1
|
Ferreira CP, Silvino VO, Trevisano RG, de Moura RC, Almeida SS, Pereira Dos Santos MA. Influence of genetic polymorphism on sports talent performance versus non-athletes: a systematic review and meta-analysis. BMC Sports Sci Med Rehabil 2024; 16:223. [PMID: 39482721 PMCID: PMC11529235 DOI: 10.1186/s13102-024-01001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Talented athletes exhibit remarkable skills and performance in their respective sports, setting them apart from their peers. It has been observed that genetic polymorphisms can influence variations in sports performance, leading to numerous studies aimed at validating genetic markers for identifying sports talents. This study aims to evaluate the potential contribution of genetic factors associated with athletic performance predisposition in identifying sports talents. METHODS A systematic review was conducted following the PRISMA framework, utilizing the PICO methodology to develop the research question. The search was limited to case-control studies published between 2003 and June 2024, and databases such as Medline, LILACS, WPRIM, IBECS, CUMED, VETINDEX, Web of Science, Science Direct, Scopus and Scielo were utilized. The STREGA tool was employed to assess the quality of the selected studies. RESULTS A total of 1,132 articles were initially identified, of which 119 studies were included in the review. Within these studies, 50 genes and 94 polymorphisms were identified, showing associations with sports talent characteristics such as endurance, strength, power, and speed. The most frequently mentioned genes were ACTN3 (27.0%) and ACE (11.3%). CONCLUSION The ACE I/D and ACTN3 R577X polymorphisms are frequently discussed in the literature. Although athletic performance may be influenced by different genetic polymorphisms, limitations exist in associating them with athletic performance across certain genotypes and phenotypes. Future research is suggested to investigate the influence of polymorphisms in elite athletes from diverse backgrounds and sports disciplines.
Collapse
Affiliation(s)
- Cirley Pinheiro Ferreira
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health, Federal University of Piauí, 685 Odilon Araújo Avenue, Piçarra, Teresina, PI, 64017-280, Brazil.
- Northeast Biotechnology Network (RENORBIO) postgraduate program, Teresina, Brazil.
| | - Valmir Oliveira Silvino
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health, Federal University of Piauí, 685 Odilon Araújo Avenue, Piçarra, Teresina, PI, 64017-280, Brazil
- Northeast Biotechnology Network (RENORBIO) postgraduate program, Teresina, Brazil
| | - Rebeca Gonçalves Trevisano
- Department of Obstetrician, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Rayane Carvalho de Moura
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health, Federal University of Piauí, 685 Odilon Araújo Avenue, Piçarra, Teresina, PI, 64017-280, Brazil
| | - Sandro Soares Almeida
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Anhanguera College of Guarulhos, Guarulhos, SP, Brazil
| | - Marcos Antonio Pereira Dos Santos
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health, Federal University of Piauí, 685 Odilon Araújo Avenue, Piçarra, Teresina, PI, 64017-280, Brazil
- Northeast Biotechnology Network (RENORBIO) postgraduate program, Teresina, Brazil
| |
Collapse
|
2
|
Ben-Zaken S, Meckel Y, Remmel L, Nemet D, Jürimäe J, Eliakim A. The prevalence of IGF-I axis genetic polymorphisms among decathlon athletes. Growth Horm IGF Res 2022; 64:101468. [PMID: 35605565 DOI: 10.1016/j.ghir.2022.101468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Decathlon is a combined track and field competition, consisting of ten, mainly anaerobic events. Insulin-like growth factor-I (IGF1) axis plays a pivotal role in athletes' structural and functional muscle adaptation to exercise training, and in their competitive performance. Based on the great demand for speed physiological characteristics among decathlon athletes, the aim of this study was to assess the prevalence of IGF genetic polymorphisms among decathletes, to present an optimal genetic profile for enhancing performance. METHODS The participants included 151 male athletes and 75 male non-athletic controls from Israel and Estonia. Athletes were divided into four groups, according to the field of expertise: (a) 40 sprinters and long jumpers; (b) 40 middle distance runners; (c) 44 Weightlifters; and (d) 27 decathletes. Genomic DNA was extracted from the participants' buccal epithelial cells using standard protocol and then analyzed for IGF1 axis related genetic polymorphism using the allelic discrimination assay. RESULTS A significantly higher prevalence of the IGF1 rs35767 TT genotype was found among decathletes compared to the other athletes, as well as a lower prevalence of the IGF1 rs7136446 GG genotype, a higher prevalence of the IGF1R rs1464430 AA genotype, and a higher prevalence of the IGF2 rs680 GG genotype. Moreover, among the decathletes, carriers of the IGF1 rs7136446 GG genotype achieved higher decathlon scores compared to A-allele carriers. CONCLUSIONS The findings of this study suggest a potential beneficial role for some IGF-axis polymorphisms (mainly the IGF1 1245 TT and the IGF2 GG) among decathletes, both of which are associated with improved speed performance.
Collapse
Affiliation(s)
- Sigal Ben-Zaken
- Genetics and Molecular Biology Laboratory, The Academic College for Physical Education and Sports Sciences at the Wingate Institute, Netanya 42902, Israel.
| | - Yoav Meckel
- Genetics and Molecular Biology Laboratory, The Academic College for Physical Education and Sports Sciences at the Wingate Institute, Netanya 42902, Israel
| | | | - Dan Nemet
- Child Health and Sports Center, Pediatric Department, Meir Medical Center, Kfar-Saba, Israel
| | | | - Alon Eliakim
- Genetics and Molecular Biology Laboratory, The Academic College for Physical Education and Sports Sciences at the Wingate Institute, Netanya 42902, Israel; Child Health and Sports Center, Pediatric Department, Meir Medical Center, Kfar-Saba, Israel
| |
Collapse
|
3
|
Appel M, Zentgraf K, Krüger K, Alack K. Effects of Genetic Variation on Endurance Performance, Muscle Strength, and Injury Susceptibility in Sports: A Systematic Review. Front Physiol 2021; 12:694411. [PMID: 34366884 PMCID: PMC8334364 DOI: 10.3389/fphys.2021.694411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022] Open
Abstract
The aim of this systematic review was to assess the effects of genetic variations and polymorphisms on endurance performance, muscle strength and injury susceptibility in competitive sports. The electronic databases PubMed and Web of Science were searched for eligible studies. The study quality was assessed using the RoBANS tool. Studies were included if they met the following criteria: (1) human study in English or German; (2) published in the period 2015–2019; (3) investigation of an association between genetic variants and endurance performance and/or muscle strength and/or endurance/strength training status as well as ligament, tendon, or muscle injuries; (4) participants aged 18–60 years and national or international competition participation; (5) comparison with a control group. Nineteen studies and one replication study were identified. Results revealed that the IGF-1R 275124 A>C rs1464430 polymorphism was overrepresented in endurance trained athletes. Further, genotypes of PPARGC1A polymorphism correlated with performance in endurance exercise capacity tests in athletes. Moreover, the RR genotype of ACTN3 R577X polymorphism, the C allele of IGF-1R polymorphism and the gene variant FTO T>A rs9939609 and/or their AA genotype were linked to muscle strength. In addition, gene variants of MCT1 (T1470A rs1049434) and ACVR1B (rs2854464) were also positively associated with strength athletes. Among others, the gene variants of the MMP group (rs591058 and rs679620) as well as the polymorphism COL5A1 rs13946 were associated with susceptibility to injuries of competitive athletes. Based on the identified gene variants, individualized training programs for injury prevention and optimization of athletic performance could be created for competitive athletes using gene profiling techniques.
Collapse
Affiliation(s)
- Milena Appel
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Karen Zentgraf
- Department of Exercise and Movement Science, Institute of Sports Sciences, Goethe-University Frankfurt, Frankfurt, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Katharina Alack
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
4
|
Silva HH, Silva MRG, Cerqueira F, Tavares V, Medeiros R. Genomic profile in association with sport-type, sex, ethnicity, psychological traits and sport injuries of elite athletes: review and future perspectives. J Sports Med Phys Fitness 2021; 62:418-434. [PMID: 33666074 DOI: 10.23736/s0022-4707.21.12020-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the last few years, some inherited determinants have been associated with elite athletic performance, but its polygenic trait character has limited the correct definition of elite athlete's genomic profile. This qualitative descriptive study aims to summarise the current understanding about genetic and epigenetic factors in elite athletes, as well as their genomic profile in association with sport-type, sex, ethnicity, psychological traits and sport injuries. A narrative review of the literature across a broad cross-section of the elite athletes' genomic profile was undertaken. Elite performance relies on rare gene variants within a great interface between molecular, cellular and behavioural sport-related phenotypes and the environment, which is still poorly understood. ACTN3 rs1815739 and ACE I/D polymorphisms appear to be associated to specific sprint phenotypes and influence the athletic status, i.e., the rs1815739 variant is more influential to 200-m performance and the ACE ID polymorphism is more involved in the longer, 400-m sprint performance. Generally, athletes show endurance-based sports characteristics or power-based sports characteristics, but some studies have reported some genes associations to both sports-based characteristics. Furthermore, genetic studies with larger cohorts of single-sport athletes might be preferable than studies combining athletes of different sports, given the existence of distinct athlete profiles and sport demands. Athletic performance may be influenced by the serotonergic pathway and the potential injury risk (namely stress fracture) might be associated to a genetic predisposition associated to the mechanical loading from the intense physical exercise. The study of gene variants associated to sex and ethnicity-related to athletic performance needs further investigation. The combination of genome-wide association studies addressing the genetic architecture of athletes and the subsequent replication and validation studies might for additional genetic data is mandatory.
Collapse
Affiliation(s)
- Hugo-Henrique Silva
- ICBAS-Institute of Biomedical Sciences of the University of Porto, Porto, Portugal - .,União Desportiva Oliveirense, Senior Rink-Hockey Team, Oliveira de Azeméis, Portugal - .,Portuguese Ministry of Education, Lisbon, Portugal -
| | - Maria-Raquel G Silva
- Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal.,CIAS-Research Centre for Anthropology and Health - Human Biology, Health and Society, University of Coimbra, Coimbra, Portugal.,Comprehensive Health Research Centre-Group of Sleep, Chronobiology and Sleep Disorders-Nova Medical School, University of Lisbon, Lisbon, Portugal.,FP-ENAS Research Unit, UFP Energy, Environment and Health Research Unit, CEBIMED, Biomedical Research Centre, Fernando Pessoa University, Porto, Portugal
| | - Fátima Cerqueira
- Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal.,FP-ENAS Research Unit, UFP Energy, Environment and Health Research Unit, CEBIMED, Biomedical Research Centre, Fernando Pessoa University, Porto, Portugal.,Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Valéria Tavares
- ICBAS-Institute of Biomedical Sciences of the University of Porto, Porto, Portugal.,Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,FMUP- Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Medeiros
- FP-ENAS Research Unit, UFP Energy, Environment and Health Research Unit, CEBIMED, Biomedical Research Centre, Fernando Pessoa University, Porto, Portugal.,Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto, Porto, Portugal.,LPCC, Research Department - Portuguese League Against Cancer (LPPC - NRN), Porto, Portugal.,FMUP- Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
5
|
Ben-Zaken S, Meckel Y, Nemet D, Kassem E, Eliakim A. The combined frequencies of the IL-6 G-174C and IGFBP3 A-202C polymorphisms among swimmers and runners. Growth Horm IGF Res 2020; 51:17-21. [PMID: 31978779 DOI: 10.1016/j.ghir.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/30/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
Abstract
UNLABELLED Previous studies have demonstrated that compared to runners, swimmers carry a higher prevalence of the IL-6 -174C polymorphism and lower single nucleotide polymorphism frequencies of the IGF system. PURPOSE The aim of the present study was to assess the combined frequency of the IL-6 -174G/C and IGFBP3 -202A/C polymorphisms among track and field athletes and swimmers. METHODS Track and field athletes were divided into long-distance runners (major event 5000 m-marathon, n = 63) and power athletes (major event 100-200 m sprints and long jump, n = 67). Swimmers were divided into long-distance swimmers (major event: 400-1500 m, n = 50), and short-distance swimmers (major event: 50-100 m, n = 43). All participants had achieved results that ranked them among the top all-time Israeli athletes in their event, and competed at national and/or international level on a regular basis. RESULTS Carrying both IL-6C and IGFBP3C mutations was significantly greater among long-distance swimmers (LDS - 44%) compared to long distance runners (LDR - 21%, p < .01), and among short distance swimmers (SDS - 49%) compared to sprinters and jumpers (S/J - 28%, p < .05). Among runners, the prevalence of those not carrying either of the two mutations was significantly higher among LDR (25%) compared to S/J (10%, p < .03). CONCLUSION The prevalence of carrying both IL-6C and IGFBP3C mutations was significantly higher among the swimmers compared to runners. It is possible that carrying the IGFBP3C polymorphism is required to compensate for the potential genetically non-beneficial effects of a higher IL-6C genotype and an attenuated IGF system among the swimmers.
Collapse
Affiliation(s)
- Sigal Ben-Zaken
- The Academic College at the Wingate, Genetics and Molecular Biology Laboratory, Wingate Institute, Netanya 42902, Israel.
| | - Yoav Meckel
- The Academic College at the Wingate, Genetics and Molecular Biology Laboratory, Wingate Institute, Netanya 42902, Israel
| | - Dan Nemet
- Meir Medical Center, Child Health and Sports Center, Pediatric Department, Kfar Saba, Sackler School of Medicine, Tel-Aviv University, Israel
| | - Eias Kassem
- Hillel-Yaffe Medical Center, Pediatric Department, Hadera, Israel
| | - Alon Eliakim
- Hillel-Yaffe Medical Center, Pediatric Department, Hadera, Israel
| |
Collapse
|
6
|
Abstract
Athletic performance is a multifactorial phenotype influenced by environmental factors as well as multiple genetic variants. Different genetic elements have a great influence over components of athletic performance such as endurance, strength, power, flexibility, neuromuscular coordination, psychological traits and other features important in sport. The current literature review revealed that to date more than 69 genetic markers have been associated with power athlete status. For the purpose of the present review we have assigned all genetic markers described with reference to power athletes status to seven main groups: 1) markers associated with skeletal muscle structure and function, 2) markers involved in the inflammatory and repair reactions in skeletal muscle during and after exercise, 3) markers involved in blood pressure control, 4) markers involved in modulation of oxygen uptake, 5) markers that are regulators of energy metabolism and cellular homeostasis, 6) markers encoding factors that control gene expression by rearrangement of chromatin fibers and mRNA stability, and 7) markers modulating cellular signaling pathways. All data presented in the current review provide evidence to support the notion that human physical performance may be influenced by genetic profiles, especially in power sports. The current studies still represent only the first steps towards a better understanding of the genetic factors that influence power-related traits, so further analyses are necessary before implementation of research findings into practice.
Collapse
|
7
|
Abstract
Understanding the genetic architecture of athletic performance is an important step in the development of methods for talent identification in sport. Research concerned with molecular predictors has highlighted a number of potentially important DNA polymorphisms contributing to predisposition to success in certain types of sport. This review summarizes the evidence and mechanistic insights on the associations between DNA polymorphisms and athletic performance. A literature search (period: 1997-2014) revealed that at least 120 genetic markers are linked to elite athlete status (77 endurance-related genetic markers and 43 power/strength-related genetic markers). Notably, 11 (9%) of these genetic markers (endurance markers: ACE I, ACTN3 577X, PPARA rs4253778 G, PPARGC1A Gly482; power/strength markers: ACE D, ACTN3 Arg577, AMPD1 Gln12, HIF1A 582Ser, MTHFR rs1801131 C, NOS3 rs2070744 T, PPARG 12Ala) have shown positive associations with athlete status in three or more studies, and six markers (CREM rs1531550 A, DMD rs939787 T, GALNT13 rs10196189 G, NFIA-AS1 rs1572312 C, RBFOX1 rs7191721 G, TSHR rs7144481 C) were identified after performing genome-wide association studies (GWAS) of African-American, Jamaican, Japanese, and Russian athletes. On the other hand, the significance of 29 (24%) markers was not replicated in at least one study. Future research including multicenter GWAS, whole-genome sequencing, epigenetic, transcriptomic, proteomic, and metabolomic profiling and performing meta-analyses in large cohorts of athletes is needed before these findings can be extended to practice in sport.
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Sport Technology Research Center, Volga Region State Academy of Physical Culture, Sport and Tourism, Kazan, Russia; Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.
| | - Olga N Fedotovskaya
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|