1
|
Buyel JF. Towards a seamless product and process development workflow for recombinant proteins produced by plant molecular farming. Biotechnol Adv 2024; 75:108403. [PMID: 38986726 DOI: 10.1016/j.biotechadv.2024.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Plant molecular farming (PMF) has been promoted as a fast, efficient and cost-effective alternative to bacteria and animal cells for the production of biopharmaceutical proteins. Numerous plant species have been tested to produce a wide range of drug candidates. However, PMF generally lacks a systematic, streamlined and seamless workflow to continuously fill the product pipeline. Therefore, it is currently unable to compete with established platforms in terms of routine, throughput and horizontal integration (the rapid translation of product candidates to preclinical and clinical development). Individual management decisions, limited funding and a lack of qualified production capacity can hinder the execution of such projects, but we also lack suitable technologies for sample handling and data management. This perspectives article will highlight current bottlenecks in PMF and offer potential solutions that combine PMF with existing technologies to build an integrated facility of the future for product development, testing, manufacturing and clinical translation. Ten major bottlenecks have been identified and are discussed in turn: automated cloning and simplified transformation options, reproducibility of bacterial cultivation, bioreactor integration with automated cell handling, options for rapid mid-scale candidate and product manufacturing, interconnection with (group-specific or personalized) clinical trials, diversity of (post-)infiltration conditions, development of downstream processing platforms, continuous process operation, compliance of manufacturing conditions with biosafety regulations, scaling requirements for cascading biomass.
Collapse
Affiliation(s)
- J F Buyel
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, A-1190 Vienna, Austria.
| |
Collapse
|
2
|
Yong D, Ahmad S, Mabanglo MF, Halabelian L, Schapira M, Ackloo S, Perveen S, Ghiabi P, Vedadi M. Development of Peptide Displacement Assays to Screen for Antagonists of DDB1 Interactions. Biochemistry 2024; 63:1297-1306. [PMID: 38729622 PMCID: PMC11112733 DOI: 10.1021/acs.biochem.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The DNA damage binding protein 1 (DDB1) is an essential component of protein complexes involved in DNA damage repair and the ubiquitin-proteasome system (UPS) for protein degradation. As an adaptor protein specific to Cullin-RING E3 ligases, DDB1 binds different receptors that poise protein substrates for ubiquitination and subsequent degradation by the 26S proteasome. Examples of DDB1-binding protein receptors are Cereblon (CRBN) and the WD-repeat containing DDB1- and CUL4-associated factors (DCAFs). Cognate substrates of CRBN and DCAFs are involved in cancer-related cellular processes or are mimicked by viruses to reprogram E3 ligases for the ubiquitination of antiviral host factors. Thus, disrupting interactions of DDB1 with receptor proteins might be an effective strategy for anticancer and antiviral drug discovery. Here, we developed fluorescence polarization (FP)-based peptide displacement assays that utilize full-length DDB1 and fluorescein isothiocyanate (FITC)-labeled peptide probes derived from the specific binding motifs of DDB1 interactors. A general FP-based assay condition applicable to diverse peptide probes was determined and optimized. Mutagenesis and biophysical analyses were then employed to identify the most suitable peptide probe. The FITC-DCAF15 L49A peptide binds DDB1 with a dissociation constant of 68 nM and can be displaced competitively by unlabeled peptides at sub-μM to low nM concentrations. These peptide displacement assays can be used to screen small molecule libraries to identify novel modulators that could specifically antagonize DDB1 interactions toward development of antiviral and cancer therapeutics.
Collapse
Affiliation(s)
- Darren Yong
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Shabbir Ahmad
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Mark F. Mabanglo
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Levon Halabelian
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Matthieu Schapira
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Suzanne Ackloo
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Sumera Perveen
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Pegah Ghiabi
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Masoud Vedadi
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
3
|
Ferrer-Miralles N, Garcia-Fruitós E. Heterologous Expression of Difficult to Produce Proteins in Bacterial Systems. Int J Mol Sci 2024; 25:822. [PMID: 38255896 PMCID: PMC10815505 DOI: 10.3390/ijms25020822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Proteins play a crucial role in maintaining homeostasis, providing structure, and enabling various functions in biological systems [...].
Collapse
Affiliation(s)
- Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain;
- Department of Genetics and Microbiology, Autonomous University of Barcelona, 08193 Bellaterra, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Elena Garcia-Fruitós
- Ruminant Production Group, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
| |
Collapse
|
4
|
Kotov V, Killer M, Jungnickel KEJ, Lei J, Finocchio G, Steinke J, Bartels K, Strauss J, Dupeux F, Humm AS, Cornaciu I, Márquez JA, Pardon E, Steyaert J, Löw C. Plasticity of the binding pocket in peptide transporters underpins promiscuous substrate recognition. Cell Rep 2023; 42:112831. [PMID: 37467108 DOI: 10.1016/j.celrep.2023.112831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
Proton-dependent oligopeptide transporters (POTs) are promiscuous transporters of the major facilitator superfamily that constitute the main route of entry for a wide range of dietary peptides and orally administrated peptidomimetic drugs. Given their clinical and pathophysiological relevance, several POT homologs have been studied extensively at the structural and molecular level. However, the molecular basis of recognition and transport of diverse peptide substrates has remained elusive. We present 14 X-ray structures of the bacterial POT DtpB in complex with chemically diverse di- and tripeptides, providing novel insights into the plasticity of the conserved central binding cavity. We analyzed binding affinities for more than 80 peptides and monitored uptake by a fluorescence-based transport assay. To probe whether all 8400 natural di- and tripeptides can bind to DtpB, we employed state-of-the-art molecular docking and machine learning and conclude that peptides with compact hydrophobic residues are the best DtpB binders.
Collapse
Affiliation(s)
- Vadim Kotov
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Maxime Killer
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Hamburg, Germany
| | - Katharina E J Jungnickel
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Jian Lei
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany; State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Giada Finocchio
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Josi Steinke
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Kim Bartels
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Jan Strauss
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Florine Dupeux
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - Anne-Sophie Humm
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - Irina Cornaciu
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - José A Márquez
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, 1050 Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, 1050 Brussels, Belgium
| | - Christian Löw
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany.
| |
Collapse
|
5
|
Barroso M, Gertzen M, Puchwein-Schwepcke AF, Preisler H, Sturm A, Reiss DD, Danecka MK, Muntau AC, Gersting SW. Glutaryl-CoA Dehydrogenase Misfolding in Glutaric Acidemia Type 1. Int J Mol Sci 2023; 24:13158. [PMID: 37685964 PMCID: PMC10487539 DOI: 10.3390/ijms241713158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Glutaric acidemia type 1 (GA1) is a neurotoxic metabolic disorder due to glutaryl-CoA dehydrogenase (GCDH) deficiency. The high number of missense variants associated with the disease and their impact on GCDH activity suggest that disturbed protein conformation can affect the biochemical phenotype. We aimed to elucidate the molecular basis of protein loss of function in GA1 by performing a parallel analysis in a large panel of GCDH missense variants using different biochemical and biophysical methodologies. Thirteen GCDH variants were investigated in regard to protein stability, hydrophobicity, oligomerization, aggregation, and activity. An altered oligomerization, loss of protein stability and solubility, as well as an augmented susceptibility to aggregation were observed. GA1 variants led to a loss of enzymatic activity, particularly when present at the N-terminal domain. The reduced cellular activity was associated with loss of tetramerization. Our results also suggest a correlation between variant sequence location and cellular protein stability (p < 0.05), with a more pronounced loss of protein observed with variant proximity to the N-terminus. The broad panel of variant-mediated conformational changes of the GCDH protein supports the classification of GA1 as a protein-misfolding disorder. This work supports research toward new therapeutic strategies that target this molecular disease phenotype.
Collapse
Affiliation(s)
- Madalena Barroso
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (M.K.D.); (A.C.M.)
| | - Marcus Gertzen
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; (M.G.); (A.F.P.-S.); (H.P.); (A.S.); (D.D.R.)
- Psychiatry and Psychotherapy, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
| | - Alexandra F. Puchwein-Schwepcke
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; (M.G.); (A.F.P.-S.); (H.P.); (A.S.); (D.D.R.)
- Department of Pediatric Neurology and Developmental Medicine, University of Basel Children’s Hospital, 4056 Basel, Switzerland
| | - Heike Preisler
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; (M.G.); (A.F.P.-S.); (H.P.); (A.S.); (D.D.R.)
| | - Andreas Sturm
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; (M.G.); (A.F.P.-S.); (H.P.); (A.S.); (D.D.R.)
| | - Dunja D. Reiss
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; (M.G.); (A.F.P.-S.); (H.P.); (A.S.); (D.D.R.)
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 81377 Munich, Germany
| | - Marta K. Danecka
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (M.K.D.); (A.C.M.)
| | - Ania C. Muntau
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (M.K.D.); (A.C.M.)
- University Children’s Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Søren W. Gersting
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (M.K.D.); (A.C.M.)
| |
Collapse
|
6
|
Ma Q, Shibata M, Hagiwara T. Ice crystal recrystallization inhibition of type I antifreeze protein, type III antifreeze protein, and antifreeze glycoprotein: effects of AF(G)Ps concentration and heat treatment. Biosci Biotechnol Biochem 2022; 86:635-645. [PMID: 35134820 DOI: 10.1093/bbb/zbac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/19/2022] [Indexed: 11/12/2022]
Abstract
This study compared ice recrystallization behaviors of frozen dessert model systems containing type I antifreeze protein (AFP I), type III antifreeze protein (AFP III), and antifreeze glycoprotein (AFGP) at -10 °C. Specifically, effects of AF(G)P concentration and heat treatment (95 °C for 10 min) were examined. The concentration dependence of the ice recrystallization rate constant reasonably well fit a sigmoidal function: the fitting procedure was proposed, along with cooperative coefficient α, and a new index of AF(G)P ice recrystallization inhibition (IRI) activity (C50). After 95 °C heat treatment for 10 min, AFP III lost its ice crystal recrystallization inhibitory activity the most: AFP I was less affected; AFGP was almost entirely unaffected. These different thermal treatment effects might reflect a lower degree of protein aggregation because of hydrophobic interaction after heat treatment or might reflect the simplicity and flexibility of the higher order structures of AFP I and AFGP.
Collapse
Affiliation(s)
- Qingbao Ma
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Mario Shibata
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Tomoaki Hagiwara
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
7
|
Chatzikyriakidou Y, Ahn DH, Nji E, Drew D. The GFP thermal shift assay for screening ligand and lipid interactions to solute carrier transporters. Nat Protoc 2021; 16:5357-5376. [PMID: 34707255 DOI: 10.1038/s41596-021-00619-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/19/2021] [Indexed: 02/03/2023]
Abstract
Solute carrier (SLC) transporters represent the second-largest fraction of the membrane proteome after G-protein-coupled receptors, but have been underutilized as drug targets and the function of many members of this family is still unknown. They are technically challenging to work with as they are difficult to express and highly dynamic, making them unstable in detergent solution. Many SLCs lack known inhibitors that could be utilized for stabilization. Furthermore, as they bind their physiological substrates with high micromolar to low millimolar affinities, binding and transport assays have proven to be particularly challenging to implement. Previously, we reported a GFP-based method for the overexpression and purification of membrane proteins in Saccharomyces cerevisiae. Here, we extend this expression platform with the GFP thermal shift (GFP-TS) assay, which is a simplified version of fluorescence-detection size-exclusion chromatography that combines the sample versatility of fluorescence-detection size-exclusion chromatography with the high-throughput capability of dye-based thermal shift assays. We demonstrate how GFP-TS can be used for detecting specific ligand interactions of SLC transporter fusions and measuring their affinities in crude detergent-solubilized membranes. We further show how GFP-TS can be employed on purified SLC transporter fusions to screen for specific lipid-protein interactions, which is an important complement to native mass spectrometry approaches that cannot cope easily with crude lipid-mixture preparations. This protocol is simple to perform and can be followed by researchers with a basic background in protein chemistry. Starting with an SLC transporter construct that can be expressed and purified from S. cerevisiae in a well-folded state, this protocol extension can be completed in ~4-5 d.
Collapse
Affiliation(s)
| | - Do-Hwan Ahn
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Emmanuel Nji
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
8
|
The Trp triad within the V-domain of the receptor for advanced glycation end products modulates folding, stability and ligand binding. Biosci Rep 2021; 40:221810. [PMID: 31912881 PMCID: PMC6997106 DOI: 10.1042/bsr20193360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 01/13/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE) recognizes damage-associated molecular patterns (DAMPs) and plays a critical role for the innate immune response and sterile tissue inflammation. RAGE overexpression is associated with diabetic complications, neurodegenerative diseases and certain cancers. Yet, the molecular mechanism of ligand recognition by RAGE is insufficiently understood to rationalize the binding of diverse ligands. The N-terminal V-type Ig-domain of RAGE contains a triad of tryptophan residue; Trp51, Trp61 and Trp72. The role of these three Trp residues for domain folding, stability and binding of the RAGE ligand S100B was investigated through site-directed mutagenesis, UV/VIS, CD and fluorescence spectrometry, protein–protein interaction studies, and X-ray crystallography. The data show that the Trp triad stabilizes the folded V-domain by maintaining a short helix in the structure. Mutation of any Trp residue increases the structural plasticity of the domain. Residues Trp61 and Trp72 are involved in the binding of S100B, yet they are not strictly required for S100B binding. The crystal structure of the RAGE-derived peptide W72 in complex with S100B showed that Trp72 is deeply buried in a hydrophobic depression on the S100B surface. The studies suggest that multiple binding modes between RAGE and S100B exist and point toward a not previously recognized role of the Trp residues for RAGE-ligand binding. The Trp triad of the V-domain appears to be a suitable target for novel RAGE inhibitors, either in the form of monoclonal antibodies targeting this epitope, or small organic molecules.
Collapse
|
9
|
Ahmadian M, Jahanian-Najafabadi A, Akbari V. Optimization of Buffer Additives for Efficient Recovery of hGM-CSF from Inclusion Bodies Using Response Surface Methodology. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 19:297-309. [PMID: 33680031 PMCID: PMC7758011 DOI: 10.22037/ijpr.2020.1101169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Overexpression of human granulocyte-macrophage colony-stimulating factor (hGM-CSF) by Escherichia coli leads to formation of insoluble and inactive proteins, inclusion bodies. The aim of this study was to improve recovery of biologically active hGM-CSF from inclusion bodies. The effect of types, concentrations and pHs of denaturing agents and addition of reducing agents on the yield of inclusion bodies solubilization was evaluated. Next, various conditions were evaluated for refolding hGM-CSF using a two-step design of experiment (DOE) including primary screening by factorial design, and then optimization by response surface design. It was found that hGM-CSF inclusion bodies can be efficiently solubilized with 4 M urea and 4 mM β-mercaptoethanol, pH = 9. A response surface quadratic model was employed to predict the optimum refolding conditions and the accuracy of this model was confirmed by high value of R2 (0.99) and F-value of 0.64. DOE results revealed that sorbitol (0.235 M), imidazole (97 mM), and SDS (0.09%) would be the optimum buffer additives for refolding of hGM-CSF. Following refolding studies, the obtained protein was subjected to circular dichroism which confirmed correct secondary structure of the refolded hGM-CSF. The refolded hGM-CSF exhibited reasonable biological activity compared with standard protein. The approach developed in this work can be important to improve the refolding of other proteins with similar structural features.
Collapse
Affiliation(s)
- Mina Ahmadian
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Kotov V, Mlynek G, Vesper O, Pletzer M, Wald J, Teixeira‐Duarte CM, Celia H, Garcia‐Alai M, Nussberger S, Buchanan SK, Morais‐Cabral JH, Loew C, Djinovic‐Carugo K, Marlovits TC. In-depth interrogation of protein thermal unfolding data with MoltenProt. Protein Sci 2021; 30:201-217. [PMID: 33140490 PMCID: PMC7737771 DOI: 10.1002/pro.3986] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023]
Abstract
Protein stability is a key factor in successful structural and biochemical research. However, the approaches for systematic comparison of protein stability are limited by sample consumption or compatibility with sample buffer components. Here we describe how miniaturized measurement of intrinsic tryptophan fluorescence (NanoDSF assay) in combination with a simplified description of protein unfolding can be used to interrogate the stability of a protein sample. We demonstrate that improved protein stability measures, such as apparent Gibbs free energy of unfolding, rather than melting temperature Tm , should be used to rank the results of thermostability screens. The assay is compatible with protein samples of any composition, including protein complexes and membrane proteins. Our data analysis software, MoltenProt, provides an easy and robust way to perform characterization of multiple samples. Potential applications of MoltenProt and NanoDSF include buffer and construct optimization for X-ray crystallography and cryo-electron microscopy, screening for small-molecule binding partners and comparison of effects of point mutations.
Collapse
Affiliation(s)
- Vadim Kotov
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- Institute for Structural and Systems BiologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
- German Electron Synchrotron Centre (DESY)HamburgGermany
| | - Georg Mlynek
- Department of Structural and Computational Biology, Max Perutz Labs ViennaUniversity of ViennaViennaAustria
| | - Oliver Vesper
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- Institute for Structural and Systems BiologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
- German Electron Synchrotron Centre (DESY)HamburgGermany
| | - Marina Pletzer
- Department of Structural and Computational Biology, Max Perutz Labs ViennaUniversity of ViennaViennaAustria
| | - Jiri Wald
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- Institute for Structural and Systems BiologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
- German Electron Synchrotron Centre (DESY)HamburgGermany
| | - Celso M. Teixeira‐Duarte
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortoPortugal
| | - Herve Celia
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Maria Garcia‐Alai
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- European Molecular Biology Laboratory (EMBL)Hamburg UnitHamburgGermany
| | - Stephan Nussberger
- Department of Biophysics, Institute of Biomaterials and Biomolecular SystemsUniversity of StuttgartStuttgartGermany
| | - Susan K. Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - João H. Morais‐Cabral
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortoPortugal
| | - Christian Loew
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- European Molecular Biology Laboratory (EMBL)Hamburg UnitHamburgGermany
| | - Kristina Djinovic‐Carugo
- Department of Structural and Computational Biology, Max Perutz Labs ViennaUniversity of ViennaViennaAustria
- Department of Biochemistry, Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
| | - Thomas C. Marlovits
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- Institute for Structural and Systems BiologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
- German Electron Synchrotron Centre (DESY)HamburgGermany
| |
Collapse
|
11
|
Abstract
With a growing amount of structural information of proteins, deciphering the linkage between the structure and function of these proteins is the next important task in structural genomics. To characterize the function of an enzyme at molecular level, placing a reporter on the active site of an enzyme can be a strategy to examine the dynamics of the interaction between enzyme and its substrate/inhibitor. In this chapter, we describe an approach of active-site labeling of enzyme for this purpose. Provided with the fabrication of a fluorescein-labeled AmpC β-lactamase as an example, we herein depict the methodology of a structure-based selection of the location in an enzyme's active site for bioconjugation and the preparation of the active-site labeled enzyme.
Collapse
Affiliation(s)
- Man-Wah Tsang
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Yun-Chung Leung
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
12
|
Delport A, Hewer R. Determining the Protein Stability of Alzheimer's Disease Protein, Amyloid Precursor Protein. Protein J 2020; 38:419-424. [PMID: 30937647 DOI: 10.1007/s10930-019-09829-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Determining protein thermal stability is integral in biomedical research. Here, with the use of two thermal stability assays, we show the melting temperature of amyloid precursor protein, an Alzheimer's disease related protein. The average melting temperature for amyloid precursor protein of 55.9 °C was derived from differential scanning fluorometry (55.1 ± 0.3 °C) and cellular thermal melt (56.7 ± 0.7 °C). These experimental methods have significant application for Alzheimer's disease research including their use for amyloid precursor protein stability profiling and for the identification of additional binding partners to further elucidate novel protein functions.
Collapse
Affiliation(s)
- Alexandré Delport
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| | - Raymond Hewer
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa.
| |
Collapse
|
13
|
Purification of Recombinant ADAMTSL2. Methods Mol Biol 2019. [PMID: 31463910 DOI: 10.1007/978-1-4939-9698-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Recombinantly produced proteins are used in many biological disciplines. However, their purity and quality are vital for downstream applications used to determine their structure and functions. Several purification and detection strategies can be used in combination to obtain protein samples with homogeneity and structural conformity. Here we detail the protocols involved in the purification of ADAMTSL2 from mammalian cells. We also describe the protocols used to validate the purity of the protein samples.
Collapse
|
14
|
Hot CoFi Blot: A High-Throughput Colony-Based Screen for Identifying More Thermally Stable Protein Variants. Methods Mol Biol 2019. [PMID: 31267459 DOI: 10.1007/978-1-4939-9624-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Highly soluble and stable proteins are desirable for many different applications, from basic science to reaching a cancer patient in the form of a biological drug. For X-ray crystallography-where production of a protein crystal might take weeks and even months-a stable protein sample of high purity and concentration can greatly increase the chances of producing a well-diffracting crystal. For a patient receiving a specific protein drug, its safety, efficacy, and even cost are factors affected by its solubility and stability. Increased protein expression and protein stability can be achieved by randomly altering the coding sequence. As the number of mutants generated might be overwhelming, a powerful protein expression and stability screen is required. In this chapter, we describe a colony filtration technology, which allows us to screen random mutagenesis libraries for increased thermal stability-the Hot CoFi blot. We share how to create the random mutagenesis library, how to perform the Hot CoFi blot, and how to identify more thermally stable clones. We use the Tobacco Etch Virus protease as a target to exemplify the procedure.
Collapse
|
15
|
Kwan TOC, Reis R, Siligardi G, Hussain R, Cheruvara H, Moraes I. Selection of Biophysical Methods for Characterisation of Membrane Proteins. Int J Mol Sci 2019; 20:E2605. [PMID: 31137900 PMCID: PMC6566885 DOI: 10.3390/ijms20102605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 02/01/2023] Open
Abstract
Over the years, there have been many developments and advances in the field of integral membrane protein research. As important pharmaceutical targets, it is paramount to understand the mechanisms of action that govern their structure-function relationships. However, the study of integral membrane proteins is still incredibly challenging, mostly due to their low expression and instability once extracted from the native biological membrane. Nevertheless, milligrams of pure, stable, and functional protein are always required for biochemical and structural studies. Many modern biophysical tools are available today that provide critical information regarding to the characterisation and behaviour of integral membrane proteins in solution. These biophysical approaches play an important role in both basic research and in early-stage drug discovery processes. In this review, it is not our objective to present a comprehensive list of all existing biophysical methods, but a selection of the most useful and easily applied to basic integral membrane protein research.
Collapse
Affiliation(s)
- Tristan O C Kwan
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
| | - Rosana Reis
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| | - Harish Cheruvara
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| | - Isabel Moraes
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
| |
Collapse
|
16
|
Hageman TS, Weis DD. A Structural Variant Approach for Establishing a Detection Limit in Differential Hydrogen Exchange-Mass Spectrometry Measurements. Anal Chem 2019; 91:8017-8024. [DOI: 10.1021/acs.analchem.9b01326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Boland C, Olatunji S, Bailey J, Howe N, Weichert D, Fetics SK, Yu X, Merino-Gracia J, Delsaut C, Caffrey M. Membrane (and Soluble) Protein Stability and Binding Measurements in the Lipid Cubic Phase Using Label-Free Differential Scanning Fluorimetry. Anal Chem 2018; 90:12152-12160. [DOI: 10.1021/acs.analchem.8b03176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Coilín Boland
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin DO2 R590, Ireland
| | - Samir Olatunji
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin DO2 R590, Ireland
| | - Jonathan Bailey
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin DO2 R590, Ireland
| | - Nicole Howe
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin DO2 R590, Ireland
| | - Dietmar Weichert
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin DO2 R590, Ireland
| | - Susan Kathleen Fetics
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin DO2 R590, Ireland
| | - Xiaoxiao Yu
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin DO2 R590, Ireland
| | - Javier Merino-Gracia
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin DO2 R590, Ireland
| | - Clement Delsaut
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin DO2 R590, Ireland
| | - Martin Caffrey
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin DO2 R590, Ireland
| |
Collapse
|
18
|
Nanji T, Liu X, Chew LH, Li FK, Biswas M, Yu ZQ, Lu S, Dong MQ, Du LL, Klionsky DJ, Yip CK. Conserved and unique features of the fission yeast core Atg1 complex. Autophagy 2017; 13:2018-2027. [PMID: 28976798 DOI: 10.1080/15548627.2017.1382782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although the human ULK complex mediates phagophore initiation similar to the budding yeast Saccharomyces cerevisiae Atg1 complex, this complex contains ATG101 but not Atg29 and Atg31. Here, we analyzed the fission yeast Schizosaccharomyces pombe Atg1 complex, which has a subunit composition that resembles the human ULK complex. Our pairwise coprecipitation experiments showed that while the interactions between Atg1, Atg13, and Atg17 are conserved, Atg101 does not bind Atg17. Instead, Atg101 interacts with the HORMA domain of Atg13 and this enhances the stability of both proteins. We also found that S. pombe Atg17, the putative scaffold subunit, adopts a rod-shaped structure with no discernible curvature. Interestingly, S. pombe Atg17 binds S. cerevisiae Atg13, Atg29, and Atg31 in vitro, but it cannot complement the function of S. cerevisiae Atg17 in vivo. Furthermore, S. pombe Atg101 cannot substitute for the function of S. cerevisiae Atg29 and Atg31 in vivo. Collectively, our work generates new insights into the subunit organization and structural properties of an Atg101-containing Atg1/ULK complex.
Collapse
Affiliation(s)
- Tamiza Nanji
- a Department of Biochemistry and Molecular Biology , The University of British Columbia , Vancouver , British Columbia , Canada
| | - Xu Liu
- b Life Sciences Institute, Department of Molecular, Cellular, and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Leon H Chew
- a Department of Biochemistry and Molecular Biology , The University of British Columbia , Vancouver , British Columbia , Canada
| | - Franco K Li
- a Department of Biochemistry and Molecular Biology , The University of British Columbia , Vancouver , British Columbia , Canada
| | - Maitree Biswas
- a Department of Biochemistry and Molecular Biology , The University of British Columbia , Vancouver , British Columbia , Canada
| | - Zhong-Qiu Yu
- c National Institute of Biological Sciences , Beijing, Beijing , China
| | - Shan Lu
- c National Institute of Biological Sciences , Beijing, Beijing , China
| | - Meng-Qiu Dong
- c National Institute of Biological Sciences , Beijing, Beijing , China
| | - Li-Lin Du
- c National Institute of Biological Sciences , Beijing, Beijing , China
| | - Daniel J Klionsky
- b Life Sciences Institute, Department of Molecular, Cellular, and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Calvin K Yip
- a Department of Biochemistry and Molecular Biology , The University of British Columbia , Vancouver , British Columbia , Canada
| |
Collapse
|
19
|
Guidelines to reach high-quality purified recombinant proteins. Appl Microbiol Biotechnol 2017; 102:81-92. [DOI: 10.1007/s00253-017-8623-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
|
20
|
Abstract
Natural proteins must both fold into a stable conformation and exert their molecular function. To date, computational design has successfully produced stable and atomically accurate proteins by using so-called "ideal" folds rich in regular secondary structures and almost devoid of loops and destabilizing elements, such as cavities. Molecular function, such as binding and catalysis, however, often demands nonideal features, including large and irregular loops and buried polar interaction networks, which have remained challenging for fold design. Through five design/experiment cycles, we learned principles for designing stable and functional antibody variable fragments (Fvs). Specifically, we (i) used sequence-design constraints derived from antibody multiple-sequence alignments, and (ii) during backbone design, maintained stabilizing interactions observed in natural antibodies between the framework and loops of complementarity-determining regions (CDRs) 1 and 2. Designed Fvs bound their ligands with midnanomolar affinities and were as stable as natural antibodies, despite having >30 mutations from mammalian antibody germlines. Furthermore, crystallographic analysis demonstrated atomic accuracy throughout the framework and in four of six CDRs in one design and atomic accuracy in the entire Fv in another. The principles we learned are general, and can be implemented to design other nonideal folds, generating stable, specific, and precise antibodies and enzymes.
Collapse
|
21
|
Goins CM, Dajnowicz S, Thanna S, Sucheck SJ, Parks JM, Ronning DR. Exploring Covalent Allosteric Inhibition of Antigen 85C from Mycobacterium tuberculosis by Ebselen Derivatives. ACS Infect Dis 2017; 3:378-387. [PMID: 28285521 DOI: 10.1021/acsinfecdis.7b00003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies identified ebselen as a potent in vitro and in vivo inhibitor of the Mycobacterium tuberculosis (Mtb) antigen 85 (Ag85) complex, comprising three homologous enzymes required for the biosynthesis of the mycobacterial cell wall. In this study, the Mtb Ag85C enzyme was cocrystallized with azido and adamantyl ebselen derivatives, resulting in two crystallographic structures of 2.01 and 1.30 Å resolution, respectively. Both structures displayed the anticipated covalent modification of the solvent accessible, noncatalytic Cys209 residue forming a selenenylsulfide bond. Continuous difference density for both thiol modifiers allowed for the assessment of interactions that influence ebselen binding and inhibitor orientation that were unobserved in previous Ag85C ebselen structures. The kinact/KI values for ebselen, adamantyl ebselen, and azido ebselen support the importance of observed constructive chemical interactions with Arg239 for increased in vitro efficacy toward Ag85C. To better understand the in vitro kinetic properties of these ebselen derivatives, the energetics of specific protein-inhibitor interactions and relative reaction free energies were calculated for ebselen and both derivatives using density functional theory. These studies further support the different in vitro properties of ebselen and two select ebselen derivatives from our previously published ebselen library with respect to kinetics and protein-inhibitor interactions. In both structures, the α9 helix was displaced farther from the enzyme active site than the previous Ag85C ebselen structure, resulting in the restructuring of a connecting loop and imparting a conformational change to residues believed to play a role in substrate binding specific to Ag85C. These notable structural changes directly affect protein stability, reducing the overall melting temperature by up to 14.5 °C, resulting in the unfolding of protein at physiological temperatures. Additionally, this structural rearrangement due to covalent allosteric modification creates a sizable solvent network that encompasses the active site and extends to the modified Cys209 residue. In all, this study outlines factors that influence enzyme inhibition by ebselen and its derivatives while further highlighting the effects of the covalent modification of Cys209 by said inhibitors on the structure and stability of Ag85C. Furthermore, the results suggest a strategy for developing new classes of Ag85 inhibitors with increased specificity and potency.
Collapse
Affiliation(s)
- Christopher M. Goins
- Department of Chemistry
and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Steven Dajnowicz
- Department of Chemistry
and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sandeep Thanna
- Department of Chemistry
and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Steven J. Sucheck
- Department of Chemistry
and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Jerry M. Parks
- UT/ORNL Center for Molecular Biophysics,
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Donald R. Ronning
- Department of Chemistry
and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
22
|
Pacouret S, Bouzelha M, Shelke R, Andres-Mateos E, Xiao R, Maurer A, Mevel M, Turunen H, Barungi T, Penaud-Budloo M, Broucque F, Blouin V, Moullier P, Ayuso E, Vandenberghe LH. AAV-ID: A Rapid and Robust Assay for Batch-to-Batch Consistency Evaluation of AAV Preparations. Mol Ther 2017; 25:1375-1386. [PMID: 28427840 DOI: 10.1016/j.ymthe.2017.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated virus (AAV) vectors are promising clinical candidates for therapeutic gene transfer, and a number of AAV-based drugs may emerge on the market over the coming years. To insure the consistency in efficacy and safety of any drug vial that reaches the patient, regulatory agencies require extensive characterization of the final product. Identity is a key characteristic of a therapeutic product, as it ensures its proper labeling and batch-to-batch consistency. Currently, there is no facile, fast, and robust characterization assay enabling to probe the identity of AAV products at the protein level. Here, we investigated whether the thermostability of AAV particles could inform us on the composition of vector preparations. AAV-ID, an assay based on differential scanning fluorimetry (DSF), was evaluated in two AAV research laboratories for specificity, sensitivity, and reproducibility, for six different serotypes (AAV1, 2, 5, 6.2, 8, and 9), using 67 randomly selected AAV preparations. In addition to enabling discrimination of AAV serotypes based on their melting temperatures, the obtained fluorescent fingerprints also provided information on sample homogeneity, particle concentration, and buffer composition. Our data support the use of AAV-ID as a reproducible, fast, and low-cost method to ensure batch-to-batch consistency in manufacturing facilities and academic laboratories.
Collapse
Affiliation(s)
- Simon Pacouret
- Grousbeck Gene Therapy Center, 20 Staniford Street, Boston, MA 02114, USA; Atlantic Gene Therapies, INSERM UMR 1089, University of Nantes, Nantes University Hospital, 22 Boulevard Benoni Goullin, 44200 Nantes, France
| | - Mohammed Bouzelha
- Atlantic Gene Therapies, INSERM UMR 1089, University of Nantes, Nantes University Hospital, 22 Boulevard Benoni Goullin, 44200 Nantes, France
| | - Rajani Shelke
- Grousbeck Gene Therapy Center, 20 Staniford Street, Boston, MA 02114, USA
| | - Eva Andres-Mateos
- Grousbeck Gene Therapy Center, 20 Staniford Street, Boston, MA 02114, USA
| | - Ru Xiao
- Grousbeck Gene Therapy Center, 20 Staniford Street, Boston, MA 02114, USA
| | - Anna Maurer
- Grousbeck Gene Therapy Center, 20 Staniford Street, Boston, MA 02114, USA; Biological and Biomedical Sciences Program, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Mathieu Mevel
- Atlantic Gene Therapies, INSERM UMR 1089, University of Nantes, Nantes University Hospital, 22 Boulevard Benoni Goullin, 44200 Nantes, France
| | - Heikki Turunen
- Grousbeck Gene Therapy Center, 20 Staniford Street, Boston, MA 02114, USA
| | - Trisha Barungi
- Grousbeck Gene Therapy Center, 20 Staniford Street, Boston, MA 02114, USA
| | - Magalie Penaud-Budloo
- Atlantic Gene Therapies, INSERM UMR 1089, University of Nantes, Nantes University Hospital, 22 Boulevard Benoni Goullin, 44200 Nantes, France
| | - Frédéric Broucque
- Atlantic Gene Therapies, INSERM UMR 1089, University of Nantes, Nantes University Hospital, 22 Boulevard Benoni Goullin, 44200 Nantes, France
| | - Véronique Blouin
- Atlantic Gene Therapies, INSERM UMR 1089, University of Nantes, Nantes University Hospital, 22 Boulevard Benoni Goullin, 44200 Nantes, France
| | - Philippe Moullier
- Atlantic Gene Therapies, INSERM UMR 1089, University of Nantes, Nantes University Hospital, 22 Boulevard Benoni Goullin, 44200 Nantes, France
| | - Eduard Ayuso
- Atlantic Gene Therapies, INSERM UMR 1089, University of Nantes, Nantes University Hospital, 22 Boulevard Benoni Goullin, 44200 Nantes, France
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, 20 Staniford Street, Boston, MA 02114, USA; Department of Ophthalmology, Ocular Genomics Institute, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA; Schepens Eye Research Institute, 20 Staniford Street, Boston MA 02114, USA; Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
23
|
Osman KT, Ye J, Shi Z, Toker C, Lovato D, Jumani RS, Zuercher W, Huston CD, Edwards AM, Lautens M, Santhakumar V, Hui R. Discovery and structure activity relationship of the first potent cryptosporidium FIKK kinase inhibitor. Bioorg Med Chem 2017; 25:1672-1680. [DOI: 10.1016/j.bmc.2017.01.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 12/29/2022]
|
24
|
Evaluation of aggregate and silicone-oil counts in pre-filled siliconized syringes: An orthogonal study characterising the entire subvisible size range. Int J Pharm 2017; 519:58-66. [DOI: 10.1016/j.ijpharm.2017.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 01/19/2023]
|
25
|
Nascimento Santos L, Carvalho Pacheco LG, Silva Pinheiro C, Alcantara-Neves NM. Recombinant proteins of helminths with immunoregulatory properties and their possible therapeutic use. Acta Trop 2017; 166:202-211. [PMID: 27871775 DOI: 10.1016/j.actatropica.2016.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/13/2016] [Accepted: 11/15/2016] [Indexed: 02/06/2023]
Abstract
The inverse relationship between helminth infections and the development of immune-mediated diseases is a cornerstone of the hygiene hypothesis and studies were carried out to elucidate the mechanisms by which helminth-derived molecules can suppress immunological disorders. These studies have fostered the idea that parasitic worms may be used as a promising therapeutic alternative for prevention and treatment of immune-mediated diseases. We discuss the current approaches for identification of helminth proteins with potential immunoregulatory properties, including the strategies based on high-throughput technologies. We also explore the methodological approaches and expression systems used for production of the recombinant forms of more than 20 helminth immunomodulatory proteins, besides their performances when evaluated as immunotherapeutic molecules to treat different immune-mediated conditions, including asthma and inflammatory bowel diseases. Finally, we discuss the perspectives of using these parasite-derived recombinant molecules as tools for future immunotherapy and immunoprophylaxis of human inflammatory diseases.
Collapse
|
26
|
Malito E, Carfi A, Bottomley MJ. Protein Crystallography in Vaccine Research and Development. Int J Mol Sci 2015; 16:13106-40. [PMID: 26068237 PMCID: PMC4490488 DOI: 10.3390/ijms160613106] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/01/2015] [Indexed: 12/14/2022] Open
Abstract
The use of protein X-ray crystallography for structure-based design of small-molecule drugs is well-documented and includes several notable success stories. However, it is less well-known that structural biology has emerged as a major tool for the design of novel vaccine antigens. Here, we review the important contributions that protein crystallography has made so far to vaccine research and development. We discuss several examples of the crystallographic characterization of vaccine antigen structures, alone or in complexes with ligands or receptors. We cover the critical role of high-resolution epitope mapping by reviewing structures of complexes between antigens and their cognate neutralizing, or protective, antibody fragments. Most importantly, we provide recent examples where structural insights obtained via protein crystallography have been used to design novel optimized vaccine antigens. This review aims to illustrate the value of protein crystallography in the emerging discipline of structural vaccinology and its impact on the rational design of vaccines.
Collapse
Affiliation(s)
- Enrico Malito
- Protein Biochemistry Department, Novartis Vaccines & Diagnostics s.r.l. (a GSK Company), Via Fiorentina 1, 53100 Siena, Italy.
| | - Andrea Carfi
- Protein Biochemistry Department, GSK Vaccines, Cambridge, MA 02139, USA.
| | - Matthew J Bottomley
- Protein Biochemistry Department, Novartis Vaccines & Diagnostics s.r.l. (a GSK Company), Via Fiorentina 1, 53100 Siena, Italy.
| |
Collapse
|
27
|
|
28
|
Jeong JW, Seo DH, Jung JH, Park JH, Baek NI, Kim MJ, Park CS. Biosynthesis of Glucosyl Glycerol, a Compatible Solute, Using Intermolecular Transglycosylation Activity of Amylosucrase from Methylobacillus flagellatus KT. Appl Biochem Biotechnol 2014; 173:904-17. [DOI: 10.1007/s12010-014-0889-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
|
29
|
Southard JN. Protein analysis using real-time PCR instrumentation: incorporation in an integrated, inquiry-based project. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 42:142-151. [PMID: 24375992 DOI: 10.1002/bmb.20747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/05/2013] [Indexed: 06/03/2023]
Abstract
Instrumentation for real-time PCR is used primarily for amplification and quantitation of nucleic acids. The capability to measure fluorescence while controlling temperature in multiple samples can also be applied to the analysis of proteins. Conformational stability and changes in stability due to ligand binding are easily assessed. Protein structure studies possible with a real-time PCR instrument address core topics in biochemistry and have valuable high-throughput applications in the fields of drug discovery and protein engineering. Protein analysis using real-time PCR instrumentation has been incorporated in an undergraduate laboratory project based on previously described projects. Students express, purify, and characterize a protein. Based on literature research and analysis using bioinformatics tools, they select a specific mutation to investigate. They then attempt to express, purify, and characterize their mutated protein. Thermal denaturation using a real-time PCR instrument is the primary tool used to compare the wild-type and mutated proteins. Alternative means for incorporation of protein analysis by real-time PCR instrumentation into laboratory experiences and additional modes of analysis are also described.
Collapse
Affiliation(s)
- Jonathan N Southard
- Department of Chemistry, Indiana University of Pennsylvania, Indiana, Pennsylvania, 15705
| |
Collapse
|
30
|
Pardon E, Laeremans T, Triest S, Rasmussen SGF, Wohlkönig A, Ruf A, Muyldermans S, Hol WGJ, Kobilka BK, Steyaert J. A general protocol for the generation of Nanobodies for structural biology. Nat Protoc 2014; 9:674-93. [PMID: 24577359 PMCID: PMC4297639 DOI: 10.1038/nprot.2014.039] [Citation(s) in RCA: 525] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is growing interest in using antibodies as auxiliary tools to crystallize proteins. Here we describe a general protocol for the generation of Nanobodies to be used as crystallization chaperones for the structural investigation of diverse conformational states of flexible (membrane) proteins and complexes thereof. Our technology has a competitive advantage over other recombinant crystallization chaperones in that we fully exploit the natural humoral response against native antigens. Accordingly, we provide detailed protocols for the immunization with native proteins and for the selection by phage display of in vivo-matured Nanobodies that bind conformational epitopes of functional proteins. Three representative examples illustrate that the outlined procedures are robust, making it possible to solve by Nanobody-assisted X-ray crystallography in a time span of 6-12 months.
Collapse
Affiliation(s)
- Els Pardon
- 1] Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium. [2] Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | - Toon Laeremans
- 1] Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium. [2] Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | - Sarah Triest
- 1] Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium. [2] Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | - Søren G F Rasmussen
- Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alexandre Wohlkönig
- 1] Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium. [2] Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | - Armin Ruf
- Pharma Research and Early Development (pRED), Small Molecule Research, Discovery Technologies, F. Hoffmann-La Roche, Basel, Switzerland
| | - Serge Muyldermans
- 1] Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium. [2] Cellular and Molecular Immunology, VUB, Brussels, Belgium
| | - Wim G J Hol
- Department of Biochemistry, Biomolecular Structure Center, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, California, USA
| | - Jan Steyaert
- 1] Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium. [2] Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| |
Collapse
|
31
|
New SY, Aung KMM, Lim GL, Hong S, Tan SK, Lu Y, Cheung E, Su X. Fast Screening of Ligand-Protein Interactions based on Ligand-Induced Protein Stabilization of Gold Nanoparticles. Anal Chem 2014; 86:2361-70. [DOI: 10.1021/ac404241y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siu Yee New
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, 117602 Singapore
| | - Khin Moh Moh Aung
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, 117602 Singapore
| | - Gek Liang Lim
- Cancer
Biology and Pharmacology, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, 138672 Singapore
| | - Shuzhen Hong
- Cancer
Biology and Pharmacology, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, 138672 Singapore
| | - Si Kee Tan
- Cancer
Biology and Pharmacology, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, 138672 Singapore
| | - Yi Lu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, 117602 Singapore
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Edwin Cheung
- Cancer
Biology and Pharmacology, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, 138672 Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, 117602 Singapore
| |
Collapse
|
32
|
Vivoli M, Ayres E, Beaumont E, Isupov MN, Harmer NJ. Structural insights into WcbI, a novel polysaccharide-biosynthesis enzyme. IUCRJ 2014; 1:28-38. [PMID: 25075317 PMCID: PMC4104973 DOI: 10.1107/s205225251302695x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/30/2013] [Indexed: 06/03/2023]
Abstract
Capsular polysaccharides (CPSs) are protective structures on the surfaces of many Gram-negative bacteria. The principal CPS of the human pathogen and Tier 1 select agent Burkholderia pseudomallei consists of a linear repeat of --3)--2-O-acetyl-6-deoxy-β-d-manno-heptopyranose-(1-. This CPS is critical to the virulence of this emerging pathogen and represents a key target for the development of novel therapeutics. wcbI is one of several genes in the CPS biosynthetic cluster whose deletion leads to significant attenuation of the pathogen; unlike most others, it has no homologues of known function and no detectable sequence similarity to any protein with an extant structure. Here, the crystal structure of WcbI bound to its proposed product, coenzyme A, is reported at 1.38 Å resolution, solved using the halide-soak method with multiple anomalous dispersion. This structure reveals that WcbI incorporates a previously described 100-amino-acid subdomain into a novel, principally helical fold (310 amino acids). This fold adopts a cradle-like structure, with a deep binding pocket for CoA in the loop-rich cradle. Structural analysis and biophysical assays suggest that WcbI functions as an acetyltransferase enzyme, whilst biochemical tests suggest that another functional module might be required to assist its activity in forming the mature B. pseudomallei capsule.
Collapse
Affiliation(s)
- Mirella Vivoli
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, England
| | - Emily Ayres
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, England
| | - Edward Beaumont
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, England
| | - Michail N. Isupov
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, England
| | - Nicholas J. Harmer
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, England
| |
Collapse
|
33
|
Tambunan USF, Pratomo H, Parikesit AA. Modification of Kampmann A5 as Potential Fusion Inhibitor of Dengue Virus using Molecular Docking and Molecular Dynamics Approach. JOURNAL OF MEDICAL SCIENCES 2013. [DOI: 10.3923/jms.2013.621.634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
34
|
Seabrook SA, Newman J. High-throughput thermal scanning for protein stability: making a good technique more robust. ACS COMBINATORIAL SCIENCE 2013; 15:387-92. [PMID: 23710551 DOI: 10.1021/co400013v] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a high-throughput approach to help define experimental formulations that enhance protein stability, which is based on differential scanning fluorimetry (DSF). The method involves defining the thermal stability of a protein against a screen of 13 buffer systems, systematically sampling pH from 5.0 to 9.0 at high and low salt concentrations, using both redundancy and extensive controls to make the method robust. The screen allows rapid determination of a suitable base formulation for protein samples, and is particularly useful for difficult samples: those that are rapidly degraded or cannot be sufficiently concentrated for downstream analyses. Data obtained from three samples in this assay illustrate the vastly different values for thermal stability that can be obtained from different formulations. This approach is simple to interpret and reliable enough that it has been implemented as a service through the Collaborative Crystallisation Centre (C3).
Collapse
Affiliation(s)
- Shane A. Seabrook
- Collaborative Crystallisation Centre
(C3), Division
of Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville,
Victoria, Australia
| | - Janet Newman
- Collaborative Crystallisation Centre
(C3), Division
of Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville,
Victoria, Australia
| |
Collapse
|
35
|
Abuhammad A, Lowe ED, McDonough MA, Shaw Stewart PD, Kolek SA, Sim E, Garman EF. Structure of arylamineN-acetyltransferase fromMycobacterium tuberculosisdetermined by cross-seeding with the homologous protein fromM. marinum: triumph over adversity. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1433-46. [DOI: 10.1107/s0907444913015126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/31/2013] [Indexed: 11/10/2022]
|
36
|
Simeonov A. Recent developments in the use of differential scanning fluorometry in protein and small molecule discovery and characterization. Expert Opin Drug Discov 2013; 8:1071-82. [PMID: 23738712 DOI: 10.1517/17460441.2013.806479] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Despite tremendous advances in the application of biophysical methods in drug discovery, the preponderance of instruments and techniques still require sophisticated analyses by dedicated personnel and/or large amounts of frequently hard-to-produce proteins. A technique which carries the promise of simplicity and relatively low protein consumption is the differential scanning fluorometry (DSF). This technique monitors protein through the use of environmentally sensitive fluorescent dye, in a temperature-ramp regime by observing the gradual exposure to the solvent of otherwise buried hydrophobic faces of protein domains. AREAS COVERED This review describes recent developments in the field of DSF. This article pays a particular emphasis on the advances published during the 2010 - 2013 period. EXPERT OPINION There has been a significant diversification of DSF applications beyond initial small molecule discovery into areas such as protein therapeutic development, formulation studies and various mechanistic investigations. This serves as a further indication of the broad penetration of the technique. In the small molecule arena, DSF has expanded toward sophisticated co-dependency MOA tests, demonstrating the wealth of information which the technique can provide. Importantly, the first public deposition of a large screening dataset may enable the use of thermal stabilization data in refining in silico models for small molecule binding.
Collapse
Affiliation(s)
- Anton Simeonov
- National Institutes of Health, National Center for Advancing Translational Sciences, Division of Discovery Innovation, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA.
| |
Collapse
|
37
|
Cruz-Migoni A, Fuentes-Fernandez N, Rabbitts TH. Peptides: minimal drug surrogates to interrogate and interfere with protein function. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00142c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The interactome in normal and disease cells is a key area for study and therapeutic targeting, yet few molecules have been developed that can interfere with protein–protein interactions within cells. Peptides and homologues are potential reagents to target PPI.
Collapse
Affiliation(s)
- A. Cruz-Migoni
- Weatherall Institute of Molecular Medicine
- MRC Molecular Haematology Unit
- University of Oxford
- John Radcliffe Hospital
- Oxford
| | - N. Fuentes-Fernandez
- Institute of Biological, Environmental and Rural Science
- Aberystwyth University
- Aberystwyth
- UK
| | - T. H. Rabbitts
- Weatherall Institute of Molecular Medicine
- MRC Molecular Haematology Unit
- University of Oxford
- John Radcliffe Hospital
- Oxford
| |
Collapse
|
38
|
González-Páez GE, Wolan DW. Ultrahigh and high resolution structures and mutational analysis of monomeric Streptococcus pyogenes SpeB reveal a functional role for the glycine-rich C-terminal loop. J Biol Chem 2012; 287:24412-26. [PMID: 22645124 DOI: 10.1074/jbc.m112.361576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cysteine protease SpeB is secreted from Streptococcus pyogenes and has been studied as a potential virulence factor since its identification almost 70 years ago. Here, we report the crystal structures of apo mature SpeB to 1.06 Å resolution as well as complexes with the general cysteine protease inhibitor trans-epoxysuccinyl-l-leucylamido(4-guanidino)butane and a novel substrate mimetic peptide inhibitor. These structures uncover conformational changes associated with maturation of SpeB from the inactive zymogen to its active form and identify the residues required for substrate binding. With the use of a newly developed fluorogenic tripeptide substrate to measure SpeB activity, we determined IC(50) values for trans-epoxysuccinyl-l-leucylamido(4-guanidino)butane and our new peptide inhibitor and the effects of mutations within the C-terminal active site loop. The structures and mutational analysis suggest that the conformational movements of the glycine-rich C-terminal loop are important for the recognition and recruitment of biological substrates and release of hydrolyzed products.
Collapse
Affiliation(s)
- Gonzalo E González-Páez
- Department of Molecular and Experimental, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
39
|
Egeblad L, Welin M, Flodin S, Gräslund S, Wang L, Balzarini J, Eriksson S, Nordlund P. Pan-pathway based interaction profiling of FDA-approved nucleoside and nucleobase analogs with enzymes of the human nucleotide metabolism. PLoS One 2012; 7:e37724. [PMID: 22662200 PMCID: PMC3360617 DOI: 10.1371/journal.pone.0037724] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/23/2012] [Indexed: 11/24/2022] Open
Abstract
To identify interactions a nucleoside analog library (NAL) consisting of 45 FDA-approved nucleoside analogs was screened against 23 enzymes of the human nucleotide metabolism using a thermal shift assay. The method was validated with deoxycytidine kinase; eight interactions known from the literature were detected and five additional interactions were revealed after the addition of ATP, the second substrate. The NAL screening gave relatively few significant hits, supporting a low rate of “off target effects.” However, unexpected ligands were identified for two catabolic enzymes guanine deaminase (GDA) and uridine phosphorylase 1 (UPP1). An acyclic guanosine prodrug analog, valaciclovir, was shown to stabilize GDA to the same degree as the natural substrate, guanine, with a ΔTagg around 7°C. Aciclovir, penciclovir, ganciclovir, thioguanine and mercaptopurine were also identified as ligands for GDA. The crystal structure of GDA with valaciclovir bound in the active site was determined, revealing the binding of the long unbranched chain of valaciclovir in the active site of the enzyme. Several ligands were identified for UPP1: vidarabine, an antiviral nucleoside analog, as well as trifluridine, idoxuridine, floxuridine, zidovudine, telbivudine, fluorouracil and thioguanine caused concentration-dependent stabilization of UPP1. A kinetic study of UPP1 with vidarabine revealed that vidarabine was a mixed-type competitive inhibitor with the natural substrate uridine. The unexpected ligands identified for UPP1 and GDA imply further metabolic consequences for these nucleoside analogs, which could also serve as a starting point for future drug design.
Collapse
Affiliation(s)
- Louise Egeblad
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Martin Welin
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Flodin
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Gräslund
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Liya Wang
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Balzarini
- Rega Institute for Medical Research, Leuven, Belgium
| | - Staffan Eriksson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| | - Pär Nordlund
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Centre for Biomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
40
|
Kemp MM, Weïwer M, Koehler AN. Unbiased binding assays for discovering small-molecule probes and drugs. Bioorg Med Chem 2011; 20:1979-89. [PMID: 22230199 DOI: 10.1016/j.bmc.2011.11.071] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/22/2011] [Accepted: 11/30/2011] [Indexed: 11/28/2022]
Abstract
2011 marks the 10-year anniversary of milestone manuscripts describing drafts of the human genome sequence. Over the past decade, a number of new proteins have been linked to disease-many of which fall into classes that have been historically considered challenging from the perspective of drug discovery. Several of these newly associated proteins lack structural information or strong annotation with regard to function, making development of conventional in vitro functional assays difficult. A recent resurgence in the popularity of simple small molecule binding assays has led to new approaches that do not require knowledge of protein structure or function in advance. Here we briefly review selected methods for executing binding assays that have been used successfully to discover small-molecule probes or drug candidates.
Collapse
Affiliation(s)
- Melissa M Kemp
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
41
|
Senisterra G, Chau I, Vedadi M. Thermal denaturation assays in chemical biology. Assay Drug Dev Technol 2011; 10:128-36. [PMID: 22066913 DOI: 10.1089/adt.2011.0390] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thermal denaturation-based methods are becoming increasingly used to characterize protein stability and interactions. Recent technical advances have made these methods more suitable for high throughput screening. Reasonable throughput and the ability to perform these screens using commonly used instruments, such as RT-PCR machines or simple plate readers equipped with heating devices, facilitate these experiments in almost any laboratory. Introducing an aggregation-based monitoring approach as well as alternative fluorophores has allowed the screening of a wider range of proteins, including membrane proteins, against large chemical libraries. Thermal denaturation-based methods are independent of protein function, which is especially useful for the identification of orphan protein function. Here, we review applications of thermal denaturation-based methods in characterizing protein stability and ligand binding, and also provide information on protocol modifications that may further increase throughput.
Collapse
|
42
|
Allali-Hassani A, Wasney GA, Siarheyeva A, Hajian T, Arrowsmith CH, Vedadi M. Fluorescence-based methods for screening writers and readers of histone methyl marks. ACTA ACUST UNITED AC 2011; 17:71-84. [PMID: 21972038 DOI: 10.1177/1087057111422256] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The histone methyltransferase (HMT) family of proteins consists of enzymes that methylate lysine or arginine residues on histone tails as well as other proteins. Such modifications affect chromatin structure and play a significant regulatory role in gene expression. Many HMTs have been implicated in tumorigenesis and progression of multiple malignancies and play essential roles in embryonic development and stem cell renewal. Overexpression of some HMTs has been observed and is correlated positively with various types of cancer. Here the authors report development of a continuous fluorescence-based methyltransferase assay in a 384-well format and its application in determining kinetic parameters for EHMT1, G9a, PRMT3, SETD7, and SUV39H2 as well as for screening against libraries of small molecules to identify enzyme inhibitors. They also report the development of a peptide displacement assay using fluorescence polarization in a 384-well format to assay and screen protein peptide interactions such as those of WDR5 and EED, components of MLL and EZH2 methyltransferase complexes. Using these high-throughput screening methods, the authors have identified potent inhibitors and ligands for some of these proteins.
Collapse
|
43
|
Chung CW, Witherington J. Progress in the discovery of small-molecule inhibitors of bromodomain--histone interactions. ACTA ACUST UNITED AC 2011; 16:1170-85. [PMID: 21956175 DOI: 10.1177/1087057111421372] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bromodomains are structurally conserved protein modules present in a large number of chromatin-associated proteins and in many nuclear histone acetyltransferases. The bromodomain functions as an acetyl-lysine binding domain and has been shown to be pivotal in regulating protein-protein interactions in chromatin-mediated cellular gene transcription, cell proliferation, and viral transcriptional activation. Structural analyses of these modules in complex with acetyl-lysine peptide ligands provide insights into the molecular basis for recognition and ligand selectivity within this epigenetic reader family. However, there are significant challenges in configuring assays to identify inhibitors of these proteins. This review focuses on the progress made in developing methods to identify peptidic and small-molecule ligands using biophysical label-free and biochemical approaches. The advantage of each technique and the results reported are summarized, highlighting the potential applicably to other reader domains and the caveats in translation from simple in vitro systems to a biological context.
Collapse
|
44
|
Peek J, Lee J, Hu S, Senisterra G, Christendat D. Structural and Mechanistic Analysis of a Novel Class of Shikimate Dehydrogenases: Evidence for a Conserved Catalytic Mechanism in the Shikimate Dehydrogenase Family. Biochemistry 2011; 50:8616-27. [DOI: 10.1021/bi200586y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- James Peek
- Department of Cell
and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - John Lee
- Department of Cell
and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Shi Hu
- Department of Cell
and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Guillermo Senisterra
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Dinesh Christendat
- Department of Cell
and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| |
Collapse
|
45
|
Poncet-Montange G, St Martin SJ, Bogatova OV, Prusiner SB, Shoichet BK, Ghaemmaghami S. A survey of antiprion compounds reveals the prevalence of non-PrP molecular targets. J Biol Chem 2011; 286:27718-28. [PMID: 21610081 DOI: 10.1074/jbc.m111.234393] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prion diseases are fatal neurodegenerative diseases caused by the accumulation of the misfolded isoform (PrP(Sc)) of the prion protein (PrP(C)). Cell-based screens have identified several compounds that induce a reduction in PrP(Sc) levels in infected cultured cells. However, the molecular targets of most antiprion compounds remain unknown. We undertook a large-scale, unbiased, cell-based screen for antiprion compounds and then investigated whether a representative subset of the active molecules had measurable affinity for PrP, increased the susceptibility of PrP(Sc) to proteolysis, or altered the cellular localization or expression level of PrP(C). None of the antiprion compounds showed in vitro affinity for PrP or had the ability to disaggregate PrP(Sc) in infected brain homogenates. These observations suggest that most antiprion compounds identified in cell-based screens deploy their activity via non-PrP targets in the cell. Our findings indicate that in comparison to PrP conformers themselves, proteins that play auxiliary roles in prion propagation may be more effective targets for future drug discovery efforts.
Collapse
|
46
|
Herold JM, Wigle TJ, Norris JL, Lam R, Korboukh VK, Gao C, Ingerman LA, Kireev DB, Senisterra G, Vedadi M, Tripathy A, Brown PJ, Arrowsmith CH, Jin J, Janzen WP, Frye SV. Small-molecule ligands of methyl-lysine binding proteins. J Med Chem 2011; 54:2504-11. [PMID: 21417280 PMCID: PMC3109722 DOI: 10.1021/jm200045v] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteins which bind methylated lysines ("readers" of the histone code) are important components in the epigenetic regulation of gene expression and can also modulate other proteins that contain methyl-lysine such as p53 and Rb. Recognition of methyl-lysine marks by MBT domains leads to compaction of chromatin and a repressed transcriptional state. Antagonists of MBT domains would serve as probes to interrogate the functional role of these proteins and initiate the chemical biology of methyl-lysine readers as a target class. Small-molecule MBT antagonists were designed based on the structure of histone peptide-MBT complexes and their interaction with MBT domains determined using a chemiluminescent assay and ITC. The ligands discovered antagonize native histone peptide binding, exhibiting 5-fold stronger binding affinity to L3MBTL1 than its preferred histone peptide. The first cocrystal structure of a small molecule bound to L3MBTL1 was determined and provides new insights into binding requirements for further ligand design.
Collapse
Affiliation(s)
- J. Martin Herold
- Center for Integrated Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Division of Medicinal Chemistry and Natural Products, University of North Carolina at Chapel Hill Chapel Hill, North Carolina 27599, USA
| | - Tim J. Wigle
- Center for Integrated Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Division of Medicinal Chemistry and Natural Products, University of North Carolina at Chapel Hill Chapel Hill, North Carolina 27599, USA
| | - Jacqueline L. Norris
- Center for Integrated Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Division of Medicinal Chemistry and Natural Products, University of North Carolina at Chapel Hill Chapel Hill, North Carolina 27599, USA
| | - Robert Lam
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Ontario, Canada
| | - Victoria K. Korboukh
- Center for Integrated Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Division of Medicinal Chemistry and Natural Products, University of North Carolina at Chapel Hill Chapel Hill, North Carolina 27599, USA
| | - Cen Gao
- Center for Integrated Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Division of Medicinal Chemistry and Natural Products, University of North Carolina at Chapel Hill Chapel Hill, North Carolina 27599, USA
| | - Lindsey A. Ingerman
- Center for Integrated Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Division of Medicinal Chemistry and Natural Products, University of North Carolina at Chapel Hill Chapel Hill, North Carolina 27599, USA
| | - Dmitri B. Kireev
- Center for Integrated Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Division of Medicinal Chemistry and Natural Products, University of North Carolina at Chapel Hill Chapel Hill, North Carolina 27599, USA
| | - Guillermo Senisterra
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Ontario, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Ontario, Canada
| | - Ashutosh Tripathy
- Department of Biochemistry and Biophysics, UNC Macromolecular Interactions Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter J. Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Ontario, Canada
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Ontario, Canada
| | - Jian Jin
- Center for Integrated Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Division of Medicinal Chemistry and Natural Products, University of North Carolina at Chapel Hill Chapel Hill, North Carolina 27599, USA
| | - William P. Janzen
- Center for Integrated Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Division of Medicinal Chemistry and Natural Products, University of North Carolina at Chapel Hill Chapel Hill, North Carolina 27599, USA
| | - Stephen V. Frye
- Center for Integrated Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Division of Medicinal Chemistry and Natural Products, University of North Carolina at Chapel Hill Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
47
|
Abstract
Proteomic technologies are used to study the complexity of proteins, their roles, and biological functions. It is based on the premise that the diversity of proteins, comprising their isoforms, and posttranslational modifications (PTMs) underlies biology. Based on an annotated human cardiac protein database, 62% have at least one PTM (phosphorylation currently dominating), whereas ≈25% have more than one type of modification. The field of proteomics strives to observe and quantify this protein diversity. It represents a broad group of technologies and methods arising from analytic protein biochemistry, analytic separation, mass spectrometry, and bioinformatics. Since the 1990s, the application of proteomic analysis has been increasingly used in cardiovascular research. Technology development and adaptation have been at the heart of this progress. Technology undergoes a maturation, becoming routine and ultimately obsolete, being replaced by newer methods. Because of extensive methodological improvements, many proteomic studies today observe 1000 to 5000 proteins. Only 5 years ago, this was not feasible. Even so, there are still road blocks. Nowadays, there is a focus on obtaining better characterization of protein isoforms and specific PTMs. Consequently, new techniques for identification and quantification of modified amino acid residues are required, as is the assessment of single-nucleotide polymorphisms in addition to determination of the structural and functional consequences. In this series, 4 articles provide concrete examples of how proteomics can be incorporated into cardiovascular research and address specific biological questions. They also illustrate how novel discoveries can be made and how proteomic technology has continued to evolve.
Collapse
Affiliation(s)
- Jennifer E Van Eyk
- Johns Hopkins University Bayview Proteomic Center, Rm 602, Mason F. Bldg Center Tower, Johns Hopkins University, Baltimore, MD 21239, USA.
| |
Collapse
|