1
|
Drula R, Pardini B, Fu X, De los Santos MC, Jurj A, Pang L, El-Daly SM, Fabris L, Knutsen E, Dragomir MP, Bayraktar R, Li Y, Chen M, Del Vecchio F, Berland L, Dae J, Fan D, Shimizu M, Tran AM, Barzi M, Pioppini C, Gutierrez AM, Ivan C, Meas S, Hall CS, Alahari SK, Berindan-Neagoe I, Fabbri M, Lucci A, Arun B, Anfossi S, Calin GA. 17β-estradiol promotes extracellular vesicle release and selective miRNA loading in ERα-positive breast cancer. Proc Natl Acad Sci U S A 2023; 120:e2122053120. [PMID: 37252969 PMCID: PMC10266002 DOI: 10.1073/pnas.2122053120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/14/2023] [Indexed: 06/01/2023] Open
Abstract
The causes and consequences of abnormal biogenesis of extracellular vesicles (EVs) are not yet well understood in malignancies, including in breast cancers (BCs). Given the hormonal signaling dependence of estrogen receptor-positive (ER+) BC, we hypothesized that 17β-estradiol (estrogen) might influence EV production and microRNA (miRNA) loading. We report that physiological doses of 17β-estradiol promote EV secretion specifically from ER+ BC cells via inhibition of miR-149-5p, hindering its regulatory activity on SP1, a transcription factor that regulates the EV biogenesis factor nSMase2. Additionally, miR-149-5p downregulation promotes hnRNPA1 expression, responsible for the loading of let-7's miRNAs into EVs. In multiple patient cohorts, we observed increased levels of let-7a-5p and let-7d-5p in EVs derived from the blood of premenopausal ER+ BC patients, and elevated EV levels in patients with high BMI, both conditions associated with higher levels of 17β-estradiol. In brief, we identified a unique estrogen-driven mechanism by which ER+ BC cells eliminate tumor suppressor miRNAs in EVs, with effects on modulating tumor-associated macrophages in the microenvironment.
Collapse
Affiliation(s)
- Rares Drula
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337Cluj Napoca, Romania
| | - Barbara Pardini
- Italian Institute for Genomic Medicine, c/o FPO-IRCCS Candiolo, 10060Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060Candiolo, Italy
| | - Xiao Fu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi, China
| | - Mireia Cruz De los Santos
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, 17164Solna, Sweden
| | - Ancuta Jurj
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337Cluj Napoca, Romania
| | - Lan Pang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Sherien M. El-Daly
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo12622, Egypt
| | - Linda Fabris
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Erik Knutsen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Medical Biology, Faculty of Health Sciences, UiT, The Artic University of Norway, N-9037Tromso, Norway
- Centre for Clinical Research and Education, University Hospital of North Norway, N-9037Tromso, Norway
| | - Mihnea P. Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10178Berlin, Germany
- German Cancer Research Center (DKFZ), Partner Site Berlin, and German Cancer Consortium (DKTK), 69120Heidelberg, Germany
- Berlin Institute of Health, 10178Berlin, Germany
| | - Recep Bayraktar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Yongfeng Li
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, 310022 Zhejiang, P.R. China
| | - Meng Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Filippo Del Vecchio
- University of Hawaii Cancer Center, Cancer Biology Program, Honolulu, HI96813
| | - Léa Berland
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Research Imaging, Dana Farber Cancer Institute, Boston, MA02215
| | - Jessica Dae
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- College of Natural Sciences, The University of Texas at Austin, Austin, TX78712
| | - Daniel Fan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- College of Natural Sciences, The University of Texas at Austin, Austin, TX78712
| | - Masayoshi Shimizu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Anh M. Tran
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Chemistry, Mount Holyoke College, South Hadley, MA01075
| | - Mercedes Barzi
- Department of Pediatrics, Duke University, Durham, NC27708
| | - Carlotta Pioppini
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, 10117Berlin, Germany
| | - Angelica M. Gutierrez
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Salyna Meas
- Breast Surgical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Carolyn S. Hall
- Breast Surgical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Suresh K. Alahari
- Department of Biochemistry and Molecular Biology, Stanley S Scott Cancer Center, Louisiana State University School of Medicine, New Orleans, LA70112
| | - Ioana Berindan-Neagoe
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337Cluj Napoca, Romania
| | - Muller Fabbri
- University of Hawaii Cancer Center, Cancer Biology Program, Honolulu, HI96813
- Center for Cancer and Immunology Research, Children’s National Hospital, WashingtonDC20010
| | - Anthony Lucci
- Breast Surgical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Banu Arun
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Simone Anfossi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| |
Collapse
|
2
|
Ambhore NS, Kalidhindi RSR, Sathish V. Sex-Steroid Signaling in Lung Diseases and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:243-273. [PMID: 33788197 DOI: 10.1007/978-3-030-63046-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sex/gender difference exists in the physiology of multiple organs. Recent epidemiological reports suggest the influence of sex-steroids in modulating a wide variety of disease conditions. Sex-based discrepancies have been reported in pulmonary physiology and various chronic inflammatory responses associated with lung diseases like asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, and rare lung diseases. Notably, emerging clinical evidence suggests that several respiratory diseases affect women to a greater degree, with increased severity and prevalence than men. Although sex-specific differences in various lung diseases are evident, such differences are inherent to sex-steroids, which are major biological variables in men and women who play a central role to control these differences. The focus of this chapter is to comprehend the sex-steroid biology in inflammatory lung diseases and to understand the mechanistic role of sex-steroids signaling in regulating these diseases. Exploring the roles of sex-steroid signaling in the regulation of lung diseases and inflammation is crucial for the development of novel and effective therapy. Overall, we will illustrate the importance of differential sex-steroid signaling in lung diseases and their possible clinical implications for the development of complementary and alternative medicine to treat lung diseases.
Collapse
Affiliation(s)
- Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | | | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
3
|
Payankaulam S, Raicu AM, Arnosti DN. Transcriptional Regulation of INSR, the Insulin Receptor Gene. Genes (Basel) 2019; 10:genes10120984. [PMID: 31795422 PMCID: PMC6947883 DOI: 10.3390/genes10120984] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 01/19/2023] Open
Abstract
The insulin receptor gene encodes an evolutionarily conserved signaling protein with a wide spectrum of functions in metazoan development. The insulin signaling pathway plays key roles in processes such as metabolic regulation, growth control, and neuronal function. Misregulation of the pathway features in diabetes, cancer, and neurodegenerative diseases, making it an important target for clinical interventions. While much attention has been focused on differential pathway activation through ligand availability, sensitization of overall signaling may also be mediated by differential expression of the insulin receptor itself. Although first characterized as a “housekeeping” gene with stable expression, comparative studies have shown that expression levels of the human INSR mRNA differ by tissue and in response to environmental signals. Our recent analysis of the transcriptional controls affecting expression of the Drosophila insulin receptor gene indicates that a remarkable amount of DNA is dedicated to encoding sophisticated feedback and feed forward signals. The human INSR gene is likely to contain a similar level of transcriptional complexity; here, we summarize over three decades of molecular biology and genetic research that points to a still incompletely understood regulatory control system. Further elucidation of transcriptional controls of INSR will provide the basis for understanding human genetic variation that underlies population-level physiological differences and disease.
Collapse
Affiliation(s)
- Sandhya Payankaulam
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd. 413 Biochemistry, East Lansing, MI 48824, USA;
| | - Ana-Maria Raicu
- Cell and Molecular Biology Program, Michigan State University, 603 Wilson Rd. 413 Biochemistry, East Lansing, MI 48824, USA;
| | - David N. Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd. 413 Biochemistry, East Lansing, MI 48824, USA;
- Cell and Molecular Biology Program, Michigan State University, 603 Wilson Rd. 413 Biochemistry, East Lansing, MI 48824, USA;
- Correspondence: ; Tel.: +1-(517)-432-5504
| |
Collapse
|
4
|
Parsanathan R, Maria Joseph A, Karundevi B. Postnatal exposure to di-(2-ethylhexyl)phthalate alters cardiac insulin signaling molecules and GLUT4 Ser488 phosphorylation in male rat offspring. J Cell Biochem 2018; 120:5802-5812. [PMID: 30362281 DOI: 10.1002/jcb.27866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/19/2018] [Indexed: 01/16/2023]
Abstract
Di-(2-ethylhexyl)phthalate (DEHP), a distinctive endocrine-disrupting chemical, is widely used as a plasticizer in a variety of consumer products. It can easily cross the placenta and enter breast milk and then it is rapidly absorbed by offspring. Since it is generally accepted that individuals are more sensitive to chemical exposure during vital developmental periods, we investigated whether DEHP exposure during lactation affects cardiac insulin signaling and glucose homeostasis in the F1 male rat offspring at postnatal day 22 (PND22). Lactating Wistar rats were administered with DEHP (1, 10, and 100 mg/kg/d) or olive oil from lactation day 1 to 21 by oral gavage. All the male pups were perfused and killed on PND22. On the day before the killing, they were kept for fasting overnight and blood was collected. The cardiac muscle was dissected out, washed in ice-cold physiological saline repeatedly and used for the assay of various parameters. DEHP-exposed offspring had significantly lower body weight than the control. DEHP-exposed offspring showed elevated blood glucose, decreased 14 C-2-deoxyglucose uptake and 14 C-glucose oxidation in cardiac muscle at PND22. The concentration of upstream insulin signaling molecules such as insulin receptor subunit β (InsRβ) and insulin receptor substrate 1 (IRS1) were downregulated in DEHP-exposed offspring. However, no significant alterations were observed in protein kinase B (Akt) and Akt substrate of 160 kDa (AS160). Surprisingly, phosphorylation of IRS1 Tyr632 and Akt Ser473 were diminished. Low levels of glucose transporter type 4 (GLUT4) protein and increased GLUT4 Ser488 phosphorylation which decreases its intrinsic activity and translocation towards plasma membrane were also recorded. Lactational DEHP exposure predisposes F 1 male offspring to cardiac glucometabolic disorders at PND22, which may impair cardiac function.
Collapse
Affiliation(s)
- Rajesh Parsanathan
- Department of Endocrinology, Dr ALM Post Graduate Institute of Basic Medical Sciences University of Madras, Taramani, India
| | - Angelaalincy Maria Joseph
- Department of Endocrinology, Dr ALM Post Graduate Institute of Basic Medical Sciences University of Madras, Taramani, India
| | - Balasubramanian Karundevi
- Department of Endocrinology, Dr ALM Post Graduate Institute of Basic Medical Sciences University of Madras, Taramani, India
| |
Collapse
|
5
|
Wei Y, Gokhale RH, Sonnenschein A, Montgomery KM, Ingersoll A, Arnosti DN. Complex cis-regulatory landscape of the insulin receptor gene underlies the broad expression of a central signaling regulator. Development 2017; 143:3591-3603. [PMID: 27702787 DOI: 10.1242/dev.138073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
Insulin signaling plays key roles in development, growth and metabolism through dynamic control of glucose uptake, global protein translation and transcriptional regulation. Altered levels of insulin signaling are known to play key roles in development and disease, yet the molecular basis of such differential signaling remains obscure. Expression of the insulin receptor (InR) gene itself appears to play an important role, but the nature of the molecular wiring controlling InR transcription has not been elucidated. We characterized the regulatory elements driving Drosophila InR expression and found that the generally broad expression of this gene is belied by complex individual switch elements, the dynamic regulation of which reflects direct and indirect contributions of FOXO, EcR, Rbf and additional transcription factors through redundant elements dispersed throughout ∼40 kb of non-coding regions. The control of InR transcription in response to nutritional and tissue-specific inputs represents an integration of multiple cis-regulatory elements, the structure and function of which may have been sculpted by evolutionary selection to provide a highly tailored set of signaling responses on developmental and tissue-specific levels.
Collapse
Affiliation(s)
- Yiliang Wei
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Rewatee H Gokhale
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Anne Sonnenschein
- Genetics Program, Michigan State University, East Lansing, MI 48824, USA
| | - Kelly Mone't Montgomery
- Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew Ingersoll
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA Genetics Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Estrogen Promotes Hepatic Synthesis of Long-Chain Polyunsaturated Fatty Acids by Regulating ELOVL5 at Post-Transcriptional Level in Laying Hens. Int J Mol Sci 2017; 18:ijms18071405. [PMID: 28665359 PMCID: PMC5535898 DOI: 10.3390/ijms18071405] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 01/14/2023] Open
Abstract
The very long chain fatty acid elongase (ELOVL) plays an important role in the synthesis of long-chain polyunsaturated fatty acids (LCPUFA). Previous studies suggest that chicken could be an alternate source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In this study, we detected that ELOVL5, which plays a key role in the biosynthesis of omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFA), was highly expressed in the liver of laying hens and increased rapidly after sexual maturity. Bioinformatic analysis revealed ELOVL fatty acid elongase 5 (ELOVL5) gene as a putative target of miR-218-5p, miR-19a-3p, miR-19b-3p, miR-30a-5p, miR-30b-5p, and miR-30e-5p. We demonstrated estrogen downregulated microRNA (miRNA), and that ELOVL5 is a direct target of miR-218-5p, which was located in intron 14 of the Slit guidance ligand 2 (SLIT2) gene and co-expressed with the host gene. Overall, estrogen enhanced hepatic synthesis of LCPUFA by functioning as a negative regulator of miRNA thereby augmenting the expression of these miRNA target genes, especially ELOVL5, which plays a key role in the biosynthesis of n-3 and n-6 LCPUFA. This study provides a novel model for the use of estrogen in the poultry industry as an inducer of ELOVL5 expression to enhance hepatic n-3 and n-6 LCPUFA synthesis at the post-transcriptional level.
Collapse
|
7
|
Dominguez GA, Bisesi JH, Kroll KJ, Denslow ND, Sabo-Attwood T. Control of transcriptional repression of the vitellogenin receptor gene in largemouth bass (Micropterus salmoides) by select estrogen receptors isotypes. Toxicol Sci 2014; 141:423-31. [PMID: 25061109 DOI: 10.1093/toxsci/kfu145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The vitellogenin receptor (Vtgr) plays an important role in fish reproduction. This receptor functions to incorporate vitellogenin (Vtg), a macromolecule synthesized and released from the liver in the bloodstream, into oocytes where it is processed into yolk. Although studies have focused on the functional role of Vtgr in fish, the mechanistic control of this gene is still unexplored. Here we report the identification and analysis of the first piscine 5' regulatory region of the vtgr gene which was cloned from largemouth bass (Micropterus salmoides). Using this putative promoter sequence, we investigated a role for hormones, including insulin and 17β-estradiol (E2), in transcriptional regulation through cell-based reporter assays. No effect of insulin was observed, however, E2 was able to repress transcriptional activity of the vtgr promoter through select estrogen receptor subtypes, Esr1 and Esr2a but not Esr2b. Electrophoretic mobility shift assay demonstrated that Esr1 likely interacts with the vtgr promoter region through half ERE and/or SP1 sites, in part. Finally we also show that ethinylestradiol (EE2), but not bisphenol-A (BPA), represses promoter activity similarly to E2. These results reveal for the first time that the Esr1 isoform may play an inhibitory role in the expression of LMB vtgr mRNA under the influence of E2, and potent estrogens such as EE2. In addition, this new evidence suggests that vtgr may be a target of select endocrine disrupting compounds through environmental exposures.
Collapse
Affiliation(s)
- Gustavo A Dominguez
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208 Department of Environmental and Global Health, University of Florida, Gainesville, Florida 32610
| | - Joseph H Bisesi
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208 Department of Environmental and Global Health, University of Florida, Gainesville, Florida 32610 Department of Physiological Sciences, University of Florida, Gainesville, Florida 32611
| | - Kevin J Kroll
- Department of Physiological Sciences, University of Florida, Gainesville, Florida 32611
| | - Nancy D Denslow
- Department of Physiological Sciences, University of Florida, Gainesville, Florida 32611
| | - Tara Sabo-Attwood
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208 Department of Environmental and Global Health, University of Florida, Gainesville, Florida 32610 Department of Physiological Sciences, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
8
|
Lactational Exposure of Phthalate Impairs Insulin Signaling in the Cardiac Muscle of F1 Female Albino Rats. Cardiovasc Toxicol 2013; 14:10-20. [DOI: 10.1007/s12012-013-9233-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Abstract
Testosterone is a hormone that plays a key role in carbohydrate, fat and protein metabolism. It has been known for some time that testosterone has a major influence on body fat composition and muscle mass in the male. Testosterone deficiency is associated with an increased fat mass (in particular central adiposity), reduced insulin sensitivity, impaired glucose tolerance, elevated triglycerides and cholesterol and low HDL-cholesterol. All these factors are found in the metabolic syndrome (MetS) and type 2 diabetes, contributing to cardiovascular risk. Clinical trials demonstrate that testosterone replacement therapy improves the insulin resistance found in these conditions as well as glycaemic control and also reduces body fat mass, in particular truncal adiposity, cholesterol and triglycerides. The mechanisms by which testosterone acts on pathways to control metabolism are not fully clear. There is, however, an increasing body of evidence from animal, cell and clinical studies that testosterone at the molecular level controls the expression of important regulatory proteins involved in glycolysis, glycogen synthesis and lipid and cholesterol metabolism. The effects of testosterone differ in the major tissues involved in insulin action, which include liver, muscle and fat, suggesting a complex regulatory influence on metabolism. The cumulative effects of testosterone on these biochemical pathways would account for the overall benefit on insulin sensitivity observed in clinical trials. This review discusses the current knowledge of the metabolic actions of testosterone and how testosterone deficiency contributes to the clinical disease states of obesity, MetS and type 2 diabetes and the role of testosterone replacement.
Collapse
Affiliation(s)
- Daniel M Kelly
- Department of Human Metabolism, Medical School, The University of Sheffield, Sheffield S10 2RX, UK
| | | |
Collapse
|
10
|
Narasimhan A, Sampath S, Jayaraman S, Karundevi B. Estradiol favors glucose oxidation in gastrocnemius muscle through modulation of insulin signaling molecules in adult female rats. Endocr Res 2013; 38:251-62. [PMID: 23488804 DOI: 10.3109/07435800.2013.775148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Estrogens are steroid compounds that are synthesized in ovary, testis, adrenal cortex and other tissues. Several surveys have shown the potential relationship between estradiol and glucose homeostasis in physiological and pathological states such as the menstrual cycle, gestation, gestational diabetes mellitus and polycystic ovarian syndrome (PCOS). All these states are characterized by variability in estradiol level and some degree of insulin resistance. Skeletal muscle plays a crucial role in maintaining systemic glucose metabolism through activation of assorted signaling molecules. OBJECTIVES The present study is to evaluate the aftermath of ovariectomy and estradiol replacement on few insulin signaling molecules and GLUT4 protein expression and glucose oxidation in gastrocnemius muscle of adult albino rat. DESIGN In the present study, Wistar strain albino rats were selected and divided into three groups. Group I: Control (sham-operated). Group II: Ovariectomized and Group III: Estradiol was replaced 7 days after ovariectomy at a dose of 6 μg/kg boxpression of insulin signaling molecules (western blot) and glucose oxidation were assessed. RESULTS Ovariectomy significantly depleted the expression of insulin signaling molecules and glucose oxidation whereas estradiol replacement improved them. Thus, estradiol helps in maintaining glucose level in ovariectomized rats. Results of this study suggest that estradiol improves the expression of insulin signaling molecules in skeletal muscle and thereby it prevents the onset of insulin resistance as a result of estradiol deficiency.
Collapse
Affiliation(s)
- Akilavalli Narasimhan
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras , Chennai 600113 , India
| | | | | | | |
Collapse
|
11
|
Yano N, Suzuki D, Endoh M, Zhang W, Xu YC, Padbury JF, Tseng YT. In vitro silencing of the insulin receptor attenuates cellular accumulation of fibronectin in renal mesangial cells. Cell Commun Signal 2012; 10:29. [PMID: 23061721 PMCID: PMC3507851 DOI: 10.1186/1478-811x-10-29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/05/2012] [Indexed: 12/27/2022] Open
Abstract
Background Insulin receptor (InsR) and insulin signaling proteins are widely distributed throughout the kidney cortex. Insulin signaling can act in the kidney in multiple ways, some of which may be totally independent of its primary role of the maintenance of whole-body glucose homeostasis. However, descriptions of the insulin signaling in renal glomerular mesangial cells (MCs) are quite limited and the roles of insulin signaling in MC functions have not been sufficiently elucidated. Results InsR silencing induced a unique phenotype of reduced fibronectin (FN) accumulation in renal glomerular MCs. Transcription level of FN was not significantly changed in the InsR silenced cells, suggesting the phenotype switching was caused by post-transcriptional modification. The decreased expression of InsR was associated with enhanced activity of insulin-like growth factor-1 receptor (IGF-1R)/PI3K/Akt signaling pathway which contributed in part to the attenuation of cellular FN accumulation. Formation of IGF-1R homodimer was increased in the InsR silenced cells. The InsR silenced cells also showed increased sensitivity to exogenous IGF-1, and increased PI3K activity was reversed significantly by incubating cells with IGF-1R specific antagonist, AG538. PI3K/Akt dependent activation of cAMP responsive element-binding protein (CREB)-1 induced expression of matrix metalloproteinase (MMP)-9 and suppressing MMP activity by doxycycline partially reversed FN accumulation in the InsR silenced cells. Conclusions The effects of InsR silencing on cellular FN accumulation in vitro are, at least partially, mediated by increased degradation of FN by MMPs which is induced by enhanced signaling sequence of IGF-1R/PI3K/Akt/CREB-1.
Collapse
Affiliation(s)
- Naohiro Yano
- Department of Pediatrics, Women & Infants Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, 02905, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Identification of virtual signal transducers and activators of transcription response elements in the human insulin receptor gene promoter. Comput Biol Chem 2011; 35:333-5. [PMID: 22099628 DOI: 10.1016/j.compbiolchem.2011.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 10/02/2011] [Indexed: 11/22/2022]
Abstract
In this study, we look for the existence of signal transducers and activators of transcription response elements (STATREs) in the human insulin receptor (hIR) gene promoter and their possible relation with the estradiol-provoked transcriptional repression of the hIR gene and cellular insulin resistance in U-937 human promonocytic cells. Potential STATREs in the region from -1819 to -271 bp of the hIR gene promoter were identified by their homology with the consensus STATRE (5'TTCnnnGAA3') using the SEQFIND programme developed in our laboratory. We located five virtual STATRE-like sites: [(I): -1472/-1464], [(II): -1548/-1540], [(III): -1552/-1544], [(IV): -1587/-1579] and [(V): -1678/-1670] showing a difference of only one base from this consensus. These STATREs-like sites were situated between 33 bp upstream the 5' half-element of the estrogen response element 1 (ERE1)-like (-1430/-1418) and 102 bp upstream the 5' half-element of the ERE2-like (-1567/-1555) complexed with AP-1-like sites. A principal complex constituted by STATREs (II-IV) the ERE2 and AP-1 sites (IV and V) was located between -1587/-1540 bp of the hIR gene promoter. In conclusion, these results represent the first identification of virtual STATREs in the hIR gene promoter. These STATREs appear to be specifically located in the surroundings of the two EREs overlapped by various AP-1 sites. These complexes could mediate crosstalk among STATs, estrogen receptor β (ERβ), and AP-1 regulating the ERβ-mediated transcriptional repression of the hIR gene and insulin resistance in U-937 cells.
Collapse
|
13
|
Sánchez Y, Calle C, de Blas E, Aller P. Modulation of arsenic trioxide-induced apoptosis by genistein and functionally related agents in U937 human leukaemia cells. Regulation by ROS and mitogen-activated protein kinases. Chem Biol Interact 2009; 182:37-44. [DOI: 10.1016/j.cbi.2009.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 08/21/2009] [Accepted: 08/25/2009] [Indexed: 01/04/2023]
|
14
|
Kapila S, Xie Y, Wang W. Induction of MMP-1 (collagenase-1) by relaxin in fibrocartilaginous cells requires both the AP-1 and PEA-3 promoter sites. Orthod Craniofac Res 2009; 12:178-86. [PMID: 19627519 DOI: 10.1111/j.1601-6343.2009.01451.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES - Relaxin induces the matrix metalloproteinase MMP-1 (collagenase-1) in TMJ fibrocartilaginous cells, and this response is potentiated by beta-estradiol. We identified the MMP-1 promoter sites and transcription factors that are induced by relaxin with or without beta-estradiol in fibrocartilaginous cells. MATERIAL AND METHODS - Early passage cells were transiently transfected with the pBLCAT2 plasmid containing specific segments of the human MMP-1 promoter regulating the chloramphenicol acyl transferase (CAT) gene and co-transfected with a plasmid containing the beta-galactosidase gene. The cells were cultured in serum-free medium alone or medium containing 0.1 ng/ml relaxin, or 20 ng/ml beta-estradiol or both hormones, and lysates assayed for CAT and beta-galactosidase activity. RESULTS - Cells transfected with the -1200/-42 or -139/-42 bp MMP-1 promoter-reporter constructs showed 1.5-fold and 3-fold induction of CAT by relaxin in the absence or presence of beta-estradiol, respectively. Relaxin failed to induce CAT in the absence of the -137/-69 region of the MMP-1 promoter, which contains the AP-1-and PEA3-binding sites. Using wild type or mutated minimal AP-1 and PEA-3 promoters we found that both these promoter sites are essential for the induction of MMP-1 by relaxin. The mRNAs for transcription factors c-fos and c-jun, which together form the AP-1 heterodimer, and Ets-1 that modulates the PEA-3 site, were upregulated by relaxin or beta-estradiol plus relaxin. CONCLUSION - These studies show that both the AP-1 and PEA-3 promoter sites are necessary for the induction of MMP-1 by relaxin in fibrocartilaginous cells.
Collapse
Affiliation(s)
- S Kapila
- Department of Orthodontics and Pediatric Dentistry, The University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA.
| | | | | |
Collapse
|
15
|
Koricanac G, Milosavljevic T, Stojiljkovic M, Zakula Z, Tepavcevic S, Ribarac-Stepic N, Isenovic ER. Impact of estradiol on insulin signaling in the rat heart. Cell Biochem Funct 2009; 27:102-10. [DOI: 10.1002/cbf.1542] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Parthasarathy C, Renuka VN, Balasubramanian K. Sex steroids enhance insulin receptors and glucose oxidation in Chang liver cells. Clin Chim Acta 2008; 399:49-53. [PMID: 18834871 DOI: 10.1016/j.cca.2008.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 08/30/2008] [Accepted: 09/06/2008] [Indexed: 11/25/2022]
Abstract
BACKGROUND The present study was designed to assess the effect of sex steroids (testosterone and 17beta-estradiol) on insulin receptor expression, insulin binding and glucose oxidation in human liver cell line. METHODS Non-malignant Chang liver cells were treated with different concentrations of testosterone and 17beta-estradiol dissolved in serum free medium for 24 h to identify the effective dose of both steroids for further studies. Cells with 70-80% confluency were challenged with testosterone (0.1 micromol/l), 17beta-estradiol (0.1 micromol/l) and their combination along with insulin as a positive control for 24 h. After the treatment period, insulin receptor mRNA expression, cell surface insulin binding and (14)C-glucose oxidation were assessed. RESULTS Both testosterone and 17beta-estradiol significantly increased the insulin receptor mRNA expression, cell surface insulin binding and (14)C-glucose oxidation compared to basal, but the increase was not at par with the effect of insulin. Compared to individual effects of testosterone and 17beta-estradiol, their combination significantly increased the glucose oxidation similar to that of insulin. CONCLUSION It is concluded from the present study that testosterone and 17beta-estradiol can directly enhance insulin receptor mRNA expression, insulin binding and glucose oxidation in Chang liver cells and thereby glucose metabolism.
Collapse
Affiliation(s)
- Chandrakesan Parthasarathy
- Department of Endocrinology, Dr. ALM. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai-600 113, Tamil Nadu, India
| | | | | |
Collapse
|
17
|
Lambertini E, Tavanti E, Torreggiani E, Penolazzi L, Gambari R, Piva R. ERalpha and AP-1 interact in vivo with a specific sequence of the F promoter of the human ERalpha gene in osteoblasts. J Cell Physiol 2008; 216:101-10. [PMID: 18247370 DOI: 10.1002/jcp.21379] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Estrogen-responsive genes often have an estrogen response element (ERE) positioned next to activator protein-1 (AP-1) binding sites. Considering that the interaction between ERE and AP-1 elements has been described for the modulation of bone-specific genes, we investigated the 17-beta-estradiol responsiveness and the role of these cis-elements present in the F promoter of the human estrogen receptor alpha (ERalpha) gene. The F promoter, containing the sequence analyzed here, is one of the multiple promoters of the human ERalpha gene and is the only active promoter in bone tissue. Through electrophoretic mobility shift (EMSA), chromatin immunoprecipitation (ChIP), and re-ChIP assays, we investigated the binding of ERalpha and four members of the AP-1 family (c-Jun, c-fos, Fra-2, and ATF2) to a region located approximately 800 bp upstream of the transcriptional start site of exon F of the human ERalpha gene in SaOS-2 osteoblast-like cells. Reporter gene assay experiments in combination with DNA binding assays demonstrated that F promoter activity is under the control of upstream cis-acting elements which are recognized by specific combinations of ERalpha, c-Jun, c-fos, and ATF2 homo- and heterodimers. Moreover, ChIP and re-ChIP experiments showed that these nuclear factors bind the F promoter in vivo with a simultaneous occupancy stimulated by 17-beta-estradiol. Taken together, our findings support a model in which ERalpha/AP-1 complexes modulate F promoter activity under conditions of 17-beta-estradiol stimulation.
Collapse
Affiliation(s)
- Elisabetta Lambertini
- Department of Biochemistry and Molecular Biology, Molecular Biology Section, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Defining transcription mediated by the oestrogen (estrogen) receptor (ER) in breast cancer cell models has been an area of interest for many years. Initial studies focused on promoter regions of putative target genes and revealed significant insight into the basis of ER binding to DNA. More recently, the complexities of ER transcription are starting to become apparent. It is now clear that ER can regulate gene targets from significant distances and that cooperating transcription factors play an integral role in ER activity. It is also clear that the sequence information defining an in vivo ER-binding site is more complicated than initially thought. However, contemporary genomic tools based on chromatin immunoprecipitation (ChIP) – such as ChIP-on-chip and ChIP–sequencing – and gene expression profiling have allowed us to redefine the underlying properties of ER biology on a genomic scale. The advances in technology that have permitted a better understanding of how and where ER can bind to DNA are discussed in this review. The possible clinical implications of these findings for understanding the role of oestrogen in breast cancer are also briefly considered.
Collapse
|
19
|
Koricanac G, Milosavljevic T, Stojiljkovic M, Zakula Z, Ribarac-Stepic N, Isenovic ER. Insulin signaling in the liver and uterus of ovariectomized rats treated with estradiol. J Steroid Biochem Mol Biol 2008; 108:109-16. [PMID: 17931855 DOI: 10.1016/j.jsbmb.2007.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 06/01/2007] [Indexed: 10/22/2022]
Abstract
We used rat hepatic and uterine tissues to examine the impact of estradiol (E2) on insulin (INS) signaling. Ovariectomized (OVX) female Wistar rats were treated with E2 (20 microg/kg b.wt., i.p.) and used for the experiment 6h after E2 administration. To highlight E2 effects on tyrosine phosphorylation of INS receptor (IR) and INS receptor substrates (IRSs) and IRSs association with p85 subunit of phosphatidylinositol 3-kinase (PI3-K) in the context of INS signaling, E2-treated OVX rats were also injected with INS (20 IU, i.p.), 30 min before the experiment. Treatment with E2 did not change the levels of plasma INS and glucose (Glu). However, it significantly decreased the free fatty acid (FFA) level and increased uterine weight. Furthermore, the results show that E2 had no effect on the content of hepatic IR protein, but significantly increased IR protein content in the uterus and decreased IR tyrosine phosphorylation in both the liver and uterus. Compared to the control, hepatic IRS-1 and IRS-2 were significantly decreased and increased, respectively, after E2 treatment. Protein content of both molecules, IRS-1 and IRS-2, was increased in uterine tissue after E2 administration. Protein content of the p85 subunit of PI3-K and that of protein kinase B (Akt) were increased in the uterus, with no changes in the liver. The results suggest that E2 treatment induces tissue-specific changes in INS signaling. The consequences of E2 treatment on INS signaling molecules are more apparent in the uterus, but their physiological relevance for INS action is probably greater in the liver.
Collapse
Affiliation(s)
- G Koricanac
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
20
|
Zhu Y, Sullivan LL, Nair SS, Williams CC, Pandey AK, Marrero L, Vadlamudi RK, Jones FE. Coregulation of estrogen receptor by ERBB4/HER4 establishes a growth-promoting autocrine signal in breast tumor cells. Cancer Res 2007; 66:7991-8. [PMID: 16912174 DOI: 10.1158/0008-5472.can-05-4397] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although crosstalk between cell-surface and nuclear receptor signaling pathways has been implicated in the development and progression of endocrine-regulated cancers, evidence of direct coupling of these signaling pathways has remained elusive. Here we show that estrogen promotes an association between extranuclear estrogen receptor alpha (ER) and the epidermal growth factor receptor (EGFR) family member ERBB4. Ectopically expressed as well as endogenous ERBB4 interacts with and potentiates ER transactivation, indicating that the ERBB4/ER interaction is functional. Estrogen induces nuclear translocation of the proteolytic processed ERBB4 intracellular domain (4ICD) and nuclear translocation of 4ICD requires functional ligand-bound ER. The nuclear ER/4ICD complex is selectively recruited to estrogen-inducible gene promoters such as progesterone receptor (PgR) and stromal cell-derived factor 1 (SDF-1) but not to trefoil factor 1 precursor (pS2). Consistent with 4ICD-selective promoter binding, suppression of ERBB4 expression by interfering RNA shows that 4ICD coactivates ER transcription at the PgR and SDF-1 but not the pS2 promoter. Significantly, ERBB4 itself is an estrogen-inducible gene and the ERBB4 promoter harbors a consensus estrogen response element (ERE) half-site with overlapping activator protein-1 elements that bind ER and 4ICD in response to estrogen. Using a cell proliferation assay and a small interfering RNA approach, we show that ERBB4 expression is required for the growth-promoting action of estrogen in the T47D breast cancer cell line. Our results indicate that ERBB4 is a unique coregulator of ER, directly coupling extranuclear and nuclear estrogen actions in breast cancer. We propose that the contribution of an autocrine ERBB4/ER signaling pathway to tumor growth and therapeutic response should be considered when managing patients with ER-positive breast cancer.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Biochemistry, Tulane University Health Sciences Center, Tulane Cancer Center, New Orleans, LA 70112-2699, USA
| | | | | | | | | | | | | | | |
Collapse
|