1
|
Rodríguez-Rivera NS, Barrera-Oviedo D. Exploring the Pathophysiology of ATP-Dependent Potassium Channels in Insulin Resistance. Int J Mol Sci 2024; 25:4079. [PMID: 38612888 PMCID: PMC11012456 DOI: 10.3390/ijms25074079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Ionic channels are present in eucaryotic plasma and intracellular membranes. They coordinate and control several functions. Potassium channels belong to the most diverse family of ionic channels that includes ATP-dependent potassium (KATP) channels in the potassium rectifier channel subfamily. These channels were initially described in heart muscle and then in other tissues such as pancreatic, skeletal muscle, brain, and vascular and non-vascular smooth muscle tissues. In pancreatic beta cells, KATP channels are primarily responsible for maintaining the membrane potential and for depolarization-mediated insulin release, and their decreased density and activity may be related to insulin resistance. KATP channels' relationship with insulin resistance is beginning to be explored in extra-pancreatic beta tissues like the skeletal muscle, where KATP channels are involved in insulin-dependent glucose recapture and their activation may lead to insulin resistance. In adipose tissues, KATP channels containing Kir6.2 protein subunits could be related to the increase in free fatty acids and insulin resistance; therefore, pathological processes that promote prolonged adipocyte KATP channel inhibition might lead to obesity due to insulin resistance. In the central nervous system, KATP channel activation can regulate peripheric glycemia and lead to brain insulin resistance, an early peripheral alteration that can lead to the development of pathologies such as obesity and Type 2 Diabetes Mellitus (T2DM). In this review, we aim to discuss the characteristics of KATP channels, their relationship with clinical disorders, and their mechanisms and potential associations with peripheral and central insulin resistance.
Collapse
Affiliation(s)
- Nidia Samara Rodríguez-Rivera
- Laboratorio de Farmacología y Bioquímica Clínica, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | | |
Collapse
|
2
|
Liu X, Gaihre B, Park S, Li L, Dashtdar B, Astudillo Potes MD, Terzic A, Elder BD, Lu L. 3D-printed scaffolds with 2D hetero-nanostructures and immunomodulatory cytokines provide pro-healing microenvironment for enhanced bone regeneration. Bioact Mater 2023; 27:216-230. [PMID: 37122896 PMCID: PMC10130629 DOI: 10.1016/j.bioactmat.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Three-dimensional (3D) printing technology is driving forward the progresses of various engineering fields, including tissue engineering. However, the pristine 3D-printed scaffolds usually lack robust functions in stimulating desired activity for varied regeneration applications. In this study, we combined the two-dimensional (2D) hetero-nanostructures and immuno-regulative interleukin-4 (IL-4) cytokines for the functionalization of 3D-printed scaffolds to achieve a pro-healing immuno-microenvironment for optimized bone injury repair. The 2D hetero-nanostructure consists of graphene oxide (GO) layers, for improved cell adhesion, and black phosphorous (BP) nanosheets, for the continuous release of phosphate ions to stimulate cell growth and osteogenesis. In addition, the 2D hetero-nanolayers facilitated the adsorption of large content of immuno-regulative IL-4 cytokines, which modulated the polarization of macrophages into M2 phenotype. After in vivo implantation in rat, the immuno-functioned 3D-scaffolds achieved in vivo osteo-immunomodulation by building a pro-healing immunological microenvironment for better angiogenesis and osteogenesis in the defect area and thus facilitated bone regeneration. These results demonstrated that the immuno-functionalization of 3D-scaffolds with 2D hetero-nanostructures with secondary loading of immuno-regulative cytokines is an encouraging strategy for improving bone regeneration.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sungjo Park
- Department of Cardiovascular Medicine and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Linli Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Babak Dashtdar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maria D. Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Medicine and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin D. Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Corresponding author. Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
3
|
Liu X, George MN, Park S, Miller Ii AL, Gaihre B, Li L, Waletzki BE, Terzic A, Yaszemski MJ, Lu L. 3D-printed scaffolds with carbon nanotubes for bone tissue engineering: Fast and homogeneous one-step functionalization. Acta Biomater 2020; 111:129-140. [PMID: 32428680 DOI: 10.1016/j.actbio.2020.04.047] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/29/2020] [Accepted: 04/25/2020] [Indexed: 02/03/2023]
Abstract
Three-dimensional (3D) printing is a promising technology for tissue engineering. However, 3D-printing methods are limited in their ability to produce desired microscale features or electrochemical properties in support of robust cell adhesion, proliferation, and differentiation. This study addresses this deficiency by proposing an integrated, one-step, method to increase the cytocompatibility of 3D-printed scaffolds through functionalization leveraging conductive carbon nanotubes (CNTs). To this end, CNTs were first sonicated with water-soluble single-stranded deoxyribonucleic acid (ssDNA) to generate a negatively charged ssDNA@CNT nano-complex. Concomitantly, 3D-printed poly(propylene fumarate) (PPF) scaffolds were ammonolyzed to introduce free amine groups, which can take on a positive surface charge in water. The ssDNA@CNT nano-complex was then applied to 3D-printed scaffolds through a simple one-step coating utilizing electric-static force. This fast and facile functionalization step resulted in a homogenous and non-toxic coating of CNTs to the surface, which significantly improved the adhesion, proliferation, and differentiation of pre-osteoblast cells. In addition, the CNT based conductive coating layer enabled modulation of cell behavior through electrical stimuli (ES) leading to cellular proliferation and osteogenic gene marker expression, including alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN). Collectively, these data provide the foundation for a one-step functionalization method for simple, fast, and effective functionalization of 3D printed scaffolds that support enhanced cell adhesion, proliferation, and differentiation, especially when employed in conjunction with ES. STATEMENT OF SIGNIFICANCE: Three-dimensional (3D) printing is a promising technology for tissue engineering. However, 3D-printing methods have limited ability to produce desired features or electrochemical properties in support of robust cell behavior. To address this deficiency, the current study proposed an integrated, one-step method to increase the cytocompatibility of 3D-printed scaffolds through functionalization leveraging conductive carbon nanotubes (CNTs). This fast and facile functionalization resulted in a homogenous and non-toxic coating of CNTs to the surface, which significantly improved the adhesion, proliferation, and differentiation of cells on the 3D-printed scaffolds.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew N George
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Sungjo Park
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - A Lee Miller Ii
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Linli Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian E Waletzki
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
4
|
Liu X, Miller AL, Park S, George MN, Waletzki BE, Xu H, Terzic A, Lu L. Two-Dimensional Black Phosphorus and Graphene Oxide Nanosheets Synergistically Enhance Cell Proliferation and Osteogenesis on 3D Printed Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23558-23572. [PMID: 31199116 PMCID: PMC8942345 DOI: 10.1021/acsami.9b04121] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Two-dimensional (2D) materials have emerged as a new promising research topic for tissue engineering because of their ability to alter the surface properties of tissue scaffolds and thus improve their biocompatibility and cell affinity. Multiple 2D materials, such as graphene and graphene oxide (GO), have been widely reported to enhance cell adhesion and proliferation. Recently, a newly emerged black phosphorus (BP) 2D material has attracted attention in biomedical applications because of its unique mechanical and electrochemical characteristics. In this study, we investigated the synergistic effect of these two types of 2D materials on cell osteogenesis for bone tissue engineering. BP was first wrapped in negatively charged GO nanosheets, which were then adsorbed together onto positively charged poly(propylene fumarate) three-dimensional (3D) scaffolds. The increased surface area provided by GO nanosheets would enhance cell attachment at the initial stage. In addition, slow oxidation of BP nanosheets wrapped within GO layers would generate a continuous release of phosphate, an important osteoblast differentiation facilitator designed to stimulate cell osteogenesis toward the new bone formation. Through the use of 3D confocal imaging, unique interactions between cells and BP nanosheets were observed, including a stretched cell shape and the development of filaments around the BP nanosheets, along with increased cell proliferation when compared with scaffolds incorporating only one of the 2D materials. Furthermore, the biomineralization of 3D scaffolds, as well as cellular osteogenic markers, was all measured and improved on scaffolds with both BP and GO nanosheets. All these results indicate that the incorporation of 2D BP and GO materials could effectively and synergistically stimulate cell proliferation and osteogenesis on 3D tissue scaffolds.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Sungjo Park
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Matthew N. George
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian E. Waletzki
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Haocheng Xu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Corresponding Author: . Tel.: 507-284-2267. Fax: 507-284-5075
| |
Collapse
|
5
|
Li J, Liu X, Park S, Miller AL, Terzic A, Lu L. Strontium-substituted hydroxyapatite stimulates osteogenesis on poly(propylene fumarate) nanocomposite scaffolds. J Biomed Mater Res A 2019; 107:631-642. [PMID: 30422387 PMCID: PMC7224963 DOI: 10.1002/jbm.a.36579] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/09/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
Incorporation of hydroxyapatite (HA) into polymer networks is a promising strategy to enhance the mechanical properties and osteoinductivity of the composite scaffolds for bone tissue engineering. In this study, we designed a group of nanocomposite scaffolds based on cross-linkable poly(propylene fumarate) (PPF) and 30 wt % strontium-hydroxyapatite (Sr-HA) nanoparticles. Four different Sr contents [Sr:(Sr + Ca), molar ratio] in the Sr-HA particles were studied: 0% (HA), 5% (Sr5-HA), 10% (Sr10-HA), and 20% (Sr20-HA). Two-dimensional (2D) disks were prepared using a thermal crosslinking method. The structure and surface morphology of different Sr-HA and PPF/Sr-HA composites were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). To detect cellular responses in vitro, MC3T3-E1 cells were seeded and cultured on the different PPF/Sr-HA composite disks. Cell morphology after 24 h and 5 days were imaged using Live/Dead live cell staining and SEM, respectively. Cell proliferation was quantified using an MTS assay at 1, 4, and 7 days. Osteogenic differentiation of the cells was examined by alkaline phosphatase (ALP) staining at 10 days and quantified using ALP activity and osteocalcin assays at 7, 14, and 21 days. The sizes of the HA, Sr5-HA, Sr10-HA, and Sr20-HA particles were mainly between 10 × 20 nm and 10 × 250 nm, and these nanoparticles were dispersed or clustered in the composite scaffolds. in vitro cell studies showed that the PPF/Sr10-HA scaffold was significantly better than the other three groups (PPF/HA, PPF/Sr5-HA, and PPF/Sr20-HA) in supporting MC3T3-E1 cell adhesion, proliferation, and differentiation. PPF/Sr10-HA may, therefore, serve as a promising scaffold material for bone tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 631-642, 2019.
Collapse
Affiliation(s)
- Jingfeng Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Sungjo Park
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
6
|
Puljung MC. Cryo-electron microscopy structures and progress toward a dynamic understanding of K ATP channels. J Gen Physiol 2018; 150:653-669. [PMID: 29685928 PMCID: PMC5940251 DOI: 10.1085/jgp.201711978] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022] Open
Abstract
Puljung reviews recent cryo-EM KATP channel structures and proposes a mechanism by which ligand binding results in channel opening. Adenosine triphosphate (ATP)–sensitive K+ (KATP) channels are molecular sensors of cell metabolism. These hetero-octameric channels, comprising four inward rectifier K+ channel subunits (Kir6.1 or Kir6.2) and four sulfonylurea receptor (SUR1 or SUR2A/B) subunits, detect metabolic changes via three classes of intracellular adenine nucleotide (ATP/ADP) binding site. One site, located on the Kir subunit, causes inhibition of the channel when ATP or ADP is bound. The other two sites, located on the SUR subunit, excite the channel when bound to Mg nucleotides. In pancreatic β cells, an increase in extracellular glucose causes a change in oxidative metabolism and thus turnover of adenine nucleotides in the cytoplasm. This leads to the closure of KATP channels, which depolarizes the plasma membrane and permits Ca2+ influx and insulin secretion. Many of the molecular details regarding the assembly of the KATP complex, and how changes in nucleotide concentrations affect gating, have recently been uncovered by several single-particle cryo-electron microscopy structures of the pancreatic KATP channel (Kir6.2/SUR1) at near-atomic resolution. Here, the author discusses the detailed picture of excitatory and inhibitory ligand binding to KATP that these structures present and suggests a possible mechanism by which channel activation may proceed from the ligand-binding domains of SUR to the channel pore.
Collapse
Affiliation(s)
- Michael C Puljung
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, England, UK
| |
Collapse
|
7
|
Liu Z, Cai H, Dang Y, Qiu C, Wang J. Adenosine triphosphate-sensitive potassium channels and cardiomyopathies (Review). Mol Med Rep 2015; 13:1447-54. [PMID: 26707080 DOI: 10.3892/mmr.2015.4714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 06/05/2015] [Indexed: 11/06/2022] Open
Abstract
Cardiomyopathies have been indicated to be one of the leading causes of heart failure. Though it was indicated that genetic defects, viral infection and trace element deficiency were among the causes of cardiomyopathy, the etiology has remained to be fully elucidated. Cardiomyocytes require large amounts of energy to maintain their normal biological functions. Adenosine triphosphate-sensitive potassium channels (KATP), composed of inward-rectifier potassium ion channel and sulfonylurea receptor subunits, are present on the cell surface and mitochondrial membrane of cardiac muscle cells. As metabolic sensors sensitive to changes in intracellular energy levels, KATP adapt electrical activities to metabolic challenges, maintaining normal biological functions of myocytes. It is implied that malfunctions, mutations and altered expression of KATP are associated with the pathogenesis of conditions including c hypertrophy, diabetes as well as dilated, ischemic and endemic cardiomyopathy. However, the current knowledge is only the tip of the iceberg and the roles of KATP in cardiomyopathies largely remain to be elucidated in future studies.
Collapse
Affiliation(s)
- Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Hui Cai
- Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yonghui Dang
- College of Medicine and Forensics, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Chuan Qiu
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112‑2705, LA, USA
| | - Junkui Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
8
|
Nelson PT, Jicha GA, Wang WX, Ighodaro E, Artiushin S, Nichols CG, Fardo DW. ABCC9/SUR2 in the brain: Implications for hippocampal sclerosis of aging and a potential therapeutic target. Ageing Res Rev 2015; 24:111-25. [PMID: 26226329 PMCID: PMC4661124 DOI: 10.1016/j.arr.2015.07.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/24/2015] [Indexed: 01/06/2023]
Abstract
The ABCC9 gene and its polypeptide product, SUR2, are increasingly implicated in human neurologic disease, including prevalent diseases of the aged brain. SUR2 proteins are a component of the ATP-sensitive potassium ("KATP") channel, a metabolic sensor for stress and/or hypoxia that has been shown to change in aging. The KATP channel also helps regulate the neurovascular unit. Most brain cell types express SUR2, including neurons, astrocytes, oligodendrocytes, microglia, vascular smooth muscle, pericytes, and endothelial cells. Thus it is not surprising that ABCC9 gene variants are associated with risk for human brain diseases. For example, Cantu syndrome is a result of ABCC9 mutations; we discuss neurologic manifestations of this genetic syndrome. More common brain disorders linked to ABCC9 gene variants include hippocampal sclerosis of aging (HS-Aging), sleep disorders, and depression. HS-Aging is a prevalent neurological disease with pathologic features of both neurodegenerative (aberrant TDP-43) and cerebrovascular (arteriolosclerosis) disease. As to potential therapeutic intervention, the human pharmacopeia features both SUR2 agonists and antagonists, so ABCC9/SUR2 may provide a "druggable target", relevant perhaps to both HS-Aging and Alzheimer's disease. We conclude that more work is required to better understand the roles of ABCC9/SUR2 in the human brain during health and disease conditions.
Collapse
Affiliation(s)
- Peter T Nelson
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; University of Kentucky, Department of Pathology, Lexington, KY 40536, USA.
| | - Gregory A Jicha
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; University of Kentucky, Department of Neurology, Lexington, KY, 40536, USA
| | - Wang-Xia Wang
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Eseosa Ighodaro
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Sergey Artiushin
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - David W Fardo
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; Department of Biostatistics, Lexington, KY, 40536, USA
| |
Collapse
|
9
|
Park S, Hwang IW, Makishima Y, Perales-Clemente E, Kato T, Niederländer NJ, Park EY, Terzic A. Spot14/Mig12 heterocomplex sequesters polymerization and restrains catalytic function of human acetyl-CoA carboxylase 2. J Mol Recognit 2014; 26:679-88. [PMID: 24277613 PMCID: PMC4283044 DOI: 10.1002/jmr.2313] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 01/17/2023]
Abstract
Acetyl-CoA carboxylase 2 (ACC2) is an isoform of ACC functioning as a negative regulator of fatty acid β-oxidation. Spot14, a thyroid hormone responsive protein, and Mig12, a Spot14 paralog, have recently been identified as regulators of fatty acid synthesis targeting ACC1, a distinctive subtype of ACC. Here, we examined whether Spot14/Mig12 modulates ACC2. Nanoscale protein topography mapped putative protein-protein interactions between purified human Spot14/Mig12 and ACC2, validated by functional assays. Human ACC2 displayed consistent enzymatic activity, and homogeneous particle distribution was probed by atomic force microscopy. Citrate-induced polymerization and enzymatic activity of ACC2 were restrained by the addition of the recombinant Spot14/Mig12 heterocomplex but only partially by the oligo-heterocomplex, demonstrating that the heterocomplex is a designated metabolic inhibitor of human ACC2. Moreover, Spot14/Mig12 demonstrated a sequestering role preventing an initial ACC2 nucleation step during filamentous polymer formation. Thus, the Spot14/Mig12 heterocomplex controls human ACC2 polymerization and catalytic function, emerging as a previously unrecognized molecular regulator in catalytic lipid metabolism.
Collapse
Affiliation(s)
- Sungjo Park
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA; Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Human acetyl-CoA carboxylase 2 expressed in silkworm Bombyx mori exhibits posttranslational biotinylation and phosphorylation. Appl Microbiol Biotechnol 2014; 98:8201-9. [PMID: 24740690 PMCID: PMC4163189 DOI: 10.1007/s00253-014-5715-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/23/2014] [Indexed: 12/26/2022]
Abstract
Biotin-dependent human acetyl-CoA carboxylases (ACCs) are integral in homeostatic lipid metabolism. By securing posttranslational biotinylation, ACCs perform coordinated catalytic functions allosterically regulated by phosphorylation/dephosphorylation and citrate. The production of authentic recombinant ACCs is heeded to provide a reliable tool for molecular studies and drug discovery. Here, we examined whether the human ACC2 (hACC2), an isoform of ACC produced using the silkworm BmNPV bacmid system, is equipped with proper posttranslational modifications to carry out catalytic functions as the silkworm harbors an inherent posttranslational modification machinery. Purified hACC2 possessed genuine biotinylation capacity probed by biotin-specific streptavidin and biotin antibodies. In addition, phosphorylated hACC2 displayed limited catalytic activity whereas dephosphorylated hACC2 revealed an enhanced enzymatic activity. Moreover, hACC2 polymerization, analyzed by native page gel analysis and atomic force microscopy imaging, was allosterically regulated by citrate and the phosphorylation/dephosphorylation modulated citrate-induced hACC2 polymerization process. Thus, the silkworm BmNPV bacmid system provides a reliable eukaryotic protein production platform for structural and functional analysis and therapeutic drug discovery applications implementing suitable posttranslational biotinylation and phosphorylation.
Collapse
|
11
|
Hu D, Barajas-Martínez H, Terzic A, Park S, Pfeiffer R, Burashnikov E, Wu Y, Borggrefe M, Veltmann C, Schimpf R, Cai JJ, Nam GB, Deshmukh P, Scheinman M, Preminger M, Steinberg J, López-Izquierdo A, Ponce-Balbuena D, Wolpert C, Haïssaguerre M, Sánchez-Chapula JA, Antzelevitch C. ABCC9 is a novel Brugada and early repolarization syndrome susceptibility gene. Int J Cardiol 2014; 171:431-42. [PMID: 24439875 DOI: 10.1016/j.ijcard.2013.12.084] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/17/2013] [Accepted: 12/21/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND Genetic defects in KCNJ8, encoding the Kir6.1 subunit of the ATP-sensitive K(+) channel (I(K-ATP)), have previously been associated with early repolarization (ERS) and Brugada (BrS) syndromes. Here we test the hypothesis that genetic variants in ABCC9, encoding the ATP-binding cassette transporter of IK-ATP (SUR2A), are also associated with both BrS and ERS. METHODS AND RESULTS Direct sequencing of all ERS/BrS susceptibility genes was performed on 150 probands and family members. Whole-cell and inside-out patch-clamp methods were used to characterize mutant channels expressed in TSA201-cells. Eight ABCC9 mutations were uncovered in 11 male BrS probands. Four probands, diagnosed with ERS, carried a highly-conserved mutation, V734I-ABCC9. Functional expression of the V734I variant yielded a Mg-ATP IC₅₀ that was 5-fold that of wild-type (WT). An 18-y/o male with global ERS inherited an SCN5A-E1784K mutation from his mother, who displayed long QT intervals, and S1402C-ABCC9 mutation from his father, who displayed an ER pattern. ABCC9-S1402C likewise caused a gain of function of IK-ATP with a shift of ATP IC₅₀ from 8.5 ± 2 mM to 13.4 ± 5 μM (p<0.05). The SCN5A mutation reduced peak INa to 39% of WT (p<0.01), shifted steady-state inactivation by -18.0 mV (p<0.01) and increased late I(Na) from 0.14% to 2.01% of peak I(Na) (p<0.01). CONCLUSION Our study is the first to identify ABCC9 as a susceptibility gene for ERS and BrS. Our findings also suggest that a gain-of-function in I(K-ATP) when coupled with a loss-of-function in SCN5A may underlie type 3 ERS, which is associated with a severe arrhythmic phenotype.
Collapse
Affiliation(s)
- Dan Hu
- Department of Molecular Genetics and Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, USA.
| | - Hector Barajas-Martínez
- Department of Molecular Genetics and Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, USA
| | - Andre Terzic
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sungjo Park
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ryan Pfeiffer
- Department of Molecular Genetics and Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, USA
| | - Elena Burashnikov
- Department of Molecular Genetics and Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, USA
| | - Yuesheng Wu
- Department of Molecular Genetics and Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, USA
| | - Martin Borggrefe
- 1st Department of Medicine-Cardiology, University Medical Centre Mannheim, Mannheim, Germany
| | - Christian Veltmann
- 1st Department of Medicine-Cardiology, University Medical Centre Mannheim, Mannheim, Germany
| | - Rainer Schimpf
- 1st Department of Medicine-Cardiology, University Medical Centre Mannheim, Mannheim, Germany
| | | | - Gi-Byong Nam
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Melvin Scheinman
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | - Jonathan Steinberg
- Arrhythmia Institute, Valley Health System, Columbia University College of Physicians & Surgeons, New York, NY, USA
| | - Angélica López-Izquierdo
- Unidad de Investigación, "Carlos Méndez" del Centro Universitario de Investigaciones Biomédicas de la Universidad de Colima, Colima, Mexico
| | - Daniela Ponce-Balbuena
- Unidad de Investigación, "Carlos Méndez" del Centro Universitario de Investigaciones Biomédicas de la Universidad de Colima, Colima, Mexico
| | - Christian Wolpert
- 1st Department of Medicine-Cardiology, University Medical Centre Mannheim, Mannheim, Germany
| | - Michel Haïssaguerre
- Hôspital Cardiologique du Haut Lévêque, Université Bordeaux II, Pessac cedex, France
| | - José Antonio Sánchez-Chapula
- Unidad de Investigación, "Carlos Méndez" del Centro Universitario de Investigaciones Biomédicas de la Universidad de Colima, Colima, Mexico
| | - Charles Antzelevitch
- Department of Molecular Genetics and Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, USA.
| |
Collapse
|
12
|
Smith KJ, Chadburn AJ, Adomaviciene A, Minoretti P, Vignali L, Emanuele E, Tammaro P. Coronary spasm and acute myocardial infarction due to a mutation (V734I) in the nucleotide binding domain 1 of ABCC9. Int J Cardiol 2013; 168:3506-13. [PMID: 23739550 DOI: 10.1016/j.ijcard.2013.04.210] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/09/2013] [Accepted: 04/26/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Alterations in coronary vasomotor tone may participate in the pathogenesis of acute myocardial infarction (AMI). Vascular ATP-sensitive K(+) (KATP) channels, formed by Kir6.x/SUR2B, are key regulators of coronary tone and mutations in cardiac (Kir6.2/SUR2A) KATP channels result in heart disease. Here we explore the pathophysiological mechanism of a rare mutation (V734I) found in exon 17 of the ABCC9 gene, estimated to cause a 6.4-fold higher risk of AMI before the age of 60. METHODS AND RESULTS Eleven patients carrying the mutation were identified; they presented AMI of vasospastic origin associated with increased plasma levels of endothelin-1 and increased leukocyte ROCK activity. The effects of the mutation on the functional properties of the two splice variants of ABCC9 (SUR2A and SUR2B) were studied using patch-clamp electrophysiology. The mutation reduced the sensitivity to MgATP inhibition of Kir6.2/SUR2B channels but not of Kir6.2/SUR2A and Kir6.1/SUR2B channels. Furthermore, the stimulatory effects of MgNDP (MgADP, MgGDP and MgUDP) were unaltered in mutant Kir6.2/SUR2A and Kir6.1/SUR2B channels. In contrast, mutant channels composed of Kir6.2 and SUR2B were less sensitive to MgNDP activation, assessed in the presence of MgATP. The antianginal drug nicorandil activated Kir6.2/SUR2B-V734I channels, thus substituting for the loss of MgNDP stimulation, suggesting that this drug could be of therapeutic use in the treatment of AMI associated with V734I. CONCLUSIONS The 734I allele in ABCC9 may influence susceptibility to AMI by impairing the response of vascular, but not cardiac, KATP channels to intracellular nucleotides. This is the first human mutation in an ion channel gene to be implicated in AMI.
Collapse
Affiliation(s)
- Keith J Smith
- Faculty of Life Sciences, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
13
|
Wang S, Makhina EN, Masia R, Hyrc KL, Formanack ML, Nichols CG. Domain organization of the ATP-sensitive potassium channel complex examined by fluorescence resonance energy transfer. J Biol Chem 2012; 288:4378-88. [PMID: 23223337 DOI: 10.1074/jbc.m112.388629] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
K(ATP) channels link cell metabolism to excitability in many cells. They are formed as tetramers of Kir6.2 subunits, each associated with a SUR1 subunit. We used mutant GFP-based FRET to assess domain organization in channel complexes. Full-length Kir6.2 subunits were linked to YFP or cyan fluorescent protein (CFP) at N or C termini, and all such constructs, including double-tagged YFP-Kir6.2-CFP (Y6.2C), formed functional K(ATP) channels. In intact COSm6 cells, background emission of YFP excited by 430-nm light was ∼6%, but the Y6.2C construct expressed alone exhibited an apparent FRET efficiency of ∼25%, confirmed by trypsin digestion, with or without SUR1 co-expression. Similar FRET efficiency was detected in mixtures of CFP- and YFP-tagged full-length Kir6.2 subunits and transmembrane domain only constructs, when tagged at the C termini but not at the N termini. The FRET-reported Kir6.2 tetramer domain organization was qualitatively consistent with Kir channel crystal structures: C termini and M2 domains are centrally located relative to N termini and M1 domains, respectively. Additional FRET analyses were performed on cells in which tagged full-length Kir6.2 and tagged SUR1 constructs were co-expressed. These analyses further revealed that 1) NBD1 of SUR1 is closer to the C terminus of Kir6.2 than to the N terminus; 2) the Kir6.2 cytoplasmic domain is not essential for complexation with SUR1; and 3) the N-terminal half of SUR1 can complex with itself in the absence of either the C-terminal half or Kir6.2.
Collapse
Affiliation(s)
- Shizhen Wang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
14
|
Terzic A, Alekseev AE, Yamada S, Reyes S, Olson TM. Advances in cardiac ATP-sensitive K+ channelopathies from molecules to populations. Circ Arrhythm Electrophysiol 2011; 4:577-85. [PMID: 21846889 DOI: 10.1161/circep.110.957662] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Andre Terzic
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Internal Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Department of Medical Genetics, Mayo Clinic, Rochester, MN, USA.
| | | | | | | | | |
Collapse
|
15
|
de Araujo ED, Ikeda LK, Tzvetkova S, Kanelis V. The first nucleotide binding domain of the sulfonylurea receptor 2A contains regulatory elements and is folded and functions as an independent module. Biochemistry 2011; 50:6655-66. [PMID: 21714514 DOI: 10.1021/bi200434d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The sulfonylurea receptor 2A (SUR2A) is an ATP-binding cassette (ABC) protein that forms the regulatory subunit of ATP-sensitive potassium (K(ATP)) channels in the heart. ATP binding and hydrolysis at the SUR2A nucleotide binding domains (NBDs) control gating of K(ATP) channels, and mutations in the NBDs that affect ATP hydrolysis and cellular trafficking cause cardiovascular disorders. To date, there is limited information on the SUR2A NBDs and the effects of disease-causing mutations on their structure and interactions. Structural and biophysical studies of NBDs, especially from eukaryotic ABC proteins like SUR2A, have been hindered by low solubility of the isolated domains. We hypothesized that the solubility of heterologously expressed SUR2A NBDs depends on the precise definition of the domain boundaries. Putative boundaries of SUR2A NBD1 were identified by structure-based sequence alignments and subsequently tested by exploring the solubility of SUR2A NBD1 constructs with different N and C termini. We have determined boundaries of SUR2A NBD1 that allow for soluble heterologous expression of the protein, producing a folded domain with ATP binding activity. Surprisingly, our alignment and screening data indicate that SUR2A NBD1 contains two putative, previously unidentified, regulatory elements: a large insert within the β-sheet subdomain and a C-terminal extension. Our approach, which combines the use of structure-based sequence alignments and predictions of disordered regions combined with biochemical and biophysical studies, may be applied as a general method for developing suitable constructs of other NBDs of ABC proteins.
Collapse
Affiliation(s)
- Elvin D de Araujo
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | | | | | | |
Collapse
|
16
|
Arrell DK, Zlatkovic Lindor J, Yamada S, Terzic A. K(ATP) channel-dependent metaboproteome decoded: systems approaches to heart failure prediction, diagnosis, and therapy. Cardiovasc Res 2011; 90:258-66. [PMID: 21321057 DOI: 10.1093/cvr/cvr046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Systems biology provides an integrative platform by which to account for the biological complexity related to cardiac health and disease. In this way, consequences of ATP-sensitive K(+) (K(ATP)) channel deficiency for heart failure prediction, diagnosis, and therapy were resolved recently at a proteomic level. Under stress-free conditions, knockout of the Kir6.2 K(ATP) channel pore induced metabolic proteome remodelling, revealing overrepresentation of markers of cardiovascular disease. Imposed stress precipitated structural and functional defects in Kir6.2-knockout hearts, decreasing survival and validating prediction of disease susceptibility. In the setting of hypertension, a leading risk for heart failure development, proteomic analysis diagnosed the metabolism-centric impact of K(ATP) channel deficiency in disease. Bioinformatic interrogation of K(ATP) channel-dependent proteome prioritized heart-specific adverse effects, exposing cardiomyopathic traits of aggravated contractility, fibrosis, and ventricular hypertrophy. In dilated cardiomyopathy induced by Kir6.2-knockout pressure overload, proteomic remodelling was exacerbated, underlying a multifaceted molecular pathology that indicates the necessity for a broad-based strategy to achieve repair. Embryonic stem cell intervention in cardiomyopathic K(ATP) channel knockout hearts elicited a distinct proteome signature that forecast amelioration of adverse cardiac outcomes. Functional/structural measurements validated improved contractile performance, reduced ventricular size, and decreased cardiac damage in the treated cohort, while systems assessment unmasked cardiovascular development as a prioritized biological function in stem cell-reconstructed hearts. Thus, proteomic deconvolution of K(ATP) channel-deficient hearts provides definitive evidence for the channel's homeostatic contribution to the cardiac metaboproteome and establishes the utility of systems-oriented approaches to predict disease susceptibility, diagnose consequences of heart failure progression, and monitor therapy outcome.
Collapse
Affiliation(s)
- D Kent Arrell
- Marriott Heart Disease Research Program, Mayo Clinic, Stabile 5, 200 First Street SW, Rochester, MN, USA
| | | | | | | |
Collapse
|
17
|
Reyes S, Park S, Terzic A, Alekseev AE. K(ATP) channels process nucleotide signals in muscle thermogenic response. Crit Rev Biochem Mol Biol 2010; 45:506-19. [PMID: 20925594 DOI: 10.3109/10409238.2010.513374] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Uniquely gated by intracellular adenine nucleotides, sarcolemmal ATP-sensitive K(+) (K(ATP)) channels have been typically assigned to protective cellular responses under severe energy insults. More recently, K(ATP) channels have been instituted in the continuous control of muscle energy expenditure under non-stressed, physiological states. These advances raised the question of how K(ATP) channels can process trends in cellular energetics within a milieu where each metabolic system is set to buffer nucleotide pools. Unveiling the mechanistic basis of the K(ATP) channel-driven thermogenic response in muscles thus invites the concepts of intracellular compartmentalization of energy and proteins, along with nucleotide signaling over diffusion barriers. Furthermore, it requires gaining insight into the properties of reversibility of intrinsic ATPase activity associated with K(ATP) channel complexes. Notwithstanding the operational paradigm, the homeostatic role of sarcolemmal K(ATP) channels can be now broadened to a wider range of environmental cues affecting metabolic well-being. In this way, under conditions of energy deficit such as ischemic insult or adrenergic stress, the operation of K(ATP) channel complexes would result in protective energy saving, safeguarding muscle performance and integrity. Under energy surplus, downregulation of K(ATP) channel function may find potential implications in conditions of energy imbalance linked to obesity, cold intolerance and associated metabolic disorders.
Collapse
Affiliation(s)
- Santiago Reyes
- Marriott Heart Diseases Research Program, Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
18
|
Human K(ATP) channelopathies: diseases of metabolic homeostasis. Pflugers Arch 2009; 460:295-306. [PMID: 20033705 PMCID: PMC2883927 DOI: 10.1007/s00424-009-0771-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 11/30/2009] [Indexed: 10/27/2022]
Abstract
Assembly of an inward rectifier K+ channel pore (Kir6.1/Kir6.2) and an adenosine triphosphate (ATP)-binding regulatory subunit (SUR1/SUR2A/SUR2B) forms ATP-sensitive K+ (KATP) channel heteromultimers, widely distributed in metabolically active tissues throughout the body. KATP channels are metabolism-gated biosensors functioning as molecular rheostats that adjust membrane potential-dependent functions to match cellular energetic demands. Vital in the adaptive response to (patho)physiological stress, KATP channels serve a homeostatic role ranging from glucose regulation to cardioprotection. Accordingly, genetic variation in KATP channel subunits has been linked to the etiology of life-threatening human diseases. In particular, pathogenic mutations in KATP channels have been identified in insulin secretion disorders, namely, congenital hyperinsulinism and neonatal diabetes. Moreover, KATP channel defects underlie the triad of developmental delay, epilepsy, and neonatal diabetes (DEND syndrome). KATP channelopathies implicated in patients with mechanical and/or electrical heart disease include dilated cardiomyopathy (with ventricular arrhythmia; CMD1O) and adrenergic atrial fibrillation. A common Kir6.2 E23K polymorphism has been associated with late-onset diabetes and as a risk factor for maladaptive cardiac remodeling in the community-at-large and abnormal cardiopulmonary exercise stress performance in patients with heart failure. The overall mutation frequency within KATP channel genes and the spectrum of genotype-phenotype relationships remain to be established, while predicting consequences of a deficit in channel function is becoming increasingly feasible through systems biology approaches. Thus, advances in molecular medicine in the emerging field of human KATP channelopathies offer new opportunities for targeted individualized screening, early diagnosis, and tailored therapy.
Collapse
|