1
|
Geng W, Zhang Q, Liu L, Tai G, Gan X. Design, Synthesis, and Herbicidal Activity of Novel Tetrahydrophthalimide Derivatives Containing Oxadiazole/Thiadiazole Moieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17191-17199. [PMID: 39054861 DOI: 10.1021/acs.jafc.4c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) has a high status in the development of new inhibitors. To develop novel and highly effective PPO inhibitors, active substructure linking and bioisosterism replacement strategies were used to design and synthesize novel tetrahydrophthalimide derivatives containing oxadiazole/thiadiazole moieties, and their inhibitory effects on Nicotiana tobacco PPO (NtPPO) and herbicidal activity were evaluated. Among them, compounds B11 (Ki = 9.05 nM) and B20 (Ki = 10.23 nM) showed significantly better inhibitory activity against NtPPO than that against flumiclorac-pentyl (Ki = 46.02 nM). Meanwhile, compounds A20 and B20 were 100% effective against three weeds (Abutilon theophrasti, Amaranthus retroflexus, and Portulaca oleracea) at 37.5 g a.i./ha. It was worth observing that compound B11 was more than 90% effective against three weeds (Abutilon theophrasti, Amaranthus retroflexus, and Portulaca oleracea) at 18.75 and 9.375 g a.i./ha. It was also safer to rice, maize, and wheat than flumiclorac-pentyl at 150 g a.i./ha. In addition, the molecular docking results showed that compound B11 could stably bind to NtPPO and it had a stronger hydrogen bond with Arg98 (2.9 Å) than that of flumiclorac-pentyl (3.2 Å). This research suggests that compound B11 could be used as a new PPO inhibitor, and it could help control weeds in agricultural production.
Collapse
Affiliation(s)
- Wang Geng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Qi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Li Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Gangyin Tai
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Yang HZ, Liu HY, Li SH, Wang DW, Xi Z. Understanding the Effects of Ligand Configuration on Protoporphyrinogen IX Oxidase with Rationally Designed 3-( N-Phenyluracil)but-2-enoates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8401-8414. [PMID: 38587493 DOI: 10.1021/acs.jafc.3c08483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) is a promising target for green herbicide discovery. However, the ligand configuration effects on PPO activity were still poorly understood. Herein, we designed 3-(N-phenyluracil)but-2-enoates using our previously developed active fragments exchange and link (AFEL) approach and synthesized a series of novel compounds with nanomolar ranges of Nicotiana tabacum PPO (NtPPO) inhibitory potency and promising herbicidal potency. Our systematic structure-activity relationship investigations showed that the E isomers of 3-(N-phenyluracil)but-2-enoates displayed improved bioactivity than their corresponding Z isomers. Using molecular simulation studies, we found that the E isomers showed a relatively lower entropy change and could sample more stable binding conformation to the receptor than the Z isomers. Our density functional theory (DFT) calculations showed that the E isomers showed higher chemical reactivity and lower electronic chemical potential than their corresponding Z isomers. Compound E-Ic emerged as the optimal compound with a Ki value of 3.0 nM against NtPPO, exhibiting a broader spectrum of weed control than saflufenacil at 37.5-75 g ai/ha and also safe to maize at 75 g ai/ha, which could be considered as a promising lead herbicide for further development.
Collapse
Affiliation(s)
- Huang-Ze Yang
- National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hong-Yun Liu
- National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Sang-Hong Li
- National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Da-Wei Wang
- National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhen Xi
- National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
3
|
Wang B, Wang Y, Zhang Z, Wen X, Xi Z. Insight into the Role of an α-Helix Cluster in Protoporphyrinogen IX Oxidase. Biochemistry 2024. [PMID: 38285491 DOI: 10.1021/acs.biochem.3c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Protoporphyrinogen IX oxidase (PPO) is the last common enzyme in chlorophyll and heme biosynthesis pathways. In humans, point mutations on PPO are responsible for the dominantly inherited disorder disease variegate porphyria (VP). It is found that several VP-causing mutation sites are located on an α-helix cluster (consisting of α-5, α-6, and α-7 helix, named the G169 helix cluster) of human PPO, although these mutation sites are outside the active site of the human PPO. In this work, we investigated the role of the G169 helix cluster via site-directed mutagenesis, enzymatic kinetics, and computational studies. Kinetic studies showed that mutations on the G169 helix cluster affect the activity of PPO. The MD simulation showed that mutations on the G169 helix cluster reduced the activity of PPO by affecting the proper orientation of substrate protoporphyrinogen within the active site of PPO and possibly the dipole moment of the G169 helix cluster. Moreover, the mutation abolished the interaction between the mutated site and other residues, thus affecting the secondary structure and hydrogen bond interactions within the G169 helix cluster. These results indicated that the integrity of the G169 helix cluster is important for the stabilization of protoporphyrinogen within the active site of PPO to facilitate the interaction between protoporphyrinogen and cofactor FAD and provide a proper electrostatic environment for the activity of PPO. Our result provides new insight into understanding the relationship between the structure and function of PPO.
Collapse
Affiliation(s)
- Baifan Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yiban Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zijuan Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
4
|
Zámocký M, Hofbauer S, Gabler T, Furtmüller PG. The Molecular Evolution, Structure, and Function of Coproporphyrinogen Oxidase and Protoporphyrinogen Oxidase in Prokaryotes. BIOLOGY 2023; 12:1527. [PMID: 38132353 PMCID: PMC10740692 DOI: 10.3390/biology12121527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Coproporphyrinogen oxidase (CgoX) and protoporphyrinogen oxidase (PgoX) catalyze the oxidation of the flexible cyclic tetrapyrrole of porphyrinogen compounds into fully conjugated, planar macrocyclic porphyrin compounds during heme biosynthesis. These enzymes are activated via different pathways. CgoX oxidizes coproporphyrinogen III to coproporphyrin III in the coproporphyrin-dependent pathway, whereas PgoX oxidizes protoporphyrinogen IX to protoporphyrin IX in the penultimate step of the protoporphyrin-dependent pathway. The phylogenetic analysis presented herein demonstrates a clear differentiation between the two enzyme classes, as evidenced by the clustering of sequences in distinct clades, and it shows that, at the origin of porphyrinogen-type oxidase evolution, PgoXs from cyanobacteria were found, which were noticeably separated from descendant PgoX representatives of Deltaproteobacteria and all later PgoX variants, leading to many eukaryotic clades. CgoX sequences originating from the monoderm Actinomycetota and Bacillota were well separated from the predecessor clades containing PgoX types and represent a peculiar type of gene speciation. The structural similarities and differences between these two oxidases are discussed based on their protein sequence alignment and a structural comparison.
Collapse
Affiliation(s)
- Marcel Zámocký
- Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, SK-84551 Bratislava, Slovakia;
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, SK-84215 Bratislava, Slovakia
| | - Stefan Hofbauer
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria; (S.H.); (T.G.)
| | - Thomas Gabler
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria; (S.H.); (T.G.)
| | - Paul G. Furtmüller
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria; (S.H.); (T.G.)
| |
Collapse
|
5
|
Falb N, Patil G, Furtmüller PG, Gabler T, Hofbauer S. Structural aspects of enzymes involved in prokaryotic Gram-positive heme biosynthesis. Comput Struct Biotechnol J 2023; 21:3933-3945. [PMID: 37593721 PMCID: PMC10427985 DOI: 10.1016/j.csbj.2023.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
The coproporphyrin dependent heme biosynthesis pathway is almost exclusively utilized by Gram-positive bacteria. This fact makes it a worthwhile topic for basic research, since a fundamental understanding of a metabolic pathway is necessary to translate the focus towards medical biotechnology, which is very relevant in this specific case, considering the need for new antibiotic targets to counteract the pathogenicity of Gram-positive superbugs. Over the years a lot of structural data on the set of enzymes acting in Gram-positive heme biosynthesis has accumulated in the Protein Database (www.pdb.org). One major challenge is to filter and analyze all available structural information in sufficient detail in order to be helpful and to draw conclusions. Here we pursued to give a holistic overview of structural information on enzymes involved in the coproporphyrin dependent heme biosynthesis pathway. There are many aspects to be extracted from experimentally determined structures regarding the reaction mechanisms, where the smallest variation of the position of an amino acid residue might be important, but also on a larger level regarding protein-protein interactions, where the focus has to be on surface characteristics and subunit (secondary) structural elements and oligomerization. This review delivers a status quo, highlights still missing information, and formulates future research endeavors in order to better understand prokaryotic heme biosynthesis.
Collapse
Affiliation(s)
- Nikolaus Falb
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Gaurav Patil
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul G. Furtmüller
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Thomas Gabler
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Stefan Hofbauer
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
6
|
Hedtke B, Strätker SM, Pulido ACC, Grimm B. Two isoforms of Arabidopsis protoporphyrinogen oxidase localize in different plastidal membranes. PLANT PHYSIOLOGY 2023; 192:871-885. [PMID: 36806676 PMCID: PMC10231370 DOI: 10.1093/plphys/kiad107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 06/01/2023]
Abstract
All land plants encode 2 isoforms of protoporphyrinogen oxidase (PPO). While PPO1 is predominantly expressed in green tissues and its loss is seedling-lethal in Arabidopsis (Arabidopsis thaliana), the effects of PPO2 deficiency have not been investigated in detail. We identified 2 ppo2 T-DNA insertion mutants from publicly available collections, one of which (ppo2-2) is a knock-out mutant. While the loss of PPO2 did not result in any obvious phenotype, substantial changes in PPO activity were measured in etiolated and root tissues. However, ppo1 ppo2 double mutants were embryo-lethal. To shed light on possible functional differences between the 2 isoforms, PPO2 was overexpressed in the ppo1 background. Although the ppo1 phenotype was partially complemented, even strong overexpression of PPO2 was unable to fully compensate for the loss of PPO1. Analysis of subcellular localization revealed that PPO2 is found exclusively in chloroplast envelopes, while PPO1 accumulates in thylakoid membranes. Mitochondrial localization of PPO2 in Arabidopsis was ruled out. Since Arabidopsis PPO2 does not encode a cleavable transit peptide, integration of the protein into the chloroplast envelope must make use of a noncanonical import route. However, when a chloroplast transit peptide was fused to the N-terminus of PPO2, the enzyme was detected predominantly in thylakoid membranes and was able to fully complement ppo1. Thus, the 2 PPO isoforms in Arabidopsis are functionally equivalent but spatially separated. Their distinctive localizations within plastids thus enable the synthesis of discrete subpools of the PPO product protoporphyrin IX, which may serve different cellular needs.
Collapse
Affiliation(s)
- Boris Hedtke
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), Berlin 10115, Germany
| | - Sarah Melissa Strätker
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), Berlin 10115, Germany
| | - Andrea C Chiappe Pulido
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), Berlin 10115, Germany
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), Berlin 10115, Germany
| |
Collapse
|
7
|
Yang Q, Zhao J, Zheng Y, Chen T, Wang Z. Microbial Synthesis of Heme b: Biosynthetic Pathways, Current Strategies, Detection, and Future Prospects. Molecules 2023; 28:3633. [PMID: 37110868 PMCID: PMC10144233 DOI: 10.3390/molecules28083633] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Heme b, which is characterized by a ferrous ion and a porphyrin macrocycle, acts as a prosthetic group for many enzymes and contributes to various physiological processes. Consequently, it has wide applications in medicine, food, chemical production, and other burgeoning fields. Due to the shortcomings of chemical syntheses and bio-extraction techniques, alternative biotechnological methods have drawn increasing attention. In this review, we provide the first systematic summary of the progress in the microbial synthesis of heme b. Three different pathways are described in detail, and the metabolic engineering strategies for the biosynthesis of heme b via the protoporphyrin-dependent and coproporphyrin-dependent pathways are highlighted. The UV spectrophotometric detection of heme b is gradually being replaced by newly developed detection methods, such as HPLC and biosensors, and for the first time, this review summarizes the methods used in recent years. Finally, we discuss the future prospects, with an emphasis on the potential strategies for improving the biosynthesis of heme b and understanding the regulatory mechanisms for building efficient microbial cell factories.
Collapse
Affiliation(s)
- Qiuyu Yang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Juntao Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yangyang Zheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
8
|
Yien YY, Perfetto M. Regulation of Heme Synthesis by Mitochondrial Homeostasis Proteins. Front Cell Dev Biol 2022; 10:895521. [PMID: 35832791 PMCID: PMC9272004 DOI: 10.3389/fcell.2022.895521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
Heme plays a central role in diverse, life-essential processes that range from ubiquitous, housekeeping pathways such as respiration, to highly cell-specific ones such as oxygen transport by hemoglobin. The regulation of heme synthesis and its utilization is highly regulated and cell-specific. In this review, we have attempted to describe how the heme synthesis machinery is regulated by mitochondrial homeostasis as a means of coupling heme synthesis to its utilization and to the metabolic requirements of the cell. We have focused on discussing the regulation of mitochondrial heme synthesis enzymes by housekeeping proteins, transport of heme intermediates, and regulation of heme synthesis by macromolecular complex formation and mitochondrial metabolism. Recently discovered mechanisms are discussed in the context of the model organisms in which they were identified, while more established work is discussed in light of technological advancements.
Collapse
|
9
|
Wang DW, Zhang H, Yu SY, Zhang RB, Liang L, Wang X, Yang HZ, Xi Z. Discovery of a Potent Thieno[2,3- d]pyrimidine-2,4-dione-Based Protoporphyrinogen IX Oxidase Inhibitor through an In Silico Structure-Guided Optimization Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14115-14125. [PMID: 34797973 DOI: 10.1021/acs.jafc.1c05665] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A key objective for herbicide research is to develop new compounds with improved bioactivity. Protoporphyrinogen IX oxidase (PPO) is an essential target for herbicide discovery. Here, we report using an in silico structure-guided optimization approach of our previous lead compound 1 and designed and synthesized a new series of compounds 2-6. Systematic bioassays led to the discovery of a highly potent compound 6g, 1-methyl-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-yn-1-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)thieno[2,3-d]pyrimidine-2,4(1H,3H)-dione, which exhibited an excellent and wide spectrum of weed control at the rates of 30-75 g ai/ha by the postemergence application and is relatively safe on maize at 75 g ai/ha. Additionally, the Ki value of 6g to Nicotiana tabacum PPO (NtPPO) was found to be 2.5 nM, showing 3-, 12-, and 18-fold higher potency relative to compound 1 (Ki = 7.4 nM), trifludimoxazin (Ki = 31 nM), and flumioxazin (Ki = 46 nM), respectively. Furthermore, molecular simulations further suggested that the thieno[2,3-d]pyrimidine-2,4-dione moiety of 6g could form a more favorable π-π stacking interaction with the Phe392 of NtPPO than the heterocyclic moiety of compound 1. This study provides an effective strategy to obtain enzyme inhibitors with improved performance through molecular simulation and structure-guided optimization.
Collapse
Affiliation(s)
- Da-Wei Wang
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hang Zhang
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Yi Yu
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Rui-Bo Zhang
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lu Liang
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xia Wang
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Huang-Ze Yang
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhen Xi
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
10
|
Stasiuk R, Krucoń T, Matlakowska R. Biosynthesis of Tetrapyrrole Cofactors by Bacterial Community Inhabiting Porphyrine-Containing Shale Rock (Fore-Sudetic Monocline). Molecules 2021; 26:6746. [PMID: 34771152 PMCID: PMC8587615 DOI: 10.3390/molecules26216746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
This study describes for the first time the comprehensive characterization of tetrapyrrole cofactor biosynthetic pathways developed for bacterial community (BC) inhabiting shale rock. Based on the genomic and proteomic metadata, we have detailed the biosynthesis of siroheme, heme, cobalamin, and the major precursor uroporphyrinogen III by a deep BC living on a rock containing sedimentary tetrapyrrole compounds. The obtained results showed the presence of incomplete heme and cobalamin biosynthesis pathways in the studied BC. At the same time, the production of proteins containing these cofactors, such as cytochromes, catalases and sulfite reductase, was observed. The results obtained are crucial for understanding the ecology of bacteria inhabiting shale rock, as well as their metabolism and potential impact on the biogeochemistry of these rocks. Based on the findings, we hypothesize that the bacteria may use primary or modified sedimentary porphyrins and their degradation products as precursors for synthesizing tetrapyrrole cofactors. Experimental testing of this hypothesis is of course necessary, but its evidence would point to an important and unique phenomenon of the tetrapyrrole ring cycle on Earth involving bacteria.
Collapse
Affiliation(s)
- Robert Stasiuk
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Tomasz Krucoń
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Renata Matlakowska
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| |
Collapse
|
11
|
Zhao LX, Wang ZX, Peng JF, Zou YL, Hui YZ, Chen YZ, Gao S, Fu Y, Ye F. Design, synthesis, and herbicidal activity of novel phenoxypyridine derivatives containing natural product coumarin. PEST MANAGEMENT SCIENCE 2021; 77:4785-4798. [PMID: 34161678 DOI: 10.1002/ps.6523] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/30/2021] [Accepted: 06/23/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND In recent years, protoporphyrinogen oxidase (PPO, EC 1.3.3.4) inhibitors have been widely studied as important agricultural herbicides. Our research focused on the design and synthesis of novel PPO inhibitor herbicides, through linking of a diphenylether pyridine bioisostere structure to substituted coumarins, which aims to enhance environmental and crop safety while retaining high efficacy. RESULTS A total of 21 compounds were synthesized via acylation reactions and all compounds were characterized using infrared, 1 H NMR, 13 C NMR, and high-resolution mass spectra. The respective configurations of compounds IV-6 and IV-12 were also confirmed using single crystal X-ray diffraction. The bioassay results showed that the title compounds displayed notable herbicidal activity, particularly compound IV-6 which displayed better herbicidal activity in greenhouse and field experiments, crop selectivity and safety for cotton and soybean compared with the commercial herbicide oxyfluorfen. CONCLUSION The work revealed that compound IV-6 deserves further attention as a candidate structure for a novel and safe herbicide. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Zhi-Xin Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Jian-Feng Peng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Yue-Li Zou
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Yong-Zhuo Hui
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Yong-Zheng Chen
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| |
Collapse
|
12
|
Liang L, Yu S, Li Q, Wang X, Wang D, Xi Z. Design, synthesis, and molecular simulation studies of N-phenyltetrahydroquinazolinones as protoporphyrinogen IX oxidase inhibitors. Bioorg Med Chem 2021; 39:116165. [PMID: 33915477 DOI: 10.1016/j.bmc.2021.116165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 02/05/2023]
Abstract
Discovering new protoporphyrinogen oxidase (PPO, EC 1.3.3.4) inhibitors is a promising direction for agrochemical research. Herein, we reported the discovery and in silico structure-guided optimization of N-phenyltetrahydroquinazolinones 1 and 2 as new PPO inhibitors. Most of the obtained compounds 1 and 2 exhibited significantly enhanced Nicotiana tabacum PPO (NtPPO) inhibitory potency than that of flumioxazin. Promisingly, 1-(tert-butoxy)-1-oxopropan-2-yl 2-chloro-4-fluoro-5-(4-oxo-5,6,7,8-tetrahydroquinazolin-3(4H)-yl)benzoate, 2o, with a Ki value of 4 nM, showed ten folds more enhanced NtPPO-inhibiting potency than flumioxazin. Additionally, compounds 2b and 2i showed a broad spectrum of broadleaf weeds control at 37.5-150 g ai/ha, and selective for wheat at 150 g ai/ha in the post-emergent application. The molecular simulation studies revealed the vital basis between N-phenyltetrahydroquinazolinones and NtPPO. The present work indicated that the N-phenyltetrahydroquinazolinone motif might be a potential scaffold for herbicide discovery.
Collapse
Affiliation(s)
- Lu Liang
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, and Department of Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Shuyi Yu
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, and Department of Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Qian Li
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, and Department of Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xia Wang
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, and Department of Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Dawei Wang
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, and Department of Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, and Department of Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
13
|
Wang B, Zhang Z, Zhu H, Niu C, Wen X, Xi Z. The hydrogen bonding network involved Arg59 in human protoporphyrinogen IX oxidase is essential for enzyme activity. Biochem Biophys Res Commun 2021; 557:20-25. [PMID: 33857841 DOI: 10.1016/j.bbrc.2021.03.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/18/2022]
Abstract
Protoporphyrinogen IX oxidase (PPO) is the last common enzyme in chlorophyll and heme biosynthesis pathways. In human, point mutations on PPO are responsible for the dominantly inherited disorder disease, Variegate Porphyria (VP). Of the VP-causing mutation site, the Arg59 is by far the most prevalent VP mutation residue identified. Multiple sequences alignment of PPOs shows that the Arg59 of human PPO (hPPO) is not conserved, and experiments have shown that the equivalent residues in PPO from various species are essential for enzymatic activity. In this work, it was proposed that the Arg59 performs its function by forming a hydrogen-bonding (HB) network around it in hPPO, and we investigated the role of the HB network via site-directed mutagenesis, enzymatic kinetics and computational studies. We found the integrity of the HB network around Arg59 is important for enzyme activity. The HB network maintains the substrate binding chamber by holding the side chain of Arg59, while it stabilizes the micro-environment of the isoalloxazine ring of FAD, which is favorable for the substrate-FAD interaction. Our result provides a new insight to understanding the relationship between the structure and function for hPPO that non-conserved residues can form a conserved element to maintain the function of protein.
Collapse
Affiliation(s)
- Baifan Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zijuan Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Hao Zhu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Congwei Niu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
14
|
Zhao LX, Hu JJ, Wang ZX, Yin ML, Zou YL, Gao S, Fu Y, Ye F. Novel phenoxy-(trifluoromethyl)pyridine-2-pyrrolidinone-based inhibitors of protoporphyrinogen oxidase: Design, synthesis, and herbicidal activity. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104684. [PMID: 32980064 DOI: 10.1016/j.pestbp.2020.104684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
As important chemical pesticides, protoporphyrinogen oxidase (PPO, EC 1.3.3.4) herbicides play a vital role in weed management. Herein, in a search for novel PPO herbicides, a series of phenoxypyridine-2-pyrrolidinone derivatives were synthesized and their herbicidal activities were tested. To confirm the structures of the newly synthesized compounds, a colorless single crystal of compound 9d was obtained and crystallographic data collected. PPO inhibition experiments showed that most compounds have PPO inhibitory effects. The half-maximal inhibitory concentration (IC50) of compound 9d and oxyfluorfen were 0.041 mg/L and 0.043 mg/L, respectively, which showed compound 9d was the most potent compound. Compound 9d reduced the Chlorophyll a (Chl a) and Chlorophyll b (Chl b) contents of Abutilon theophrasti (A. theophrasti), to 0.306 and 0.217 mg/g, respectively. Crop selectivity experiments and field trial indicated that compound 9d can potentially be used to develop post-emergence herbicides for weed control in rice, cotton, and peanut. Molecular docking studies showed that both oxyfluorfen and compound 9d can enter the PPO cavity to occupy the active site and compete with the porphyrin to block the chlorophyll synthesis process, affect photosynthesis, and eventually cause weed death. Compound 9d was found to be a promising lead compound for novel herbicide development.
Collapse
Affiliation(s)
- Li-Xia Zhao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jia-Jun Hu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zhi-Xin Wang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Min-Lei Yin
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yue-Li Zou
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Ye
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
15
|
Li X, Yang X, Zheng X, Bai M, Hu D. Review on Structures of Pesticide Targets. Int J Mol Sci 2020; 21:E7144. [PMID: 32998191 PMCID: PMC7582455 DOI: 10.3390/ijms21197144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Molecular targets play important roles in agrochemical discovery. Numerous pesticides target the key proteins in pathogens, insect, or plants. Investigating ligand-binding pockets and/or active sites in the proteins' structures is usually the first step in designing new green pesticides. Thus, molecular target structures are extremely important for the discovery and development of such pesticides. In this manuscript, we present a review of the molecular target structures, including those of antiviral, fungicidal, bactericidal, insecticidal, herbicidal, and plant growth-regulator targets, currently used in agrochemical research. The data will be helpful in pesticide design and the discovery of new green pesticides.
Collapse
Affiliation(s)
- Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China;
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China;
| | - Miao Bai
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China;
| |
Collapse
|
16
|
Layer G. Heme biosynthesis in prokaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118861. [PMID: 32976912 DOI: 10.1016/j.bbamcr.2020.118861] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022]
Abstract
The cyclic tetrapyrrole heme is used as a prosthetic group in a broad variety of different proteins in almost all organisms. Often, it is essential for vital biochemical processes such as aerobic and anaerobic respiration as well as photosynthesis. In Nature, heme is made from the common tetrapyrrole precursor 5-aminolevulinic acid, and for a long time it was assumed that heme is biosynthesized by a single, common pathway in all organisms. However, although this is indeed the case in eukaryotes, heme biosynthesis is more diverse in the prokaryotic world, where two additional pathways exist. The final elucidation of the two 'alternative' heme biosynthesis routes operating in some bacteria and archaea was achieved within the last decade. This review summarizes the three different heme biosynthesis pathways with a special emphasis on the two 'new' prokaryotic routes.
Collapse
Affiliation(s)
- Gunhild Layer
- Albert-Ludwigs-Universität Freiburg, Institut für Pharmazeutische Wissenschaften, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany.
| |
Collapse
|
17
|
Celis AI, DuBois JL. Making and breaking heme. Curr Opin Struct Biol 2019; 59:19-28. [PMID: 30802830 PMCID: PMC6706330 DOI: 10.1016/j.sbi.2019.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
Abstract
Mechanisms for making and breaking the heme b cofactor (heme) are more diverse than previously expected. Biosynthetic pathways have diverged at least twice along taxonomic lines, reflecting differences in membrane organization and O2 utilization among major groups of organisms. At least three families of heme degradases are now known, again differing in whether and how O2 is used by the organism and possibly the purpose for turning over the tetrapyrrole. Understanding these enzymes and pathways offers a handle for antimicrobial development and for monitoring heme use in organismal and ecological systems.
Collapse
Affiliation(s)
- Arianna I Celis
- Montana State University, 103 Chemistry and Biochemistry, Bozeman, MT 59717, United States
| | - Jennifer L DuBois
- Montana State University, 103 Chemistry and Biochemistry, Bozeman, MT 59717, United States.
| |
Collapse
|
18
|
Gao W, Li X, Ren D, Sun S, Huo J, Wang Y, Chen L, Zhang J. Design and Synthesis of N-phenyl Phthalimides as Potent Protoporphyrinogen Oxidase Inhibitors. Molecules 2019; 24:molecules24234363. [PMID: 31795340 PMCID: PMC6930678 DOI: 10.3390/molecules24234363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/16/2022] Open
Abstract
Protoporphyrinogen oxidase (PPO) has been identified as one of the most promising targets for herbicide discovery. A series of novel phthalimide derivatives were designed by molecular docking studies targeting the crystal structure of mitochondrial PPO from tobacco (mtPPO, PDB: 1SEZ) by using Flumioxazin as a lead, after which the derivatives were synthesized and characterized, and their herbicidal activities were subsequently evaluated. The herbicidal bioassay results showed that compounds such as 3a (2-(4-bromo-2,6-difluorophenyl) isoindoline-1,3-dione), 3d (methyl 2-(4-chloro-1,3-dioxoisoindolin-2-yl)-5-fluorobenzoate), 3g (4-chloro-2-(5-methylisoxazol-3-yl) isoindoline-1,3-dione), 3j (4-chloro-2-(thiophen-2-ylmethyl) isoindoline-1,3-dione) and 3r (2-(4-bromo-2,6-difluorophenyl)-4-fluoroisoindoline-1,3-dione) had good herbicidal activities; among them, 3a showed excellent herbicidal efficacy against A. retroflexus and B. campestris via the small cup method and via pre-emergence and post-emergence spray treatments. The efficacy was comparable to that of the commercial herbicides Flumioxazin, Atrazine, and Chlortoluron. Further, the enzyme activity assay results suggest that the mode of action of compound 3a involves the inhibition of the PPO enzyme, and 3a showed better inhibitory activity against PPO than did Flumioxazin. These results indicate that our molecular design strategy contributes to the development of novel promising PPO inhibitors.
Collapse
|
19
|
Wang DW, Zhang RB, Yu SY, Liang L, Ismail I, Li YH, Xu H, Wen X, Xi Z. Discovery of Novel N-Isoxazolinylphenyltriazinones as Promising Protoporphyrinogen IX Oxidase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12382-12392. [PMID: 31635461 DOI: 10.1021/acs.jafc.9b04844] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) is a promising target for herbicide discovery. Search for new compounds with novel chemotypes is a key objective for agrochemists. Here, we describe the discovery and systematic SAR-based structure optimization of novel N-isoxazolinylphenyltriazinones 5-9 as PPO inhibitors. The in vivo herbicidal activity and in vitro Nicotiana tabacum PPO (NtPPO) inhibitory activity were explored in detail. A number of the new synthetic compounds displayed strong PPO inhibitory activity with Ki values in the nanomolar range. Some compounds exhibited excellent and broad-spectrum weed control at the rate of 9.375-37.5 g ai/ha by postemergence application and showed improved monocotyledonous weed control compared to saflufenacil. Most promisingly, ethyl 3-(2-chloro-5-(3,5-dimethyl-2,6-dioxo-4-thioxo-1,3,5-triazinan-1-yl)-4-fluorophenyl)-5-methyl-4,5-dihydroisoxazole-5-carboxylate, 5a, with a Ki value of 4.9 nM, displayed over 2- and 6-fold higher potency than saflufenacil (Ki = 10 nM) and trifludimoxazin (Ki = 31 nM), respectively. Moreover, 5a showed excellent and broad-spectrum weed control against 32 kinds of weeds at 37.5-75 g ai/ha. Rice exhibited relative tolerance to 5a at 150 g ai/ha by postemergence application, indicating that 5a could be a potential herbicide candidate for weed control in paddy fields.
Collapse
Affiliation(s)
- Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Rui-Bo Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Shu-Yi Yu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Lu Liang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Ismail Ismail
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Yong-Hong Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Han Xu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| |
Collapse
|
20
|
Liu W, Wang Z, Xu F, Li Q, Wang H, Bian Q, Hu F. Synthesis and Activity Investigation of Novel 1 H-Purin-6(9 H)-one and 3 H-Imidazo[4,5- d][1,2,3]triazin-4(7 H)-one Derivatives. ACS OMEGA 2019; 4:15742-15753. [PMID: 31572878 PMCID: PMC6761741 DOI: 10.1021/acsomega.9b02495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Novel 1H-purin-6(9H)-one (D) and 3H-imidazo[4,5-d][1,2,3]trazin-4(7H)-one (E) derivatives were designed, synthesized, and characterized by 1H NMR, 13C NMR and high-resolution mass spectrometry spectra. Their herbicidal activity bioassay showed that compound 7d exhibited relatively good activity with 70.4% inhibition rate against Amaranthus retroflexus in postemergence treatments at 1500 g/ha. Antitumor activity indicated that most of the title compounds displayed potent antitumor activity at 20 μM, among all of the promising compounds possessing lower IC50 values than that of temozolomide, compound 7i demonstrated highest activity inhibiting both HepG-2 and U-118 MG cell lines with IC50 values of 2.0 and 3.8 μM, respectively. The structure-activity relationship analysis revealed that introduction of halogen atoms, a bulky bridging bond between benzene ring and nitrogen atom, longer R2 substituents could contribute to the improvement of antitumor activity. Analysis suggested that compound 7i might have potential as new highly active antitumor agent. Overall, D series had better anticancer activities than E series derivatives.
Collapse
Affiliation(s)
- Weijie Liu
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, and National Engineering
Research Center for Pesticides, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zechun Wang
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, and National Engineering
Research Center for Pesticides, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Fengbo Xu
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, and National Engineering
Research Center for Pesticides, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qingshan Li
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, and National Engineering
Research Center for Pesticides, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hongxue Wang
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, and National Engineering
Research Center for Pesticides, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qiang Bian
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, and National Engineering
Research Center for Pesticides, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Fangzhong Hu
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, and National Engineering
Research Center for Pesticides, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
21
|
Wang DW, Zhang RB, Ismail I, Xue ZY, Liang L, Yu SY, Wen X, Xi Z. Design, Herbicidal Activity, and QSAR Analysis of Cycloalka[ d]quinazoline-2,4-dione-Benzoxazinones as Protoporphyrinogen IX Oxidase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9254-9264. [PMID: 31356740 DOI: 10.1021/acs.jafc.9b02996] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In continuation of our search for potent protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) inhibitors, we designed and synthesized a series of novel herbicidal cycloalka[d]quinazoline-2,4-dione-benzoxazinones. The bioassay results of these synthesized compounds indicated that most of the compounds exhibited very strong Nicotiana tabacum PPO (NtPPO) inhibition activity. More than half of the 37 synthesized compounds displayed over 80% control of all three tested broadleaf weeds at 37.5-150 g ai/ha by postemergent application, and a majority of them showed no phytotoxicity toward at least one kind of crop at 150 g ai/ha. Promisingly, 17i (Ki = 6.7 nM) was 6 and 4 times more potent than flumioxazin (Ki = 46 nM) and trifludimoxazin (Ki = 31 nM), respectively. Moreover, 17i displayed excellent, broad-spectrum herbicidal activity, even at levels as low as 37.5 g ai/ha, and it was determined to be safe for wheat at 150 g ai/ha in postemergent application, indicating the great potential for 17i development as a herbicide for weed control in wheat fields.
Collapse
Affiliation(s)
- Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , PR China
| | - Rui-Bo Zhang
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , PR China
| | - Ismail Ismail
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , PR China
| | - Zhi-Yuan Xue
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , PR China
| | - Lu Liang
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , PR China
| | - Shu-Yi Yu
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , PR China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , PR China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , PR China
| |
Collapse
|
22
|
Dorival J, Risser F, Jacob C, Collin S, Dräger G, Paris C, Chagot B, Kirschning A, Gruez A, Weissman KJ. Insights into a dual function amide oxidase/macrocyclase from lankacidin biosynthesis. Nat Commun 2018; 9:3998. [PMID: 30266997 PMCID: PMC6162330 DOI: 10.1038/s41467-018-06323-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/20/2018] [Indexed: 11/21/2022] Open
Abstract
Acquisition of new catalytic activity is a relatively rare evolutionary event. A striking example appears in the pathway to the antibiotic lankacidin, as a monoamine oxidase (MAO) family member, LkcE, catalyzes both an unusual amide oxidation, and a subsequent intramolecular Mannich reaction to form the polyketide macrocycle. We report evidence here for the molecular basis for this dual activity. The reaction sequence involves several essential active site residues and a conformational change likely comprising an interdomain hinge movement. These features, which have not previously been described in the MAO family, both depend on a unique dimerization mode relative to all structurally characterized members. Taken together, these data add weight to the idea that designing new multifunctional enzymes may require changes in both architecture and catalytic machinery. Encouragingly, however, our data also show LkcE to bind alternative substrates, supporting its potential utility as a general cyclization catalyst in synthetic biology. The monoamine oxidase family member LkcE is an enzyme from the lankacidin polyketide biosynthetic pathway, where it catalyzes an amide oxidation followed by an intramolecular Mannich reaction, yielding the polyketide macrocycle. Here the authors characterize LkcE and present several of its crystal structures, which explains the unusual dual activity of LkcE.
Collapse
Affiliation(s)
- Jonathan Dorival
- UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandœuvre-lès-Nancy Cedex, France.,Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, Bretagne, France
| | - Fanny Risser
- UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandœuvre-lès-Nancy Cedex, France
| | - Christophe Jacob
- UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandœuvre-lès-Nancy Cedex, France
| | - Sabrina Collin
- UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandœuvre-lès-Nancy Cedex, France
| | - Gerald Dräger
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, Hannover, 30167, Germany
| | - Cédric Paris
- Laboratoire d'Ingénierie des Biomolécules, Ecole Nationale Supérieure d'Agronomie et des Industries Alimentaires (ENSAIA), Université de Lorraine, 2 Avenue de la Fôret de Haye, BP 172, 54518, Vandœuvre-lès-Nancy Cedex, France
| | - Benjamin Chagot
- UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandœuvre-lès-Nancy Cedex, France
| | - Andreas Kirschning
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, Hannover, 30167, Germany
| | - Arnaud Gruez
- UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandœuvre-lès-Nancy Cedex, France.
| | - Kira J Weissman
- UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandœuvre-lès-Nancy Cedex, France.
| |
Collapse
|
23
|
Biochemical characterization of protoporphyrinogen dehydrogenase and protoporphyrin ferrochelatase of Vibrio vulnificus and the critical complex formation between these enzymes. Biochim Biophys Acta Gen Subj 2018; 1862:2674-2687. [PMID: 30251658 DOI: 10.1016/j.bbagen.2018.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/28/2018] [Accepted: 08/13/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Protoporphyrin IX (PPn), an intermediate in the heme biosynthesis reaction, generates singlet oxygen upon exposure to UV light. It has been proposed that PPn is channeled directly to ferrochelatase within a protoporphyrinogen dehydrogenase (PgdH1)-protoporphyrin ferrochelatase (PpfC) complex as a way to avoid this damaging side reaction. However, the PgdH1-PpfC complex has not been characterized, and the question of how heme affects the activities of PgdH1 has not been addressed. METHODS Protein interactions were explored through pull-down assays and western blotting, and the importance of this complex in vivo was examined using inter-species combinations of the two proteins. The purified PgdH1-PpfC complex was characterized kinetically and used for heme binding studies. RESULTS In Vibrio vulnificus, PgdH1 and PpfC formed an 8:8 heterohexadecameric complex that was important for maintaining PPn at low levels. PpfC catalyzed PPn efficiently whether or not it was part of the complex. Notably, heme was a noncompetitive inhibitor of V. vulnificus PgdH1, but a competitive inhibitor of the human protoporphyrinogen oxidase PgoX. CONCLUSION The PdgH1-PpfC complex is important for protective channeling of PPn and for efficient catalysis of free PPn. The production of PPn by PgdH1 is regulated by feedback inhibition by heme. GENERAL SIGNIFICANCE Both proteobacteria and eukaryotes have evolved mechanisms to prevent the harmful accumulation of the heme biosynthesis intermediate PPn. The data presented here suggest two previously unknown mechanisms: the channeling of PPn through the PgdH1-PpfC complex, and the direct inhibition of PgdH1 activity (PgoX activity as well) by heme.
Collapse
|
24
|
Antibacterial photosensitization through activation of coproporphyrinogen oxidase. Proc Natl Acad Sci U S A 2017; 114:E6652-E6659. [PMID: 28739897 DOI: 10.1073/pnas.1700469114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gram-positive bacteria cause the majority of skin and soft tissue infections (SSTIs), resulting in the most common reason for clinic visits in the United States. Recently, it was discovered that Gram-positive pathogens use a unique heme biosynthesis pathway, which implicates this pathway as a target for development of antibacterial therapies. We report here the identification of a small-molecule activator of coproporphyrinogen oxidase (CgoX) from Gram-positive bacteria, an enzyme essential for heme biosynthesis. Activation of CgoX induces accumulation of coproporphyrin III and leads to photosensitization of Gram-positive pathogens. In combination with light, CgoX activation reduces bacterial burden in murine models of SSTI. Thus, small-molecule activation of CgoX represents an effective strategy for the development of light-based antimicrobial therapies.
Collapse
|
25
|
Hao GF, Zuo Y, Yang SG, Chen Q, Zhang Y, Yin CY, Niu CW, Xi Z, Yang GF. Computational Discovery of Potent and Bioselective Protoporphyrinogen IX Oxidase Inhibitor via Fragment Deconstruction Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5581-5588. [PMID: 28654285 DOI: 10.1021/acs.jafc.7b01557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tuning the binding selectivity through appropriate ways is a primary goal in the design and optimization of a lead toward agrochemical discovery. However, how to achieve rational design of selectivity is still a big challenge. Herein, we developed a novel computational fragment generation and coupling (CFGC) strategy that led to a series of highly potent and bioselective inhibitors targeting protoporphyrinogen IX oxidase. This enzyme plays a vital role in heme and chlorophyll biosynthesis, which has been proven to be associated with many drugs and agrochemicals. However, existing agrochemicals are nonbioselective, resulting in a great threat to nontargeted organisms. To the best of our knowledge, this is the first bioselective inhibitor targeting the tetrapyrrole biosynthesis pathway. In addition, the candidate showed excellent in vivo bioactivity and much better safety toward humans.
Collapse
Affiliation(s)
- Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Yang Zuo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Sheng-Gang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Qian Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Yue Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Chun-Yan Yin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Cong-Wei Niu
- State Key Laboratory of Elemento-Organic Chemistry Nankai University , Tianjin 300071, People's Republic of China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry Nankai University , Tianjin 300071, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjing 300072, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjing 300072, People's Republic of China
| |
Collapse
|
26
|
Wang DW, Li Q, Wen K, Ismail I, Liu DD, Niu CW, Wen X, Yang GF, Xi Z. Synthesis and Herbicidal Activity of Pyrido[2,3-d]pyrimidine-2,4-dione-Benzoxazinone Hybrids as Protoporphyrinogen Oxidase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5278-5286. [PMID: 28616976 DOI: 10.1021/acs.jafc.7b01990] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To search for new protoporphyrinogen oxidase (PPO, EC 1.3.3.4) inhibitors with improved bioactivity, a series of novel pyrido[2,3-d]pyrimidine-2,4-dione-benzoxazinone hybrids, 9-13, were designed and synthesized. Several compounds with improved tobacco PPO (mtPPO)-inhibiting and promising herbicidal activities were found. Among them, the most potent compound, 3-(7-fluoro-3-oxo-4-(prop-2-yn-1-yl)-3,4-dihydro-2H-benzo[b][1,4] oxazin-6-yl)-1-methylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione, 11q, with a Ki value of 0.0074 μM, showed six times more activity than flumioxazin (Ki = 0.046 μM) against mtPPO. Compound 11q displayed a strong and broad spectrum of weed control at 37.5-150 g of active ingredient (ai)/ha by both post- and pre-emergence application, which was comparable to that of flumioxazin. 11q was safe to maize, soybean, peanut, and cotton at 150 g ai/ha, and selective to rice and wheat at 75 g ai/ha by pre-emergence application, indicating potential applicability in these fields.
Collapse
Affiliation(s)
- Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University , Tianjin 300071, P. R. China
| | - Qian Li
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University , Tianjin 300071, P. R. China
| | - Kai Wen
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University , Tianjin 300071, P. R. China
| | - Ismail Ismail
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University , Tianjin 300071, P. R. China
| | - Dan-Dan Liu
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University , Tianjin 300071, P. R. China
| | - Cong-Wei Niu
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University , Tianjin 300071, P. R. China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University , Tianjin 300071, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University , Tianjin 300071, P. R. China
| |
Collapse
|
27
|
Dailey HA, Dailey TA, Gerdes S, Jahn D, Jahn M, O'Brian MR, Warren MJ. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product. Microbiol Mol Biol Rev 2017; 81:e00048-16. [PMID: 28123057 PMCID: PMC5312243 DOI: 10.1128/mmbr.00048-16] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized.
Collapse
Affiliation(s)
- Harry A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Tamara A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Svetlana Gerdes
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois, USA
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universitaet Braunschweig, Braunschweig, Germany
| | - Martina Jahn
- Institute of Microbiology, Technische Universitaet Braunschweig, Braunschweig, Germany
| | - Mark R O'Brian
- Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Martin J Warren
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| |
Collapse
|
28
|
Wang B, Wen X, Xi Z. Molecular Simulations Bring New Insights into Protoporphyrinogen IX Oxidase/Protoporphyrinogen IX Interaction Modes. Mol Inform 2016; 35:476-482. [DOI: 10.1002/minf.201600008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/27/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Baifan Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, Nankai University; Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300071 P. R. China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, Nankai University; Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300071 P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, Nankai University; Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300071 P. R. China
| |
Collapse
|
29
|
Boateng MO, Corrigall AV, Sturrock E, Meissner PN. Characterisation of the flavin adenine dinucleotide binding region of Myxococcus xanthus protoporphyrinogen oxidase. Biochem Biophys Rep 2015; 4:306-311. [PMID: 29124218 PMCID: PMC5669401 DOI: 10.1016/j.bbrep.2015.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 11/15/2022] Open
Abstract
Protoporphyrinogen oxidase (PPOX), the penultimate enzyme in the haem biosynthetic pathway catalysers the six electron oxidation of protoporphyrinogen-IX to protoporphyrin-IX, in the presence of flavin adenine dinucleotide (FAD) and oxygen. In humans, partial defects in PPOX result in variegate porphyria. In this study, the FAD binding region in Myxococcus xanthus PPOX was analysed by engineering and characterising a selection of mutant proteins. Amino acid residues which interact with FAD via their side chains were selected for study. Mutants were characterised and compared with wild type protein. Characterisation included FAD quantitation, analysis of FAD spectra and kinetic assay. Results revealed that Serine 20 mutants could still bind FAD, but polarity in this position is favourable, yet not essential for the integrity of FAD binding. Study of Glutamate 39 mutants suggest that a negative charge at position 39 is clearly favoured for interaction with the ribose ring of FAD, as all non-conservative replacements could not bind sufficient FAD. Asparagine 441 appears not to be directly involved in FAD binding but rather in stabilizing the FAD, and polarity in this position appears important. Tryptophan 408 may play a role in orientating or stabilizing the bound substrate during catalysis, and a non-polar (or slightly polar) residue is favoured at this position; however, aromaticity in this position appears not to be critical. Overall this study sheds further light on how M. xanthus PPOX interacts with FAD.
Collapse
Affiliation(s)
- Mavis O Boateng
- Lennox Eales Porphyria Laboratories, Department of Medicine, University of Cape Town Medical School, K-floor, Old GSH Main Building, Observatory, Cape Town 7925, South Africa
| | - Anne V Corrigall
- Lennox Eales Porphyria Laboratories, Department of Medicine, University of Cape Town Medical School, K-floor, Old GSH Main Building, Observatory, Cape Town 7925, South Africa
| | - Edward Sturrock
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, and Structural Biology Research Unit, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Peter N Meissner
- Lennox Eales Porphyria Laboratories, Department of Medicine, University of Cape Town Medical School, K-floor, Old GSH Main Building, Observatory, Cape Town 7925, South Africa.,Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, and Structural Biology Research Unit, University of Cape Town, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
30
|
Lobo SAL, Scott A, Videira MAM, Winpenny D, Gardner M, Palmer MJ, Schroeder S, Lawrence AD, Parkinson T, Warren MJ, Saraiva LM. Staphylococcus aureushaem biosynthesis: characterisation of the enzymes involved in final steps of the pathway. Mol Microbiol 2015; 97:472-87. [DOI: 10.1111/mmi.13041] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Susana A. L. Lobo
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa, Avenida da República (EAN); 2780-157 Oeiras Portugal
| | - Alan Scott
- School of Biosciences; University of Kent; Giles Lane Canterbury Kent CT2 7NJ UK
| | - Marco A. M. Videira
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa, Avenida da República (EAN); 2780-157 Oeiras Portugal
| | - David Winpenny
- Pfizer Global Research and Development; Sandwich Kent UK
| | - Mark Gardner
- Pfizer Global Research and Development; Sandwich Kent UK
| | - Mike J. Palmer
- Pfizer Global Research and Development; Sandwich Kent UK
| | - Susanne Schroeder
- School of Biosciences; University of Kent; Giles Lane Canterbury Kent CT2 7NJ UK
| | - Andrew D. Lawrence
- School of Biosciences; University of Kent; Giles Lane Canterbury Kent CT2 7NJ UK
| | | | - Martin J. Warren
- School of Biosciences; University of Kent; Giles Lane Canterbury Kent CT2 7NJ UK
| | - Lígia M. Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa, Avenida da República (EAN); 2780-157 Oeiras Portugal
| |
Collapse
|
31
|
Kobayashi K, Masuda T, Tajima N, Wada H, Sato N. Molecular phylogeny and intricate evolutionary history of the three isofunctional enzymes involved in the oxidation of protoporphyrinogen IX. Genome Biol Evol 2015; 6:2141-55. [PMID: 25108393 PMCID: PMC4231631 DOI: 10.1093/gbe/evu170] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tetrapyrroles such as heme and chlorophyll are essential for biological processes, including oxygenation, respiration, and photosynthesis. In the tetrapyrrole biosynthesis pathway, protoporphyrinogen IX oxidase (Protox) catalyzes the formation of protoporphyrin IX, the last common intermediate for the biosynthesis of heme and chlorophyll. Three nonhomologous isofunctional enzymes, HemG, HemJ, and HemY, for Protox have been identified. To reveal the distribution and evolution of the three Protox enzymes, we identified homologs of each along with other heme biosynthetic enzymes by whole-genome clustering across three domains of life. Most organisms possess only one of the three Protox types, with some exceptions. Detailed phylogenetic analysis revealed that HemG is mostly limited to γ-Proteobacteria whereas HemJ may have originated within α-Proteobacteria and transferred to other Proteobacteria and Cyanobacteria. In contrast, HemY is ubiquitous in prokaryotes and is the only Protox in eukaryotes, so this type may be the ancestral Protox. Land plants have a unique HemY homolog that is also shared by Chloroflexus species, in addition to the main HemY homolog originating from Cyanobacteria. Meanwhile, organisms missing any Protox can be classified into two groups; those lacking most heme synthetic genes, which necessarily depend on external heme supply, and those lacking only genes involved in the conversion of uroporphyrinogen III into heme, which would use a precorrin2-dependent alternative pathway. However, hemN encoding coproporphyrinogen IX oxidase was frequently found in organisms lacking Protox enzyme, which suggests a unique role of this gene other than in heme biosynthesis.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | - Tatsuru Masuda
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | - Naoyuki Tajima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan CREST, JST, Saitama, Japan
| | - Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan CREST, JST, Saitama, Japan
| |
Collapse
|
32
|
Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. Proc Natl Acad Sci U S A 2015; 112:2210-5. [PMID: 25646457 DOI: 10.1073/pnas.1416285112] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been generally accepted that biosynthesis of protoheme (heme) uses a common set of core metabolic intermediates that includes protoporphyrin. Herein, we show that the Actinobacteria and Firmicutes (high-GC and low-GC Gram-positive bacteria) are unable to synthesize protoporphyrin. Instead, they oxidize coproporphyrinogen to coproporphyrin, insert ferrous iron to make Fe-coproporphyrin (coproheme), and then decarboxylate coproheme to generate protoheme. This pathway is specified by three genes named hemY, hemH, and hemQ. The analysis of 982 representative prokaryotic genomes is consistent with this pathway being the most ancient heme synthesis pathway in the Eubacteria. Our results identifying a previously unknown branch of tetrapyrrole synthesis support a significant shift from current models for the evolution of bacterial heme and chlorophyll synthesis. Because some organisms that possess this coproporphyrin-dependent branch are major causes of human disease, HemQ is a novel pharmacological target of significant therapeutic relevance, particularly given high rates of antimicrobial resistance among these pathogens.
Collapse
|
33
|
Hao GF, Tan Y, Xu WF, Cao RJ, Xi Z, Yang GF. Understanding resistance mechanism of protoporphyrinogen oxidase-inhibiting herbicides: insights from computational mutation scanning and site-directed mutagenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7209-15. [PMID: 24983412 DOI: 10.1021/jf5018115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The potential of protoporphyrinogen oxidase (PPO) to develop resistance against five PPO-inhibiting herbicides has been studied using computational mutation scanning (CMS) protocol, leading to valuable insights into the resistance mechanisms and structure-resistance relationship of the PPO inhibitors. The calculated shifts in the binding free energies caused by the mutations correlated very well with those derived from the corresponding experimental data obtained from site-directed mutagenesis of PPO, leading to valuable insights into the resistance mechanisms of PPO inhibitors. The calculated entropy change was related to the conformational flexibility of the inhibitor, which demonstrated that inhibitors with appropriate conformational flexibility may inhibit both the wild type and mutants simultaneously. The reasonable correlation between the computational and experimental data further validate that CMS protocol is valuable for predicting resistance associated with amino acid mutations on target proteins.
Collapse
Affiliation(s)
- Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan, P. R. China
| | | | | | | | | | | |
Collapse
|
34
|
Mutations in hemG mediate resistance to salicylidene acylhydrazides, demonstrating a novel link between protoporphyrinogen oxidase (HemG) and Chlamydia trachomatis infectivity. J Bacteriol 2013; 195:4221-30. [PMID: 23852872 DOI: 10.1128/jb.00506-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Salicylidene acylhydrazides (SAHs) inhibit the type III secretion system (T3S) of Yersinia and other Gram-negative bacteria. In addition, SAHs restrict the growth and development of Chlamydia species. However, since the inhibition of Chlamydia growth by SAH is suppressed by the addition of excess iron and since SAHs have an iron-chelating capacity, their role as specific T3S inhibitors is unclear. We investigated here whether SAHs exhibit a function on C. trachomatis that goes beyond iron chelation. We found that the iron-saturated SAH INP0341 (IS-INP0341) specifically affects C. trachomatis infectivity with reduced generation of infectious elementary body (EB) progeny. Selection and isolation of spontaneous SAH-resistant mutant strains revealed that mutations in hemG suppressed the reduced infectivity caused by IS-INP0341 treatment. Structural modeling of C. trachomatis HemG predicts that the acquired mutations are located in the active site of the enzyme, suggesting that IS-INP0341 inhibits this domain of HemG and that protoporphyrinogen oxidase (HemG) and heme metabolism are important for C. trachomatis infectivity.
Collapse
|
35
|
Abstract
Heme, which is composed of iron and the small organic molecule protoporphyrin, is an essential component of hemoglobin as well as a variety of physiologically important hemoproteins. During erythropoiesis, heme synthesis is induced before, and is essential for, globin synthesis. Although all cells possess the ability to synthesize heme, there are distinct differences between regulation of the pathway in developing erythroid cells and all other types of cells. Disorders that compromise the ability of the developing red cell to synthesize heme can have profound medical implications. The biosynthetic pathway for heme and key regulatory features are reviewed herein, along with specific human genetic disorders that arise from defective heme synthesis such as X-linked sideroblastic anemia and erythropoietic protoporphyria.
Collapse
Affiliation(s)
- Harry A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
36
|
Volkov A, Khoshnevis S, Neumann P, Herrfurth C, Wohlwend D, Ficner R, Feussner I. Crystal structure analysis of a fatty acid double-bond hydratase from Lactobacillus acidophilus. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:648-57. [PMID: 23519674 DOI: 10.1107/s0907444913000991] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/10/2013] [Indexed: 11/10/2022]
Abstract
Bacteria have evolved mechanisms for the hydrogenation of unsaturated fatty acids. Hydroxy fatty acid formation may be the first step in such a process; however, knowledge of the structural and mechanistic aspects of this reaction is scarce. Recently, myosin cross-reactive antigen was shown to be a bacterial FAD-containing hydratase which acts on the 9Z and 12Z double bonds of C16 and C18 non-esterified fatty acids, with the formation of 10-hydroxy and 10,13-dihydroxy fatty acids. These fatty acid hydratases form a large protein family which is conserved across Gram-positive and Gram-negative bacteria with no sequence similarity to any known protein apart from the FAD-binding motif. In order to shed light on the substrate recognition and the mechanism of the hydratase reaction, the crystal structure of the hydratase from Lactobacillus acidophilus (LAH) was determined by single-wavelength anomalous dispersion. Crystal structures of apo LAH and of LAH with bound linoleic acid were refined at resolutions of 2.3 and 1.8 Å, respectively. LAH is a homodimer; each protomer consists of four intricately connected domains. Three of them form the FAD-binding and substrate-binding sites and reveal structural similarity to three domains of several flavin-dependent enzymes, including amine oxidoreductases. The additional fourth domain of LAH is located at the C-terminus and consists of three α-helices. It covers the entrance to the hydrophobic substrate channel leading from the protein surface to the active site. In the presence of linoleic acid, the fourth domain of one protomer undergoes conformational changes and opens the entrance to the substrate-binding channel of the other protomer of the LAH homodimer. The linoleic acid molecule is bound at the entrance to the substrate channel, suggesting movement of the lid domain triggered by substrate recognition.
Collapse
Affiliation(s)
- Anton Volkov
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Wang B, Wen X, Qin X, Wang Z, Tan Y, Shen Y, Xi Z. Quantitative structural insight into human variegate porphyria disease. J Biol Chem 2013; 288:11731-40. [PMID: 23467411 DOI: 10.1074/jbc.m113.459768] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Defects in the human protoporphyrinogen oxidase (hPPO) gene, resulting in ~50% decreased activity of hPPO, is responsible for the dominantly inherited disorder variegate porphyria (VP). To understand the molecular mechanism of VP, we employed the site-directed mutagenesis, biochemical assays, structural biology, and molecular dynamics simulation studies to investigate VP-causing hPPO mutants. We report here the crystal structures of R59Q and R59G mutants in complex with acifluorfen at a resolution of 2.6 and 2.8 Å. The r.m.s.d. of the Cα atoms of the active site structure of R59G and R59Q with respect to the wild-type was 0.20 and 0.15 Å, respectively. However, these highly similar static crystal structures of mutants with the wild-type could not quantitatively explain the observed large differences in their enzymatic activity. To understand how the hPPO mutations affect their catalytic activities, we combined molecular dynamics simulation and statistical analysis to quantitatively understand the molecular mechanism of VP-causing mutants. We have found that the probability of the privileged conformations of hPPO can be correlated very well with the k(cat)/K(m) of PPO (correlation coefficient, R(2) > 0.9), and the catalytic activity of 44 clinically reported VP-causing mutants can be accurately predicted. These results indicated that the VP-causing mutation affect the catalytic activity of hPPO by affecting the ability of hPPO to sample the privileged conformations. The current work, together with our previous crystal structure study on the wild-type hPPO, provided the quantitative structural insight into human variegate porphyria disease.
Collapse
Affiliation(s)
- Baifan Wang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Schaub P, Yu Q, Gemmecker S, Poussin-Courmontagne P, Mailliot J, McEwen AG, Ghisla S, Al-Babili S, Cavarelli J, Beyer P. On the structure and function of the phytoene desaturase CRTI from Pantoea ananatis, a membrane-peripheral and FAD-dependent oxidase/isomerase. PLoS One 2012; 7:e39550. [PMID: 22745782 PMCID: PMC3382138 DOI: 10.1371/journal.pone.0039550] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/22/2012] [Indexed: 11/19/2022] Open
Abstract
CRTI-type phytoene desaturases prevailing in bacteria and fungi can form lycopene directly from phytoene while plants employ two distinct desaturases and two cis-tans isomerases for the same purpose. This property renders CRTI a valuable gene to engineer provitamin A-formation to help combat vitamin A malnutrition, such as with Golden Rice. To understand the biochemical processes involved, recombinant CRTI was produced and obtained in homogeneous form that shows high enzymatic activity with the lipophilic substrate phytoene contained in phosphatidyl-choline (PC) liposome membranes. The first crystal structure of apo-CRTI reveals that CRTI belongs to the flavoprotein superfamily comprising protoporphyrinogen IX oxidoreductase and monoamine oxidase. CRTI is a membrane-peripheral oxidoreductase which utilizes FAD as the sole redox-active cofactor. Oxygen, replaceable by quinones in its absence, is needed as the terminal electron acceptor. FAD, besides its catalytic role also displays a structural function by enabling the formation of enzymatically active CRTI membrane associates. Under anaerobic conditions the enzyme can act as a carotene cis-trans isomerase. In silico-docking experiments yielded information on substrate binding sites, potential catalytic residues and is in favor of single half-site recognition of the symmetrical C(40) hydrocarbon substrate.
Collapse
Affiliation(s)
- Patrick Schaub
- Faculty of Biology, Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Qiuju Yu
- Faculty of Biology, Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Sandra Gemmecker
- Faculty of Biology, Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Pierre Poussin-Courmontagne
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire, UDS, CNRS, INSERM, Illkirch, France
| | - Justine Mailliot
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire, UDS, CNRS, INSERM, Illkirch, France
| | - Alastair G. McEwen
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire, UDS, CNRS, INSERM, Illkirch, France
| | - Sandro Ghisla
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Salim Al-Babili
- Faculty of Biology, Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Jean Cavarelli
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire, UDS, CNRS, INSERM, Illkirch, France
| | - Peter Beyer
- Faculty of Biology, Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
39
|
Hamza I, Dailey HA. One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1617-32. [PMID: 22575458 DOI: 10.1016/j.bbamcr.2012.04.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/15/2012] [Accepted: 04/19/2012] [Indexed: 12/17/2022]
Abstract
The appearance of heme, an organic ring surrounding an iron atom, in evolution forever changed the efficiency with which organisms were able to generate energy, utilize gasses and catalyze numerous reactions. Because of this, heme has become a near ubiquitous compound among living organisms. In this review we have attempted to assess the current state of heme synthesis and trafficking with a goal of identifying crucial missing information, and propose hypotheses related to trafficking that may generate discussion and research. The possibilities of spatially organized supramolecular enzyme complexes and organelle structures that facilitate efficient heme synthesis and subsequent trafficking are discussed and evaluated. Recently identified players in heme transport and trafficking are reviewed and placed in an organismal context. Additionally, older, well established data are reexamined in light of more recent studies on cellular organization and data available from newer model organisms. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Iqbal Hamza
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
40
|
van Straaten KE, Routier FH, Sanders DAR. Towards the crystal structure elucidation of eukaryotic UDP-galactopyranose mutase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:455-9. [PMID: 22505419 PMCID: PMC3325819 DOI: 10.1107/s1744309112006914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 02/15/2012] [Indexed: 11/10/2022]
Abstract
UDP-galactopyranose mutase (UGM) catalyzes the interconversion of UDP-galactopyranose and UDP-galactofuranose. Eukaryotic UGMs from Aspergillus fumigatus and Leishmania major have been purified to homogeneity by means of Ni(2+)-affinity chromatography and crystallized. Eukaryotic UGM structure elucidation was not straightforward owing to high pseudo-symmetry, twinning and very low anomalous signal. Phasing to 2.8 Å resolution using SAD was successful for L. major UGM. However, the maps could only be improved by iterative density modification and manual model building. High pseudo-symmetry and twinning prevented correct space-group assignment and the completion of structure refinement. The structure of A. fumigatus UGM to 2.52 Å resolution was determined by molecular replacement using the incomplete 2.8 Å resolution L. major UGM model.
Collapse
Affiliation(s)
- Karin E. van Straaten
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Francoise H. Routier
- Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - David A. R. Sanders
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
41
|
Jiang LL, Zuo Y, Wang ZF, Tan Y, Wu QY, Xi Z, Yang GF. Design and syntheses of novel N-(benzothiazol-5-yl)-4,5,6,7-tetrahydro-1H-isoindole-1,3(2H)-dione and N-(benzothiazol-5-yl)isoindoline-1,3-dione as potent protoporphyrinogen oxidase inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6172-6179. [PMID: 21517076 DOI: 10.1021/jf200616y] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Discovery of protoporphyrinogen oxidase (PPO, EC 1.3.3.4) inhibitors has been one of the hottest research areas in the field of herbicide development for many years. As a continuation of our research work on the development of new PPO-inhibiting herbicides, a series of novel N-(benzothiazol-5-yl)-4,5,6,7-tetrahydro-1H-isoindole-1,3(2H)-diones (1a-p) and N-(benzothiazol-5-yl)isoindoline-1,3-diones (2a-h) were designed and synthesized according to the ring-closing strategy of two ortho-substituents. The bioassay results indicated that some newly synthesized compounds exhibited higher PPO inhibition activity than the control of sulfentrazone. Compound 1a, S-(5-(1,3-dioxo-4,5,6,7-tetrahydro-1H-isoindol-2(3H)-yl)-6-fluorobenzothiazol-2-yl) O-methyl carbonothioate, was identified as the most potent inhibitor with k(i) value of 0.08 μM, about 9 times higher than that of sulfentrazone (k(i) = 0.72 μM). Further green house assay showed that compound 1b, methyl 2-((5-(1,3-dioxo-4,5,6,7-tetrahydro-1H-isoindol-2(3H)-yl)-6-fluorobenzothiazol-2-yl)thio)acetate, exhibited herbicidal activity comparable to that of sulfentrazone even at a concentration of 37.5 g ai/ha. In addition, among six tested crops, wheat exhibited high tolerance to compound 1b even at a dosage of 300 g ai/ha. These results indicated that compound 1b might have the potential to be developed as a new herbicide for weed control of wheat field.
Collapse
Affiliation(s)
- Li-Li Jiang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | | | | | | | | | | | | |
Collapse
|
42
|
Hao GF, Tan Y, Yu NX, Yang GF. Structure–activity relationships of diphenyl-ether as protoporphyrinogen oxidase inhibitors: insights from computational simulations. J Comput Aided Mol Des 2011; 25:213-22. [DOI: 10.1007/s10822-011-9412-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 01/10/2011] [Indexed: 11/28/2022]
|
43
|
Qin X, Tan Y, Wang L, Wang Z, Wang B, Wen X, Yang G, Xi Z, Shen Y. Structural insight into human variegate porphyria disease. FASEB J 2010; 25:653-64. [PMID: 21048046 DOI: 10.1096/fj.10-170811] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human protoporphyrinogen IX oxidase (hPPO), a mitochondrial inner membrane protein, converts protoporphyrinogen IX to protoporphyrin IX in the heme biosynthetic pathway. Mutations in the hPPO gene cause the inherited human disease variegate porphyria (VP). In this study, we report the crystal structure of hPPO in complex with the coenzyme flavin adenine dinucleotide (FAD) and the inhibitor acifluorfen at a resolution of 1.9 Å. The structural and biochemical analyses revealed the molecular details of FAD and acifluorfen binding to hPPO as well as the interactions of the substrate with hPPO. Structural analysis and gel chromatography indicated that hPPO is a monomer rather than a homodimer in vitro. The founder-effect mutation R59W in VP patients is most likely caused by a severe electrostatic hindrance in the hydrophilic binding pocket involving the bulky, hydrophobic indolyl ring of the tryptophan. Forty-seven VP-causing mutations were purified by chromatography and kinetically characterized in vitro. The effect of each mutation was demonstrated in the high-resolution crystal structure.
Collapse
Affiliation(s)
- Xiaohong Qin
- College of Life Science, Nankai University, Tianjin, China 300071
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Layer G, Reichelt J, Jahn D, Heinz DW. Structure and function of enzymes in heme biosynthesis. Protein Sci 2010; 19:1137-61. [PMID: 20506125 DOI: 10.1002/pro.405] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tetrapyrroles like hemes, chlorophylls, and cobalamin are complex macrocycles which play essential roles in almost all living organisms. Heme serves as prosthetic group of many proteins involved in fundamental biological processes like respiration, photosynthesis, and the metabolism and transport of oxygen. Further, enzymes such as catalases, peroxidases, or cytochromes P450 rely on heme as essential cofactors. Heme is synthesized in most organisms via a highly conserved biosynthetic route. In humans, defects in heme biosynthesis lead to severe metabolic disorders called porphyrias. The elucidation of the 3D structures for all heme biosynthetic enzymes over the last decade provided new insights into their function and elucidated the structural basis of many known diseases. In terms of structure and function several rather unique proteins were revealed such as the V-shaped glutamyl-tRNA reductase, the dipyrromethane cofactor containing porphobilinogen deaminase, or the "Radical SAM enzyme" coproporphyrinogen III dehydrogenase. This review summarizes the current understanding of the structure-function relationship for all heme biosynthetic enzymes and their potential interactions in the cell.
Collapse
Affiliation(s)
- Gunhild Layer
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | | | | | | |
Collapse
|
45
|
Dailey TA, Boynton TO, Albetel AN, Gerdes S, Johnson MK, Dailey HA. Discovery and Characterization of HemQ: an essential heme biosynthetic pathway component. J Biol Chem 2010; 285:25978-86. [PMID: 20543190 DOI: 10.1074/jbc.m110.142604] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we identify a previously undescribed protein, HemQ, that is required for heme synthesis in Gram-positive bacteria. We have characterized HemQ from Bacillus subtilis and a number of Actinobacteria. HemQ is a multimeric heme-binding protein. Spectroscopic studies indicate that this heme is high spin ferric iron and is ligated by a conserved histidine with the sixth coordination site available for binding a small molecule. The presence of HemQ along with the terminal two pathway enzymes, protoporphyrinogen oxidase (HemY) and ferrochelatase, is required to synthesize heme in vivo and in vitro. Although the exact role played by HemQ remains to be characterized, to be fully functional in vitro it requires the presence of a bound heme. HemQ possesses minimal peroxidase activity, but as a catalase it has a turnover of over 10(4) min(-1). We propose that this activity may be required to eliminate hydrogen peroxide that is generated by each turnover of HemY. Given the essential nature of heme synthesis and the restricted distribution of HemQ, this protein is a potential antimicrobial target for pathogens such as Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Tamara A Dailey
- Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
46
|
Heme biosynthesis is coupled to electron transport chains for energy generation. Proc Natl Acad Sci U S A 2010; 107:10436-41. [PMID: 20484676 DOI: 10.1073/pnas.1000956107] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellular energy generation uses membrane-localized electron transfer chains for ATP synthesis. Formed ATP in turn is consumed for the biosynthesis of cellular building blocks. In contrast, heme cofactor biosynthesis was found driving ATP generation via electron transport after initial ATP consumption. The FMN enzyme protoporphyrinogen IX oxidase (HemG) of Escherichia coli abstracts six electrons from its substrate and transfers them via ubiquinone, cytochrome bo(3) (Cyo) and cytochrome bd (Cyd) oxidase to oxygen. Under anaerobic conditions electrons are transferred via menaquinone, fumarate (Frd) and nitrate reductase (Nar). Cyo, Cyd and Nar contribute to the proton motive force that drives ATP formation. Four electron transport chains from HemG via diverse quinones to Cyo, Cyd, Nar, and Frd were reconstituted in vitro from purified components. Characterization of E. coli mutants deficient in nar, frd, cyo, cyd provided in vivo evidence for a detailed model of heme biosynthesis coupled energy generation.
Collapse
|