1
|
Okada T, Tomoike F. Distance-based global analysis of consistent cis-bonds in protein backbones. Heliyon 2023; 9:e18598. [PMID: 37576297 PMCID: PMC10413078 DOI: 10.1016/j.heliyon.2023.e18598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
Biological polypeptides are known to contain cis-linkage in their main chain as a minor but important feature. Such anomalous connection of amino acids has different structural and functional effects on proteins. Experimental evidence of cis-bonds in proteins is mainly obtained using X-ray crystallography and other methods in the field of structural biology. To date, extensive analyses have been carried out on the experimentally found cis-bonds using the Protein Data Bank (PDB) entry-wise or residue-wise; however, their consistency in each protein has not been examined on a global scale. Data accumulation and advances in computational methodology enable the use of new approaches from a proteomic point of view. Here, we sought to carry out protein-wise analysis and describe a simple procedure for the detection and confirmation of cis-bonds from a set of experimental PDB chains for a protein to discriminate this type of bond from isomerizable and/or misassigned bonds. The resulting set of consistent cis bonds (found at identical positions in multiple chains) provides unprecedented insights into the trend of "high cis content" proteins and the upper limit of consistent cis bonds per polypeptide length. Recognizing such limit would not only be important for a practical check of upcoming structures, but also for the design of novel protein folds beyond the evolutionally-acquired repertoire.
Collapse
Affiliation(s)
- Tetsuji Okada
- Department of Life Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan
| | | |
Collapse
|
2
|
Aleebrahim-Dehkordi E, Soveyzi F, Saberianpour S, Rafieian-Kopaei M. Are Herbal-peptides Effective as Adjunctive Therapy in Coronavirus Disease COVID-19? Curr Drug Res Rev 2023; 15:29-34. [PMID: 36029074 DOI: 10.2174/2589977514666220826155013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Plant antiviral peptides (AVP) are macromolecules that can inhibit the pathogenesis of viruses by affecting their pathogenic mechanism, but most of these peptides can bind to cell membranes, inhibit viral receptors, and prevent viruses. Recently, due to the coronavirus pandemic, the availability of appropriate drugs with low side effects is needed. In this article, the importance of plant peptides in viral inhibition, especially viral inhibition of the coronavirus family, will be discussed. METHODS By searching the databases of PubMed, Scopus, Web of Science, the latest articles on plant peptides effective on the COVID-19 virus were collected and reviewed. RESULTS Some proteins can act against the COVID-19 virus by blocking sensitive receptors in COVID-19, such as angiotensin-converting enzyme 2 (ACE2). The 23bp sequence of the ACE2 alpha receptor chain can be considered as a target for therapeutic peptides. Protease and RNAP inhibitors and other important receptors that are active against COVID-19 should also be considered. CONCLUSION Herbal medicines with AVP, especially those with a long history of antiviral effects, might be a good choice in complement therapy against the COVID-19 virus.
Collapse
Affiliation(s)
- Elahe Aleebrahim-Dehkordi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Faezeh Soveyzi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Saberianpour
- Department of Molecular Medicine, Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
3
|
Song Y, Guo T, Liu S, Gao Y, Wang Y. Identification of Polygonati Rhizoma in three species and from different producing areas of each species using HS-GC-IMS. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Singh DD, Sharma S. Investigations on the Biological Activity of Allium sativum Agglutinin
(ASA) Isolated from Garlic. Protein Pept Lett 2022; 29:555-566. [DOI: 10.2174/0929866529999220509122720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022]
Abstract
Background:
Garlic (Allium sativum) from the family Amaryllidaceae is widely used in
culinary and is reported to have potential anticancer, anti-diabetic, antimicrobial, and
cardioprotective activities. Allium sativum agglutinin (ASA) is a bulb-type lectin (BTL) domaincontaining
lectin isolated from garlic and has been studied for its various biological functions.
Previous studies have reported the anti-cancer effects of ASA on histiocytic lymphoma (U937),
promyelocytic leukemia (HL60), and oral cancer (KB).
Methods:
In this study, we have purified and characterized ASA and evaluated it for its anticancer
effects on other cancer cell lines. MTT assay and FACS analysis was done to corroborate the
anticancer findings against cervical (HeLa) and lung cancer (A549) cell lines.
Results:
IC50 value of 37 μg/ml in HeLa and a weak activity (26.4 ± 1.9% cellular inhibition at
100μg/ml treatment) in A549 were found in the MTT assay. FACS analysis further corroborated
these findings and showed the apoptotic effects of ASA in these cell lines.
Conclusion:
Anticancer activity for members of bulb-type lectin (BTL) domain-containing lectins
has been widely reported, and we hope that our study forms a basis for the development of ASA as
a therapeutic agent.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Department of Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh-160014 India
| | - Shally Sharma
- Department of Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh-160014 India
| |
Collapse
|
5
|
Nabi-Afjadi M, Heydari M, Zalpoor H, Arman I, Sadoughi A, Sahami P, Aghazadeh S. Lectins and lectibodies: potential promising antiviral agents. Cell Mol Biol Lett 2022; 27:37. [PMID: 35562647 PMCID: PMC9100318 DOI: 10.1186/s11658-022-00338-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022] Open
Abstract
In nature, lectins are widely dispersed proteins that selectively recognize and bind to carbohydrates and glycoconjugates via reversible bonds at specific binding sites. Many viral diseases have been treated with lectins due to their wide range of structures, specificity for carbohydrates, and ability to bind carbohydrates. Through hemagglutination assays, these proteins can be detected interacting with various carbohydrates on the surface of cells and viral envelopes. This review discusses the most robust lectins and their rationally engineered versions, such as lectibodies, as antiviral proteins. Fusion of lectin and antibody’s crystallizable fragment (Fc) of immunoglobulin G (IgG) produces a molecule called a “lectibody” that can act as a carbohydrate-targeting antibody. Lectibodies can not only bind to the surface glycoproteins via their lectins and neutralize and clear viruses or infected cells by viruses but also perform Fc-mediated antibody effector functions. These functions include complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), and antibody-dependent cell-mediated phagocytosis (ADCP). In addition to entering host cells, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein S1 binds to angiotensin-converting enzyme 2 (ACE2) and downregulates it and type I interferons in a way that may lead to lung disease. The SARS-CoV-2 spike protein S1 and human immunodeficiency virus (HIV) envelope are heavily glycosylated, which could make them a major target for developing vaccines, diagnostic tests, and therapeutic drugs. Lectibodies can lead to neutralization and clearance of viruses and cells infected by viruses by binding to glycans located on the envelope surface (e.g., the heavily glycosylated SARS-CoV-2 spike protein).
Collapse
Affiliation(s)
- Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Morteza Heydari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,American Association of Kidney Patients, Tampa, FL, USA
| | - Ibrahim Arman
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Arezoo Sadoughi
- Department of Immunology, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parisa Sahami
- Medical Biology Research Center, Health Technologies Institute, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Safiyeh Aghazadeh
- Division of Biochemistry, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, 5756151818, Iran.
| |
Collapse
|
6
|
Li XL, Ma RH, Zhang F, Ni ZJ, Thakur K, Wang S, Zhang JG, Wei ZJ. Evolutionary research trend of Polygonatum species: a comprehensive account of their transformation from traditional medicines to functional foods. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34669530 DOI: 10.1080/10408398.2021.1993783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
With the advances in Polygonatum research, there is a huge interest in harnessing the valuable functional ingredients of this genus with the potential for functional foods. This review emphasizes the different aspects of Ploygonatum based research starting from its bioactive compounds, their structural characterization, various extraction methods, as well as biological activities. In view of its integral use as an essential medicinal plant, our review emphasizes on its promising food applications both as an ingredient and as a whole food, and its improved health benefits with potential for agricultural and environmental relevance are also discussed. As we collated the recent research information, we present the main challenges and limitations of the current research trend in this area which can upgrade the further expansion of Polygonatum-related research that will strengthen its economic and accessible nutritional value in the food and health industries. By highlighting the need for the unattended species, this review not only fills existing research gaps, but also encourages the researchers to find new avenues for the natural production of bio-based functional materials and the development of highly functional and health-promoting foods for disease prevention and treatment.
Collapse
Affiliation(s)
- Xiao-Li Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Run-Hui Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Fan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Zhi-Jing Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| |
Collapse
|
7
|
Mammari N, Krier Y, Albert Q, Devocelle M, Varbanov M. Plant-Derived Antimicrobial Peptides as Potential Antiviral Agents in Systemic Viral Infections. Pharmaceuticals (Basel) 2021; 14:ph14080774. [PMID: 34451871 PMCID: PMC8400714 DOI: 10.3390/ph14080774] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Numerous studies have led to a better understanding of the mechanisms of action of viruses in systemic infections for the development of prevention strategies and very promising antiviral therapies. Viruses still remain one of the main causes of human diseases, mainly because the development of new vaccines is usually challenging and drug resistance has become an increasing concern in recent decades. Therefore, the development of potential antiviral agents remains crucial and is an unmet clinical need. One abundant source of potential therapeutic molecules are plants: they biosynthesize a myriad of compounds, including peptides which can have antimicrobial activity. Our objective is to summarize the literature on peptides with antiviral properties derived from plants and to identify key features of these peptides and their application in systemic viral infections. This literature review highlights studies including clinical trials which demonstrated that plant cyclotides have the ability to inhibit the growth of viruses causing human diseases, defensin-like peptides possess anti-HIV-1 activity, and lipid transfer proteins and some lectins exhibit a varied antimicrobial profile. To conclude, plant peptides remain interesting to explore in the context of emerging and re-emerging infectious diseases.
Collapse
Affiliation(s)
- Nour Mammari
- L2CM, Université de Lorraine, CNRS, F-54000 Nancy, France;
| | - Ysaline Krier
- Faculté de Pharmacie, 7 Avenue de la Foret de Haye, 54505 Vandoeuvre-Les-Nancy, France;
| | - Quentin Albert
- Fungal Biodiversity and Biotechnology, INRAE/Aix-Marseille University, UMR1163, 13009 Marseille, France;
- CIRM-CF, INRAE/Aix Marseille University, UMR1163, 13009 Marseille, France
| | - Marc Devocelle
- SSPC (SFI Research Centre for Pharmaceuticals), V94T9PX Limerick, Ireland;
- Department of Chemistry, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, 123, St. Stephen’s Green, D02 YN77 Dublin 2, Ireland
| | - Mihayl Varbanov
- L2CM, Université de Lorraine, CNRS, F-54000 Nancy, France;
- Correspondence:
| | | |
Collapse
|
8
|
Man-Specific Lectins from Plants, Fungi, Algae and Cyanobacteria, as Potential Blockers for SARS-CoV, MERS-CoV and SARS-CoV-2 (COVID-19) Coronaviruses: Biomedical Perspectives. Cells 2021; 10:cells10071619. [PMID: 34203435 PMCID: PMC8305077 DOI: 10.3390/cells10071619] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
Betacoronaviruses, responsible for the “Severe Acute Respiratory Syndrome” (SARS) and the “Middle East Respiratory Syndrome” (MERS), use the spikes protruding from the virion envelope to attach and subsequently infect the host cells. The coronavirus spike (S) proteins contain receptor binding domains (RBD), allowing the specific recognition of either the dipeptidyl peptidase CD23 (MERS-CoV) or the angiotensin-converting enzyme ACE2 (SARS-Cov, SARS-CoV-2) host cell receptors. The heavily glycosylated S protein includes both complex and high-mannose type N-glycans that are well exposed at the surface of the spikes. A detailed analysis of the carbohydrate-binding specificity of mannose-binding lectins from plants, algae, fungi, and bacteria, revealed that, depending on their origin, they preferentially recognize either complex type N-glycans, or high-mannose type N-glycans. Since both complex and high-mannose glycans substantially decorate the S proteins, mannose-specific lectins are potentially useful glycan probes for targeting the SARS-CoV, MERS-CoV, and SARS-CoV-2 virions. Mannose-binding legume lectins, like pea lectin, and monocot mannose-binding lectins, like snowdrop lectin or the algal lectin griffithsin, which specifically recognize complex N-glycans and high-mannose glycans, respectively, are particularly adapted for targeting coronaviruses. The biomedical prospects of targeting coronaviruses with mannose-specific lectins are wide-ranging including detection, immobilization, prevention, and control of coronavirus infection.
Collapse
|
9
|
Jiang N, Wang Y, Zhou J, Zheng R, Yuan X, Wu M, Bao J, Wu C. A novel mannose-binding lectin from Liparis nervosa with anti-fungal and anti-tumor activities. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1081-1092. [PMID: 32852549 DOI: 10.1093/abbs/gmaa090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 07/05/2020] [Indexed: 01/22/2023] Open
Abstract
Plant lectins are carbohydrate-binding proteins with nonimmune origin, which can reversibly bind with carbohydrates, agglutinate cells, and precipitate polysaccharides and glycoconjugates. Plant lectins have attracted much attention for their anti-virus, anti-proliferation, and pro-apoptosis properties. Thus the exploration of new lectins has received special attention. Here we purified a mannose-binding lectin from the rhizomes of Liparis nervosa by ion exchange chromatography on DEAE-Sepharose, affinity chromatography on Mannose-Sepharose 4B, and gel filtration chromatography on Sephacryl S-100. The purified L. nervosa lectin (LNL) was identified to be a monomeric protein with a molecular mass of 13 kDa. LNL exhibited hemagglutinating activity towards rabbit erythrocytes, and its activity could be strongly inhibited by D-mannose, N-acetyl glucosamine and thyroglobulin. In vitro experiments showed that LNL exhibited a comparable anti-fungal activity against Piricularia oryzae (Cavara), Bipolaris maydis, Fusarium graminearum, and Sclerotium rolfsii, and anti-proliferation activity against tumor cells by inducing apoptosis. The full-length cDNA sequence of LNL is 715 bp in length and contains a 525 bp open reading frame (ORF) encoding a 110-residue mature protein. It was predicted to have three mannose-binding conserved motifs 'QXDXNXVXY'. The binding pattern of LNL was further revealed by homology modeling and molecular docking. We demonstrated that LNL is not only a potential therapeutic candidate against tumor but also a new anti-fungal agent.
Collapse
Affiliation(s)
- Na Jiang
- School of Life Sciences and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuqing Wang
- School of Life Sciences and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Zhou
- School of Life Sciences and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ruxiao Zheng
- School of Life Sciences and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiao Yuan
- School of Life Sciences and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Miaomiao Wu
- School of Life Sciences and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jinku Bao
- School of Life Sciences and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Chuanfang Wu
- School of Life Sciences and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Plant-Derived Lectins as Potential Cancer Therapeutics and Diagnostic Tools. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1631394. [PMID: 32509848 PMCID: PMC7245692 DOI: 10.1155/2020/1631394] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
Cancer remains a global health challenge, with high morbidity and mortality, despite the recent advances in diagnosis and treatment. Multiple compounds assessed as novel potential anticancer drugs derive from natural sources, including microorganisms, plants, and animals. Lectins, a group of highly diverse proteins of nonimmune origin with carbohydrate-binding abilities, have been detected in virtually all kingdoms of life. These proteins can interact with free and/or cell surface oligosaccharides and might differentially bind cancer cells, since malignant transformation is tightly associated with altered cell surface glycans. Therefore, lectins could represent a valuable tool for cancer diagnosis and be developed as anticancer therapeutics. Indeed, several plant lectins exert cytotoxic effects mainly by inducing apoptotic and autophagic pathways in malignant cells. This review summarizes the current knowledge regarding the basis for the use of lectins in cancer diagnosis and therapy, providing a few examples of plant-derived carbohydrate-binding proteins with demonstrated antitumor effects.
Collapse
|
11
|
Barre A, Bourne Y, Van Damme EJM, Rougé P. Overview of the Structure⁻Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. Int J Mol Sci 2019; 20:E254. [PMID: 30634645 PMCID: PMC6359319 DOI: 10.3390/ijms20020254] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 01/05/2023] Open
Abstract
To date, a number of mannose-binding lectins have been isolated and characterized from plants and fungi. These proteins are composed of different structural scaffold structures which harbor a single or multiple carbohydrate-binding sites involved in the specific recognition of mannose-containing glycans. Generally, the mannose-binding site consists of a small, central, carbohydrate-binding pocket responsible for the "broad sugar-binding specificity" toward a single mannose molecule, surrounded by a more extended binding area responsible for the specific recognition of larger mannose-containing N-glycan chains. Accordingly, the mannose-binding specificity of the so-called mannose-binding lectins towards complex mannose-containing N-glycans depends largely on the topography of their mannose-binding site(s). This structure⁻function relationship introduces a high degree of specificity in the apparently homogeneous group of mannose-binding lectins, with respect to the specific recognition of high-mannose and complex N-glycans. Because of the high specificity towards mannose these lectins are valuable tools for deciphering and characterizing the complex mannose-containing glycans that decorate both normal and transformed cells, e.g., the altered high-mannose N-glycans that often occur at the surface of various cancer cells.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| | - Yves Bourne
- Centre National de la Recherche Scientifique, Aix-Marseille Univ, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| |
Collapse
|
12
|
Li L, Liao BY, Thakur K, Zhang JG, Wei ZJ. The rheological behavior of polysaccharides sequential extracted from Polygonatum cyrtonema Hua. Int J Biol Macromol 2018; 109:761-771. [DOI: 10.1016/j.ijbiomac.2017.11.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 10/25/2017] [Accepted: 11/09/2017] [Indexed: 12/24/2022]
|
13
|
Zhao P, Zhao C, Li X, Gao Q, Huang L, Xiao P, Gao W. The genus Polygonatum : A review of ethnopharmacology, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2018; 214:274-291. [PMID: 29246502 DOI: 10.1016/j.jep.2017.12.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 05/09/2023]
Affiliation(s)
- Ping Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Chengcheng Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Qingzhi Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
14
|
Luo Y, Liu X, Lin F, Liao L, Deng Y, Zeng L, Zeng Q. Cloning of a novel lectin from Artocarpus lingnanensis that induces apoptosis in human B-lymphoma cells. Biosci Biotechnol Biochem 2018; 82:258-267. [PMID: 29318910 DOI: 10.1080/09168451.2017.1415127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
We isolated a novel lectin (Artocarpus nitidus subsp. lingnanensis lectin, ALL) from Artocarpus nitidus subsp. lingnanensis and showed its mitogenic activities. In this study, we determined the amino acid sequence of ALL by cDNA sequencing. ALL cDNA (933 bp) contains a 657-bp open reading frame (ORF), which encodes a protein with 218 amino acids. ALL shares high sequence similarities with Jacalin and Morniga G and belongs to jacalin-related lectin family. We also examined the antitumor activity of ALL using Raji, a human B-lymphoma cell line. ALL exhibits a strong binding affinity to cell membrane, which can be effectively inhibited by N-acetyl-D-galactosamine (GalNAc). ALL inhibits Raji cell proliferation in a time- and dose-dependent manner through apoptosis, evidenced by morphological changes, phosphatidylserine externalization, poly ADP-ribose polymerase (PARP) cleavage, Bcl-2 down-regulation, and caspase-3 activation. We further showed that the activation of p38 mitogen-activated protein kinase (MAPK) signaling pathways is required for the pro-apoptotic activity of ALL.
Collapse
Affiliation(s)
- Yu Luo
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Guangxi, P.R. China
| | - Xiaoqin Liu
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Guangxi, P.R. China
| | - Faquan Lin
- Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Guangxi, P. R. China
| | - Liejun Liao
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Guangxi, P.R. China
| | - Yong Deng
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Guangxi, P.R. China
| | - Linjie Zeng
- Department of Orthopaedics, Orthopaedics Hospital, Guangxi, P.R. China
| | - Qiyan Zeng
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Guangxi, P.R. China
- Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Guangxi, P. R. China
| |
Collapse
|
15
|
Liu Y, Liu Q, Li P, Xing D, Hu H, Li L, Hu X, Long C. Plants traditionally used to make Cantonese slow-cooked soup in China. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2018; 14:4. [PMID: 29334976 PMCID: PMC5769313 DOI: 10.1186/s13002-018-0206-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/28/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Lǎo huǒ liàng tāng (Cantonese slow-cooked soup, CSCS) is popular in Guangdong, China, and is consumed by Cantonese people worldwide as a delicious appetizer. Because CSCS serves as an important part of family healthcare, medicinal plants and plant-derived products are major components of CSCS. However, a collated record of the diverse plant species and an ethnobotanical investigation of CSCS is lacking. Because of globalization along with a renewed interest in botanical and food therapy, CSCS has attracted a growing attention in soup by industries, scientists, and consumers. This study represents the first attempt to document the plant species used for CSCS in Guangdong, China, and the associated ethnomedical function of plants, including their local names, part(s) used, flavors, nature, preparation before cooking, habitats, and conservation status. METHODS In 2014-2017, participatory approaches, open-ended conversations, and semi-structured interviews were conducted with 63 local people and 48 soup restaurant owners (111 interviews) to better understand the biocultural context of CSCS, emphasizing ethnobotanical uses of plants in Guangdong Province, China. Product samples and voucher specimens were collected for taxonomic identification. Mention Index (QI), frequency of use index (FUI), and economic index (EI) were adopted to evaluate the significance of each plant in the food supply. RESULTS A total of 97 plant species belonging to 46 families and 90 genera were recorded as having been used in CSCS in the study area. Recorded menus consisted of one or several plant species, with each one used for different purposes. They were classified into 11 functions, with clearing heat being the most common medicinal function. Of the 97 species, 19 grew only in the wild, 8 species were both wild and cultivated, and 70 species were cultivated. Roots and fruits were the most commonly used plant parts in the preparation of CSCS. According to the national evaluation criteria, six of these species are listed on "China's red list" including two endangered, two critically endangered, one near-threatened, and one vulnerable species. The QI, FUI, and EI of the 97 species in the study varied between 0.09 and 1, 0.23 and 9.95, and 0.45 and 6.58, respectively. CONCLUSIONS As an important part of Cantonese culture, CSCS has been popularized as a local cuisine with a healthcare function. CSCS also reflects the plant species richness and cultural diversity of Guangdong Province. Future research on the safety and efficacy of CSCS as well as on ecological and cultural conservation efforts is needed for the sustainable growth of China's botanical and medicinal plant industry.
Collapse
Affiliation(s)
- Yujing Liu
- School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081 China
| | - Qi Liu
- School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 China
| | - Ping Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642 China
| | - Deke Xing
- School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 China
| | - Huagang Hu
- Institute of Basic Theory, China Academy of Traditional Chinese Medicine, Beijing, 100700 China
| | - Lin Li
- School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 China
| | - Xuechen Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081 China
| | - Chunlin Long
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201 China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081 China
| |
Collapse
|
16
|
Lotfi H, Sheervalilou R, Zarghami N. An update of the recombinant protein expression systems of Cyanovirin-N and challenges of preclinical development. BIOIMPACTS : BI 2018. [PMID: 29977835 DOI: 10.1517/bi.2018.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Introduction: Human immunodeficiency virus (HIV) is a debilitating challenge and concern worldwide. Accessibility to highly active antiretroviral drugs is little or none for developing countries. Production of cost-effective microbicides to prevent the infection with HIV is a requirement. Cyanovirin-N (CVN) is known as a promising cyanobacterial lectin, capable of inhibiting the HIV cell entry in a highly specific manner. Methods: This review article presents an overview of attempts conducted on different expression systems for the recombinant production of CVN. We have also assessed the potential of the final recombinant product, as an effective anti-HIV microbicide, comparing prokaryotic and eukaryotic expression systems. Results: Artificial production of CVN is a challenging task because the desirable anti-HIV activity (CVN-gp120 interaction) depends on the correct formation of disulfide bonds during recombinant production. Thus, inexpensive and functional production of rCVN requires an effective expression system which must be found among the bacteria, yeast, and transgenic plants, for the subsequent satisfying medical application. Moreover, the strong anti-HIV potential of CVN in trace concentrations (micromolar to picomolar) was reported for the in vitro and in vivo tests. Conclusion: To produce pharmaceutically effective CVN, we first need to identify the best expression system, with Escherichia coli, Pichia pastoris , Lactic acid bacteria and transgenic plants being possible candidates. For this reason, heterologous production of this valuable protein is a serious challenge. Since different obstacles influence clinical trials on microbicides in the field of HIV prevention, these items should be considered for evaluating the CVN activity in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Hajie Lotfi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Chen Y, Lu K, Li J, Liang D, Luo H, Wang X, Wang X, Bao J. Structure and function analysis of Polygonatum cyrtonema lectin by site-directed mutagenesis. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1099-1111. [PMID: 29121159 DOI: 10.1093/abbs/gmx116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Indexed: 01/09/2023] Open
Abstract
The crystal structure of mature Polygonatum cyrtonema lectin (PCL) showed three similar carbohydrate-binding sites (CBS I, CBS II, and CBS III). The Gln58 and Asp60 residues of CBS II are substituted with His58 and Asn60. To establish the relationship between the key amino acid residues and structure or activity of PCL, we constructed four recombinant mutants in CBS I, CBS II, and CBS III. The experimental results indicate that CBS I, CBS III and the disulfide bond play vital roles in the binding with mannose. Furthermore, molecular dynamics simulations and binding free energy calculation illustrate that CBS I has a direct and strong relationship with the activity of PCL. CBS II does not play a critical role in the model for mannose binding by PCL. Although CBS III does not enhance the activity, it helps to maintain the activity and 3D structure. These results suggest that the carbohydrate-binding site of PCL may be in a hydrophilic environment, and Asn and Tyr are the key amino acids involved in its binding with sugar, but Gln and Asp are not necessary to maintain its activity.
Collapse
Affiliation(s)
- Yuyu Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Kaimin Lu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianzong Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Danfeng Liang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hao Luo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaoyun Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinku Bao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Lotfi H, Sheervalilou R, Zarghami N. An update of the recombinant protein expression systems of Cyanovirin-N and challenges of preclinical development. ACTA ACUST UNITED AC 2017; 8:139-151. [PMID: 29977835 PMCID: PMC6026528 DOI: 10.15171/bi.2018.16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/15/2022]
Abstract
![]()
Introduction: Human immunodeficiency virus (HIV) is a debilitating challenge and concern worldwide. Accessibility to highly active antiretroviral drugs is little or none for developing countries. Production of cost-effective microbicides to prevent the infection with HIV is a requirement. Cyanovirin-N (CVN) is known as a promising cyanobacterial lectin, capable of inhibiting the HIV cell entry in a highly specific manner.
Methods: This review article presents an overview of attempts conducted on different expression systems for the recombinant production of CVN. We have also assessed the potential of the final recombinant product, as an effective anti-HIV microbicide, comparing prokaryotic and eukaryotic expression systems.
Results: Artificial production of CVN is a challenging task because the desirable anti-HIV activity (CVN-gp120 interaction) depends on the correct formation of disulfide bonds during recombinant production. Thus, inexpensive and functional production of rCVN requires an effective expression system which must be found among the bacteria, yeast, and transgenic plants, for the subsequent satisfying medical application. Moreover, the strong anti-HIV potential of CVN in trace concentrations (micromolar to picomolar) was reported for the in vitro and in vivo tests.
Conclusion: To produce pharmaceutically effective CVN, we first need to identify the best expression system, with Escherichia coli, Pichia pastoris , Lactic acid bacteria and transgenic plants being possible candidates. For this reason, heterologous production of this valuable protein is a serious challenge. Since different obstacles influence clinical trials on microbicides in the field of HIV prevention, these items should be considered for evaluating the CVN activity in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Hajie Lotfi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Zhao Y, Jian Y, Liu Z, Liu H, Liu Q, Chen C, Li Z, Wang L, Huang HH, Zeng C. Network Analysis Reveals the Recognition Mechanism for Dimer Formation of Bulb-type Lectins. Sci Rep 2017; 7:2876. [PMID: 28588265 PMCID: PMC5460271 DOI: 10.1038/s41598-017-03003-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/20/2017] [Indexed: 12/26/2022] Open
Abstract
The bulb-type lectins are proteins consist of three sequential beta-sheet subdomains that bind to specific carbohydrates to perform certain biological functions. The active states of most bulb-type lectins are dimeric and it is thus important to elucidate the short- and long-range recognition mechanism for this dimer formation. To do so, we perform comparative sequence analysis for the single- and double-domain bulb-type lectins abundant in plant genomes. In contrast to the dimer complex of two single-domain lectins formed via protein-protein interactions, the double-domain lectin fuses two single-domain proteins into one protein with a short linker and requires only short-range interactions because its two single domains are always in close proximity. Sequence analysis demonstrates that the highly variable but coevolving polar residues at the interface of dimeric bulb-type lectins are largely absent in the double-domain bulb-type lectins. Moreover, network analysis on bulb-type lectin proteins show that these same polar residues have high closeness scores and thus serve as hubs with strong connections to all other residues. Taken together, we propose a potential mechanism for this lectin complex formation where coevolving polar residues of high closeness are responsible for long-range recognition.
Collapse
Affiliation(s)
- Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China.,Department of Physics, The George Washington University, Washington, DC, 20052, USA
| | - Yiren Jian
- Department of Physics, The George Washington University, Washington, DC, 20052, USA
| | - Zhichao Liu
- Department of Physics, The George Washington University, Washington, DC, 20052, USA
| | - Hang Liu
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Qin Liu
- School of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Chanyou Chen
- School of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Zhangyong Li
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Lu Wang
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - H Howie Huang
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Chen Zeng
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China. .,Department of Physics, The George Washington University, Washington, DC, 20052, USA. .,School of Life Sciences, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
20
|
Mitchell CA, Ramessar K, O'Keefe BR. Antiviral lectins: Selective inhibitors of viral entry. Antiviral Res 2017; 142:37-54. [PMID: 28322922 PMCID: PMC5414728 DOI: 10.1016/j.antiviral.2017.03.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/13/2017] [Indexed: 01/27/2023]
Abstract
Many natural lectins have been reported to have antiviral activity. As some of these have been put forward as potential development candidates for preventing or treating viral infections, we have set out in this review to survey the literature on antiviral lectins. The review groups lectins by structural class and class of source organism we also detail their carbohydrate specificity and their reported antiviral activities. The review concludes with a brief discussion of several of the pertinent hurdles that heterologous proteins must clear to be useful clinical candidates and cites examples where such studies have been reported for antiviral lectins. Though the clearest path currently being followed is the use of antiviral lectins as anti-HIV microbicides via topical mucosal administration, some investigators have also found systemic efficacy against acute infections following subcutaneous administration.
Collapse
Affiliation(s)
- Carter A Mitchell
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702-1201, USA
| | - Koreen Ramessar
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702-1201, USA
| | - Barry R O'Keefe
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702-1201, USA.
| |
Collapse
|
21
|
Zhang H, Du X, Sun TT, Wang CL, Li Y, Wu SZ. Lectin PCL inhibits the Warburg effect of PC3 cells by combining with EGFR and inhibiting HK2. Oncol Rep 2017; 37:1765-1771. [PMID: 28098871 DOI: 10.3892/or.2017.5367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/08/2016] [Indexed: 11/05/2022] Open
Abstract
Prostatic carcinoma is the most aggressive tumor in adult men. Warburg effect is an important characteristic of tumor cell metabolism including prostate cancer cells, in which hexokinase 2 (HK2), a major rate-limiting enzyme involved in Warburg effect, is selectively upregulated. The lectin PCL is a mannose binding lectin which induces tumor cell apoptosis and autophagy. In the present study, we report that PCL could lower glucose consumption and lactate production, shift the Warburg effect by inhibiting the expression of HK2 in PC3 cells and the suppression of HK2 by siRNA reversed the effect of PCL on glucose consumption and lactate production. The expression of HK2 is closely related to epidermal growth factor receptor (EGFR) and downstream signaling pathway activation, therefore, we investigated the interaction of PCL with EGFR by western blot analysis and found that PCL could suppress the binding of epidermal growth factor (EGF) with EGFR and HK2 expression. Also, we explored the binding mechanism between the PCL and EGFR through molecular docking and molecular dynamics simulations and found that PCL bocked the active site of EGFR which is also the binding site of the nature ligand EGF, the resulting conformation has higher stability than EGF in complex with EGFR. The results indicated that PCL could competitively bind to EGFR binding pocket and then prevent EGF from binding to EGFR, blocking the autophosphorylation of the EGFR tyrosine kinase, after that the EGFR activation is inhibited. Collectively, our studies concluded that PCL inhibits tumor cell glycolysis by combining with EGFR and reducing HK2 expression.
Collapse
Affiliation(s)
- Hong Zhang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, P.R. China
| | - Xia Du
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, P.R. China
| | - Ting-Ting Sun
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, P.R. China
| | - Chun-Liu Wang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, P.R. China
| | - Ye Li
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, P.R. China
| | - Shou-Zhen Wu
- Xi'an Children's Hospital, Xi'an, Shaanxi 710003, P.R. China
| |
Collapse
|
22
|
Zhao X, Li J. Chemical Constituents of the Genus Polygonatum and their Role in Medicinal Treatment. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polygonatum is a famous traditional Chinese medicine that is widely used in China, Korea and Japan. In the last decade, constituents of the genus have been reported including steroidal saponins, flavones, alkaloids, lignins, amino acids and carbohydrates, some of which show biological properties such as antiviral and antitumor activity, variable effects on the immune system and anticoagulant activity. In addition, some findings provide novel evidence that Polygonatum species may contain potential anti-tumor and anti-viral proteins for possible medical application and large-scale pharmaceutical production. In this review, we focus on the updated research of the chemical constituents of Polygonatum including polysaccharides, steroidal saponins, flavonoids and lectins, and their potential therapeutic roles.
Collapse
Affiliation(s)
- Xueying Zhao
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, China, 150040
| | - Ji Li
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, China, 150040
| |
Collapse
|
23
|
Xiao X, He H, Ding X, Yang Q, Liu X, Liu S, Rang J, Wang T, Zuo M, Xia L. Purification and cloning of lectin that induce cell apoptosis from Allium chinense. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:238-244. [PMID: 25765828 DOI: 10.1016/j.phymed.2014.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 10/20/2014] [Accepted: 12/14/2014] [Indexed: 06/04/2023]
Abstract
A 8.7 kDa lectin with high agglutin activity was isolated by affinity chromatography and cloned from Allium chinense in this study. For the MTT assay, approximately 60 µg/ml A. chinense lectin (ACL) inhibited 50% of the human hepatoma Hep-3B cells grown after 48 h. In addition, no antiproliferative effect was observed on normal human umbilical vein endothelial cells (HUVEC) even at 100 µg/ml concentration. After treatments with ACL on Hep-3B cells, morphologic changes in the nucleus and cytoskeleton were observed under laser scanning confocal microscopy with 4',6-diamidino-2-phenylindole and tubulin Alexa Fluor 488 staining; whereas, the mitochondrial membrane potential was observed through Mito Tracker Red CMXRos staining. The results showed that ACL led to cell morphology and structure change (e.g., round cell shrinkage). Moreover, ACL resulted in significant change in the shape of the nucleus, damaged the cytoskeleton when tubulin was degraded, and reduced the mitochondrial transmembrane potential. By contrast, no changes were observed on HUVEC cells under the same treatment conditions. DNA fragmentation analysis was used to detect DNA damage. Western blot showed that ACL upregulated caspase-3 and Bax expression during apoptosis and cloned the structural gene of ACL with an open reading frame of 456 bp encoding 151 amino acid residues. The results showed that ACL is a potential anticancer drug.
Collapse
Affiliation(s)
- Xiuqing Xiao
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Hao He
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Xuezhi Ding
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China.
| | - Qi Yang
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Xuemei Liu
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Shuang Liu
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Jie Rang
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Ting Wang
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Mingxing Zuo
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Liqiu Xia
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China.
| |
Collapse
|
24
|
Hong J, Chen TT, Hu L, Yang J, Hu P, Wang SY. Purification and characterization of a novel lectin from Chinese leek seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1488-1495. [PMID: 25569192 DOI: 10.1021/jf5046014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel lectin, CLSL, was purified from Chinese leek seeds by ion exchange chromatography on SP Sephadex C-25 and gel filtration chromatography on Sephadex G50. The lectin had a molecular weight of 23.6 kDa and was composed of two identical subunits linked by disulfide bonds, a conclusion based on SDS-PAGE under reducing and nonreducing conditions. CLSL was a glycoprotein with a carbohydrate content of 3.6%. It exerted potent agglutinating activity against rat red blood cells at a concentration of 8.9 μg/mL. Hemagglutination of rat erythrocytes was inhibited by d-fructose, mannitol, and sorbose at the concentration of 20 mM. The hemagglutinating activity of CLSL was maintained at 100 °C for 60 min and under acidic pH conditions but was lost at neutral and alkaline pH conditions. The hemagglutinating activity was stimulated by Ca(2+), Fe(2+), and Cu(2+) but inactivated by Ba(2+) at a concentration of 10 mM. Ba(2+)-mediated inactivation of CLSL was caused by CLSL conformational change induced by barium ions, according to the results of circular dichroism and fluorescence spectroscopy. Deconvolution of the CLSL circular dichroism indicated that it was an α-helical lectin with α-helix and β-fold contents of 35.8% and 8.6%, respectively. CLSL could also selectively inhibit cell proliferation.
Collapse
Affiliation(s)
- Jing Hong
- College of Biological Science and Technology, Fuzhou University , 2 Xue Yuan Road, University Town, Fuzhou, Fujian 350108, China
| | | | | | | | | | | |
Collapse
|
25
|
Akkouh O, Ng TB, Singh SS, Yin C, Dan X, Chan YS, Pan W, Cheung RCF. Lectins with anti-HIV activity: a review. Molecules 2015; 20:648-68. [PMID: 25569520 PMCID: PMC6272367 DOI: 10.3390/molecules20010648] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/29/2014] [Indexed: 11/18/2022] Open
Abstract
Lectins including flowering plant lectins, algal lectins, cyanobacterial lectins, actinomycete lectin, worm lectins, and the nonpeptidic lectin mimics pradimicins and benanomicins, exhibit anti-HIV activity. The anti-HIV plant lectins include Artocarpus heterophyllus (jacalin) lectin, concanavalin A, Galanthus nivalis (snowdrop) agglutinin-related lectins, Musa acuminata (banana) lectin, Myrianthus holstii lectin, Narcissus pseudonarcissus lectin, and Urtica diocia agglutinin. The anti-HIV algal lectins comprise Boodlea coacta lectin, Griffithsin, Oscillatoria agardhii agglutinin. The anti-HIV cyanobacterial lectins are cyanovirin-N, scytovirin, Microcystis viridis lectin, and microvirin. Actinohivin is an anti-HIV actinomycete lectin. The anti-HIV worm lectins include Chaetopterus variopedatus polychaete marine worm lectin, Serpula vermicularis sea worm lectin, and C-type lectin Mermaid from nematode (Laxus oneistus). The anti-HIV nonpeptidic lectin mimics comprise pradimicins and benanomicins. Their anti-HIV mechanisms are discussed.
Collapse
Affiliation(s)
- Ouafae Akkouh
- Department of Biology and Medical Laboratory Research, Faculty of Technology, University of Applied Sciences Leiden, Zernikdreef 11, 2333 CK Leiden, The Netherlands.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Senjam Sunil Singh
- Department of Biochemistry, Manipur University, Canchipur, Imphal 795003, India.
| | - Cuiming Yin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Yau Sang Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Wenliang Pan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
26
|
Lu B, Zhang B, Qi W, Zhu Y, Zhao Y, Zhou N, Sun R, Bao J, Wu C. Conformational study reveals amino acid residues essential for hemagglutinating and anti-proliferative activities of Clematis montana lectin. Acta Biochim Biophys Sin (Shanghai) 2014; 46:923-34. [PMID: 25239139 DOI: 10.1093/abbs/gmu085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clematis montana lectin (CML), a novel mannose-binding lectin purified from C. montana Buch.-Ham stem (Ranunculaceae), has been proved to have hemagglutinating activity in rabbit erythrocytes and apoptosis-inducing activity in tumor cells. However, the biochemical properties of CML have not revealed and its structural information still needs to be elucidated. In this study, it was found that CML possessed quite good thermostability and alkaline resistance, and its hemagglutinating activity was bivalent metal cation dependent. In addition, hemagglutination test and fluorescence spectroscopy proved that GuHCl, urea, and sodium dodecyl sulfate could change the conformation of CML and further caused the loss of hemagglutination activity. Moreover, the changes of fluorescence spectrum indicated that the tryptophan (Trp) microenvironment conversion might be related to the conformation and bioactivities of CML. In addition, it was also found that Trp residues, arginine (Arg) residues, and sulfhydryl were important for the hemagglutinating activity of CML, but only Trp was proved to be crucial for the CML conformation. Furthermore, the Trp, Arg, and sulfhydryl-modified CML exhibited 97.17%, 76.99%, and 49.64% loss of its anti-proliferative activity, respectively, which was consistent with the alterations of its hemagglutinating activity. Given these findings, Trp residues on the surface of CML are essential for the active center to form substrate-accessible conformation and suitable environment for carbohydrate binding.
Collapse
Affiliation(s)
- Bangmin Lu
- School of Life Sciences and Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610064, China
| | - Bin Zhang
- School of Life Sciences and Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610064, China
| | - Wei Qi
- School of Life Sciences and Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610064, China
| | - Yanan Zhu
- School of Life Sciences and Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610064, China
| | - Yan Zhao
- School of Life Sciences and Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610064, China
| | - Nan Zhou
- School of Life Sciences and Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610064, China
| | - Rong Sun
- School of Life Sciences and Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610064, China
| | - Jinku Bao
- School of Life Sciences and Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610064, China
| | - Chuanfang Wu
- School of Life Sciences and Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610064, China
| |
Collapse
|
27
|
Patra D, Mishra P, Surolia A, Vijayan M. Structure, interactions and evolutionary implications of a domain-swapped lectin dimer from Mycobacterium smegmatis. Glycobiology 2014; 24:956-65. [DOI: 10.1093/glycob/cwu059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
28
|
Liu Z, Luo Y, Zhou TT, Zhang WZ. Could plant lectins become promising anti-tumour drugs for causing autophagic cell death? Cell Prolif 2013; 46:509-15. [PMID: 24033443 DOI: 10.1111/cpr.12054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/21/2013] [Indexed: 02/03/2023] Open
Abstract
Plant lectins, a group of highly diverse carbohydrate-binding proteins of non-immune origin, are ubiquitously distributed through a variety of plant species, and have recently drawn rising attention due to their remarkable ability to kill tumour cells using mechanisms implicated in autophagy. In this review, we provide a brief outline of structures of some representative plant lectins such as concanavalin A, Polygonatum cyrtonema lectin and mistletoe lectins. These can target autophagy by modulating BNIP-3, ROS-p38-p53, Ras-Raf and PI3KCI-Akt pathways, as well as Beclin-1, in many types of cancer cells. In addition, we further discuss how plant lectins are able to kill cancer cells by modulating autophagic death, for therapeutic purposes. Together, these findings provide a comprehensive perspective concerning plant lectins as promising new anti-tumour drugs, with respect to autophagic cell death in future cancer therapeutics.
Collapse
Affiliation(s)
- Z Liu
- Department of Hepato-biliary Surgery, General Hospital of PLA, Beijing, 1000853, China
| | | | | | | |
Collapse
|
29
|
Abstract
Arguably, bacteriocins deployed in warfare among related bacteria are among the most diverse proteinacous compounds with respect to structure and mode of action. Identification of the first prokaryotic member of the so-called MMBLs (monocot mannose-binding lectins) or GNA (Galanthus nivalis agglutinin) lectin family and discovery of its genus-specific killer activity in the Gram-negative bacteria Pseudomonas and Xanthomonas has added yet another kind of toxin to this group of allelopathic molecules. This novel feature is reminiscent of the protective function, on the basis of antifungal, insecticidal, nematicidal or antiviral activity, assigned to or proposed for several of the eukaryotic MMBL proteins that are ubiquitously distributed among monocot plants, but also occur in some other plants, fish, sponges, amoebae and fungi. Direct bactericidal activity can also be effected by a C-type lectin, but this is a mammalian protein that limits mucosal colonization by Gram-positive bacteria. The presence of two divergent MMBL domains in the novel bacteriocins raises questions about task distribution between modules and the possible role of carbohydrate binding in the specificity of target strain recognition and killing. Notably, bacteriocin activity was also demonstrated for a hybrid MMBL protein with an accessory protease-like domain. This association with one or more additional modules, often with predicted peptide-hydrolysing or -binding activity, suggests that additional bacteriotoxic proteins may be found among the diverse chimaeric MMBL proteins encoded in prokaryotic genomes. A phylogenetic survey of the bacterial MMBL modules reveals a mosaic pattern of strongly diverged sequences, mainly occurring in soil-dwelling and rhizosphere bacteria, which may reflect a trans-kingdom acquisition of the ancestral genes.
Collapse
|
30
|
Wu L, Bao JK. Anti-tumor and anti-viral activities of Galanthus nivalis agglutinin (GNA)-related lectins. Glycoconj J 2012; 30:269-79. [DOI: 10.1007/s10719-012-9440-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 07/24/2012] [Accepted: 08/01/2012] [Indexed: 11/29/2022]
|
31
|
Shetty KN, Bhat GG, Inamdar SR, Swamy BM, Suguna K. Crystal structure of a β-prism II lectin from Remusatia vivipara. Glycobiology 2011; 22:56-69. [PMID: 21788359 DOI: 10.1093/glycob/cwr100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The crystal structure of a β-prism II (BP2) fold lectin from Remusatia vivipara, a plant of traditional medicinal value, has been determined at a resolution of 2.4 Å. This lectin (RVL, Remusatia vivipara lectin) is a dimer with each protomer having two distinct BP2 domains without a linker between them. It belongs to the "monocot mannose-binding" lectin family, which consists of proteins of high sequence and structural similarity. Though the overall tertiary structure is similar to that of lectins from snowdrop bulbs and garlic, crucial differences in the mannose-binding regions and oligomerization were observed. Unlike most of the other structurally known proteins in this family, only one of the three carbohydrate recognition sites (CRSs) per BP2 domain is found to be conserved. RVL does not recognize simple mannose moieties. RVL binds to only N-linked complex glycans like those present on the gp120 envelope glycoprotein of HIV and mannosylated blood proteins like fetuin, but not to simple mannose moieties. The molecular basis for these features and their possible functional implications to understand the different levels of carbohydrate affinities in this structural family have been investigated through structure analysis, modeling and binding studies. Apart from being the first structure of a lectin to be reported from the Araceae/Arum family, this protein also displays a novel mode of oligomerization among BP2 lectins.
Collapse
Affiliation(s)
- Kartika N Shetty
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | |
Collapse
|
32
|
Xu HL, Li CY, He XM, Niu KQ, Peng H, Li WW, Zhou CC, Bao JK. Molecular modeling, docking and dynamics simulations of GNA-related lectins for potential prevention of influenza virus (H1N1). J Mol Model 2011; 18:27-37. [PMID: 21445708 DOI: 10.1007/s00894-011-1022-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 02/13/2011] [Indexed: 11/24/2022]
Abstract
The Galanthus nivalis agglutinin (GNA)-related lectin family exhibit significant anti-HIV and anti-HSV properties that are closely related to their carbohydrate-binding activities. However, there is still no conclusive evidence that GNA-related lectins possess anti-influenza properties. The hemagglutinin (HA) of influenza virus is a surface protein that is involved in binding host cell sialic acid during the early stages of infection. Herein, we studied the 3D-QSARs (three-dimensional quantitative structure-activity relationships) of lectin- and HA-sialic acid by molecular modeling. The affinities and stabilities of lectin- and HA-sialic acid complexes were also assessed by molecular docking and molecular dynamics simulations. Finally, anti-influenza GNA-related lectins that possess stable conformations and higher binding affinities for sialic acid than HAs of human influenza virus were screened, and a possible mechanism was proposed. Accordingly, our results indicate that some GNA-related lectins, such as Yucca filamentosa lectin and Polygonatum cyrtonema lectin, could act as drugs that prevent influenza virus infection via competitive binding. In conclusion, the GNA-related lectin family may be helpful in the design of novel candidate agents for preventing influenza A infection through the use of competitive combination against sialic acid specific viral infection.
Collapse
Affiliation(s)
- Huai-long Xu
- School of Life Sciences, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang SY, Yu QJ, Bao JK, Liu B. Polygonatum cyrtonema lectin, a potential antineoplastic drug targeting programmed cell death pathways. Biochem Biophys Res Commun 2011; 406:497-500. [DOI: 10.1016/j.bbrc.2011.02.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 02/11/2011] [Indexed: 11/30/2022]
|
34
|
Recombinant expression of Polygonatum cyrtonema lectin with anti-viral, apoptosis-inducing activities and preliminary crystallization. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|