1
|
Schlatterer R, Marczynski M, Hermann B, Lieleg O, Balzer BN. Unfolding of von Willebrand Factor Type D Like Domains Promotes Mucin Adhesion. NANO LETTERS 2025; 25:1765-1774. [PMID: 39841791 PMCID: PMC11803705 DOI: 10.1021/acs.nanolett.4c03088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/30/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025]
Abstract
Mucins are the macromolecular key components of mucus. On wet epithelia of mammals, mucin solutions and gels act as powerful biolubricants and reduce friction and wear by generating a sacrificial layer and establishing hydration lubrication. Yet the structure-function relationship of mucin adhesion and lubrication remains elusive. We study the adhesion behavior of mucin using atomic force microscopy-based single molecule force spectroscopy with covalently attached, lab-purified salivary MUC5B and gastric MUC5AC. We can resolve the structural motifs mediating adhesion on chemically distinct substrates, such as highly oriented pyrolytic graphite and steel. We report on force-induced partial unfolding of the von Willebrand factor type D like domains and deliver their unfolding rates and free energy barriers. These domains serve to dissipate energy during the desorption process of mucins. Partial mucin unfolding might significantly contribute to the stability of a sacrificial mucin layer during shearing processes, enhancing the lubrication potential of mucin solutions.
Collapse
Affiliation(s)
- Rebecca Schlatterer
- Department
of Chemistry and Pharmacy, Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Matthias Marczynski
- Department
of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany
- Center
for Protein Assemblies (CPA) & Munich Institute of Biomedical
Engineering (MIBE), Technical University
of Munich, Ernst-Otto-Fischer-Str.
8, 85748 Garching, Germany
| | - Bianca Hermann
- Department
of Chemistry and Pharmacy, Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Oliver Lieleg
- Department
of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany
- Center
for Protein Assemblies (CPA) & Munich Institute of Biomedical
Engineering (MIBE), Technical University
of Munich, Ernst-Otto-Fischer-Str.
8, 85748 Garching, Germany
| | - Bizan N. Balzer
- Department
of Chemistry and Pharmacy, Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
- Cluster
of Excellence livMatS @ FIT − Freiburg Center for Interactive
Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg
Materials Research Center (FMF), University
of Freiburg, Stefan-Meier-Str.
21, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Abraham Punnoose J, Hayden A, Kam CS, Halvorsen K. A guide to building a low-cost centrifuge force microscope module for single-molecule force experiments. Nat Protoc 2024:10.1038/s41596-024-01102-y. [PMID: 39739107 DOI: 10.1038/s41596-024-01102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2023] [Accepted: 11/05/2024] [Indexed: 01/02/2025]
Abstract
The ability to apply controlled forces to individual molecules or molecular complexes and observe their behaviors has led to many important discoveries in biology. Instruments capable of probing single-molecule forces typically cost >US$100,000, limiting the use of these techniques. The centrifuge force microscope (CFM) is a low-cost and easy-to-use instrument that enables high-throughput single-molecule studies. By combining the imaging capabilities of a microscope with the force application of a centrifuge, the CFM enables the simultaneous probing of hundreds to thousands of single-molecule interactions using tethered particles. Here we present a comprehensive set of instructions for building a CFM module that fits within a commercial benchtop centrifuge. The CFM module uses a 3D-printed housing, relies on off-the-shelf optical and electrical components, and can be built for less than US$1,000 in about 1 day. We also provide detailed instructions for setting up and running an experiment to measure force-dependent shearing of a short DNA duplex, as well as the software for CFM control and data analysis. The protocol is suitable for users with basic experience in analytical biochemistry and biophysics. The protocol enables the use of CFM-based experiments and may facilitate access to the single-molecule research field.
Collapse
Affiliation(s)
| | - Andrew Hayden
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Chai S Kam
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
3
|
Kordon SP, Cechova K, Bandekar SJ, Leon K, Dutka P, Siffer G, Kossiakoff AA, Vafabakhsh R, Araç D. Conformational coupling between extracellular and transmembrane domains modulates holo-adhesion GPCR function. Nat Commun 2024; 15:10545. [PMID: 39627215 PMCID: PMC11615224 DOI: 10.1038/s41467-024-54836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
Adhesion G Protein-Coupled Receptors (aGPCRs) are key cell-adhesion molecules involved in numerous physiological functions. aGPCRs have large multi-domain extracellular regions (ECRs) containing a conserved GAIN domain that precedes their seven-pass transmembrane domain (7TM). Ligand binding and mechanical force applied on the ECR regulate receptor function. However, how the ECR communicates with the 7TM remains elusive, because the relative orientation and dynamics of the ECR and 7TM within a holoreceptor is unclear. Here, we describe the cryo-EM reconstruction of an aGPCR, Latrophilin3/ADGRL3, and reveal that the GAIN domain adopts a parallel orientation to the transmembrane region and has constrained movement. Single-molecule FRET experiments unveil three slow-exchanging FRET states of the ECR relative to the transmembrane region within the holoreceptor. GAIN-targeted antibodies, and cancer-associated mutations at the GAIN-7TM interface, alter FRET states, cryo-EM conformations, and receptor signaling. Altogether, this data demonstrates conformational and functional coupling between the ECR and 7TM, suggesting an ECR-mediated mechanism for aGPCR activation.
Collapse
Affiliation(s)
- Szymon P Kordon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Center for Mechanical Excitability, University of Chicago, Chicago, IL, USA
| | - Kristina Cechova
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Sumit J Bandekar
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Center for Mechanical Excitability, University of Chicago, Chicago, IL, USA
| | - Katherine Leon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Przemysław Dutka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Gracie Siffer
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
- Center for Mechanical Excitability, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Alsteens D. Probing living cell dynamics and molecular interactions using atomic force microscopy. Biophys Rev 2024; 16:663-677. [PMID: 39830120 PMCID: PMC11735695 DOI: 10.1007/s12551-024-01258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 01/22/2025] Open
Abstract
Atomic force microscopy (AFM) has emerged as a powerful tool for studying biological interactions at the single-molecule level, offering unparalleled insights into receptor-ligand dynamics on living cells. This review discusses key developments in the application of AFM, highlighting its ability to capture nanomechanical properties of cellular surfaces and probe dynamic interactions, such as virus-host binding. AFM's versatility in measuring mechanical forces and mapping molecular interactions in near-physiological conditions is explored. The review also emphasizes how AFM provides critical insights into cell surface organization, receptor functionality, and viral entry mechanisms, advancing the understanding of cellular and molecular processes.
Collapse
Affiliation(s)
- David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, 1348 Louvain-la-Neuve, Belgium
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
| |
Collapse
|
5
|
Yang B, Gomes DEB, Liu Z, Santos MS, Li J, Bernardi RC, Nash MA. Engineering the Mechanical Stability of a Therapeutic Complex between Affibody and Programmed Death-Ligand 1 by Anchor Point Selection. ACS NANO 2024; 18:31912-31922. [PMID: 39514863 DOI: 10.1021/acsnano.4c09220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2024]
Abstract
Protein-protein complexes can vary in mechanical stability depending on the direction from which force is applied. Here, we investigated the mechanical stability of a complex between a binding scaffold called Affibody and an immune checkpoint protein Programmed Death-Ligand 1 (PD-L1). We used AFM single-molecule force spectroscopy with bioorthogonal clickable peptide handles, shear stress bead adhesion assays, molecular modeling, and steered molecular dynamics (SMD) to understand the pulling point dependency of the mechanostability of the Affibody:(PD-L1) complex. We observed a wide range of rupture forces depending on the anchor point. Pulling from residue #22 on Affibody generated an intermediate state attributed to partially unfolded PD-L1, while pulling from Affibody's N-terminus generated a force-activated catch bond. Pulling from residue #22 or #47 on Affibody generated high rupture forces, with the complex breaking at up to ∼190 pN under loading rates of ∼104-105 pN/s, representing a ∼4-fold increase as compared with low-force N-terminal pulling. SMD simulations showed relative tendencies in rupture forces that were consistent with experiments and, through visualization of force propagation networks, provided mechanistic insights. These results demonstrate how the mechanical properties of protein-protein interfaces can be controlled by informed choice of site-specific bioconjugation points within molecules, with implications for optimal bioconjugation strategies in drug delivery vehicles.
Collapse
Affiliation(s)
- Byeongseon Yang
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Diego E B Gomes
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Zhaowei Liu
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Mariana Sá Santos
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Jiajun Li
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Rafael C Bernardi
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Michael A Nash
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| |
Collapse
|
6
|
Pritzl SD, Ulugöl A, Körösy C, Filion L, Lipfert J. Accurate drift-invariant single-molecule force calibration using the Hadamard variance. Biophys J 2024; 123:3964-3976. [PMID: 39473184 PMCID: PMC11617635 DOI: 10.1016/j.bpj.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Single-molecule force spectroscopy (SMFS) techniques play a pivotal role in unraveling the mechanics and conformational transitions of biological macromolecules under external forces. Among these techniques, multiplexed magnetic tweezers (MT) are particularly well suited to probe very small forces, ≤1 pN, critical for studying noncovalent interactions and regulatory conformational changes at the single-molecule level. However, to apply and measure such small forces, a reliable and accurate force-calibration procedure is crucial. Here, we introduce a new approach to calibrate MT based on thermal motion using the Hadamard variance (HV). To test our method, we perform bead-tether Brownian dynamics simulations that mimic our experimental system and compare the performance of the HV method against two established techniques: power spectral density (PSD) and Allan variance (AV) analyses. Our analysis includes an assessment of each method's ability to mitigate common sources of additive noise, such as white and pink noise, as well as drift, which often complicate experimental data analysis. We find that the HV method exhibits overall similar or higher precision and accuracy, yielding lower force estimation errors across a wide range of signal-to-noise ratios (SNRs) and drift speeds compared with the PSD and AV methods. Notably, the HV method remains robust against drift, maintaining consistent uncertainty levels across the entire studied SNR and drift speed spectrum. We also explore the HV method using experimental MT data, where we find overall smaller force estimation errors compared with PSD and AV approaches. Overall, the HV method offers a robust method for achieving sub-pN resolution and precision in multiplexed MT measurements. Its potential extends to other SMFS techniques, presenting exciting opportunities for advancing our understanding of mechanosensitivity and force generation in biological systems. To make our methods widely accessible to the research community, we provide a well-documented Python implementation of the HV method as an extension to the Tweezepy package.
Collapse
Affiliation(s)
- Stefanie D Pritzl
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands.
| | - Alptuğ Ulugöl
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
| | - Caroline Körösy
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
| | - Laura Filion
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands.
| | - Jan Lipfert
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands; Institute for Physics, Augsburg University, Universitätsstrasse 1, Augsburg, Germany.
| |
Collapse
|
7
|
Li P, Li H. A Handle-Free, All-Protein-Based Optical Tweezers Method to Probe Protein Folding-Unfolding Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13721-13727. [PMID: 38899455 DOI: 10.1021/acs.langmuir.4c01711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/21/2024]
Abstract
Optical tweezers (OT) have evolved into powerful single molecule force spectroscopy tools to investigate protein folding-unfolding dynamics. To stretch a protein of interest using OT, the protein must be flanked with two double stranded DNA (dsDNA) handles. However, coupling dsDNA handles to the protein is often of low yield, representing a bottleneck in OT experiments. Here, we report a handle-free, all-protein-based OT method for investigating protein folding/unfolding dynamics. In this new method, we employed disordered elastin-like polypeptides (ELPs) as a molecular linker and the mechanically stable cohesin-dockerin (Coh-Doc) pair as the prey-bait system to enable the efficient capture and stretching of individual protein molecules. This novel approach was validated by using model proteins NuG2 and RTX-v, yielding experimental results comparable to those obtained by using the dsDNA handle approach. This new method provides a streamlined and efficient OT approach to investigate the folding-unfolding dynamics of proteins at the single molecule level, thus expanding the toolbox of OT-based single molecule force spectroscopy.
Collapse
Affiliation(s)
- Peiyun Li
- Department of ChemistryUniversity of British ColumbiaVancouver, BC V6T 1Z1, Canada
| | - Hongbin Li
- Department of ChemistryUniversity of British ColumbiaVancouver, BC V6T 1Z1, Canada
| |
Collapse
|
8
|
Yang B, Gomes DEB, Liu Z, Santos MS, Li J, Bernardi RC, Nash MA. Engineering the Mechanical Stability of a Therapeutic Affibody/PD-L1 Complex by Anchor Point Selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595133. [PMID: 38826272 PMCID: PMC11142103 DOI: 10.1101/2024.05.21.595133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/04/2024]
Abstract
Protein-protein complexes can vary in mechanical stability depending on the direction from which force is applied. Here we investigated the anisotropic mechanical stability of a molecular complex between a therapeutic non-immunoglobulin scaffold called Affibody and the extracellular domain of the immune checkpoint protein PD-L1. We used a combination of single-molecule AFM force spectroscopy (AFM-SMFS) with bioorthogonal clickable peptide handles, shear stress bead adhesion assays, molecular modeling, and steered molecular dynamics (SMD) simulations to understand the pulling point dependency of mechanostability of the Affibody:(PD-L1) complex. We observed diverse mechanical responses depending on the anchor point. For example, pulling from residue #22 on Affibody generated an intermediate unfolding event attributed to partial unfolding of PD-L1, while pulling from Affibody's N-terminus generated force-activated catch bond behavior. We found that pulling from residue #22 or #47 on Affibody generated the highest rupture forces, with the complex breaking at up to ~ 190 pN under loading rates of ~104-105 pN/sec, representing a ~4-fold increase in mechanostability as compared with low force N-terminal pulling. SMD simulations provided consistent tendencies in rupture forces, and through visualization of force propagation networks provided mechanistic insights. These results demonstrate how mechanostability of therapeutic protein-protein interfaces can be controlled by informed selection of anchor points within molecules, with implications for optimal bioconjugation strategies in drug delivery vehicles.
Collapse
Affiliation(s)
- Byeongseon Yang
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Diego E. B. Gomes
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Zhaowei Liu
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
- Present address: Department of Bionanoscience, Delft University of Technology, 2629HZ Delft, the Netherlands
| | - Mariana Sá Santos
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Jiajun Li
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Rafael C. Bernardi
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Michael A. Nash
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| |
Collapse
|
9
|
Kordon SP, Cechova K, Bandekar SJ, Leon K, Dutka P, Siffer G, Kossiakoff AA, Vafabakhsh R, Araç D. Structural analysis and conformational dynamics of a holo-adhesion GPCR reveal interplay between extracellular and transmembrane domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581807. [PMID: 38464178 PMCID: PMC10925191 DOI: 10.1101/2024.02.25.581807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 03/12/2024]
Abstract
Adhesion G Protein-Coupled Receptors (aGPCRs) are key cell-adhesion molecules involved in numerous physiological functions. aGPCRs have large multi-domain extracellular regions (ECR) containing a conserved GAIN domain that precedes their seven-pass transmembrane domain (7TM). Ligand binding and mechanical force applied on the ECR regulate receptor function. However, how the ECR communicates with the 7TM remains elusive, because the relative orientation and dynamics of the ECR and 7TM within a holoreceptor is unclear. Here, we describe the cryo-EM reconstruction of an aGPCR, Latrophilin3/ADGRL3, and reveal that the GAIN domain adopts a parallel orientation to the membrane and has constrained movement. Single-molecule FRET experiments unveil three slow-exchanging FRET states of the ECR relative to the 7TM within the holoreceptor. GAIN-targeted antibodies, and cancer-associated mutations at the GAIN-7TM interface, alter FRET states, cryo-EM conformations, and receptor signaling. Altogether, this data demonstrates conformational and functional coupling between the ECR and 7TM, suggesting an ECR-mediated mechanism of aGPCR activation.
Collapse
|
10
|
Mora M, Tapia-Rojo R, Garcia-Manyes S. Unfolding and Refolding Proteins Using Single-Molecule AFM. Methods Mol Biol 2024; 2694:339-354. [PMID: 37824012 DOI: 10.1007/978-1-0716-3377-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/13/2023]
Abstract
Single-molecule atomic force microscopy (AFM) allows capturing the conformational dynamics of an individual molecule under force. In this chapter, we describe a protocol for conducting a protein nanomechanical experiment using AFM, covering both the force-extension and force-clamp modes. Combined, these experiments provide an integrated vista of the molecular mechanisms-and their associated kinetics-underpinning the mechanical unfolding and refolding of individual proteins when exposed to mechanical load.
Collapse
Affiliation(s)
- Marc Mora
- Department of Physics, Randall Centre for Cell and Molecular Biophysics and London Centre for Nanotechnology, King's College London, London, UK
| | - Rafael Tapia-Rojo
- Department of Physics, Randall Centre for Cell and Molecular Biophysics and London Centre for Nanotechnology, King's College London, London, UK
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics and London Centre for Nanotechnology, King's College London, London, UK.
| |
Collapse
|
11
|
Doffini V, Liu H, Liu Z, Nash MA. Iterative Machine Learning for Classification and Discovery of Single-Molecule Unfolding Trajectories from Force Spectroscopy Data. NANO LETTERS 2023; 23:10406-10413. [PMID: 37933959 DOI: 10.1021/acs.nanolett.3c03026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2023]
Abstract
We report the application of machine learning techniques to expedite classification and analysis of protein unfolding trajectories from force spectroscopy data. Using kernel methods, logistic regression, and triplet loss, we developed a workflow called Forced Unfolding and Supervised Iterative Online (FUSION) learning where a user classifies a small number of repeatable unfolding patterns encoded as images, and a machine is tasked with identifying similar images to classify the remaining data. We tested the workflow using two case studies on a multidomain XMod-Dockerin/Cohesin complex, validating the approach first using synthetic data generated with a Monte Carlo algorithm and then deploying the method on experimental atomic force spectroscopy data. FUSION efficiently separated traces that passed quality filters from unusable ones, classified curves with high accuracy, and identified unfolding pathways that were undetected by the user. This study demonstrates the potential of machine learning to accelerate data analysis and generate new insights in protein biophysics.
Collapse
Affiliation(s)
- Vanni Doffini
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- Swiss Nanoscience Institute, 4056 Basel, Switzerland
| | - Haipei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Zhaowei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- Swiss Nanoscience Institute, 4056 Basel, Switzerland
| |
Collapse
|
12
|
Doyle LA, Takushi B, Kibler RD, Milles LF, Orozco CT, Jones JD, Jackson SE, Stoddard BL, Bradley P. De novo design of knotted tandem repeat proteins. Nat Commun 2023; 14:6746. [PMID: 37875492 PMCID: PMC10598012 DOI: 10.1038/s41467-023-42388-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
De novo protein design methods can create proteins with folds not yet seen in nature. These methods largely focus on optimizing the compatibility between the designed sequence and the intended conformation, without explicit consideration of protein folding pathways. Deeply knotted proteins, whose topologies may introduce substantial barriers to folding, thus represent an interesting test case for protein design. Here we report our attempts to design proteins with trefoil (31) and pentafoil (51) knotted topologies. We extended previously described algorithms for tandem repeat protein design in order to construct deeply knotted backbones and matching designed repeat sequences (N = 3 repeats for the trefoil and N = 5 for the pentafoil). We confirmed the intended conformation for the trefoil design by X ray crystallography, and we report here on this protein's structure, stability, and folding behaviour. The pentafoil design misfolded into an asymmetric structure (despite a 5-fold symmetric sequence); two of the four repeat-repeat units matched the designed backbone while the other two diverged to form local contacts, leading to a trefoil rather than pentafoil knotted topology. Our results also provide insights into the folding of knotted proteins.
Collapse
Affiliation(s)
- Lindsey A Doyle
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. North, Seattle, WA, 98109, USA
| | - Brittany Takushi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. North, Seattle, WA, 98109, USA
| | - Ryan D Kibler
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Lukas F Milles
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Carolina T Orozco
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jonathan D Jones
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Sophie E Jackson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. North, Seattle, WA, 98109, USA.
| | - Philip Bradley
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. North, Seattle, WA, 98109, USA.
- Division of Public Health Sciences and Program in Computational Biology, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N, Seattle, WA, 98009, USA.
| |
Collapse
|
13
|
Abstract
Proteins are major drug targets, and drug-target interaction identification and analysis are important factors for drug discovery. Atomic force microscopy (AFM) is a powerful tool making it possible to image proteins with nanometric resolution and probe intermolecular forces under physiological conditions. We review recent studies conducted in the field of target protein drug discovery using AFM-based analysis technology, including drug-driven changes in nanomechanical properties of protein morphology and interactions. Underlying mechanisms (including thermodynamic and kinetic parameters) of the drug-target interaction and drug-modulating protein-protein interaction (PPI) on the surfaces of models or living cells are discussed. Furthermore, challenges and the outlook for the field are likewise discussed. Overall, this insight into the mechanical properties of protein-drug interactions provides an unprecedented information framework for rational drug discovery in the pharmaceutical field.
Collapse
Affiliation(s)
- Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
14
|
Li H. Single Molecule Force Spectroscopy Studies on Metalloproteins: Opportunities and Challenges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1345-1353. [PMID: 36647634 DOI: 10.1021/acs.langmuir.2c03332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/17/2023]
Abstract
Metalloproteins play important roles in a wide range of biological processes. Elucidating the mechanisms via which metalloproteins fold and constitute their metal centers is critical to the understanding of the functions and dynamics of metalloproteins. Owing to its superior force and length resolution, single-molecule force spectroscopy (SMFS) has evolved into a powerful tool to probe the unfolding and folding mechanisms of metalloproteins at the single level by forcing metalloproteins to unfold and then refold along a reaction coordinate defined by the applied stretching force. The folding of metalloproteins is complex and involves two interwound processes, the folding of the polypeptide chain and the constitution of the metal center. Experimental studies of the folding of metalloproteins are challenging. SMFS studies have allowed researchers to directly probe the folding and unfolding of metalloproteins at the single-molecule level and the effect of metal centers on the folding-unfolding energy landscape of metalloproteins. New mechanistic insights on the folding and unfolding of some metalloproteins have been obtained, demonstrating the power and unique advantages that SMFS techniques may offer. In this Perspective, using calcium-binding proteins and small iron-sulfur proteins as examples, I provide a concise overview of the information and insights that SMFS studies have provided to understand the folding and unfolding of metalloproteins. I also discuss the opportunities and challenges that are present in this fast-progressing area of research.
Collapse
Affiliation(s)
- Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
15
|
Maciuba K, Kaiser CM. Tethering Complex Proteins and Protein Complexes for Optical Tweezers Experiments. Methods Mol Biol 2022; 2478:427-460. [PMID: 36063330 PMCID: PMC9924098 DOI: 10.1007/978-1-0716-2229-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
Tethering proteins to force probes, typically micrometer-sized beads, is a prerequisite for dissecting their properties with optical tweezers. DNA handles serve as spacers between the tethered protein of interest and the bead surface. Attachment sites of the DNA handles to both the surface of beads and to the protein of interest must be mechanically stable for optical tweezers experiments. The most prominent method for attaching DNA handles to proteins utilizes thiol chemistry, linking modified DNA to engineered cysteines in the target protein. This method, although experimentally straightforward, is impractical for the large number of proteins that endogenously contain multiple or essential cysteines at undesired positions. Here, we describe two alternative approaches that take advantage of genetically encoded tag sequences in the target protein. The first method uses the enzymes Sfp and BirA, and the second uses the more recently described SpyTag-SpyCatcher system. We outline the process of generating the DNA handles themselves, as well as how to make the DNA-protein chimeras for carrying out optical tweezers experiments. These methods have robustly worked for several diverse and complex proteins, including ones that are difficult to produce or purify, and for protein-containing complexes such as the ribosome. They will be useful in cases where chemistry-based approaches are impractical or not feasible.
Collapse
Affiliation(s)
- Kevin Maciuba
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
16
|
Liu H, Liu Z, Yang B, Lopez Morales J, Nash MA. Optimal Sacrificial Domains in Mechanical Polyproteins: S. epidermidis Adhesins Are Tuned for Work Dissipation. JACS AU 2022; 2:1417-1427. [PMID: 35783175 PMCID: PMC9241160 DOI: 10.1021/jacsau.2c00121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/22/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The opportunistic pathogen Staphylococcus epidermidis utilizes a multidomain surface adhesin protein to bind host components and adhere to tissues. While it is known that the interaction between the SdrG receptor and its fibrinopeptide target (FgB) is exceptionally mechanostable (∼2 nN), the influence of downstream B domains (B1 and B2) is unclear. Here, we studied the mechanical relationships between folded B domains and the SdrG receptor bound to FgB. We used protein engineering, single-molecule force spectroscopy (SMFS) with an atomic force microscope (AFM), and Monte Carlo simulations to understand how the mechanical properties of folded sacrificial domains, in general, can be optimally tuned to match the stability of a receptor-ligand complex. Analogous to macroscopic suspension systems, sacrificial shock absorber domains should neither be too weak nor too strong to optimally dissipate mechanical energy. We built artificial molecular shock absorber systems based on the nanobody (VHH) scaffold and studied the competition between domain unfolding and receptor unbinding. We quantitatively determined the optimal stability of shock absorbers that maximizes work dissipation on average for a given receptor and found that natural sacrificial domains from pathogenic S. epidermidis and Clostridium perfringens adhesins exhibit stabilities at or near this optimum within a specific range of loading rates. These findings demonstrate how tuning the stability of sacrificial domains in adhesive polyproteins can be used to maximize mechanical work dissipation and serve as an adhesion strategy by bacteria.
Collapse
Affiliation(s)
- Haipei Liu
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Zhaowei Liu
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Byeongseon Yang
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Joanan Lopez Morales
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Michael A. Nash
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| |
Collapse
|
17
|
Santos MS, Liu H, Schittny V, Vanella R, Nash MA. Correlating single-molecule rupture mechanics with cell population adhesion by yeast display. BIOPHYSICAL REPORTS 2022; 2:None. [PMID: 35284851 PMCID: PMC8904261 DOI: 10.1016/j.bpr.2021.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022]
Affiliation(s)
- Mariana Sá Santos
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Systems Biology PhD program, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Haipei Liu
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Valentin Schittny
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Rosario Vanella
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Michael A. Nash
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Corresponding author
| |
Collapse
|
18
|
Raudsepp A, Williams MA, Jameson GB. Modeling multiple duplex DNA attachments in a force-extension experiment. BIOPHYSICAL REPORTS 2022; 2:100045. [PMID: 36425083 PMCID: PMC9680770 DOI: 10.1016/j.bpr.2022.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/25/2021] [Revised: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/30/2022]
Abstract
Optical tweezers-based DNA stretching often relies on tethering a single end-activated DNA molecule between optically manipulated end-binding beads. Measurement success can depend on DNA concentration. At lower DNA concentrations tethering is less common, and many trials may be required to observe a single-molecule stretch. At higher DNA concentrations tethering is more common; however, the resulting force-extensions observed are more complex and may vary from measurement to measurement. Typically these more complex results are attributed to the formation of multiple tethers between the beads; however, to date there does not appear to have been a critical examination of this hypothesis or the potential usefulness of such data. Here we examine stretches at a higher DNA concentration and use analysis and simulation to show how the more complex force-extensions observed can be understood in terms of multiple DNA attachments.
Collapse
|
19
|
Ahlawat V, Deopa SPS, Patil S. Quantitative Elasticity of Flexible Polymer Chains Using Interferometer-Based AFM. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:526. [PMID: 35159871 PMCID: PMC8839736 DOI: 10.3390/nano12030526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/26/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022]
Abstract
We estimate the elasticity of single polymer chains using atomic force microscope (AFM)-based oscillatory experiments. An accurate estimate of elasticity using AFM is limited by assumptions in describing the dynamics of an oscillating cantilever. Here, we use a home-built fiber-interferometry-based detection system that allows a simple and universal point-mass description of cantilever oscillations. By oscillating the cantilever base and detecting changes in cantilever oscillations with an interferometer, we extracted stiffness versus extension profiles for polymers. For polyethylene glycol (PEG) in a good solvent, stiffness-extension data showed significant deviation from conventional force-extension curves (FECs) measured in constant velocity pulling experiments. Furthermore, modeling stiffness data with an entropic worm-like chain (WLC) model yielded a persistence length of (0.5 ± 0.2 nm) compared to anomaly low value (0.12 nm ± 0.01) in conventional pulling experiments. This value also matched well with equilibrium measurements performed using magnetic tweezers. In contrast, polystyrene (PS) in a poor solvent, like water, showed no deviation between the two experiments. However, the stiffness profile for PS in good solvent (8M Urea) showed significant deviation from conventional force-extension curves. We obtained a persistence length of (0.8 ± 0.2 nm) compared to (0.22 nm ± 0.01) in pulling experiments. Our unambiguous measurements using interferometer yield physically acceptable values of persistence length. It validates the WLC model in good solvents but suggests caution for its use in poor solvents.
Collapse
Affiliation(s)
| | | | - Shivprasad Patil
- Department of Physics, Indian Institute of Science Education and Research (IISER) Pune, Pashan Road, Pune 411008, India; (V.A.); (S.P.S.D.)
| |
Collapse
|
20
|
Sun W, Gao X, Lei H, Wang W, Cao Y. Biophysical Approaches for Applying and Measuring Biological Forces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105254. [PMID: 34923777 PMCID: PMC8844594 DOI: 10.1002/advs.202105254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/15/2021] [Indexed: 05/13/2023]
Abstract
Over the past decades, increasing evidence has indicated that mechanical loads can regulate the morphogenesis, proliferation, migration, and apoptosis of living cells. Investigations of how cells sense mechanical stimuli or the mechanotransduction mechanism is an active field of biomaterials and biophysics. Gaining a further understanding of mechanical regulation and depicting the mechanotransduction network inside cells require advanced experimental techniques and new theories. In this review, the fundamental principles of various experimental approaches that have been developed to characterize various types and magnitudes of forces experienced at the cellular and subcellular levels are summarized. The broad applications of these techniques are introduced with an emphasis on the difficulties in implementing these techniques in special biological systems. The advantages and disadvantages of each technique are discussed, which can guide readers to choose the most suitable technique for their questions. A perspective on future directions in this field is also provided. It is anticipated that technical advancement can be a driving force for the development of mechanobiology.
Collapse
Affiliation(s)
- Wenxu Sun
- School of SciencesNantong UniversityNantong226019P. R. China
| | - Xiang Gao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Hai Lei
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| | - Wei Wang
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Yi Cao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
21
|
Lipke PN, Rauceo JM, Viljoen A. Cell-Cell Mating Interactions: Overview and Potential of Single-Cell Force Spectroscopy. Int J Mol Sci 2022; 23:ijms23031110. [PMID: 35163034 PMCID: PMC8835621 DOI: 10.3390/ijms23031110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
It is an understatement that mating and DNA transfer are key events for living organisms. Among the traits needed to facilitate mating, cell adhesion between gametes is a universal requirement. Thus, there should be specific properties for the adhesion proteins involved in mating. Biochemical and biophysical studies have revealed structural information about mating adhesins, as well as their specificities and affinities, leading to some ideas about these specialized adhesion proteins. Recently, single-cell force spectroscopy (SCFS) has added important findings. In SCFS, mating cells are brought into contact in an atomic force microscope (AFM), and the adhesive forces are monitored through the course of mating. The results have shown some remarkable characteristics of mating adhesins and add knowledge about the design and evolution of mating adhesins.
Collapse
Affiliation(s)
- Peter N. Lipke
- Biology Department, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Correspondence: (P.N.L.); (A.V.)
| | - Jason M. Rauceo
- Department of Sciences, John Jay College of the City University of New York, New York, NY 10019, USA;
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4–5, bte L7.07.07, 1348 Louvain-la-Neuve, Belgium
- Correspondence: (P.N.L.); (A.V.)
| |
Collapse
|
22
|
Liu Z, Moreira RA, Dujmović A, Liu H, Yang B, Poma AB, Nash MA. Mapping Mechanostable Pulling Geometries of a Therapeutic Anticalin/CTLA-4 Protein Complex. NANO LETTERS 2022; 22:179-187. [PMID: 34918516 PMCID: PMC8759085 DOI: 10.1021/acs.nanolett.1c03584] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Indexed: 05/27/2023]
Abstract
We used single-molecule AFM force spectroscopy (AFM-SMFS) in combination with click chemistry to mechanically dissociate anticalin, a non-antibody protein binding scaffold, from its target (CTLA-4), by pulling from eight different anchor residues. We found that pulling on the anticalin from residue 60 or 87 resulted in significantly higher rupture forces and a decrease in koff by 2-3 orders of magnitude over a force range of 50-200 pN. Five of the six internal anchor points gave rise to complexes significantly more stable than N- or C-terminal anchor points, rupturing at up to 250 pN at loading rates of 0.1-10 nN s-1. Anisotropic network modeling and molecular dynamics simulations helped to explain the geometric dependency of mechanostability. These results demonstrate that optimization of attachment residue position on therapeutic binding scaffolds can provide large improvements in binding strength, allowing for mechanical affinity maturation under shear stress without mutation of binding interface residues.
Collapse
Affiliation(s)
- Zhaowei Liu
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Rodrigo A. Moreira
- Biosystems
and Soft Matter Division, Institute of Fundamental
Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Ana Dujmović
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Haipei Liu
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Byeongseon Yang
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Adolfo B. Poma
- Biosystems
and Soft Matter Division, Institute of Fundamental
Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
- International
Center for Research on Innovative Biobased Materials (ICRI-BioM)—International
Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Michael A. Nash
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
- National
Center for Competence in Research (NCCR) Molecular Systems Engineering, 4058 Basel, Switzerland
| |
Collapse
|
23
|
Pan J, Kmieciak T, Liu YT, Wildenradt M, Chen YS, Zhao Y. Quantifying molecular- to cellular-level forces in living cells. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2021; 54:483001. [PMID: 34866655 PMCID: PMC8635116 DOI: 10.1088/1361-6463/ac2170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
Mechanical cues have been suggested to play an important role in cell functions and cell fate determination, however, such physical quantities are challenging to directly measure in living cells with single molecule sensitivity and resolution. In this review, we focus on two main technologies that are promising in probing forces at the single molecule level. We review their theoretical fundamentals, recent technical advancements, and future directions, tailored specifically for interrogating mechanosensitive molecules in live cells.
Collapse
Affiliation(s)
- Jason Pan
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Tommy Kmieciak
- Department of Engineering Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Yen-Ting Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Matthew Wildenradt
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Yun-Sheng Chen
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Yang Zhao
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 208 N. Wright Street, Urbana, IL 61801, United States of America
| |
Collapse
|
24
|
Parreira P, Martins MCL. The biophysics of bacterial infections: Adhesion events in the light of force spectroscopy. Cell Surf 2021; 7:100048. [PMID: 33665520 PMCID: PMC7898176 DOI: 10.1016/j.tcsw.2021.100048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2018] [Revised: 08/10/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023] Open
Abstract
Bacterial infections are the most eminent public health challenge of the 21st century. The primary step leading to infection is bacterial adhesion to the surface of host cells or medical devices, which is mediated by a multitude of molecular interactions. At the interface of life sciences and physics, last years advances in atomic force microscopy (AFM)-based force spectroscopy techniques have made possible to measure the forces driving bacteria-cell and bacteria-materials interactions on a single molecule/cell basis (single molecule/cell force spectroscopy). Among the bacteria-(bio)materials surface interactions, the life-threatening infections associated to medical devices involving Staphylococcus aureus and Escherichia coli are the most eminent. On the other hand, Pseudomonas aeruginosa binding to the pulmonary and urinary tract or the Helicobacter pylori binding to the gastric mucosa, are classical examples of bacteria-host cell interactions that end in serious infections. As we approach the end of the antibiotic era, acquisition of a deeper knowledge of the fundamental forces involved in bacteria - host cells/(bio)materials surface adhesion is crucial for the identification of new ligand-binding events and its assessment as novel targets for alternative anti-infective therapies. This article aims to highlight the potential of AFM-based force spectroscopy for new targeted therapies development against bacterial infections in which adhesion plays a pivotal role and does not aim to be an extensive overview on the AFM technical capabilities and theory of single molecule force spectroscopy.
Collapse
Affiliation(s)
- Paula Parreira
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - M. Cristina L. Martins
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| |
Collapse
|
25
|
van der Sleen LM, Tych KM. Bioconjugation Strategies for Connecting Proteins to DNA-Linkers for Single-Molecule Force-Based Experiments. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2424. [PMID: 34578744 PMCID: PMC8464727 DOI: 10.3390/nano11092424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/10/2023]
Abstract
The mechanical properties of proteins can be studied with single molecule force spectroscopy (SMFS) using optical tweezers, atomic force microscopy and magnetic tweezers. It is common to utilize a flexible linker between the protein and trapped probe to exclude short-range interactions in SMFS experiments. One of the most prevalent linkers is DNA due to its well-defined properties, although attachment strategies between the DNA linker and protein or probe may vary. We will therefore provide a general overview of the currently existing non-covalent and covalent bioconjugation strategies to site-specifically conjugate DNA-linkers to the protein of interest. In the search for a standardized conjugation strategy, considerations include their mechanical properties in the context of SMFS, feasibility of site-directed labeling, labeling efficiency, and costs.
Collapse
Affiliation(s)
| | - Katarzyna M. Tych
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands;
| |
Collapse
|
26
|
Guo Z, Hong H, Sun H, Zhang X, Wu CX, Li B, Cao Y, Chen H. SpyTag/SpyCatcher tether as a fingerprint and force marker in single-molecule force spectroscopy experiments. NANOSCALE 2021; 13:11262-11269. [PMID: 34155491 DOI: 10.1039/d1nr01907d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
Single molecule force spectroscopy has emerged as a powerful tool to study protein folding dynamics, ligand-receptor interactions, and various mechanobiological processes. High force precision does not necessarily lead to high force accuracy, as the uncertainties in calibration can bring serious systematic errors. In the case of magnetic tweezers, accurate determination of the applied forces for short biomolecular tethers, by measuring thermal fluctuations of inhomogeneous magnetic beads, remains difficult. Here we address this challenge by showing that the SpyTag/SpyCatcher complex is not only a convenient and genetically encodable covalent linker but also an ideal molecular fingerprint and force marker in single molecule force spectroscopy experiments. By stretching the N-termini of both SpyCatcher and SpyTag, the complex unfolds locally up to the isopeptide bond position in an unzipping geometry, resulting in equilibrium transitions at ∼30 pN with step sizes of ∼3.4 nm. This mechanical feature can be used as the fingerprint to identify single-molecular events. Moreover, the transitions occur with a fast exchange rate and in a narrow force range. Therefore, the real applied forces can be determined accurately based on the force-dependent transitions. The equilibrium forces are insensitive to buffer conditions and temperature, making the calibration applicable to many complicated experimental systems. We provide an example to calibrate protein unfolding forces using this force marker and expect that this method can greatly simplify force calibration in single-molecule force spectroscopy experiments and improve the force accuracy.
Collapse
Affiliation(s)
- Zilong Guo
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Davis MM, Lamichhane R, Bruce BD. Elucidating Protein Translocon Dynamics with Single-Molecule Precision. Trends Cell Biol 2021; 31:569-583. [PMID: 33865650 DOI: 10.1016/j.tcb.2021.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/28/2023]
Abstract
Translocons are protein assemblies that facilitate the targeting and transport of proteins into and across biological membranes. Our understanding of these systems has been advanced using genetics, biochemistry, and structural biology. Despite these classic advances, until recently we have still largely lacked a detailed understanding of how translocons recognize and facilitate protein translocation. With the advent and improvements of cryogenic electron microscopy (cryo-EM) single-particle analysis and single-molecule fluorescence microscopy, the details of how translocons function are finally emerging. Here, we introduce these methods and evaluate their importance in understanding translocon structure, function, and dynamics.
Collapse
Affiliation(s)
- Madeline M Davis
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Rajan Lamichhane
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Barry D Bruce
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Graduate Program in Genome Science and Technology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996, USA.
| |
Collapse
|
28
|
Maciuba K, Zhang F, Kaiser CM. Facile tethering of stable and unstable proteins for optical tweezers experiments. Biophys J 2021; 120:2691-2700. [PMID: 33989618 DOI: 10.1016/j.bpj.2021.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022] Open
Abstract
Single-molecule force spectroscopy with optical tweezers has emerged as a powerful tool for dissecting protein folding. The requirement to stably attach "molecular handles" to specific points in the protein of interest by preparative biochemical techniques is a limiting factor in applying this methodology, especially for large or unstable proteins that are difficult to produce and isolate. Here, we present a streamlined approach for creating stable and specific attachments using autocatalytic covalent tethering. The high specificity of coupling allowed us to tether ribosome-nascent chain complexes, demonstrating its suitability for investigating complex macromolecular assemblies. We combined this approach with cell-free protein synthesis, providing a facile means of preparing samples for single-molecule force spectroscopy. The workflow eliminates the need for biochemical protein purification during sample preparation for single-molecule measurements, making structurally unstable proteins amenable to investigation by this powerful single-molecule technique. We demonstrate the capabilities of this approach by carrying out pulling experiments with an unstructured domain of elongation factor G that had previously been refractory to analysis. Our approach expands the pool of proteins amenable to folding studies, which should help to reduce existing biases in the currently available set of protein folding models.
Collapse
Affiliation(s)
- Kevin Maciuba
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Fan Zhang
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, Maryland; Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
29
|
Song G, Tian F, Liu H, Li G, Zheng P. Pioglitazone Inhibits Metal Cluster Transfer of mitoNEET by Stabilizing the Labile Fe-N Bond Revealed at Single-Bond Level. J Phys Chem Lett 2021; 12:3860-3867. [PMID: 33856229 DOI: 10.1021/acs.jpclett.0c03852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/12/2023]
Abstract
Outer mitochondrial membrane protein mitoNEET (mNT) is a target of the type 2 diabetes drug pioglitazone. It contains a labile Fe2S2(His)1(Cys)3 metal cluster with a single Fe-N(His87) coordinating bond and can transfer its cluster to acceptor proteins. Previous ensemble studies showed that pioglitazone's binding inhibited the transfer by stabilizing the cluster, and histidine 87 may be the key mediator. Here we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to study the unfolding process of mNT dimer in the absence and presence of pioglitazone, which can distinguish the binding effect for different regions of a protein. By developing a two-step strategy using different mNT monomers with respective purification tags, we solve the problem that the classic polyprotein formation disables the mNT to dimerize. As a result, a polyprotein including a stable, naturally noncovalently bound mNT homodimer is obtained, which is required for reliable AFM measurement and pioglitazone binding. Then, the dissociation rate (koff) of the metal cluster was measured, showing a 10-fold decrease upon pioglitazone binding, while the other parts decreased only 3-fold, verifying that pioglitazone mainly stabilizes the cluster. Moreover, when the Fe(III)-N(His87) bond was ruptured, this effect for the remaining Fe2S2(Cys)3 intermediate largely disappeared. Consequently, AFM results revealed that pioglitazone inhibited the metal cluster transfer of mNT by stabilizing the labile Fe(III)-N(His87) bond. In addition, an alternative method to build a natural, noncovalently bound protein dimer or complex for reliable single-molecule measurement was developed.
Collapse
Affiliation(s)
- Guobin Song
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Huaxing Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Guoqiang Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
30
|
Rodriguez-Ramos J, Rico F. Determination of calibration parameters of cantilevers of arbitrary shape by finite element analysis. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:045001. [PMID: 34243426 DOI: 10.1063/5.0036263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/03/2020] [Accepted: 03/14/2021] [Indexed: 06/13/2023]
Abstract
The use of atomic force microscopy in nanomechanical measurements requires accurate calibration of the cantilever's spring constant (kc) and the optical lever sensitivity (OLS). The thermal method, based on the cantilever's thermal fluctuations in fluids, allows estimation of kc in a fast, non-invasive mode. However, differences in the cantilever geometry and mounting angle require the knowledge of three correction factors to get a good estimation of kc: the contribution of the oscillation mode to the total amplitude, the shape difference between the free and end-loaded configurations, and the tilt of the cantilever with respect to the measured surface. While the correction factors for traditional rectangular and V-shaped cantilever geometries have been reported, they must be determined for cantilevers with non-traditional geometries and large tips. Here, we develop a method based on finite element analysis to estimate the correction factors of cantilevers with arbitrary geometry and tip dimensions. The method relies on the numerical computation of the effective cantilever mass. The use of the correction factor for rectangular geometries in our model cantilever (PFQNM-LC) will lead to values underestimated by 16%. In contrast, experiments using pre-calibrated cantilevers revealed a maximum uncertainty below 5% in the estimation of the OLS, verifying our approach.
Collapse
Affiliation(s)
| | - Felix Rico
- Aix-Marseille University, INSERM, CNRS, LAI, 13009 Marseille, France
| |
Collapse
|
31
|
Modulation of a protein-folding landscape revealed by AFM-based force spectroscopy notwithstanding instrumental limitations. Proc Natl Acad Sci U S A 2021; 118:2015728118. [PMID: 33723041 DOI: 10.1073/pnas.2015728118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
Abstract
Single-molecule force spectroscopy is a powerful tool for studying protein folding. Over the last decade, a key question has emerged: how are changes in intrinsic biomolecular dynamics altered by attachment to μm-scale force probes via flexible linkers? Here, we studied the folding/unfolding of α3D using atomic force microscopy (AFM)-based force spectroscopy. α3D offers an unusual opportunity as a prior single-molecule fluorescence resonance energy transfer (smFRET) study showed α3D's configurational diffusion constant within the context of Kramers theory varies with pH. The resulting pH dependence provides a test for AFM-based force spectroscopy's ability to track intrinsic changes in protein folding dynamics. Experimentally, however, α3D is challenging. It unfolds at low force (<15 pN) and exhibits fast-folding kinetics. We therefore used focused ion beam-modified cantilevers that combine exceptional force precision, stability, and temporal resolution to detect state occupancies as brief as 1 ms. Notably, equilibrium and nonequilibrium force spectroscopy data recapitulated the pH dependence measured using smFRET, despite differences in destabilization mechanism. We reconstructed a one-dimensional free-energy landscape from dynamic data via an inverse Weierstrass transform. At both neutral and low pH, the resulting constant-force landscapes showed minimal differences (∼0.2 to 0.5 k B T) in transition state height. These landscapes were essentially equal to the predicted entropic barrier and symmetric. In contrast, force-dependent rates showed that the distance to the unfolding transition state increased as pH decreased and thereby contributed to the accelerated kinetics at low pH. More broadly, this precise characterization of a fast-folding, mechanically labile protein enables future AFM-based studies of subtle transitions in mechanoresponsive proteins.
Collapse
|
32
|
Abdelsattar AS, Mansour Y, Aboul-Ela F. The Perturbed Free-Energy Landscape: Linking Ligand Binding to Biomolecular Folding. Chembiochem 2021; 22:1499-1516. [PMID: 33351206 DOI: 10.1002/cbic.202000695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2020] [Revised: 12/19/2020] [Indexed: 12/24/2022]
Abstract
The effects of ligand binding on biomolecular conformation are crucial in drug design, enzyme mechanisms, the regulation of gene expression, and other biological processes. Descriptive models such as "lock and key", "induced fit", and "conformation selection" are common ways to interpret such interactions. Another historical model, linked equilibria, proposes that the free-energy landscape (FEL) is perturbed by the addition of ligand binding energy for the bound population of biomolecules. This principle leads to a unified, quantitative theory of ligand-induced conformation change, building upon the FEL concept. We call the map of binding free energy over biomolecular conformational space the "binding affinity landscape" (BAL). The perturbed FEL predicts/explains ligand-induced conformational changes conforming to all common descriptive models. We review recent experimental and computational studies that exemplify the perturbed FEL, with emphasis on RNA. This way of understanding ligand-induced conformation dynamics motivates new experimental and theoretical approaches to ligand design, structural biology and systems biology.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for X-Ray Determination of the Structure of Matter, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 12578, Giza, Egypt
| | - Youssef Mansour
- Center for X-Ray Determination of the Structure of Matter, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 12578, Giza, Egypt
| | - Fareed Aboul-Ela
- Center for X-Ray Determination of the Structure of Matter, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 12578, Giza, Egypt
| |
Collapse
|
33
|
Zhang Y, Zhu X, Li X, Chen B. In situ quantitative determination of the intermolecular attraction between amines and a graphene surface using atomic force microscopy. J Colloid Interface Sci 2021; 581:385-395. [PMID: 32771747 DOI: 10.1016/j.jcis.2020.07.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2019] [Revised: 06/13/2020] [Accepted: 07/22/2020] [Indexed: 11/15/2022]
Abstract
The adsorption of pollutants on carbonaceous environmental media has been widely studied via batch sorption experiments and spectroscopic characterization. However, the molecular interactions between pollutants and interfacial sites on carbonaceous materials have only been indirectly investigated. To comprehend the adsorption mechanisms in situ, we applied atomic force microscopy force spectroscopy (AFM-FS) to quantitatively determine the molecular interactions between typical amines (methylamines and N-methylaniline) and the surface of highly oriented pyrolytic graphite (HOPG), which was supported by the single molecule interaction derived from density functional theory and batch adsorption experiments. This method achieved direct and in situ characterization of the molecular interactions in the adsorption process. The molecular interactions between the amines and the adsorption sites on the graphite surface were affected by pH and peaked at pH 7 due to strong cation-π interactions. When the pH was 11, the attractions were weak due to a lack of cation-π interaction, whereas, when the pH was 3, the competitive occupation of hydronium ions on the surface reduced the attraction between the amines and HOPG. Based on AFM-FS, the single molecule force of methylamine and N-methylaniline on the graphite surface was estimated to be 0.224 nN and 0.153 nN, respectively, which was consistent with density functional theory (DFT) calculations. This study broadens our comprehension of cation-π interactions between amines and electron-rich aromatic compounds at the micro/nanoscale.
Collapse
Affiliation(s)
- Yuyao Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Xin Li
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
34
|
Li J, Chen G, Guo Y, Wang H, Li H. Single molecule force spectroscopy reveals the context dependent folding pathway of the C-terminal fragment of Top7. Chem Sci 2020; 12:2876-2884. [PMID: 34164053 PMCID: PMC8179357 DOI: 10.1039/d0sc06344d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022] Open
Abstract
Top7 is a de novo designed protein with atomic level accuracy and shows a folded structure not found in nature. Previous studies showed that the folding of Top7 is not cooperative and involves various folding intermediate states. In addition, various fragments of Top7 were found to fold on their own in isolation. These features displayed by Top7 are distinct from those of naturally occurring proteins of a similar size and suggest a rough folding energy landscape. However, it remains unknown if and how the intra-polypeptide chain interactions among the neighboring sequences of Top7 affect the folding of these Top7 fragments. Here we used single-molecule optical tweezers to investigate the folding–unfolding pathways of full length Top7 as well as its C-terminal fragment (CFr) in different sequence environments. Our results showed that the mechanical folding of Top7 involves an intermediate state that likely involves non-native interactions/structure. More importantly, we found that the folding of CFr is entirely dependent upon its sequence context in which it is located. When in isolation, CFr indeed folds into a cooperative structure showing near-equilibrium unfolding–folding transitions at ∼6.5 pN in OT experiments. However, CFr loses its autonomous cooperative folding ability and displays a folding pathway that is dependent on its interactions with its neighboring sequence/structure. This context-dependent folding dynamics and pathway of CFr are distinct from those of naturally occurring proteins and highlight the critical importance of intra-chain interactions in shaping the overall energy landscape and the folding pathway of Top7. These new insights may have important implications on the de novo design of proteins. Optical tweezers experiments reveal that the folding of the C-terminal fragment of Top7 (cFr) is context-dependent. Depending on its neighboring sequence, cFr shows very different folding pathways and folding kinetics. ![]()
Collapse
Affiliation(s)
- Jiayu Li
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| | - Guojun Chen
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| | - Yabin Guo
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| | - Han Wang
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
35
|
Yang B, Liu H, Liu Z, Doenen R, Nash MA. Influence of Fluorination on Single-Molecule Unfolding and Rupture Pathways of a Mechanostable Protein Adhesion Complex. NANO LETTERS 2020; 20:8940-8950. [PMID: 33191756 PMCID: PMC7729889 DOI: 10.1021/acs.nanolett.0c04178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/19/2020] [Revised: 11/08/2020] [Indexed: 05/25/2023]
Abstract
We investigated the influence of fluorination on unfolding and unbinding reaction pathways of a mechanostable protein complex comprising the tandem dyad XModule-Dockerin bound to Cohesin. Using single-molecule atomic force spectroscopy, we mapped the energy landscapes governing the unfolding and unbinding reactions. We then used sense codon suppression to substitute trifluoroleucine in place of canonical leucine globally in XMod-Doc. Although TFL substitution thermally destabilized XMod-Doc, it had little effect on XMod-Doc:Coh binding affinity at equilibrium. When we mechanically dissociated global TFL-substituted XMod-Doc from Coh, we observed the emergence of a new unbinding pathway with a lower energy barrier. Counterintuitively, when fluorination was restricted to Doc, we observed mechano-stabilization of the non-fluorinated neighboring XMod domain. This suggests that intramolecular deformation is modulated by fluorination and highlights the differences between equilibrium thermostability and non-equilibrium mechanostability. Future work is poised to investigate fluorination as a means to modulate mechanical properties of synthetic proteins and hydrogels.
Collapse
Affiliation(s)
- Byeongseon Yang
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Haipei Liu
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Zhaowei Liu
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Regina Doenen
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Michael A. Nash
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| |
Collapse
|
36
|
Zhang X, Chen J, Li E, Hu C, Luo SZ, He C. Ultrahigh Adhesion Force Between Silica-Binding Peptide SB7 and Glass Substrate Studied by Single-Molecule Force Spectroscopy and Molecular Dynamic Simulation. Front Chem 2020; 8:600918. [PMID: 33330393 PMCID: PMC7729015 DOI: 10.3389/fchem.2020.600918] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
Many proteins and peptides have been identified to effectively and specifically bind on certain surfaces such as silica, polystyrene and titanium dioxide. It is of great interest, in many areas such as enzyme immobilization, surface functionalization and nanotechnology, to understand how these proteins/peptides bind to solid surfaces. Here we use single-molecule force spectroscopy (SMFS) based on atomic force microscopy to directly measure the adhesion force between a silica-binding peptide SB7 and glass surface at single molecule level. SMFS results show that the adhesion force of a single SB7 detaching from the glass surface distributes in two populations at ~220 pN and 610 pN, which is higher than the unfolding forces of most mechanically stable proteins and the unbinding forces of most stable protein-protein interactions. Molecular dynamics simulation reveals that the electrostatic interactions between positively charged arginine residues and the silica surface dominates the binding of SB7 on silica. Our study provides experimental evidence and molecular mechanism at the single-molecule level for the SB7-based immobilization of proteins on silica-based surface, which is able to withstand high mechanical forces, making it an ideal fusion tag for silica surface immobilization or peptide-base adhesive materials.
Collapse
Affiliation(s)
- Xiaoxu Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijng, China
| | - Jialin Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Enci Li
- State Key Laboratory of Precision Measuring Technology and Instrument, Tianjin University, Tianjin, China
| | - Chunguang Hu
- State Key Laboratory of Precision Measuring Technology and Instrument, Tianjin University, Tianjin, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijng, China
| |
Collapse
|
37
|
Müller DJ, Dumitru AC, Lo Giudice C, Gaub HE, Hinterdorfer P, Hummer G, De Yoreo JJ, Dufrêne YF, Alsteens D. Atomic Force Microscopy-Based Force Spectroscopy and Multiparametric Imaging of Biomolecular and Cellular Systems. Chem Rev 2020; 121:11701-11725. [PMID: 33166471 DOI: 10.1021/acs.chemrev.0c00617] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
During the last three decades, a series of key technological improvements turned atomic force microscopy (AFM) into a nanoscopic laboratory to directly observe and chemically characterize molecular and cell biological systems under physiological conditions. Here, we review key technological improvements that have established AFM as an analytical tool to observe and quantify native biological systems from the micro- to the nanoscale. Native biological systems include living tissues, cells, and cellular components such as single or complexed proteins, nucleic acids, lipids, or sugars. We showcase the procedures to customize nanoscopic chemical laboratories by functionalizing AFM tips and outline the advantages and limitations in applying different AFM modes to chemically image, sense, and manipulate biosystems at (sub)nanometer spatial and millisecond temporal resolution. We further discuss theoretical approaches to extract the kinetic and thermodynamic parameters of specific biomolecular interactions detected by AFM for single bonds and extend the discussion to multiple bonds. Finally, we highlight the potential of combining AFM with optical microscopy and spectroscopy to address the full complexity of biological systems and to tackle fundamental challenges in life sciences.
Collapse
Affiliation(s)
- Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Cristina Lo Giudice
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Hermann E Gaub
- Applied Physics, Ludwig-Maximilians-Universität Munich, Amalienstrasse 54, 80799 München, Germany
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics and Department of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
38
|
Gruber S, Löf A, Sedlak SM, Benoit M, Gaub HE, Lipfert J. Designed anchoring geometries determine lifetimes of biotin-streptavidin bonds under constant load and enable ultra-stable coupling. NANOSCALE 2020; 12:21131-21137. [PMID: 33079117 DOI: 10.1039/d0nr03665j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/27/2023]
Abstract
The small molecule biotin and the homotetrameric protein streptavidin (SA) form a stable and robust complex that plays a pivotal role in many biotechnological and medical applications. In particular, the SA-biotin linkage is frequently used in single-molecule force spectroscopy (SMFS) experiments. Recent data suggest that SA-biotin bonds show strong directional dependence and a broad range of multi-exponential lifetimes under load. Here, we investigate engineered SA variants with different valencies and a unique tethering point under constant forces using a magnetic tweezers assay. We observed orders-of-magnitude differences in the lifetimes under force, which we attribute to the distinct force-loading geometries in the different SA variants. Lifetimes showed exponential dependencies on force, with extrapolated lifetimes at zero force that are similar for the different SA variants and agree with parameters determined from constant-speed dynamic SMFS experiments. We identified an especially long-lived tethering geometry that will facilitate ultra-stable SMFS experiments.
Collapse
Affiliation(s)
- Sophia Gruber
- Department of Physics and Center for NanoScience, LMU Munich, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Dashti A, Mashayekhi G, Shekhar M, Ben Hail D, Salah S, Schwander P, des Georges A, Singharoy A, Frank J, Ourmazd A. Retrieving functional pathways of biomolecules from single-particle snapshots. Nat Commun 2020; 11:4734. [PMID: 32948759 PMCID: PMC7501871 DOI: 10.1038/s41467-020-18403-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/02/2019] [Accepted: 08/17/2020] [Indexed: 11/18/2022] Open
Abstract
A primary reason for the intense interest in structural biology is the fact that knowledge of structure can elucidate macromolecular functions in living organisms. Sustained effort has resulted in an impressive arsenal of tools for determining the static structures. But under physiological conditions, macromolecules undergo continuous conformational changes, a subset of which are functionally important. Techniques for capturing the continuous conformational changes underlying function are essential for further progress. Here, we present chemically-detailed conformational movies of biological function, extracted data-analytically from experimental single-particle cryo-electron microscopy (cryo-EM) snapshots of ryanodine receptor type 1 (RyR1), a calcium-activated calcium channel engaged in the binding of ligands. The functional motions differ substantially from those inferred from static structures in the nature of conformationally active structural domains, the sequence and extent of conformational motions, and the way allosteric signals are transduced within and between domains. Our approach highlights the importance of combining experiment, advanced data analysis, and molecular simulations.
Collapse
Affiliation(s)
- Ali Dashti
- Department of Physics, University of Wisconsin Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA
| | - Ghoncheh Mashayekhi
- Department of Physics, University of Wisconsin Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA
| | - Mrinal Shekhar
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign 405 N. Mathews Ave., Urbana, IL, 61801, USA
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287, USA
| | - Danya Ben Hail
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Salah Salah
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
- Department of Chemistry & Biochemistry, City College of New York, New York, NY, 10031, USA
- Ph.D. Programs in Physics, Chemistry & Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Peter Schwander
- Department of Physics, University of Wisconsin Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA
| | - Amedee des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.
- Department of Chemistry & Biochemistry, City College of New York, New York, NY, 10031, USA.
- Ph.D. Programs in Physics, Chemistry & Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Abhishek Singharoy
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287, USA.
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, 2-221 Black Building, 650 West 168th Street, New York, NY, 10032, USA.
- Department of Biological Sciences, Columbia University, 600 Fairchild Center, New York, NY, 10027, USA.
| | - Abbas Ourmazd
- Department of Physics, University of Wisconsin Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA.
| |
Collapse
|
40
|
Lekka M, Herman K, Zemła J, Bodek Ł, Pyka-Fościak G, Gil D, Dulińska-Litewka J, Ptak A, Laidler P. Probing the recognition specificity of α Vβ 1 integrin and syndecan-4 using force spectroscopy. Micron 2020; 137:102888. [PMID: 32554186 DOI: 10.1016/j.micron.2020.102888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2020] [Revised: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
The knowledge on how cells interact with microenvironment is particularly important in understanding the interaction of cancer cells with surrounding stroma, which affects cell migration, adhesion, and metastasis. The main cell surface receptors responsible for the interaction with extracellular matrix (ECM) are integrins, however, they are not the only ones. Integrins are accompanied to other molecules such as syndecans. The role of the latter has not yet been fully established. In our study, we would like to answer the question of whether integrins and syndecans, possessing similar functions, share also similar unbinding properties. By using single molecule force spectroscopy (SMFS), we conducted measurements of the unbinding properties of αVβ1 and syndecan-4 in the interaction with vitronectin (VN), which, as each ECM protein, possesses two binding sites specific to integrins and syndecans. The unbinding force and the kinetic off rate constant derived from SMFS describe the stability of single molecular complex. Obtained data show one barrier transition for each complex. The proposed model shows that the unbinding of αVβ1 from VN proceeds before the unbinding of SDC-4. However, despite different unbinding kinetics, the access to both receptors is needed for cell growth and proliferation.
Collapse
Affiliation(s)
- Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland.
| | - Katarzyna Herman
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
| | - Joanna Zemła
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| | - Łukasz Bodek
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Grażyna Pyka-Fościak
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034, Kraków, Poland
| | - Dorota Gil
- Chair of Medical Biochemistry Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków, Poland
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków, Poland
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
| | - Piotr Laidler
- Chair of Medical Biochemistry Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków, Poland
| |
Collapse
|
41
|
Deng Y, Shi S, Zheng B, Wu T, Zheng P. Enzymatic Construction of Protein Polymer/Polyprotein Using OaAEP1 and TEV Protease. Bio Protoc 2020; 10:e3596. [PMID: 33659562 PMCID: PMC7842765 DOI: 10.21769/bioprotoc.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 04/01/2024] Open
Abstract
The development of chemical and biological coupling technologies in recent years has made possible of protein polymers engineering. We have developed an enzymatic method for building polyproteins using a protein ligase OaAEP1 (asparagine endopeptidase 1) and protease TEV (tobacco etching virus). Using a mobile TEV protease site compatible with the OaAEP1 ligation, we achieved a stepwise polymerization of the protein on the surface. The produced polyprotein can be verified by protein unfolding scenario using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS). Thus, this study provides an alternative method for polyprotein engineering and immobilization.
Collapse
Affiliation(s)
- Yibing Deng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| | - Shengchao Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| | - Tao Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| |
Collapse
|
42
|
Bao Y, Luo Z, Cui S. Environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by atomic force microscopy-based single-molecule force spectroscopy and the implications for advanced polymer materials. Chem Soc Rev 2020; 49:2799-2827. [PMID: 32236171 DOI: 10.1039/c9cs00855a] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
"The Tao begets the One. One begets all things of the world." This quote from Tao Te Ching is still inspiring for scientists in chemistry and materials science: The "One" can refer to a single molecule. A macroscopic material is composed of numerous molecules. Although the relationship between the properties of the single molecule and macroscopic material is not well understood yet, it is expected that a deeper understanding of the single-chain mechanics of macromolecules will certainly facilitate the development of materials science. Atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) has been exploited extensively as a powerful tool to study the single-chain behaviors of macromolecules. In this review, we summarize the recent advances in the emerging field of environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by means of AFM-SMFS. First, the single-chain inherent elasticities of several typical linear macromolecules are introduced, which are also confirmed by one of three polymer models with theoretical elasticities of the corresponding macromolecules obtained from quantum mechanical (QM) calculations. Then, the effects of the external environments on the single-chain mechanics of synthetic polymers and biomacromolecules are reviewed. Finally, the impacts of single-chain mechanics of macromolecules on the development of polymer science especially polymer materials are illustrated.
Collapse
Affiliation(s)
- Yu Bao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China.
| | | | | |
Collapse
|
43
|
Abstract
The complex of the small molecule biotin and the homotetrameric protein streptavidin is key to a broad range of biotechnological applications. Therefore, the behavior of this extraordinarily high-affinity interaction under mechanical force is intensively studied by single-molecule force spectroscopy. Recently, steered molecular dynamics simulations have identified a low force pathway for the dissociation of biotin from streptavidin, which involves partial unfolding of the N-terminal β-sheet structure of monovalent streptavidin's functional subunit. Based on these results, we now introduced two mutations (T18C,A33C) in the functional subunit of monovalent streptavidin to establish a switchable connection (disulfide bridge) between the first two β-strands to prevent this unfolding. In atomic force microscopy-based single-molecule force spectroscopy experiments, we observed unbinding forces of about 350 pN (at a force-loading rate of 10 nN s-1) for pulling a single biotin out of an N-terminally anchored monovalent streptavidin binding pocket - about 1.5-fold higher compared with what has been reported for N-terminal force loading of native monovalent streptavidin. Upon addition of a reducing agent, the unbinding forces dropped back to 200 pN, as the disulfide bridge was destroyed. Switching from reducing to oxidizing buffer conditions, the inverse effect was observed. Our work illustrates how the mechanics of a receptor-ligand system can be tuned by engineering the receptor protein far off the ligand-binding pocket.
Collapse
Affiliation(s)
- Leonard C Schendel
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799 Munich, Germany.
| | | | | |
Collapse
|
44
|
Kiio TM, Park S. Nano-scientific Application of Atomic Force Microscopy in Pathology: from Molecules to Tissues. Int J Med Sci 2020; 17:844-858. [PMID: 32308537 PMCID: PMC7163363 DOI: 10.7150/ijms.41805] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/05/2019] [Accepted: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
The advantages of atomic force microscopy (AFM) in biological research are its high imaging resolution, sensitivity, and ability to operate in physiological conditions. Over the past decades, rigorous studies have been performed to determine the potential applications of AFM techniques in disease diagnosis and prognosis. Many pathological conditions are accompanied by alterations in the morphology, adhesion properties, mechanical compliances, and molecular composition of cells and tissues. The accurate determination of such alterations can be utilized as a diagnostic and prognostic marker. Alteration in cell morphology represents changes in cell structure and membrane proteins induced by pathologic progression of diseases. Mechanical compliances are also modulated by the active rearrangements of cytoskeleton or extracellular matrix triggered by disease pathogenesis. In addition, adhesion is a critical step in the progression of many diseases including infectious and neurodegenerative diseases. Recent advances in AFM techniques have demonstrated their ability to obtain molecular composition as well as topographic information. The quantitative characterization of molecular alteration in biological specimens in terms of disease progression provides a new avenue to understand the underlying mechanisms of disease onset and progression. In this review, we have highlighted the application of diverse AFM techniques in pathological investigations.
Collapse
Affiliation(s)
| | - Soyeun Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Daegu 42601, Republic of Korea
| |
Collapse
|
45
|
Sedlak SM, Schendel LC, Gaub HE, Bernardi RC. Streptavidin/biotin: Tethering geometry defines unbinding mechanics. SCIENCE ADVANCES 2020; 6:eaay5999. [PMID: 32232150 PMCID: PMC7096159 DOI: 10.1126/sciadv.aay5999] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/03/2019] [Accepted: 01/03/2020] [Indexed: 05/26/2023]
Abstract
Macromolecules tend to respond to applied forces in many different ways. Chemistry at high shear forces can be intriguing, with relatively soft bonds becoming very stiff in specific force-loading geometries. Largely used in bionanotechnology, an important case is the streptavidin (SA)/biotin interaction. Although SA's four subunits have the same affinity, we find that the forces required to break the SA/biotin bond depend strongly on the attachment geometry. With AFM-based single-molecule force spectroscopy (SMFS), we measured unbinding forces of biotin from different SA subunits to range from 100 to more than 400 pN. Using a wide-sampling approach, we carried out hundreds of all-atom steered molecular dynamics (SMD) simulations for the entire system, including molecular linkers. Our strategy revealed the molecular mechanism that causes a fourfold difference in mechanical stability: Certain force-loading geometries induce conformational changes in SA's binding pocket lowering the energy barrier, which biotin has to overcome to escape the pocket.
Collapse
Affiliation(s)
- Steffen M. Sedlak
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799 Munich, Germany
| | - Leonard C. Schendel
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799 Munich, Germany
| | - Hermann E. Gaub
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799 Munich, Germany
| | - Rafael C. Bernardi
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
46
|
Kluger C, Braun L, Sedlak SM, Pippig DA, Bauer MS, Miller K, Milles LF, Gaub HE, Vogel V. Different Vinculin Binding Sites Use the Same Mechanism to Regulate Directional Force Transduction. Biophys J 2020; 118:1344-1356. [PMID: 32109366 PMCID: PMC7091509 DOI: 10.1016/j.bpj.2019.12.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2019] [Revised: 12/17/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022] Open
Abstract
Vinculin is a universal adaptor protein that transiently reinforces the mechanical stability of adhesion complexes. It stabilizes mechanical connections that cells establish between the actomyosin cytoskeleton and the extracellular matrix via integrins or to neighboring cells via cadherins, yet little is known regarding its mechanical design. Vinculin binding sites (VBSs) from different nonhomologous actin-binding proteins use conserved helical motifs to associate with the vinculin head domain. We studied the mechanical stability of such complexes by pulling VBS peptides derived from talin, α-actinin, and Shigella IpaA out of the vinculin head domain. Experimental data from atomic force microscopy single-molecule force spectroscopy and steered molecular dynamics (SMD) simulations both revealed greater mechanical stability of the complex for shear-like than for zipper-like pulling configurations. This suggests that reinforcement occurs along preferential force directions, thus stabilizing those cytoskeletal filament architectures that result in shear-like pulling geometries. Large force-induced conformational changes in the vinculin head domain, as well as protein-specific fine-tuning of the VBS sequence, including sequence inversion, allow for an even more nuanced force response.
Collapse
Affiliation(s)
- Carleen Kluger
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lukas Braun
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Steffen M Sedlak
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Diana A Pippig
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Magnus S Bauer
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ken Miller
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lukas F Milles
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hermann E Gaub
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
47
|
Extreme mechanical stability in protein complexes. Curr Opin Struct Biol 2020; 60:124-130. [DOI: 10.1016/j.sbi.2019.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
|
48
|
Nash MA. Zig Zag AFM Protocol Reveals New Intermediate Folding States of Bacteriorhodopsin. Biophys J 2019; 118:538-540. [PMID: 32023441 DOI: 10.1016/j.bpj.2019.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 11/28/2022] Open
Affiliation(s)
- Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, Basel, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
49
|
High-speed force spectroscopy: microsecond force measurements using ultrashort cantilevers. Biophys Rev 2019; 11:689-699. [PMID: 31588961 PMCID: PMC6815269 DOI: 10.1007/s12551-019-00585-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2019] [Accepted: 08/27/2019] [Indexed: 10/25/2022] Open
Abstract
Complete understanding of the role of mechanical forces in biological processes requires knowledge of the mechanical properties of individual proteins and living cells. Moreover, the dynamic response of biological systems at the nano- and microscales span over several orders of magnitude in time, from sub-microseconds to several minutes. Thus, access to force measurements over a wide range of length and time scales is required. High-speed atomic force microscopy (HS-AFM) using ultrashort cantilevers has emerged as a tool to study the dynamics of biomolecules and cells at video rates. The adaptation of HS-AFM to perform high-speed force spectroscopy (HS-FS) allows probing protein unfolding and receptor/ligand unbinding up to the velocity of molecular dynamics (MD) simulations with sub-microsecond time resolution. Moreover, application of HS-FS on living cells allows probing the viscoelastic response at short time scales providing deep understanding of cytoskeleton dynamics. In this mini-review, we assess the principles and recent developments and applications of HS-FS using ultrashort cantilevers to probe molecular and cellular mechanics.
Collapse
|
50
|
Liu W, Guo Y, Wang K, Zhou X, Wang Y, Lü J, Shao Z, Hu J, Czajkowsky DM, Li B. Atomic force microscopy-based single-molecule force spectroscopy detects DNA base mismatches. NANOSCALE 2019; 11:17206-17210. [PMID: 31535117 DOI: 10.1039/c9nr05234h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/10/2023]
Abstract
Atomic force microscopy-based single-molecule-force spectroscopy is limited by low throughput. We introduce addressable DNA origami to study multiple target molecules. Six target DNAs that differed by only a single base-pair mismatch were clearly differentiated a rupture force of only 4 pN.
Collapse
Affiliation(s)
- Wenjing Liu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yourong Guo
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Kaizhe Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingfei Zhou
- School of Science, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Ying Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. and Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Junhong Lü
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. and Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhifeng Shao
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jun Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. and Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China and School of Physical Science and Technology, Shanghai Tech University, Shanghai 201204, China
| | - Daniel M Czajkowsky
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bin Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. and Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|