1
|
Foster B, Hugosson F, Scucchia F, Enjolras C, Babonis LS, Hoaen W, Martindale MQ. A novel in vivo system to study coral biomineralization in the starlet sea anemone, Nematostella vectensis. iScience 2024; 27:109131. [PMID: 38384856 PMCID: PMC10879693 DOI: 10.1016/j.isci.2024.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Coral conservation requires a mechanistic understanding of how environmental stresses disrupt biomineralization, but progress has been slow, primarily because corals are not easily amenable to laboratory research. Here, we highlight how the starlet sea anemone, Nematostella vectensis, can serve as a model to interrogate the cellular mechanisms of coral biomineralization. We have developed transgenic constructs using biomineralizing genes that can be injected into Nematostella zygotes and designed such that translated proteins may be purified for physicochemical characterization. Using fluorescent tags, we confirm the ectopic expression of the coral biomineralizing protein, SpCARP1, in Nematostella. We demonstrate via calcein staining that SpCARP1 concentrates calcium ions in Nematostella, likely initiating the formation of mineral precursors, consistent with its suspected role in corals. These results lay a fundamental groundwork for establishing Nematostella as an in vivo system to explore the evolutionary and cellular mechanisms of coral biomineralization, improve coral conservation efforts, and even develop novel biomaterials.
Collapse
Affiliation(s)
- Brent Foster
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
| | - Fredrik Hugosson
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
| | - Federica Scucchia
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
| | - Camille Enjolras
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
- Institute of Human Genetics, CNRS, Montpellier 34090, France
| | - Leslie S. Babonis
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - William Hoaen
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Mark Q. Martindale
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
| |
Collapse
|
2
|
Lewis BM, Suggett DS, Prentis PJ, Nothdurft LD. Cellular adaptations leading to coral fragment attachment on artificial substrates in Acropora millepora (Am-CAM). Sci Rep 2022; 12:18431. [PMID: 36319668 PMCID: PMC9626494 DOI: 10.1038/s41598-022-23134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Reproductive propagation by asexual fragmentation in the reef-building coral Acropora millepora depends on (1) successful attachment to the reef substrate through modification of soft tissues and (2) a permanent bond with skeletal encrustation. Despite decades of research examining asexual propagation in corals, the initial response, cellular reorganisation, and development leading to fragment substrate attachment via a newly formed skeleton has not been documented in its entirety. Here, we establish the first "coral attachment model" for this species ("Am-CAM") by developing novel methods that allow correlation of fluorescence and electron microscopy image data with in vivo microscopic time-lapse imagery. This multi-scale imaging approach identified three distinct phases involved in asexual propagation: (1) the contact response of the coral fragment when contact with the substrate, followed by (2) fragment stabilisation through anchoring by the soft tissue, and (3) formation of a "lappet-like appendage" structure leading to substrate bonding of the tissue for encrustation through the onset of skeletal calcification. In developing Am-CAM, we provide new biological insights that can enable reef researchers, managers and coral restoration practitioners to begin evaluating attachment effectiveness, which is needed to optimise species-substrate compatibility and achieve effective outplanting.
Collapse
Affiliation(s)
- Brett M. Lewis
- grid.1024.70000000089150953School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology, Brisbane, QLD Australia
| | - David S. Suggett
- grid.117476.20000 0004 1936 7611Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW Australia
| | - Peter J. Prentis
- grid.1024.70000000089150953Centre for Agriculture and Bioeconomy and School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology, Brisbane, QLD Australia
| | - Luke D. Nothdurft
- grid.1024.70000000089150953School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology, Brisbane, QLD Australia
| |
Collapse
|
3
|
Gilbert PUPA, Bergmann KD, Boekelheide N, Tambutté S, Mass T, Marin F, Adkins JF, Erez J, Gilbert B, Knutson V, Cantine M, Hernández JO, Knoll AH. Biomineralization: Integrating mechanism and evolutionary history. SCIENCE ADVANCES 2022; 8:eabl9653. [PMID: 35263127 PMCID: PMC8906573 DOI: 10.1126/sciadv.abl9653] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Calcium carbonate (CaCO3) biomineralizing organisms have played major roles in the history of life and the global carbon cycle during the past 541 Ma. Both marine diversification and mass extinctions reflect physiological responses to environmental changes through time. An integrated understanding of carbonate biomineralization is necessary to illuminate this evolutionary record and to understand how modern organisms will respond to 21st century global change. Biomineralization evolved independently but convergently across phyla, suggesting a unity of mechanism that transcends biological differences. In this review, we combine CaCO3 skeleton formation mechanisms with constraints from evolutionary history, omics, and a meta-analysis of isotopic data to develop a plausible model for CaCO3 biomineralization applicable to all phyla. The model provides a framework for understanding the environmental sensitivity of marine calcifiers, past mass extinctions, and resilience in 21st century acidifying oceans. Thus, it frames questions about the past, present, and future of CaCO3 biomineralizing organisms.
Collapse
Affiliation(s)
- Pupa U. P. A. Gilbert
- Departments of Physics, Chemistry, Geoscience, and Materials Science, University of Wisconsin-Madison, Madison, WI 53706, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| | - Kristin D. Bergmann
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicholas Boekelheide
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, Department of Marine Biology, 98000 Monaco, Principality of Monaco
| | - Tali Mass
- University of Haifa, Marine Biology Department, Mt. Carmel, Haifa 31905, Israel
| | - Frédéric Marin
- Université de Bourgogne–Franche-Comté (UBFC), Laboratoire Biogéosciences, UMR CNRS 6282, Bâtiment des Sciences Gabriel, 21000 Dijon, France
| | - Jess F. Adkins
- Geological and Planetary Sciences, California Institute of Technology, MS 100-23, Pasadena, CA 91125, USA
| | - Jonathan Erez
- The Hebrew University of Jerusalem, Institute of Earth Sciences, Jerusalem 91904, Israel
| | - Benjamin Gilbert
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vanessa Knutson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marjorie Cantine
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Javier Ortega Hernández
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| |
Collapse
|
4
|
Levy S, Mass T. The Skeleton and Biomineralization Mechanism as Part of the Innate Immune System of Stony Corals. Front Immunol 2022; 13:850338. [PMID: 35281045 PMCID: PMC8913943 DOI: 10.3389/fimmu.2022.850338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
Stony corals are among the most important calcifiers in the marine ecosystem as they form the coral reefs. Coral reefs have huge ecological importance as they constitute the most diverse marine ecosystem, providing a home to roughly a quarter of all marine species. In recent years, many studies have shed light on the mechanisms underlying the biomineralization processes in corals, as characterizing the calicoblast cell layer and genes involved in the formation of the calcium carbonate skeleton. In addition, considerable advancements have been made in the research field of coral immunity as characterizing genes involved in the immune response to pathogens and stressors, and the revealing of specialized immune cells, including their gene expression profile and phagocytosis capabilities. Yet, these two fields of corals research have never been integrated. Here, we discuss how the coral skeleton plays a role as the first line of defense. We integrate the knowledge from both fields and highlight genes and proteins that are related to biomineralization and might be involved in the innate immune response and help the coral deal with pathogens that penetrate its skeleton. In many organisms, the immune system has been tied to calcification. In humans, immune factors enhance ectopic calcification which causes severe diseases. Further investigation of coral immune genes which are involved in skeleton defense as well as in biomineralization might shed light on our understanding of the correlation and the interaction of both processes as well as reveal novel comprehension of how immune factors enhance calcification.
Collapse
Affiliation(s)
- Shani Levy
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
- *Correspondence: Shani Levy, ; Tali Mass,
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
- *Correspondence: Shani Levy, ; Tali Mass,
| |
Collapse
|
5
|
Schmidt C, Stifler CA, Luffey EL, Fordyce BI, Ahmed A, Barreiro Pujol G, Breit CP, Davison SS, Klaus CN, Koehler IJ, LeCloux IM, Matute Diaz C, Nguyen CM, Quach V, Sengkhammee JS, Walch EJ, Xiong MM, Tambutté E, Tambutté S, Mass T, Gilbert PUPA. Faster Crystallization during Coral Skeleton Formation Correlates with Resilience to Ocean Acidification. J Am Chem Soc 2022; 144:1332-1341. [PMID: 35037457 PMCID: PMC8796227 DOI: 10.1021/jacs.1c11434] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 01/18/2023]
Abstract
The mature skeletons of hard corals, termed stony or scleractinian corals, are made of aragonite (CaCO3). During their formation, particles attaching to the skeleton's growing surface are calcium carbonate, transiently amorphous. Here we show that amorphous particles are observed frequently and reproducibly just outside the skeleton, where a calicoblastic cell layer envelops and deposits the forming skeleton. The observation of particles in these locations, therefore, is consistent with nucleation and growth of particles in intracellular vesicles. The observed extraskeletal particles range in size between 0.2 and 1.0 μm and contain more of the amorphous precursor phases than the skeleton surface or bulk, where they gradually crystallize to aragonite. This observation was repeated in three diverse genera of corals, Acropora sp., Stylophora pistillata─differently sensitive to ocean acidification (OA)─and Turbinaria peltata, demonstrating that intracellular particles are a major source of material during the additive manufacturing of coral skeletons. Thus, particles are formed away from seawater, in a presumed intracellular calcifying fluid (ICF) in closed vesicles and not, as previously assumed, in the extracellular calcifying fluid (ECF), which, unlike ICF, is partly open to seawater. After particle attachment, the growing skeleton surface remains exposed to ECF, and, remarkably, its crystallization rate varies significantly across genera. The skeleton surface layers containing amorphous pixels vary in thickness across genera: ∼2.1 μm in Acropora, 1.1 μm in Stylophora, and 0.9 μm in Turbinaria. Thus, the slow-crystallizing Acropora skeleton surface remains amorphous and soluble longer, including overnight, when the pH in the ECF drops. Increased skeleton surface solubility is consistent with Acropora's vulnerability to OA, whereas the Stylophora skeleton surface layer crystallizes faster, consistent with Stylophora's resilience to OA. Turbinaria, whose response to OA has not yet been tested, is expected to be even more resilient than Stylophora, based on the present data.
Collapse
Affiliation(s)
- Connor
A. Schmidt
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Cayla A. Stifler
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Emily L. Luffey
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Benjamin I. Fordyce
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Asiya Ahmed
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | | | - Carolyn P. Breit
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Sydney S. Davison
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Connor N. Klaus
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Isaac J. Koehler
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Isabelle M. LeCloux
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Celeo Matute Diaz
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Catherine M. Nguyen
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Virginia Quach
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Jaden S. Sengkhammee
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Evan J. Walch
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Max M. Xiong
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Eric Tambutté
- Department
of Marine Biology, Centre Scientifique de
Monaco, 98000 Monaco, Principality of
Monaco
| | - Sylvie Tambutté
- Department
of Marine Biology, Centre Scientifique de
Monaco, 98000 Monaco, Principality of
Monaco
| | - Tali Mass
- Marine
Biology Department, University of Haifa, Mt. Carmel, Haifa 31905, Israel
| | - Pupa U. P. A. Gilbert
- Department
of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Departments
of Chemistry, Materials Science and Engineering, and Geoscience, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|