination during running on grass, concrete and treadmill. Eur J Appl Physiol 2023; 123:561-572. [PMID: 36342514 DOI: 10.1007/s00421-022-05083-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
Abstract
Running is an exercise that can be performed in different environments that imposes distinct foot-floor interactions. For instance, running on grass may help reducing instantaneous vertical impact loading, while compromising natural speed. Inter-muscular coordination during running is an important factor to understand motor performance, but little is known regarding the impact of running surface hardness on inter-muscular coordination. Therefore, we investigated whether inter-muscular coordination during running is influenced by running surface. Surface electromyography (EMG) from 12 lower limb muscles were recorded from young male individuals (n = 9) while running on grass, concrete, and on a treadmill. Motor modules consisting of weighting coefficients and activation signals were extracted from the multi-muscle EMG datasets representing 50 consecutive running cycles using non-negative matrix factorization. We found that four motor modules were sufficient to represent the EMG from all running surfaces. The inter-subject similarity across muscle weightings was the lowest for running on grass (r = 0.76 ± 0.11) compared to concrete (r = 0.81 ± 0.07) and treadmill (r = 0.78 ± 0.05), but no differences in weighting coefficients were found when analyzing the number of significantly active muscles and residual muscle weightings (p > 0.05). Statistical parametric mapping showed no temporal differences between activation signals across running surfaces (p > 0.05). However, the activation duration (% time above 15% peak activation) was significantly shorter for treadmill running compared to grass and concrete (p < 0.05). These results suggest predominantly similar neuromuscular strategies to control multiple muscles across different running surfaces. However, individual adjustments in inter-muscular coordination are required when coping with softer surfaces or the treadmill's moving belt.
Collapse
Affiliation(s)
- Morteza Yaserifar
- Department of Exercise Physiology, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Anderson Souza Oliveira
- Department of Materials and Production, Aalborg University, Fibigerstræde 16, Building 4, 9220, Aalborg Øst, Denmark.
| |
Collapse
|
10
|
Metabolic cost and co-contraction during walking at different speeds in young and old adults. Gait Posture 2022; 91:111-116. [PMID: 34673446 DOI: 10.1016/j.gaitpost.2021.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The net metabolic cost of walking (NCw) and the co-activation of leg muscles are both higher in old adults (OG) than in young adults (YG). Nevertheless, the relation between the two remains unresolved, mainly due to the controversial co-activation measurement method used in previous studies. RESEARCH QUESTION To compare ankle and knee co-contraction (CCI), calculated using an EMG-driven method, between the groups and to examine their relationship with NCw. METHODS Nine young (YG = 25.2 +/- 3.3 years old) and nine older (OG = 68.7 +/5.9 years old) adults walked on a treadmill at five speeds (YG: 1; 1.2; 1.4; 1.6; 1.8 m/s; OG: 0.6; 0.8; 1; 1.2; 1.4 m/s) while electromyography (sEMG) and oxygen consumption were measured. CCI were calculated around the ankle and knee for different parts of the gait cycle (entire gait cycle 0-100 %, stance phase 0-60 %, swing phase 60-100 %). RESULTS NCw was significantly higher (25 %, averaged over the walking speeds) in OG as were Knee_CCI, Knee_CCI_swing and Knee_CCI_stance. Multiple regression models in YG, OG and YG + OG highlighted Ankle_CCI as the main contributor in NCw (β = 0.08-0.188, p < 0.05) with a positive relation between the two variables. SIGNIFICANCE The present findings provide a better understanding of the association between muscle co-contraction and metabolic cost in older adults. It may help scientists and clinicians to further develop strategies aimed at neuromuscular rehabilitation as a means of improving mobility and independence among older adults.
Collapse
|
11
|
Xie K, Lyu Y, Zhang X, Song R. How Compliance of Surfaces Affects Ankle Moment and Stiffness Regulation During Walking. Front Bioeng Biotechnol 2021; 9:726051. [PMID: 34676201 PMCID: PMC8523823 DOI: 10.3389/fbioe.2021.726051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022] Open
Abstract
Humans can regulate ankle moment and stiffness to cope with various surfaces during walking, while the effect of surfaces compliance on ankle moment and stiffness regulations remains unclear. In order to find the underlying mechanism, ten healthy subjects were recruited to walk across surfaces with different levels of compliance. Electromyography (EMG), ground reaction forces (GRFs), and three-dimensional reflective marker trajectories were recorded synchronously. Ankle moment and stiffness were estimated using an EMG-driven musculoskeletal model. Our results showed that the compliance of surfaces can affect both ankle moment and stiffness regulations during walking. When the compliance of surfaces increased, the ankle moment increased to prevent lower limb collapse and the ankle stiffness increased to maintain stability during the mid-stance phase of gait. Our work improved the understanding of gait biomechanics and might be instructive to sports surface design and passive multibody model development.
Collapse
Affiliation(s)
- Kaifan Xie
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Yueling Lyu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Xianyi Zhang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Rong Song
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Keloth SM, Arjunan SP, Raghav S, Kumar DK. Muscle activation strategies of people with early-stage Parkinson's during walking. J Neuroeng Rehabil 2021; 18:133. [PMID: 34496882 PMCID: PMC8425033 DOI: 10.1186/s12984-021-00932-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 09/01/2021] [Indexed: 11/10/2022] Open
Abstract
Introduction Some people with Parkinson’s disease (PD) frequently have an unsteady gait with shuffling, reduced strength, and increased rigidity. This study has investigated the difference in the neuromuscular strategies of people with early-stage PD, healthy older adults (HOA) and healthy young adult (HYA) during short-distance walking. Method Surface electromyogram (sEMG) was recorded from tibialis anterior (TA) and medial gastrocnemius (MG) muscles along with the acceleration data from the lower leg from 72 subjects—24 people with early-stage PD, 24 HOA and 24 HYA during short-distance walking on a level surface using wearable sensors. Results There was a significant increase in the co-activation, a reduction in the TA modulation and an increase in the TA-MG lateral asymmetry among the people with PD during a level, straight-line walking. For people with PD, the gait impairment scale was low with an average postural instability and gait disturbance (PIGD) score = 5.29 out of a maximum score of 20. Investigating the single and double support phases of the gait revealed that while the muscle activity and co-activation index (CI) of controls modulated over the gait cycle, this was highly diminished for people with PD. The biggest difference between CI of controls and people with PD was during the double support phase of gait. Discussion The study has shown that people with early-stage PD have high asymmetry, reduced modulation, and higher co-activation. They have reduced muscle activity, ability to inhibit antagonist, and modulate their muscle activities. This has the potential for diagnosis and regular assessment of people with PD to detect gait impairments using wearable sensors.
Collapse
Affiliation(s)
- Sana M Keloth
- Biosignals Lab, School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Sridhar P Arjunan
- Department of Electronics and Instrumentation, SRM Institute of Science and Technology, Chennai, India
| | | | - Dinesh Kant Kumar
- Biosignals Lab, School of Engineering, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
13
|
Li G, Shourijeh MS, Ao D, Patten C, Fregly BJ. How Well Do Commonly Used Co-contraction Indices Approximate Lower Limb Joint Stiffness Trends During Gait for Individuals Post-stroke? Front Bioeng Biotechnol 2021; 8:588908. [PMID: 33490046 PMCID: PMC7817819 DOI: 10.3389/fbioe.2020.588908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/09/2020] [Indexed: 11/18/2022] Open
Abstract
Muscle co-contraction generates joint stiffness to improve stability and accuracy during limb movement but at the expense of higher energetic cost. However, quantification of joint stiffness is difficult using either experimental or computational means. In contrast, quantification of muscle co-contraction using an EMG-based Co-Contraction Index (CCI) is easier and may offer an alternative for estimating joint stiffness. This study investigated the feasibility of using two common CCIs to approximate lower limb joint stiffness trends during gait. Calibrated EMG-driven lower extremity musculoskeletal models constructed for two individuals post-stroke were used to generate the quantities required for CCI calculations and model-based estimation of joint stiffness. CCIs were calculated for various combinations of antagonist muscle pairs based on two common CCI formulations: Rudolph et al. (2000) (CCI1) and Falconer and Winter (1985) (CCI2). CCI1 measures antagonist muscle activation relative to not only total activation of agonist plus antagonist muscles but also agonist muscle activation, while CCI2 measures antagonist muscle activation relative to only total muscle activation. We computed the correlation between these two CCIs and model-based estimates of sagittal plane joint stiffness for the hip, knee, and ankle of both legs. Although we observed moderate to strong correlations between some CCI formulations and corresponding joint stiffness, these associations were highly dependent on the methodological choices made for CCI computation. Specifically, we found that: (1) CCI1 was generally more correlated with joint stiffness than was CCI2, (2) CCI calculation using EMG signals with calibrated electromechanical delay generally yielded the best correlations with joint stiffness, and (3) choice of antagonist muscle pairs significantly influenced CCI correlation with joint stiffness. By providing guidance on how methodological choices influence CCI correlation with joint stiffness trends, this study may facilitate a simpler alternate approach for studying joint stiffness during human movement.
Collapse
Affiliation(s)
- Geng Li
- Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Mohammad S Shourijeh
- Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Di Ao
- Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Carolynn Patten
- Biomechanics, Rehabilitation, and Integrative Neuroscience Lab, Department of Physical Medicine and Rehabilitation, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Benjamin J Fregly
- Rice Computational Neuromechanics Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States
| |
Collapse
|
14
|
Between-day repeatability of lower limb EMG measurement during running and walking. J Electromyogr Kinesiol 2020; 55:102473. [DOI: 10.1016/j.jelekin.2020.102473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/19/2022] Open
|
15
|
Gomez-Ezeiza J, Santos-Concejero J, Torres-Unda J, Hanley B, Tam N. Muscle Activation Patterns Correlate With Race Walking Economy in Elite Race Walkers: A Waveform Analysis. Int J Sports Physiol Perform 2019; 14:1250-1255. [PMID: 30860418 DOI: 10.1123/ijspp.2018-0851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/17/2019] [Accepted: 02/24/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To analyze the association between muscle activation patterns on oxygen cost of transport in elite race walkers over the entire gait waveform. METHODS A total of 21 Olympic race walkers performed overground walking trials at 14 km·h-1 where muscle activity of the gluteus maximus, adductor magnus, rectus femoris, biceps femoris, medial gastrocnemius, and tibialis anterior were recorded. Race walking economy was determined by performing an incremental treadmill test ending at 14 km·h-1. RESULTS This study found that more-economical race walkers exhibit greater gluteus maximus (P = .022, r = .716), biceps femoris (P = .011, r = .801), and medial gastrocnemius (P = .041, r = .662) activation prior to initial contact and weight acceptance. In addition, during the propulsive and the early swing phase, race walkers with higher activation of the rectus femoris (P = .021, r = .798) exhibited better race walking economy. CONCLUSIONS This study suggests that the neuromuscular system is optimally coordinated through varying muscle activation to reduce the metabolic demand of race walking. These findings highlight the importance of proximal posterior muscle activation during initial contact and hip-flexor activation during early swing phase, which are associated with efficient energy transfer. Practically, race walking coaches may find this information useful in the development of specific training strategies on technique.
Collapse
|
16
|
Blagrove RC, Howe LP, Cushion EJ, Spence A, Howatson G, Pedlar CR, Hayes PR. Effects of Strength Training on Postpubertal Adolescent Distance Runners. Med Sci Sports Exerc 2019; 50:1224-1232. [PMID: 29315164 DOI: 10.1249/mss.0000000000001543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Strength training activities have consistently been shown to improve running economy (RE) and neuromuscular characteristics, such as force-producing ability and maximal speed, in adult distance runners. However, the effects on adolescent (<18 yr) runners remains elusive. This randomized control trial aimed to examine the effect of strength training on several important physiological and neuromuscular qualities associated with distance running performance. METHODS Participants (n = 25, 13 female, 17.2 ± 1.2 yr) were paired according to their sex and RE and randomly assigned to a 10-wk strength training group (STG) or a control group who continued their regular training. The STG performed twice weekly sessions of plyometric, sprint, and resistance training in addition to their normal running. Outcome measures included body mass, maximal oxygen uptake (V˙O2max), speed at V˙O2max, RE (quantified as energy cost), speed at fixed blood lactate concentrations, 20-m sprint, and maximal voluntary contraction during an isometric quarter-squat. RESULTS Eighteen participants (STG: n = 9, 16.1 ± 1.1 yr; control group: n = 9, 17.6 ± 1.2 yr) completed the study. The STG displayed small improvements (3.2%-3.7%; effect size (ES), 0.31-0.51) in RE that were inferred as "possibly beneficial" for an average of three submaximal speeds. Trivial or small changes were observed for body composition variables, V˙O2max and speed at V˙O2max; however, the training period provided likely benefits to speed at fixed blood lactate concentrations in both groups. Strength training elicited a very likely benefit and a possible benefit to sprint time (ES, 0.32) and maximal voluntary contraction (ES, 0.86), respectively. CONCLUSIONS Ten weeks of strength training added to the program of a postpubertal distance runner was highly likely to improve maximal speed and enhances RE by a small extent, without deleterious effects on body composition or other aerobic parameters.
Collapse
Affiliation(s)
- Richard C Blagrove
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UNITED KINGDOM.,Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UNITED KINGDOM
| | - Louis P Howe
- Department of Medical and Sports Sciences, University of Cumbria, UNITED KINGDOM
| | - Emily J Cushion
- School of Sport, Health and Applied Science, St Mary's University, Twickenham, UNITED KINGDOM
| | - Adam Spence
- School of Sport, Health and Applied Science, St Mary's University, Twickenham, UNITED KINGDOM
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UNITED KINGDOM.,Water Research Group, Northwest University, Potchefstroom, SOUTH AFRICA
| | - Charles R Pedlar
- School of Sport, Health and Applied Science, St Mary's University, Twickenham, UNITED KINGDOM.,Cardiovascular Performance Program, Massachusetts General Hospital, Boston, MA
| | - Philip R Hayes
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UNITED KINGDOM
| |
Collapse
|
17
|
Peyré-Tartaruga LA, Coertjens M. Locomotion as a Powerful Model to Study Integrative Physiology: Efficiency, Economy, and Power Relationship. Front Physiol 2018; 9:1789. [PMID: 30618802 PMCID: PMC6297284 DOI: 10.3389/fphys.2018.01789] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/28/2018] [Indexed: 12/02/2022] Open
Abstract
Locomotion is the most common form of movement in nature. Its study allows analysis of interactions between muscle functions (motor) and lever system arrangements (transmission), thereby facilitating performance analysis of various body organs and systems. Thus, it is a powerful model to study various aspects of integrative physiology. The results of this model can be applied in understanding body functions and design principles as performance outputs of interest for medical and biological sciences. The overall efficiency (effoverall) during locomotion is an example of an integrative parameter, which results from the ratio between mechanical output and metabolic input. Although the concepts of cost (i.e., metabolic expenditure relative to distance) and power (i.e., metabolic expenditure relative to time) are included in its calculation, the effoverall establishes peculiar relations with these variables. For a better approach to these aspects, in this study, we presented the physical-mathematical formulation of efficiency, as well as its conceptual definitions and applications. Furthermore, the concepts of efficiency, cost, and power are discussed from the biological and medical perspectives. Terrestrial locomotion is a powerful model to study integrative physiology in humans, because by analyzing the mechanical and metabolic determinants, we may verify the efficiency and economy relationship through locomotion type, and its characteristics and restrictions. Thus, it is possible to elaborate further on various improved intervention strategies, such as physical training, competition strategies, and ergogenic supplementation.
Collapse
Affiliation(s)
- Leonardo Alexandre Peyré-Tartaruga
- Exercise Research Laboratory, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Pneumological Sciences, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Marcelo Coertjens
- Exercise Research Laboratory, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Pneumological Sciences, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,School of Physical Therapy, Federal University of Piauì, Parnaìba, Brazil
| |
Collapse
|
18
|
Blair S, Lake MJ, Ding R, Sterzing T. Magnitude and variability of gait characteristics when walking on an irregular surface at different speeds. Hum Mov Sci 2018; 59:112-120. [PMID: 29653340 DOI: 10.1016/j.humov.2018.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 12/26/2022]
Abstract
Different modes of perturbations have been used to understand how individuals negotiate irregular surfaces, with a general notion that increased locomotion variability induces a positive training stimulus. Individuals tend to walk slower when initially exposed to such locomotion tasks, potentially influencing the magnitude and variability of biomechanical parameters. This study investigated theeffects of gait speed on lower extremity biomechanics when walking on an irregular (IS) and regular surface (RS). Twenty physically active males walked on a RS and IS at three different speeds (4 km/h, 5 km/h, 6 km/h). Lower extremity kinematics (300 Hz) and surface electromyography (3000 Hz) were recorded during the first 90 s of gait. Two-factor repeated measures ANOVA was used to determine surface and speed effects (p < 0.05). Gait speed influences walking biomechanics (kinematic and muscle activity parameters) the same irrespective of surface condition. As walking speed increased, sagittal shoe-surface angle, maximum ankle inversion, ankle abduction, knee and hip flexion increased during stance phase when walking on the IS and RS (p < 0.05). Increasing walking speed caused increased muscle activity of the tibialis anterior, peroneus longus, gastrocnemius medialis, vastus medialis and biceps femoris (p < 0.05) on the IS and RS during the gait cycle. Increased gait, kinematic and muscle activity variability was reported at lower walking speed on both the IS and RS. Further, irrespective of gait speed, walking on an IS triggers postural adjustments, higher muscle activity and increased gait variability compared to RS walking. Our findings suggest the benefits of training on the irregular surface may be further enhanced at slower gait speeds.
Collapse
Affiliation(s)
- Stephanie Blair
- Institute for Health and Sport (IHES), Victoria University, Footscray Park Campus, Melbourne, Victoria, Australia; School of Sport and Exercise Sciences, Liverpool John Moore University, Tom Reilly Building, Liverpool, United Kingdom; Li Ning Sports Science Research Center, Li Ning (China) Sports Goods Co., Ltd, Beijing, China.
| | - Mark J Lake
- School of Sport and Exercise Sciences, Liverpool John Moore University, Tom Reilly Building, Liverpool, United Kingdom
| | - Rui Ding
- Li Ning Sports Science Research Center, Li Ning (China) Sports Goods Co., Ltd, Beijing, China
| | - Thorsten Sterzing
- Li Ning Sports Science Research Center, Li Ning (China) Sports Goods Co., Ltd, Beijing, China
| |
Collapse
|
19
|
Schütte KH, Sackey S, Venter R, Vanwanseele B. Energy cost of running instability evaluated with wearable trunk accelerometry. J Appl Physiol (1985) 2017; 124:462-472. [PMID: 28751372 DOI: 10.1152/japplphysiol.00429.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Maintaining stability under dynamic conditions is an inherent challenge to bipedal running. This challenge may impose an energetic cost (Ec) thus hampering endurance running performance, yet the underlying mechanisms are not clear. Wireless triaxial trunk accelerometry is a simple tool that could be used to unobtrusively evaluate these mechanisms. Here, we test a cost of instability hypothesis by examining the contribution of trunk accelerometry-based measures (triaxial root mean square, step and stride regularity, and sample entropy) to interindividual variance in Ec (J/m) during treadmill running. Accelerometry and indirect calorimetry data were collected concurrently from 30 recreational runners (16 men; 14 women) running at their highest steady-state running speed (80.65 ± 5.99% V̇o2max). After reducing dimensionality with factor analysis, the effect of dynamic stability features on Ec was evaluated using hierarchical multiple regression analysis. Three accelerometry-based measures could explain an additional 10.4% of interindividual variance in Ec after controlling for body mass, attributed to anteroposterior stride regularity (5.2%), anteroposterior root mean square ratio (3.2%), and mediolateral sample entropy (2.0%). Our results lend support to a cost of instability hypothesis, with trunk acceleration waveform signals that are 1) more consistent between strides anteroposterioly, 2) larger in amplitude variability anteroposterioly, and 3) more complex mediolaterally and are energetically advantageous to endurance running performance. This study shows that wearable trunk accelerometry is a useful tool for understanding the Ec of running and that running stability is important for economy in recreational runners. NEW & NOTEWORTHY This study evaluates and more directly lends support to a cost of instability hypothesis between runners. Moreover, this hypothesis was tested using a minimalist setup including a single triaxial trunk mounted accelerometer, with potential transferability to biomechanical and performance analyses in typical outdoor settings.
Collapse
Affiliation(s)
- Kurt H Schütte
- Human Movement Biomechanics Research Group, Department of Kinesiology, KU Leuven, Leuven , Belgium.,Movement Laboratory, Department of Sport Science, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Saint Sackey
- Movement Laboratory, Department of Sport Science, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Rachel Venter
- Movement Laboratory, Department of Sport Science, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Benedicte Vanwanseele
- Human Movement Biomechanics Research Group, Department of Kinesiology, KU Leuven, Leuven , Belgium
| |
Collapse
|
20
|
Yamakawa KK, Shimojo H, Takagi H, Tsubakimoto S, Sengoku Y. Effect of increased kick frequency on propelling efficiency and muscular co-activation during underwater dolphin kick. Hum Mov Sci 2017; 54:276-286. [PMID: 28605694 DOI: 10.1016/j.humov.2017.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022]
Abstract
In this study, we investigated the effects of increased kick frequency on the propelling efficiency and the muscular co-activation during underwater dolphin kick. Participants included eight female collegiate swimmers. The participants performed seven 15-m underwater dolphin kick swimming trials at different kick frequencies, which is 85, 90, 95, 100, 105, 110, and 115% of their maximum effort. The Froude (propelling) efficiency of the dolphin kick was calculated from the kinematic analysis. The surface electromyography was measured from six muscles (rectus abdominis, erector spinae, rectus femoris, biceps femoris, tibialis anterior, and gastrocnemius). From the EMG data, the co-active phase during one cycle in the trunk, thigh, and leg was evaluated. Our results show that the Froude efficiency decreased at the supra-maximum kick frequency (e.g. 100%F: 0.72±0.03 vs. 115%F: 0.70±0.03, p<.05). The co-active phase in the trunk, thigh, and leg increased with increasing the kick frequency (e.g. 85%F vs. 115%F, p<0.05). Furthermore, it was observed that there was a negative relationship between the trunk co-active phase and the Froude efficiency (r=-0.527, p<0.05). Therefore, both the propelling efficiency and the muscular activation pattern became inefficient when the swimmer increased their kick frequency above their maximum effort.
Collapse
Affiliation(s)
- Keisuke Kobayashi Yamakawa
- Department of Sport Wellness Sciences, Japan Women's College of Physical Education, 8-19-1, Kitakarasuyama, Setagaya-ku, Tokyo, Japan.
| | - Hirofumi Shimojo
- Department of Health and Sports, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, Japan.
| | - Hideki Takagi
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki, Japan.
| | - Shozo Tsubakimoto
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki, Japan.
| | - Yasuo Sengoku
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
21
|
Walsh JA, Dawber JP, Lepers R, Brown M, Stapley PJ. Is Moderate Intensity Cycling Sufficient to Induce Cardiorespiratory and Biomechanical Modifications of Subsequent Running? J Strength Cond Res 2017; 31:1078-1086. [PMID: 27398921 DOI: 10.1519/jsc.0000000000001556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Walsh, JA, Dawber, JP, Lepers, R, Brown, M, and Stapley, PJ. Is moderate intensity cycling sufficient to induce cardiorespiratory and biomechanical modifications of subsequent running? J Strength Cond Res 31(4): 1078-1086, 2017-This study sought to determine whether prior moderate intensity cycling is sufficient to influence the cardiorespiratory and biomechanical responses during subsequent running. Cardiorespiratory and biomechanical variables measured after moderate intensity cycling were compared with control running at the same intensity. Eight highly trained, competitive triathletes completed 2 separate exercise tests; (a) a 10-minute control run (no prior cycling) and, (b) a 30-minute transition run (TR) (preceded by 20-minute of variable cadence cycling, i.e., run versus cycle-run). Respiratory, breathing frequency (fb), heart rate (HR), cost of running (Cr), rate constant, stride length, and stride frequency variables were recorded, normalized, and quantified at the mean response time (MRT), third minute, 10th minute (steady state), and overall for the control run (CR) and TR. Cost of running increased (p ≤ 0.05) at all respective times during the TR. The V[Combining Dot Above]E/V[Combining Dot Above]CO2 and respiratory exchange ratio (RER) were significantly (p < 0.01) elevated at the MRT and 10th minute of the TR. Furthermore, overall mean increases were recorded for Cr, V[Combining Dot Above]E, V[Combining Dot Above]E/V[Combining Dot Above]CO2, RER, fb (p < 0.01), and HR (p ≤ 0.05) during the TR. Rate constant values for oxygen uptake were significantly different between CR and TR (0.48 ± 0.04 vs. 0.89 ± 0.15; p < 0.01). Stride length decreased across all recorded points during the TR (p ≤ 0.05) and stride frequency increased at the MRT and 3 minutes (p < 0.01). The findings suggest that at moderate intensity, prior cycling influences the cardiorespiratory response during subsequent running. Furthermore, prior cycling seems to have a sustained effect on the Cr during subsequent running.
Collapse
Affiliation(s)
- Joel A Walsh
- 1Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia; 2School of Mathematics and Applied Statistics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, Australia; and 3University of Burgundy, INSERM-Laboratory of Cognition, Action and Sensory-motor Plasticity, Dijon, France
| | | | | | | | | |
Collapse
|
22
|
Moore IS. Is There an Economical Running Technique? A Review of Modifiable Biomechanical Factors Affecting Running Economy. Sports Med 2017; 46:793-807. [PMID: 26816209 PMCID: PMC4887549 DOI: 10.1007/s40279-016-0474-4] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Running economy (RE) has a strong relationship with running performance, and modifiable running biomechanics are a determining factor of RE. The purposes of this review were to (1) examine the intrinsic and extrinsic modifiable biomechanical factors affecting RE; (2) assess training-induced changes in RE and running biomechanics; (3) evaluate whether an economical running technique can be recommended and; (4) discuss potential areas for future research. Based on current evidence, the intrinsic factors that appeared beneficial for RE were using a preferred stride length range, which allows for stride length deviations up to 3 % shorter than preferred stride length; lower vertical oscillation; greater leg stiffness; low lower limb moment of inertia; less leg extension at toe-off; larger stride angles; alignment of the ground reaction force and leg axis during propulsion; maintaining arm swing; low thigh antagonist–agonist muscular coactivation; and low activation of lower limb muscles during propulsion. Extrinsic factors associated with a better RE were a firm, compliant shoe–surface interaction and being barefoot or wearing lightweight shoes. Several other modifiable biomechanical factors presented inconsistent relationships with RE. Running biomechanics during ground contact appeared to play an important role, specifically those during propulsion. Therefore, this phase has the strongest direct links with RE. Recurring methodological problems exist within the literature, such as cross-comparisons, assessing variables in isolation, and acute to short-term interventions. Therefore, recommending a general economical running technique should be approached with caution. Future work should focus on interdisciplinary longitudinal investigations combining RE, kinematics, kinetics, and neuromuscular and anatomical aspects, as well as applying a synergistic approach to understanding the role of kinetics.
Collapse
Affiliation(s)
- Isabel S Moore
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, CF23 6XD, Wales, UK.
| |
Collapse
|
23
|
Verheul J, Clansey AC, Lake MJ. Adjustments with running speed reveal neuromuscular adaptations during landing associated with high mileage running training. J Appl Physiol (1985) 2017; 122:653-665. [PMID: 27932678 DOI: 10.1152/japplphysiol.00801.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/14/2016] [Accepted: 12/06/2016] [Indexed: 11/22/2022] Open
Abstract
It remains to be determined whether running training influences the amplitude of lower limb muscle activations before and during the first half of stance and whether such changes are associated with joint stiffness regulation and usage of stored energy from tendons. Therefore, the aim of this study was to investigate neuromuscular and movement adaptations before and during landing in response to running training across a range of speeds. Two groups of high mileage (HM; >45 km/wk, n = 13) and low mileage (LM; <15 km/wk, n = 13) runners ran at four speeds (2.5-5.5 m/s) while lower limb mechanics and electromyography of the thigh muscles were collected. There were few differences in prelanding activation levels, but HM runners displayed lower activations of the rectus femoris, vastus medialis, and semitendinosus muscles postlanding, and these differences increased with running speed. HM runners also demonstrated higher initial knee stiffness during the impact phase compared with LM runners, which was associated with an earlier peak knee flexion velocity, and both were relatively unchanged by running speed. In contrast, LM runners had higher knee stiffness during the slightly later weight acceptance phase and the disparity was amplified with increases in speed. It was concluded that initial knee joint stiffness might predominantly be governed by tendon stiffness rather than muscular activations before landing. Estimated elastic work about the ankle was found to be higher in the HM runners, which might play a role in reducing weight acceptance phase muscle activation levels and improve muscle activation efficiency with running training.NEW & NOTEWORTHY Although neuromuscular factors play a key role during running, the influence of high mileage training on neuromuscular function has been poorly studied, especially in relation to running speed. This study is the first to demonstrate changes in neuromuscular conditioning with high mileage training, mainly characterized by lower thigh muscle activation after touch down, higher initial knee stiffness, and greater estimates of energy return, with adaptations being increasingly evident at faster running speeds.
Collapse
Affiliation(s)
- Jasper Verheul
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom and
| | - Adam C Clansey
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom and.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Mark J Lake
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom and
| |
Collapse
|
24
|
Arellano CJ, Caha D, Hennessey JE, Amiridis IG, Baudry S, Enoka RM. Fatigue-induced adjustment in antagonist coactivation by old adults during a steadiness task. J Appl Physiol (1985) 2016; 120:1039-46. [PMID: 26846553 DOI: 10.1152/japplphysiol.00908.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/22/2016] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine the adjustments in the level of coactivation during a steadiness task performed by young and old adults after the torque-generating capacity of the antagonist muscles was reduced by a fatiguing contraction. Torque steadiness (coefficient of variation) and electromyographic activity of the extensor and flexor carpi radialis muscles were measured as participants matched a wrist extensor target torque (10% maximum) before and after sustaining an isometric contraction (30% maximum) with wrist flexors to task failure. Time to failure was similar (P = 0.631) for young (417 ± 121 s) and old (452 ± 174 s) adults. The reduction in maximal voluntary contraction torque (%initial) for the wrist flexors after the fatiguing contraction was greater (P = 0.006) for young (32.5 ± 13.7%) than old (21.8 ± 6.6%) adults. Moreover, maximal voluntary contraction torque for the wrist extensors declined for old (-13.7 ± 12.7%; P = 0.030), but not young (-5.4 ± 13.8%; P = 0.167), adults. Torque steadiness during the matching task with the wrist extensors was similar before and after the fatiguing contraction for both groups, but the level of coactivation increased after the fatiguing contraction for old (P = 0.049) but not young (P = 0.137) adults and was twice the amplitude for old adults (P = 0.002). These data reveal that old adults are able to adjust the amount of antagonist muscle activity independent of the agonist muscle during steady submaximal contractions.
Collapse
Affiliation(s)
- Christopher J Arellano
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island; Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - David Caha
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Joseph E Hennessey
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Ioannis G Amiridis
- Department of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, Serres, Greece; and
| | - Stéphane Baudry
- Laboratory of Applied Biology, Neurosciences Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| |
Collapse
|
25
|
Tam N, Santos-Concejero J, Coetzee DR, Noakes TD, Tucker R. Muscle co-activation and its influence on running performance and risk of injury in elite Kenyan runners. J Sports Sci 2016; 35:175-181. [PMID: 26982259 DOI: 10.1080/02640414.2016.1159717] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The relationship between muscle co-activation and energy cost of transport and risk of injury (initial loading rate and joint stiffness) has not been jointly studied. Fourteen elite Kenyan male runners were tested at two speeds (12 and 20 km · h-1), where oxygen consumption, kinematic, kinetic and electromyography were recorded. Electromyography of seven lower limb muscles was recorded. Pre-activation and ground contact of agonist:antagonist co-activation was determined. All muscles displayed higher activity during pre-activation except rectus femoris (RF). Conversely, no differences were found during ground contact except for higher biceps femoris (BF) at 20 km · h-1. Knee stiffness was correlated to RF-BF co-activation during both pre-activation and ground contact at both running speeds. However, energy cost of transport was only positively correlated to the above-mentioned muscle pairs at 20 km · h-1 (r = 0620, P = 0.032; r = 0.682, P = 0.015, respectively). These findings emphasise the influence of neuromuscular control and performance and its support to musculoskeletal system to optimise function and modulate risk of injury. Further, neuromuscular activity during terminal swing is also important and necessary to execute and maintain performance.
Collapse
Affiliation(s)
- Nicholas Tam
- a Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Science , University of Cape Town , Cape Town , South Africa
| | - Jordan Santos-Concejero
- a Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Science , University of Cape Town , Cape Town , South Africa.,b Department of Physical Education and Sport , University of the Basque Country UPV/EHU , Vitoria-Gasteiz , Spain
| | - Devon R Coetzee
- a Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Science , University of Cape Town , Cape Town , South Africa
| | - Timothy D Noakes
- a Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Science , University of Cape Town , Cape Town , South Africa
| | - Ross Tucker
- a Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Science , University of Cape Town , Cape Town , South Africa.,c School of Medicine , University of the Free State , Bloemfontein , South Africa
| |
Collapse
|
26
|
Matsuda Y, Hirano M, Yamada Y, Ikuta Y, Nomura T, Tanaka H, Oda S. Lower muscle co-contraction in flutter kicking for competitive swimmers. Hum Mov Sci 2015; 45:40-52. [PMID: 26590483 DOI: 10.1016/j.humov.2015.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 10/22/2015] [Accepted: 11/02/2015] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to examine the difference in muscle activation pattern and co-contraction of the rectus and biceps femoris in flutter-kick swimming between competitive and recreational swimmers, to better understand the mechanism of repetitive kicking movements during swimming. Ten competitive and 10 recreational swimmers swam using flutter kicks at three different velocities (100%, 90%, and 80% of their maximal velocity) in a swimming flume. Surface electromyographic signals (EMG) were obtained from the rectus (RF) and biceps femoris (BF), and lower limb kinematic data were obtained at the same time. The beginning and ending of one kick cycle was defined as when the right lateral malleolus reached its highest position in the vertical axis. The offset timing of muscle activation of RF in the recreational swimmers was significantly later at all velocities than in the competitive swimmers (47-48% and 26-33% of kick time of one cycle for recreational and competitive swimmers, respectively), although the kinematic data and other activation timing of RF and BF did not differ between groups. A higher integrated EMG of RF during hip extension and knee extension induced a higher level of muscle co-contraction between RF and BF in the recreational swimmers. These results suggest that long-term competitive swimming training can induce an effective muscle activation pattern in the upper legs.
Collapse
Affiliation(s)
- Yuji Matsuda
- Department of Sports Sciences, Japan Institute of Sports Sciences, Tokyo, Japan.
| | - Masami Hirano
- Department of Sports and Health Sciences, Aichi Shukutoku University, Aichi, Japan
| | - Yosuke Yamada
- Department of Nutritional Science, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Yasushi Ikuta
- Graduate School of Education, Osaka Kyoiku University, Osaka, Japan
| | - Teruo Nomura
- Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Hiroaki Tanaka
- Fukuoka University Institute for Physical Activity, Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan; Central Research Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
| | - Shingo Oda
- Faculty of Health and Well-being, Kansai University, Osaka, Japan
| |
Collapse
|
27
|
Walsh JA, Stamenkovic A, Lepers R, Peoples G, Stapley PJ. Neuromuscular and physiological variables evolve independently when running immediately after cycling. J Electromyogr Kinesiol 2015; 25:887-93. [PMID: 26542485 DOI: 10.1016/j.jelekin.2015.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/05/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022] Open
Abstract
During the early period of running after cycling, EMG patterns of the leg are modified in only some highly trained triathletes. The majority of studies have analysed muscle EMG patterns at arbitrary, predetermined time points. The purpose of this study was to examine changes to EMG patterns of the lower limb at physiologically determined times during the cycle-run transition period to better investigate neuromuscular adaptations. Six highly trained triathletes completed a 10 m in isolated run (IR), 30 min of rest, then a 20 min cycling procedure, before a 10 min transition run (C-R). Surface EMG activity of eight lower limb muscles was recorded, normalised and quantified at four time points. Oxygen uptake and heart rate values were also collected. Across all muscles, mean (± SD) EMG patterns, demonstrated significant levels of reproducibility for each participant at all four time points (α < 0.05; r = 0.52-0.97). Mean EMG patterns during C-R correlated highly with the IR patterns (α < 0.05). These results show that EMG patterns during subsequent running are not significantly affected by prior cycling. However, variability of muscle recruitment activity does appear to increase during C-R transition when compared to IR.
Collapse
Affiliation(s)
- Joel A Walsh
- Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia.
| | - Alexander Stamenkovic
- Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Romuald Lepers
- INSERM U1093 Cognition, Action, et Plasticité Sensorimotrice, Université de Bourgogne, UFR STAPS, BP 27877, 21078 Dijon Cedex, France
| | - Gregory Peoples
- Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Paul J Stapley
- Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| |
Collapse
|
28
|
Zdziarski LA, Chen C, Horodyski M, Vincent KR, Vincent HK. Kinematic, Cardiopulmonary, and Metabolic Responses of Overweight Runners While Running at Self-Selected and Standardized Speeds. PM R 2015; 8:152-60. [PMID: 26146194 DOI: 10.1016/j.pmrj.2015.06.441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the differences in kinematic, cardiopulmonary, and metabolic responses between overweight and healthy weight runners at a self-selected and standard running speed. DESIGN Comparative descriptive study. SETTING Tertiary care institution, university-affiliated research laboratory. PARTICIPANTS Overweight runners (n = 21) were matched with runners of healthy weight (n = 42). METHODS Participants ran at self-selected and standardized speeds (13.6 km/h). Sagittal plane joint kinematics were captured simultaneously with cardiopulmonary and metabolic measures using a motion capture system and portable gas analyzer, respectively. MAIN OUTCOME MEASUREMENTS Spatiotemporal parameters (cadence, step width and length, center of gravity displacement, stance time) joint kinematics, oxygen cost, heart rate, ventilation and energy expenditure. RESULTS At the self-selected speed, overweight individuals ran slower (8.5 ± 1.3 versus 10.0 ± 1.6 km/h) and had slower cadence (163 versus 169 steps/min; P < .05). The sagittal plane range of motion (ROM) for flexion-extension at the ankle, knee, hip, and anterior pelvic tilt were all less in overweight runners compared to healthy weight runners (all P < .05). At self-selected speed and 13.6 km/h, energy expenditure was higher in the overweight runners compared to their healthy weight counterparts (P < .05). At 13.6 km/h, only the frontal hip and pelvis ROM were higher in the overweight versus the healthy weight runners (P < .05), and energy expenditure, net energy cost, and minute ventilation were higher in the overweight runners compared to the healthy weight runners (P < .05). CONCLUSION At self-selected running speeds, the overweight runners demonstrated gait strategies (less joint ROM, less vertical displacement, and shorter step lengths) that resulted in cardiopulmonary and energetic responses similar to those of healthy weight individuals.
Collapse
Affiliation(s)
- Laura Ann Zdziarski
- Department of Orthopaedics and Rehabilitation, Divisions of Research and Physical Medicine and Rehabilitation, Interdisciplinary Center for Musculoskeletal Training and Research, University of Florida, Gainesville, FL(∗)
| | - Cong Chen
- Department of Orthopaedics and Rehabilitation, Divisions of Research and Physical Medicine and Rehabilitation, Interdisciplinary Center for Musculoskeletal Training and Research, University of Florida, Gainesville, FL(†)
| | - Marybeth Horodyski
- Department of Orthopaedics and Rehabilitation, Divisions of Research and Physical Medicine and Rehabilitation, Interdisciplinary Center for Musculoskeletal Training and Research, University of Florida, Gainesville, FL(‡)
| | - Kevin R Vincent
- Department of Orthopaedics and Rehabilitation, Divisions of Research and Physical Medicine and Rehabilitation, Interdisciplinary Center for Musculoskeletal Training and Research, University of Florida, Gainesville, FL(§)
| | - Heather K Vincent
- Division of Research, UF Orthopaedics and Sports Medicine Institute, University of Florida, PO Box 112727, Gainesville, FL 32611(‖).
| |
Collapse
|
29
|
Moore IS, Jones AM, Dixon SJ. Reduced oxygen cost of running is related to alignment of the resultant GRF and leg axis vector: A pilot study. Scand J Med Sci Sports 2015; 26:809-15. [PMID: 26148145 DOI: 10.1111/sms.12514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 11/27/2022]
Abstract
This pilot study investigated whether a 10-week running program (10wkRP), which reduced the oxygen cost of running, affected resultant ground reaction force (GRF), leg axis alignment, joint moment characteristics, and gear ratios. Ten novice, female runners completed a 10wkRP. Running kinematics and kinetics, in addition to oxygen consumption ( V ˙ O 2 ) during steady-state running, were recorded pre- and post-10wkRP. V ˙ O 2 decreased (8%) from pre-10wkRP to post-10wkRP. There was a better alignment of the resultant GRF and leg axis at peak propulsion post-10wkRP compared with pre-10wkRP (10.8 ± 4.9 vs 1.6 ± 1.2°), as the resultant GRF vector was applied 7 ± 0.6° (P = 0.008) more horizontally. There were shorter external ankle moment arms (24%) and smaller knee extensor moments (23%) at peak braking post-10wkRP. The change in V ˙ O 2 was associated with the change in alignment of the resultant GRF and leg axis (rs = 0.88, P = 0.003). As runners became more economical, they exhibited a more aligned resultant GRF vector and leg axis at peak propulsion. This appears to be a self-optimization strategy that may improve performance. Additionally, changes to external ankle moment arms indicated beneficial low gear ratios were achieved at the time of peak braking force.
Collapse
Affiliation(s)
- I S Moore
- Sports injury Research Group, Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, UK
| | - A M Jones
- Bioenergetics and Human Performance Research Group, Sport and Health Sciences, University of Exeter, Exeter, UK
| | - S J Dixon
- Bioenergetics and Human Performance Research Group, Sport and Health Sciences, University of Exeter, Exeter, UK
| |
Collapse
|