1
|
Notaro US, Huber E, Stassi AF, Ormaechea NE, Chiaraviglio JA, Baravalle ME, Ortega HH, Rey F, Salvetti NR. Estrogens receptors, nuclear coactivator 1 and ligand-dependent corepressor expression are altered early during induced ovarian follicular persistence in dairy cattle. Theriogenology 2023; 210:17-27. [PMID: 37467695 DOI: 10.1016/j.theriogenology.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
Failure of ovulation can lead to follicular persistence, one of the main components of the pathogenesis of cystic ovarian disease (COD) in dairy cattle. Follicular persistence causes the permanence of a functional follicular structure in the ovary, which alters the cyclicity of the female and causes infertility. The aim of the present study was to evaluate the expression of estrogen receptors (ESR) 1 and 2, and the coregulatory proteins NCOA1, NRIP1 and LCOR by immunohistochemistry, in antral and preovulatory/persistent follicles in a model of follicular persistence induced by low levels of progesterone, to detect incipient changes during COD development, on the expected day of ovulation (P0) and after 5 (P5), 10 (P10) and 15 (P15) days of follicular persistence. Twenty-five Holstein cows were used, which were distributed in 5 groups: control group (n = 5), group P0 (n = 5), group P5 (n = 5), group P10 (n = 5), group P15 (n = 5). ESR1 expression was lower in antral follicles of the P5 (theca), P10 and P15 (theca and granulosa) groups relative to the control group (p < 0.05), and also lower in granulosa cells of persistent follicles of the P5, P10 and P15 groups than in dominant follicles of the control group (p < 0.05), without differences in theca cells. ESR2 expression showed no differences between groups. The ESR1:ESR2 balance favored ESR2 expression along the development of persistent follicles, as from 5 days of persistence (p < 0.05). NCOA1 expression was higher in granulosa cells of both antral and persistent follicles from the P0 group relative to the P5 and P10 groups, but showed no differences with the control and P15 groups (p < 0.05). Theca cells of antral and persistent follicles showed higher expression in the P0 and P15 groups in relation to the control, P5 and P10 groups (p < 0.05). No differences were detected for NRIP1 in antral, dominant and persistent follicles between groups. LCOR expression showed a decrease in granulosa cells of antral follicles from all persistence groups relative to the control group (p < 0.05). In theca cells, antral follicles of the P10 group showed lower LCOR expression than the control group (p < 0.05). LCOR expression was similar for dominant and persistent follicles. Considering that the ESR1:ESR2 balance favored ESR2 expression along the development of persistent follicles, as well as the decreased LCOR and NCOA1 expression, we may assume that, at the early stages of persistence, there is a negative regulation of ESR transcription. This coincides with the effects of estrogens through ESR on proliferation and apoptosis among other processes that favor follicular persistence. The results obtained provide relevant information in the knowledge of local events during the development of follicular persistence that could explain the failures in the reversion of the disease through hormonal treatments and the high recurrence rates reported for COD. In addition, it contributes to the study and identification of possible therapeutic targets, for the design of new treatments.
Collapse
Affiliation(s)
- Ulises S Notaro
- Instituto de Ciencias Veterinarias Del Litoral (ICiVET-Litoral), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Emilia Huber
- Instituto de Ciencias Veterinarias Del Litoral (ICiVET-Litoral), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Antonela F Stassi
- Instituto de Ciencias Veterinarias Del Litoral (ICiVET-Litoral), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional Del Litoral, Esperanza, Santa Fe, Argentina
| | - Nadia E Ormaechea
- Instituto de Ciencias Veterinarias Del Litoral (ICiVET-Litoral), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Juan A Chiaraviglio
- Instituto de Ciencias Veterinarias Del Litoral (ICiVET-Litoral), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina
| | - M Eugenia Baravalle
- Instituto de Ciencias Veterinarias Del Litoral (ICiVET-Litoral), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Centro Universitario Gálvez (CUG-UNL), Gálvez, Santa Fe, Argentina
| | - Hugo H Ortega
- Instituto de Ciencias Veterinarias Del Litoral (ICiVET-Litoral), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional Del Litoral, Esperanza, Santa Fe, Argentina
| | - Florencia Rey
- Instituto de Ciencias Veterinarias Del Litoral (ICiVET-Litoral), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional Del Litoral, Esperanza, Santa Fe, Argentina
| | - Natalia R Salvetti
- Instituto de Ciencias Veterinarias Del Litoral (ICiVET-Litoral), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional Del Litoral, Esperanza, Santa Fe, Argentina.
| |
Collapse
|
2
|
Chromatin modifiers – Coordinators of estrogen action. Biomed Pharmacother 2022; 153:113548. [DOI: 10.1016/j.biopha.2022.113548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
|
3
|
The Transcription Coregulator RIP140 Inhibits Cancer Cell Proliferation by Targeting the Pentose Phosphate Pathway. Int J Mol Sci 2022; 23:ijms23137419. [PMID: 35806424 PMCID: PMC9267222 DOI: 10.3390/ijms23137419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer cells switch their metabolism toward glucose metabolism to sustain their uncontrolled proliferation. Consequently, glycolytic intermediates are diverted into the pentose phosphate pathway (PPP) to produce macromolecules necessary for cell growth. The transcription regulator RIP140 controls glucose metabolism in tumor cells, but its role in cancer-associated reprogramming of cell metabolism remains poorly understood. Here, we show that, in human breast cancer cells and mouse embryonic fibroblasts, RIP140 inhibits the expression of the gene-encoding G6PD, the first enzyme of the PPP. RIP140 deficiency increases G6PD activity as well as the level of NADPH, a reducing cofactor essential for macromolecule synthesis. Moreover, G6PD knock-down inhibits the gain of proliferation observed when RIP140 expression is reduced. Importantly, RIP140-deficient cells are more sensitive to G6PD inhibition in cell proliferation assays and tumor growth experiments. Altogether, this study describes a novel role for RIP140 in regulating G6PD levels, which links its effect on breast cancer cell proliferation to metabolic rewiring.
Collapse
|
4
|
RIP140 inhibits glycolysis-dependent proliferation of breast cancer cells by regulating GLUT3 expression through transcriptional crosstalk between hypoxia induced factor and p53. Cell Mol Life Sci 2022; 79:270. [PMID: 35501580 PMCID: PMC9061696 DOI: 10.1007/s00018-022-04277-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Glycolysis is essential to support cancer cell proliferation, even in the presence of oxygen. The transcriptional co-regulator RIP140 represses the activity of transcription factors that drive cell proliferation and metabolism and plays a role in mammary tumorigenesis. Here we use cell proliferation and metabolic assays to demonstrate that RIP140-deficiency causes a glycolysis-dependent increase in breast tumor growth. We further demonstrate that RIP140 reduces the transcription of the glucose transporter GLUT3 gene, by inhibiting the transcriptional activity of hypoxia inducible factor HIF-2α in cooperation with p53. Interestingly, RIP140 expression was significantly associated with good prognosis only for breast cancer patients with tumors expressing low GLUT3, low HIF-2α and high p53, thus confirming the mechanism of RIP140 anti-tumor activity provided by our experimental data. Overall, our work establishes RIP140 as a critical modulator of the p53/HIF cross-talk to inhibit breast cancer cell glycolysis and proliferation.
Collapse
|
5
|
A Truncated NRIP1 Mutant Amplifies Microsatellite Instability of Colorectal Cancer by Regulating MSH2/MSH6 Expression, and Is a Prognostic Marker of Stage III Tumors. Cancers (Basel) 2021; 13:cancers13174449. [PMID: 34503257 PMCID: PMC8430632 DOI: 10.3390/cancers13174449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary The alteration of mismatch repair (MMR) genes leads to microsatellite instability and plays a key role in colorectal cancer (CRC) pathogenesis and prognosis. The transcription factor NRIP1 is involved in intestinal tumorigenesis and is a good prognostic marker in CRC. In this study, we demonstrate that NRIP1 induces MSH2 and MSH6 MMR gene transcription and reduces microsatellite instability. A dominant-negative truncated NRIP1 mutant amplifies the MMR-deficient phenotype and appears as a key player in MSI-driven tumorigenesis since it significantly correlates with a short overall survival of patients with advanced CRC, especially MLH1-deficient ones. Abstract Microsatellite instability (MSI) is related to the alteration of mismatch repair (MMR) genes and plays a key role in colorectal cancer (CRC) pathogenesis. We previously reported that the transcription factor Nuclear Receptor Interacting Protein 1 (NRIP1) is involved in sporadic intestinal tumorigenesis. The aim of this study was to decipher its role in MSI CRC. By using different mouse models and engineered cell lines, we demonstrated that NRIP1 increased MSH2 and MSH6 MMR gene transcription and mRNA/protein levels. In human CRC cells, NRIP1 expression was associated with decreased MSI and the hypermutator phenotype, and with resistance to chemotherapy drugs. Using a cohort of 194 CRC patients, we detected in 22% of the cases a MSI-induced frameshift mutation in the NRIP1 coding sequence. This genetic alteration generates a truncated protein with a dominant negative activity that increased human CRC cell proliferation and impaired the regulation of MSH2 and MSH6 gene expression. Moreover, the NRIP1 mutant correlated with a decreased overall survival of patients with advanced CRC, especially when MLH1-deficient. By decreasing the expression of MSH2 and MSH6 gene expression, the NRIP1 variant may amplify MLH1-dependent CRC progression and behave as a new prognostic marker of advanced MSI CRC.
Collapse
|
6
|
Flindris S, Katsoulas N, Goussia A, Lazaris AC, Navrozoglou I, Paschopoulos M, Thymara I. The Expression of NRIP1 and LCOR in Endometrioid Endometrial Cancer. In Vivo 2021; 35:2631-2640. [PMID: 34410950 DOI: 10.21873/invivo.12545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The aim of the study was to analyze the expression of nuclear receptor interacting protein 1 (NRIP1) and its partner ligand-dependent nuclear receptor co-repressor (LCOR) in endometrioid endometrial cancer and to investigate their association with estrogen receptor (ER), progesterone receptor (PR), Ki-67, clinicopathological parameters and patient survival. MATERIALS AND METHODS Immunohistochemical evaluation was carried out to investigate the subcellular expression of NRIP1 and LCOR in endometrioid endometrial cancer samples. Statistical analysis was used to identify the correlations of NRIP1 and LCOR expression with clinicopathological variables and to estimate the survival rates. RESULTS Endometrial cancer tissues exhibited higher expression of NRIP1 and LCOR in comparison with the normal tissues. Cytoplasmic LCOR expression was positively associated with ER and PR expression, while cytoplasmic NRIP1 expression was positively associated with ER expression. Moreover, cytoplasmic expression of NRIP1 was positively associated with Ki-67. CONCLUSION Our study demonstrated that high cytoplasmic expression of LCOR may predict a longer overall survival of patients with endometrioid endometrial cancer. Patients with tumors expressing low levels of LCOR showed a worse survival compared to those expressing high levels.
Collapse
Affiliation(s)
- Stefanos Flindris
- Department of Obstetrics and Gynecology, University Hospital of Ioannina, Ioannina, Greece;
| | - Nikolaos Katsoulas
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital of Athens, Athens, Greece
| | - Anna Goussia
- Department of Pathology, University Hospital of Ioannina, Ioannina, Greece
| | - Andreas Christos Lazaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital of Athens, Athens, Greece
| | - Iordanis Navrozoglou
- Department of Obstetrics and Gynecology, University Hospital of Ioannina, Ioannina, Greece
| | - Minas Paschopoulos
- Department of Obstetrics and Gynecology, University Hospital of Ioannina, Ioannina, Greece
| | - Irene Thymara
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital of Athens, Athens, Greece
| |
Collapse
|
7
|
Kaupang Å, Hansen TV. The PPAR Ω Pocket: Renewed Opportunities for Drug Development. PPAR Res 2020; 2020:9657380. [PMID: 32695150 PMCID: PMC7351019 DOI: 10.1155/2020/9657380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
The past decade of PPARγ research has dramatically improved our understanding of the structural and mechanistic bases for the diverging physiological effects of different classes of PPARγ ligands. The discoveries that lie at the heart of these developments have enabled the design of a new class of PPARγ ligands, capable of isolating central therapeutic effects of PPARγ modulation, while displaying markedly lower toxicities than previous generations of PPARγ ligands. This review examines the emerging framework around the design of these ligands and seeks to unite its principles with the development of new classes of ligands for PPARα and PPARβ/δ. The focus is on the relationships between the binding modes of ligands, their influence on PPAR posttranslational modifications, and gene expression patterns. Specifically, we encourage the design and study of ligands that primarily bind to the Ω pockets of PPARα and PPARβ/δ. In support of this development, we highlight already reported ligands that if studied in the context of this new framework may further our understanding of the gene programs regulated by PPARα and PPARβ/δ. Moreover, recently developed pharmacological tools that can be utilized in the search for ligands with new binding modes are also presented.
Collapse
Affiliation(s)
- Åsmund Kaupang
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway
| | - Trond Vidar Hansen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
8
|
Kovács T, Szabó-Meleg E, Ábrahám IM. Estradiol-Induced Epigenetically Mediated Mechanisms and Regulation of Gene Expression. Int J Mol Sci 2020; 21:ijms21093177. [PMID: 32365920 PMCID: PMC7246826 DOI: 10.3390/ijms21093177] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Gonadal hormone 17β-estradiol (E2) and its receptors are key regulators of gene transcription by binding to estrogen responsive elements in the genome. Besides the classical genomic action, E2 regulates gene transcription via the modification of epigenetic marks on DNA and histone proteins. Depending on the reaction partner, liganded estrogen receptor (ER) promotes DNA methylation at the promoter or enhancer regions. In addition, ERs are important regulators of passive and active DNA demethylation. Furthermore, ERs cooperating with different histone modifying enzymes and chromatin remodeling complexes alter gene transcription. In this review, we survey the basic mechanisms and interactions between estrogen receptors and DNA methylation, demethylation and histone modification processes as well as chromatin remodeling complexes. The particular relevance of these mechanisms to physiological processes in memory formation, embryonic development, spermatogenesis and aging as well as in pathophysiological changes in carcinogenesis is also discussed.
Collapse
Affiliation(s)
- Tamás Kovács
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pécs, Hungary;
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary;
| | - István M. Ábrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pécs, Hungary;
- Correspondence:
| |
Collapse
|
9
|
Vogelsang TLR, Schmoeckel E, Kuhn C, Blankenstein T, Temelkov M, Heidegger H, Kolben TM, Kolben T, Mahner S, Mayr D, Jeschke U, Vattai A. Regulation of LCoR and RIP140 expression in cervical intraepithelial neoplasia and correlation with CIN progression and dedifferentiation. J Cancer Res Clin Oncol 2020; 146:1847-1855. [PMID: 32157438 PMCID: PMC7256097 DOI: 10.1007/s00432-020-03178-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Purpose Ligand-dependent corepressor (LCoR) and receptor-interacting protein 140 (RIP140/NRIP1) play an important role in the regulation of multiple oncogenic signaling pathways and the development of cancer. LCoR and RIP140 form a nuclear complex in breast cancer cells and are of prognostic value in further prostate and cervical cancer. The purpose of this study was to analyze the regulation of these proteins in the development of cervical intraepithelial neoplasia (CIN I–III). Methods Immunohistochemical analysis was obtained to quantify RIP140 and LCoR expression in formalin-fixed paraffin embedded tissue sections of cervical intraepithelial neoplasia samples. Tissue (n = 94) was collected from patients treated in the Department of Gynecology and Obstetrics, Ludwig-Maximilians-University of Munich, Germany, between 2002 and 2014. Correlations of expression levels with clinical outcome were carried out to assess for prognostic relevance in patients with CIN2 progression. Kruskal–Wallis test and Mann–Whitney U test were used for data analysis. Results Nuclear LCoR overexpression correlates significantly with CIN II progression. Nuclear RIP140 expression significantly increases and nuclear LCoR expression decreases with higher grading of cervical intraepithelial neoplasia. Cytoplasmic RIP140 expression is significantly higher in CIN III than in CIN I or CIN II. Conclusion A decrease of nuclear LCoR expression in line with an increase of dedifferentiation of CIN can be observed. Nuclear LCoR overexpression correlates with CIN II progression indicating a prognostic value of LCoR in cervical intraepithelial neoplasia. Nuclear and cytoplasmic RIP140 expression increases significantly with higher grading of cervical intraepithelial neoplasia underlining its potential role in the development of pre-cancerous lesions. These findings support the relevance of LCoR and RIP140 in the tumorigenesis indicating a possible role of LCoR and RIP140 as targets for novel therapeutic approaches in cervical intraepithelial neoplasia and cervical cancer.
Collapse
Affiliation(s)
- Tilman L R Vogelsang
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80337, Munich, Germany
| | - Elisa Schmoeckel
- Institute of Pathology, Faculty of Medicine, LMU Munich, 80337, Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80337, Munich, Germany
| | - Thomas Blankenstein
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80337, Munich, Germany
| | - Mina Temelkov
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80337, Munich, Germany
| | - Helene Heidegger
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80337, Munich, Germany
| | - Theresa Maria Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80337, Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80337, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80337, Munich, Germany
| | - Doris Mayr
- Institute of Pathology, Faculty of Medicine, LMU Munich, 80337, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80337, Munich, Germany. .,Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156, Augsburg, Germany.
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80337, Munich, Germany
| |
Collapse
|
10
|
Sixou S, Müller K, Jalaguier S, Kuhn C, Harbeck N, Mayr D, Engel J, Jeschke U, Ditsch N, Cavaillès V. Importance of RIP140 and LCoR Sub-Cellular Localization for Their Association With Breast Cancer Aggressiveness and Patient Survival. Transl Oncol 2018; 11:1090-1096. [PMID: 30007204 PMCID: PMC6070698 DOI: 10.1016/j.tranon.2018.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/29/2022] Open
Abstract
New markers are needed to improve diagnosis and to personalize treatments for patients with breast cancer (BC). Receptor-interacting protein of 140 kDa (RIP140) and ligand-dependent corepressor (LCoR), two transcriptional co-regulators of estrogen receptors, strongly interact in BC cells. Although their role in cancer progression has been outlined in the last few years, their function in BC has not been elucidated yet. In this study, we investigated RIP140 and LCoR localization (cytoplasm vs nucleus) in BC samples from a well-characterized cohort of patients (n = 320). RIP140 and LCoR were expressed in more than 80% of tumors, (predominantly in the cytoplasm), and the two markers were highly correlated. Expression of RIP140 and LCoR in the nucleus was negatively correlated with tumor size. Conversely, RIP140 and LCoR cytoplasmic expression strongly correlated with expression of two tumor aggressiveness markers: N-cadherin and CD133 (epithelial mesenchymal transition and cancer stem cell markers, respectively). Finally, high RIP140 nuclear expression was significantly correlated with longer overall survival, whereas high total or cytoplasmic expression of RIP140 was associated with shorter disease-free survival. Our study strongly suggests that the role of RIP140 and LCoR in BC progression could vary according to their prevalent sub-cellular localization, with opposite prognostic values for nuclear and cytoplasmic expression. The involvement in BC progression/invasiveness of cytoplasmic RIP140 could be balanced by the anti-tumor action of nuclear RIP140, thus explaining the previous contradictory findings about its role in BC.
Collapse
Affiliation(s)
- Sophie Sixou
- Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistrasse 11, D-80337 München, Germany; Université Paul Sabatier Toulouse III, Faculté des Sciences Pharmaceutiques, F-31062 Toulouse cedex 09, France.
| | - Katharina Müller
- Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistrasse 11, D-80337 München, Germany.
| | - Stéphan Jalaguier
- IRCM - Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Parc Euromédecine, 208 rue des Apothicaires, F-34298 Montpellier Cedex 5, France.
| | - Christina Kuhn
- Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistrasse 11, D-80337 München, Germany.
| | - Nadia Harbeck
- Brustzentrum der Universität München, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Klinikum der Ludwig-Maximilians-Universität, Maistrasse 11, D-80337 München, Germany.
| | - Doris Mayr
- Department of Pathology, Campus Innenstadt, Ludwig-Maximilians-University Hospital, Thalkirchner Str. 36, D-80337 Munich, Germany.
| | - Jutta Engel
- Tumorregister München (TRM) des Tumorzentrums München (TZM) am Klinikum der Universität München (KUM), Marchionistraße 15, 81377 Munich, Germany.
| | - Udo Jeschke
- Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistrasse 11, D-80337 München, Germany.
| | - Nina Ditsch
- Department of Obstetrics and Gynaecology, Campus Großhadern, Ludwig-Maximilians-University Hospital, Marchionistraße 15, 81377 Munich, Germany.
| | - Vincent Cavaillès
- IRCM - Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Parc Euromédecine, 208 rue des Apothicaires, F-34298 Montpellier Cedex 5, France.
| |
Collapse
|
11
|
Bird RP. The Emerging Role of Vitamin B6 in Inflammation and Carcinogenesis. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 83:151-194. [PMID: 29477221 DOI: 10.1016/bs.afnr.2017.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vitamin B6 serves as a coenzyme catalyzing more than 150 enzymes regulating metabolism and synthesis of proteins, carbohydrates, lipids, heme, and important bioactive metabolites. For several years vitamin B6 and its vitamers (B6) were recognized as antioxidant and antiinflammatory and in modulating immunity and gene expression. During the last 10 years, there were growing reports implicating B6 in inflammation and inflammation-related chronic illnesses including cancer. It is unclear if the deficiency of B6 or additional intake of B6, above the current requirement, should be the focus. Whether the current recommended daily intake for B6 is adequate should be revisited, since B6 is important to human health beyond its role as a coenzyme and its status is affected by many factors including but not limited to age, obesity, and inflammation associated with chronic illnesses. A link between inflammation B6 status and carcinogenesis is not yet completely understood. B6-mediated synthesis of H2S, a gasotransmitter, and taurine in health and disease, especially in maintaining mitochondrial integrity and biogenesis and inflammation, remains an important area to be explored. Recent developments in the molecular role of B6 and its direct interaction with inflammasomes, and nuclear receptor corepressor and coactivator, receptor-interacting protein 140, provide a strong impetus to further explore the multifaceted role of B6 in carcinogenesis and human health.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| |
Collapse
|
12
|
Jalaguier S, Teyssier C, Nait Achour T, Lucas A, Bonnet S, Rodriguez C, Elarouci N, Lapierre M, Cavaillès V. Complex regulation of LCoR signaling in breast cancer cells. Oncogene 2017; 36:4790-4801. [PMID: 28414308 PMCID: PMC5562849 DOI: 10.1038/onc.2017.97] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/18/2017] [Accepted: 02/24/2017] [Indexed: 12/15/2022]
Abstract
Ligand-dependent corepressor (LCoR) is a transcriptional repressor of ligand-activated estrogen receptors (ERs) and other transcription factors that acts both by recruiting histone deacetylases and C-terminal binding proteins. Here, we first studied LCOR gene expression in breast cancer cell lines and tissues. We detected two mRNAs variants, LCoR and LCoR2 (which encodes a truncated LCoR protein). Their expression was highly correlated and localized in discrete nuclear foci. LCoR and LCoR2 strongly repressed transcription, inhibited estrogen-induced target gene expression and decreased breast cancer cell proliferation. By mutagenesis analysis, we showed that the helix-turn-helix domain of LCoR is required for these effects. Using in vitro interaction, coimmunoprecipitation, proximity ligation assay and confocal microscopy experiments, we found that receptor-interacting protein of 140 kDa (RIP140) is a LCoR and LCoR2 partner and that this interaction requires the HTH domain of LCoR and RIP140 N- and C-terminal regions. By increasing or silencing LCoR and RIP140 expression in human breast cancer cells, we then showed that RIP140 is necessary for LCoR inhibition of gene expression and cell proliferation. Moreover, LCoR and RIP140 mRNA levels were strongly correlated in breast cancer cell lines and biopsies. In addition, RIP140 positively regulated LCoR expression in human breast cancer cells and in transgenic mouse models. Finally, their expression correlated with overall survival of patients with breast cancer. Taken together, our results provide new insights into the mechanism of action of LCoR and RIP140 and highlight their strong interplay for the control of gene expression and cell proliferation in breast cancer cells.
Collapse
Affiliation(s)
- S Jalaguier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France
| | - C Teyssier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France
| | - T Nait Achour
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France
| | - A Lucas
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France
| | - S Bonnet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France
| | - C Rodriguez
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France
| | - N Elarouci
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, Paris, France
| | - M Lapierre
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France
| | - V Cavaillès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
13
|
Ariazi EA, Taylor JC, Black MA, Nicolas E, Slifker MJ, Azzam DJ, Boyd J. A New Role for ERα: Silencing via DNA Methylation of Basal, Stem Cell, and EMT Genes. Mol Cancer Res 2016; 15:152-164. [PMID: 28108626 DOI: 10.1158/1541-7786.mcr-16-0283] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/10/2016] [Accepted: 10/18/2016] [Indexed: 12/30/2022]
Abstract
Resistance to hormonal therapies is a major clinical problem in the treatment of estrogen receptor α-positive (ERα+) breast cancers. Epigenetic marks, namely DNA methylation of cytosine at specific CpG sites (5mCpG), are frequently associated with ERα+ status in human breast cancers. Therefore, ERα may regulate gene expression in part via DNA methylation. This hypothesis was evaluated using a panel of breast cancer cell line models of antiestrogen resistance. Microarray gene expression profiling was used to identify genes normally silenced in ERα+ cells but derepressed upon exposure to the demethylating agent decitabine, derepressed upon long-term loss of ERα expression, and resuppressed by gain of ERα activity/expression. ERα-dependent DNA methylation targets (n = 39) were enriched for ERα-binding sites, basal-up/luminal-down markers, cancer stem cell, epithelial-mesenchymal transition, and inflammatory and tumor suppressor genes. Kaplan-Meier survival curve and Cox proportional hazards regression analyses indicated that these targets predicted poor distant metastasis-free survival among a large cohort of breast cancer patients. The basal breast cancer subtype markers LCN2 and IFI27 showed the greatest inverse relationship with ERα expression/activity and contain ERα-binding sites. Thus, genes that are methylated in an ERα-dependent manner may serve as predictive biomarkers in breast cancer. IMPLICATIONS ERα directs DNA methylation-mediated silencing of specific genes that have biomarker potential in breast cancer subtypes. Mol Cancer Res; 15(2); 152-64. ©2016 AACR.
Collapse
Affiliation(s)
- Eric A Ariazi
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania.
| | - John C Taylor
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Emmanuelle Nicolas
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Michael J Slifker
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Diana J Azzam
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Jeff Boyd
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania.
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
14
|
Aziz MH, Chen X, Zhang Q, DeFrain C, Osland J, Luo Y, Shi X, Yuan R. Suppressing NRIP1 inhibits growth of breast cancer cells in vitro and in vivo. Oncotarget 2016; 6:39714-24. [PMID: 26492163 PMCID: PMC4741857 DOI: 10.18632/oncotarget.5356] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/03/2015] [Indexed: 11/25/2022] Open
Abstract
Earlier age at menarche is a major risk factor for breast cancer. Our previous study identified Nrip1 (also known as Rip140) as a candidate gene for delaying female sexual maturation (FSM) and found that knocking out Nrip1 could significantly delay FSM in mice. To investigate the effects of NRIP1 in breast cancer we used human cell lines and tissue arrays along with an in vivo study of DMBA-induced carcinogenesis in Nrip1 knockout mice. Analysis of tissue arrays found that NRIP1 is elevated in tumors compared to cancer adjacent normal tissue. Interestingly, in benign tumors NRIP1 levels are higher in the cytosol of stromal cells, but NRIP1 levels are higher in the nuclei of epithelial cells in malignancies. We also found overexpression of NRIP1 in breast cancer cell lines, and that suppression of NRIP1 by siRNA in these cells significantly induced apoptosis and inhibited cell growth. Furthermore, in vivo data suggests that NRIP1 is upregulated in DMBA-induced breast cancer. Importantly, we found that DMBA-induced carcinogenesis is suppressed in Nrip1 knockdown mice. These findings suggest that NRIP1 plays a critical role in promoting the progression and development of breast cancer and that it may be a potential therapeutic target for the new breast cancer treatments.
Collapse
Affiliation(s)
- Moammir H Aziz
- Division of Geriatrics, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9628, USA
| | - Xundi Chen
- Department of Medical Microbiology and Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9628, USA
| | - Qi Zhang
- Zhongda Hospital, Southeast University of China, Nanjing 210009, China
| | - Chad DeFrain
- Department of Pathology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9628, USA
| | - Jared Osland
- Division of Geriatrics, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9628, USA
| | - Yizhou Luo
- Department of Oncology, Nanjing Junxie Hospital, Nanjing 210002, China
| | - Xin Shi
- Zhongda Hospital, Southeast University of China, Nanjing 210009, China
| | - Rong Yuan
- Division of Geriatrics, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9628, USA.,Department of Medical Microbiology and Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9628, USA
| |
Collapse
|
15
|
Légaré S, Basik M. Minireview: The Link Between ERα Corepressors and Histone Deacetylases in Tamoxifen Resistance in Breast Cancer. Mol Endocrinol 2016; 30:965-76. [PMID: 27581354 DOI: 10.1210/me.2016-1072] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Approximately 70% of breast cancers express the estrogen receptor (ER)α and are treated with the ERα antagonist, tamoxifen. However, resistance to tamoxifen frequently develops in advanced breast cancer, in part due to a down-regulation of ERα corepressors. Nuclear receptor corepressors function by attenuating hormone responses and have been shown to potentiate tamoxifen action in various biological systems. Recent genomic data on breast cancers has revealed that genetic and/or genomic events target ERα corepressors in the majority of breast tumors, suggesting that the loss of nuclear receptor corepressor activity may represent an important mechanism that contributes to intrinsic and acquired tamoxifen resistance. Here, the biological functions of ERα corepressors are critically reviewed to elucidate their role in modifying endocrine sensitivity in breast cancer. We highlight a mechanism of gene repression common to corepressors previously shown to enhance the antitumorigenic effects of tamoxifen, which involves the recruitment of histone deacetylases (HDACs) to DNA. As an indicator of epigenetic disequilibrium, the loss of ERα corepressors may predispose cancer cells to the cytotoxic effects of HDAC inhibitors, a class of drug that has been shown to effectively reverse tamoxifen resistance in numerous studies. HDAC inhibition thus appears as a promising therapeutic approach that deserves to be further explored as an avenue to restore drug sensitivity in corepressor-deficient and tamoxifen-resistant breast cancers.
Collapse
Affiliation(s)
- Stéphanie Légaré
- Division of Experimental Medicine, Department of Oncology and Surgery, Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2
| | - Mark Basik
- Division of Experimental Medicine, Department of Oncology and Surgery, Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2
| |
Collapse
|
16
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
17
|
Liu X, An BH, Kim MJ, Park JH, Kang YS, Chang M. Human glutathione S-transferase P1-1 functions as an estrogen receptor α signaling modulator. Biochem Biophys Res Commun 2014; 452:840-4. [DOI: 10.1016/j.bbrc.2014.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 09/03/2014] [Indexed: 11/17/2022]
|
18
|
Nguyen HD, Phan TTP, Carraz M, Brunsveld L. Estrogen receptor α/β-cofactor motif interactions; interplay of tyrosine 537/488 phosphorylation and LXXLL motifs. MOLECULAR BIOSYSTEMS 2013; 8:3134-41. [PMID: 22930062 DOI: 10.1039/c2mb25257k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Estrogen Receptors ERα and ERβ bind cofactor proteins via short LXXLL motifs. The exact regulation and selectivity of these interactions remains an open question and the role of post-translational modifications (PTMs) is virtually unexplored. Here, we designed an X(7)-LXXLL-X(7) T7 phage display library and screened this against four ER protein constructs: the 'naked' ERα and ERβ Ligand Binding Domains (LBDs) and the tyrosine phosphorylated ERα (pY537) and ERβ (pY488) LBDs. The site-selective tyrosine phosphorylated protein constructs were obtained via a protein semi-synthesis approach. Phage display screening yielded preferential sets of peptides. LXXLL peptides with a low pI/acidic C-terminus prefer binding to the naked ERβ over the phosphorylated ERβ analogue and ERα constructs. Peptides with a high pI/basic C-terminus show the opposite behaviour. These findings not only show regulation of the ERβ-cofactor interaction via tyrosine phosphorylation, but also suggest that ERβ and its tyrosine 488 phosphorylation play crucial roles in modulating interactions of coactivators to ERα since the natural Steroid Receptor Coactivators (SRCs) feature LXXLL motifs with acidic C-termini, while the repressor protein RIP140 features LXXLL motifs with basic C-termini. This insight provides explanation for ER transcriptional activity and can lead to more focussed targeting of the ER-coactivator interaction.
Collapse
Affiliation(s)
- Hoang D Nguyen
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, The Netherlands
| | | | | | | |
Collapse
|
19
|
Intratumoral estrogen concentration and expression of estrogen-induced genes in male breast carcinoma: comparison with female breast carcinoma. Discov Oncol 2012; 4:1-11. [PMID: 23096432 DOI: 10.1007/s12672-012-0126-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/08/2012] [Indexed: 12/28/2022] Open
Abstract
It is speculated that estrogens play important roles in the male breast carcinoma (MBC) as well as the female breast carcinoma (FBC). However, estrogen concentrations or molecular features of estrogen actions have not been reported in MBC, and biological significance of estrogens remains largely unclear in MBC. Therefore, we examined intratumoral estrogen concentrations, estrogen receptor (ER) α/ERβ status, and expression profiles of estrogen-induced genes in MBC tissues, and compared these with FBC. 17β-Estradiol concentration in MBC (n = 4) was significantly (14-fold) higher than that in non-neoplastic male breast (n = 3) and tended to be higher than that in FBC (n = 7). Results of microarray analysis clearly demonstrated that expression profiles of the two gene lists, which were previously reported as estrogen-induced genes in MCF-7 breast carcinoma cell line, were markedly different between MBC and FBC. In the immunohistochemistry, MBC tissues were frequently positive for aromatase (63 %) and 17β-hydroxysteroid dehydrogenase type 1 (67 %), but not for steroid sulfatase (6.7 %). A great majority (77 %) of MBC showed positive for both ERα and ERβ, and its frequency was significantly higher than FBC cases. These results suggest that estradiol is locally produced in MBC tissue by aromatase. Different expression profiles of the estrogen-induced genes may associate with different estrogen functions in MBC from FBC, which may be partly due to their ERα/ERβ status.
Collapse
|
20
|
Gurevich I, Zhang C, Encarnacao PC, Struzynski CP, Livings SE, Aneskievich BJ. PPARγ and NF-κB regulate the gene promoter activity of their shared repressor, TNIP1. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:1-15. [PMID: 22001530 PMCID: PMC3249470 DOI: 10.1016/j.bbagrm.2011.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/27/2011] [Accepted: 09/30/2011] [Indexed: 11/27/2022]
Abstract
Human TNFAIP3 interacting protein 1 (TNIP1) has diverse functions including support of HIV replication through its interaction with viral Nef and matrix proteins, reduction of TNFα-induced signaling through its interaction with NF-κB pathway proteins, and corepression of agonist-bound retinoic acid receptors and peroxisome proliferator-activated receptors (PPAR). The wide tissue distribution of TNIP1 provides the opportunity to influence numerous cellular responses in these roles and defining control of TNIP1 expression would be central to improved understanding of its impact on cell function. We cloned 6kb of the human TNIP1 promoter and performed predictive and functional analyses to identify regulatory elements. The promoter region proximal to the transcription start site is GC-rich without a recognizable TATA box. In contrast to this proximal ~500bp region, 6kb of the promoter increased reporter construct constitutive activity over five-fold. Throughout the 6kb length, in silico analysis identified several potential binding sites for both constitutive and inducible transcription factors; among the latter were candidate NF-κB binding sequences and peroxisome proliferator response elements (PPREs). We tested NF-κB and PPAR regulation of the endogenous TNIP1 gene and cloned promoter by expression studies, electrophoretic mobility shift assays, and chromatin immunoprecipitations. We validated NF-κB sites in the TNIP1 promoter proximal and distal regions as well as one PPRE in the distal region. The ultimate control of the TNIP1 promoter is likely to be a combination of constitutive transcription factors and those subject to activation such as NF-κB and PPAR.
Collapse
Affiliation(s)
- Igor Gurevich
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092; USA
| | - Carmen Zhang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092; USA
| | - Priscilla C. Encarnacao
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092; USA
| | - Charles P. Struzynski
- Doctor of Pharmacy Program, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092; USA
| | - Sarah E. Livings
- Doctor of Pharmacy Program, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092; USA
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092; USA
- Center for Regenerative Biology, University of Connecticut, Storrs, CT 06269-3092; USA
| |
Collapse
|
21
|
Madak-Erdogan Z, Katzenellenbogen BS. Aryl hydrocarbon receptor modulation of estrogen receptor α-mediated gene regulation by a multimeric chromatin complex involving the two receptors and the coregulator RIP140. Toxicol Sci 2011; 125:401-11. [PMID: 22071320 DOI: 10.1093/toxsci/kfr300] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although crosstalk between aryl hydrocarbon receptor (AhR) and estrogen receptor α (ERα) is well established, the mechanistic basis and involvement of other proteins in this process are not known. Because we observed an enrichment of AhR-binding motifs in ERα-binding sites of many estradiol (E2)-regulated genes, we investigated how AhR might modulate ERα-mediated gene transcription in breast cancer cells. Gene regulations were categorized based on their pattern of stimulation by E2 and/or dioxin and were denoted E2-responsive, dioxin-responsive, or responsive to either ligand. ERα, AhR, aryl hydrocarbon receptor translocator, and receptor interacting protein 140 (RIP140) were recruited to gene regulatory regions in a gene-specific and E2/dioxin ligand-specific manner. Knockdown of AhR markedly increased the expression of ERα-mediated genes upon E2 treatment. This was not attributable to a change in ERα level, or recruitment of ERα, phosphoSer5-RNA Pol II, or several coregulators but rather was associated with greatly diminished recruitment of the coregulator RIP140 to gene regulatory sites. Changing the cellular level of RIP140 revealed coactivator or corepressor roles for this coregulator in E2- and dioxin-mediated gene regulation, the choice of which was determined by the presence or absence of ERα at gene regulatory sites. Coimmunoprecipitation and chromatin immunoprecipitation (ChIP)-reChIP studies documented that E2- or dioxin-promoted formation of a multimeric complex of ERα, AhR, and RIP140 at ERα-binding sites of genes regulated by either E2 or dioxin. Our findings highlight the importance of cross-regulation between AhR and ERα and a novel mechanism by which AhR controls, through modulating the recruitment of RIP140 to ERα-binding sites, the kinetics and magnitude of ERα-mediated gene stimulation.
Collapse
Affiliation(s)
- Zeynep Madak-Erdogan
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
22
|
Kajitani T, Tamamori-Adachi M, Okinaga H, Chikamori M, Iizuka M, Okazaki T. Negative regulation of parathyroid hormone-related protein expression by steroid hormones. Biochem Biophys Res Commun 2011; 407:472-8. [PMID: 21402056 DOI: 10.1016/j.bbrc.2011.03.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
Abstract
Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor α, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.
Collapse
Affiliation(s)
- Takashi Kajitani
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Rossi M, Colecchia D, Iavarone C, Strambi A, Piccioni F, Verrotti di Pianella A, Chiariello M. Extracellular signal-regulated kinase 8 (ERK8) controls estrogen-related receptor α (ERRα) cellular localization and inhibits its transcriptional activity. J Biol Chem 2011; 286:8507-8522. [PMID: 21190936 PMCID: PMC3048734 DOI: 10.1074/jbc.m110.179523] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/03/2010] [Indexed: 11/06/2022] Open
Abstract
ERK8 (MAPK15) is a large MAP kinase already implicated in the regulation of the functions of different nuclear receptors and in cellular proliferation and transformation. Here, we identify ERRα as a novel ERK8-interacting protein. As a consequence of such interaction, ERK8 induces CRM1-dependent translocation of ERRα to the cytoplasm and inhibits its transcriptional activity. Also, we identify in ERK8 two LXXLL motifs, typical of agonist-bound nuclear receptor corepressors, as necessary features for this MAP kinase to interact with ERRα and to regulate its cellular localization and transcriptional activity. Ultimately, we demonstrate that ERK8 is able to counteract, in immortalized human mammary cells, ERRα activation induced by the EGF receptor pathway, often deregulated in breast cancer. Altogether, these results reveal a novel function for ERK8 as a bona fide ERRα corepressor, involved in control of its cellular localization by nuclear exclusion, and suggest a key role for this MAP kinase in the regulation of the biological activities of this nuclear receptor.
Collapse
Affiliation(s)
- Matteo Rossi
- From the Istituto Toscano Tumori-Core Research Laboratory, Signal Transduction Unit, Siena,; the Università degli Studi di Siena, and
| | - David Colecchia
- From the Istituto Toscano Tumori-Core Research Laboratory, Signal Transduction Unit, Siena,; the Università degli Studi di Siena, and
| | - Carlo Iavarone
- Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Napoli
| | - Angela Strambi
- From the Istituto Toscano Tumori-Core Research Laboratory, Signal Transduction Unit, Siena
| | | | - Arturo Verrotti di Pianella
- the CEINGE-Biotecnologie Avanzate, Napoli,; the Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli, Napoli, and
| | - Mario Chiariello
- From the Istituto Toscano Tumori-Core Research Laboratory, Signal Transduction Unit, Siena,; Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Napoli,; the Istituto di Fisiologia Clinica, Sede di Siena, CNR, Siena, Italy.
| |
Collapse
|
24
|
Sugiura K, Su YQ, Li Q, Wigglesworth K, Matzuk MM, Eppig JJ. Estrogen promotes the development of mouse cumulus cells in coordination with oocyte-derived GDF9 and BMP15. Mol Endocrinol 2010; 24:2303-14. [PMID: 21047911 DOI: 10.1210/me.2010-0260] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The differentiation and function of cumulus cells depend upon oocyte-derived paracrine factors, but studies on the estrogen receptor knockout mice suggested that estrogen also participates in these processes. This study investigates the possible coordination of estrogen and oocytes in the development and function of cumulus cells using cumulus expansion and the expression of transcripts required for expansion as functional endpoints. Preantral granulosa cell-oocyte complexes developed in vitro with 17β-estradiol (E2) exhibited increased levels of cumulus expansion and Has2 transcripts, encoding hyaluronan synthase 2, compared with those developed without E2. Moreover, cumulus cell-oocyte complexes (COCs) isolated from antral follicles and maintained in culture without E2 exhibited reduced cumulus expansion and Has2 mRNA levels compared with freshly isolated COCs. Exogenous E2, provided during the maintenance culture, alleviated these deficiencies. However, when oocytes were removed from COCs, E2 supplementation did not maintain competence to undergo expansion; the presence in culture of either fully grown oocytes or recombinant growth differentiation factor 9 (GDF9) was required. Recombinant bone morphogenetic protein 15, but not fibroblast growth factor 8, augmented the GDF9 effect. Oocytes or GDF9 suppressed cumulus cell levels of Nrip1 transcripts encoding nuclear receptor-interacting protein 1, a potential inhibitor of estrogen receptor signals. Therefore, E2 and oocyte-derived paracrine factors GDF9 and bone morphogenetic protein 15 coordinate to promote the development of cumulus cells and maintain their competence to undergo expansion. Furthermore, suppression of Nrip1 expression in cumulus cells by oocyte may be one mechanism mediating cross talk between oocyte and E2 signals that promotes follicular development.
Collapse
Affiliation(s)
- Koji Sugiura
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | |
Collapse
|
25
|
Hsia EY, Goodson ML, Zou JX, Privalsky ML, Chen HW. Nuclear receptor coregulators as a new paradigm for therapeutic targeting. Adv Drug Deliv Rev 2010; 62:1227-37. [PMID: 20933027 DOI: 10.1016/j.addr.2010.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/24/2010] [Accepted: 09/30/2010] [Indexed: 02/06/2023]
Abstract
The complex function and regulation of nuclear receptors cannot be fully understood without a thorough knowledge of the receptor-associated coregulators that either enhance (coactivators) or inhibit (corepressors) transcription. While nuclear receptors themselves have garnered much attention as therapeutic targets, the clinical and etiological relevance of the coregulators to human diseases is increasingly recognized. Aberrant expression or function of coactivators and corepressors has been associated with malignant and metabolic disease development. Many of them are key epigenetic regulators and utilize enzymatic activities to modify chromatin through histone acetylation/deacetylation, histone methylation/demethylation or chromatin remodeling. In this review, we showcase and evaluate coregulators--such as SRCs and ANCCA--with the most promising therapeutic potential based on their physiological roles and involvement in various diseases that are revealed thus far. We also describe the structural features of the coactivator and corepressor functional domains and highlight areas that can be further explored for molecular targeting.
Collapse
|
26
|
Perissi V, Jepsen K, Glass CK, Rosenfeld MG. Deconstructing repression: evolving models of co-repressor action. Nat Rev Genet 2010; 11:109-23. [PMID: 20084085 DOI: 10.1038/nrg2736] [Citation(s) in RCA: 408] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A crucial aspect of development, homeostasis and prevention of disease is the strict maintenance of patterns of gene repression. Gene repression is largely achieved by the combinatorial action of various enzymatic complexes - known as co-repressor complexes - that are recruited to DNA by transcription factors and often act through enzymatic modification of histone protein tails. Our understanding of how co-repressors act has begun to change over recent years owing to the increased availability of genome-scale data. Here, we consider specific strategies that underlie repression events - for example, those mediated by the nuclear receptor co-repressor (NCoR, also known as NCOR1) and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT, also known as NCOR2) co-repressor complexes - and discuss emerging themes in gene repression.
Collapse
Affiliation(s)
- Valentina Perissi
- Department of Medicine, Howard Hughes Medical Institute, School of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
27
|
Park SW, Huang WH, Persaud SD, Wei LN. RIP140 in thyroid hormone-repression and chromatin remodeling of Crabp1 gene during adipocyte differentiation. Nucleic Acids Res 2010; 37:7085-94. [PMID: 19778926 PMCID: PMC2790899 DOI: 10.1093/nar/gkp780] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cellular retinoic acid binding protein 1 (Crabp1) gene is biphasically (proliferation versus differentiation) regulated by thyroid hormone (T3) in 3T3-L1 cells. This study examines T3-repression of Crabp1 gene during adipocyte differentiation. T3 repression of Crabp1 requires receptor interacting protein 140 (RIP140). During differentiation, the juxtaposed chromatin configuration of Crabp1 promoter with its upstream region is maintained, but the 6-nucleosomes spanning thyroid hormone response element to transcription initiation site slide bi-directionally, with the third nucleosome remaining at the same position throughout differentiation. On the basal promoter, RIP140 replaces coactivators GRIP1 and PCAF and forms a repressive complex with CtBP1, HDAC3 and G9a. Initially active chromatin marks on this promoter, histone modifications H3-Ac and H3K4-me3, are weakened whereas repressive chromatin marks, H3K9-me3 and H3K27-me3 modification and recruitment of G9a, HP1α, HP1γ and H1, are intensified. This is the first study to examine chromatin remodeling, during the phase of hormone repression, of a bi-directionally regulated hormone target gene, and provides evidence for a functional role of RIP140 in chromatin remodeling to repress hormone target gene expression.
Collapse
Affiliation(s)
- Sung Wook Park
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
28
|
Heim KC, Gamsby JJ, Hever MP, Freemantle SJ, Loros JJ, Dunlap JC, Spinella MJ. Retinoic acid mediates long-paced oscillations in retinoid receptor activity: evidence for a potential role for RIP140. PLoS One 2009; 4:e7639. [PMID: 19862326 PMCID: PMC2763268 DOI: 10.1371/journal.pone.0007639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 10/08/2009] [Indexed: 11/20/2022] Open
Abstract
Background Mechanisms that underlie oscillatory transcriptional activity of nuclear receptors (NRs) are incompletely understood. Evidence exists for rapid, cyclic recruitment of coregulatory complexes upon activation of nuclear receptors. RIP140 is a NR coregulator that represses the transactivation of agonist-bound nuclear receptors. Previously, we showed that RIP140 is inducible by all-trans retinoic acid (RA) and mediates limiting, negative-feedback regulation of retinoid signaling. Methodology and Findings Here we report that in the continued presence of RA, long-paced oscillations of retinoic acid receptor (RAR) activity occur with a period ranging from 24 to 35 hours. Endogenous expression of RIP140 and other RA-target genes also oscillate in the presence of RA. Cyclic retinoid receptor transactivation is ablated by constitutive overexpression of RIP140. Further, depletion of RIP140 disrupts cyclic expression of the RA target gene HOXA5. Evidence is provided that RIP140 may limit RAR signaling in a selective, non-redundant manner in contrast to the classic NR coregulators NCoR1 and SRC1 that are not RA-inducible, do not cycle, and may be partially redundant in limiting RAR activity. Finally, evidence is provided that RIP140 can repress and be induced by other nuclear receptors in a manner that suggests potential participation in other NR oscillations. Conclusions and Significance We provide evidence for novel, long-paced oscillatory retinoid receptor activity and hypothesize that this may be paced in part, by RIP140. Oscillatory NR activity may be involved in mediating hormone actions of physiological and pathological importance.
Collapse
Affiliation(s)
- Kelly C. Heim
- Department of Pharmacology and Toxicology, Hanover, New Hampshire, United States of America
| | - Joshua J. Gamsby
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Mary P. Hever
- Department of Pharmacology and Toxicology, Hanover, New Hampshire, United States of America
| | - Sarah J. Freemantle
- Department of Pharmacology and Toxicology, Hanover, New Hampshire, United States of America
| | - Jennifer J. Loros
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Jay C. Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Michael J. Spinella
- Department of Pharmacology and Toxicology, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
29
|
Stewart MD, Wong J. Nuclear receptor repression: regulatory mechanisms and physiological implications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:235-59. [PMID: 20374706 DOI: 10.1016/s1877-1173(09)87007-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability to associate with corepressors and to inhibit transcription is an intrinsic property of most members of the nuclear receptor (NR) superfamily. NRs induce transcriptional repression by recruiting multiprotein corepressor complexes. Nuclear receptor corepressor (NCoR) and silencing mediator of retinoic and thyroid receptors (SMRT) are the most well characterized corepressor complexes and mediate repression for virtually all NRs. In turn, corepressor complexes repress transcription because they either contain or associate with chromatin modifying enzymes. These include histone deacetylases, histone H3K4 demethylases, histone H3K9 or H3K27 methyltransferases, and ATP-dependent chromatin remodeling factors. Two types of NR-interacting corepressors exist. Ligand-independent corepressors, like NCoR/SMRT, bind to unliganded or antagonist-bound NRs, whereas ligand-dependent corepressors (LCoRs) associate with NRs in the presence of agonist. Therefore, LCoRs may serve to attenuate NR-mediated transcriptional activation. Somewhat unexpectedly, classical coactivators may also function as "corepressors" to mediate repression by agonist-bound NRs. In this chapter, we will discuss the various modes and mechanisms of repression by NRs as well as discuss the known physiological functions of NR-mediated repression.
Collapse
Affiliation(s)
- M David Stewart
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
30
|
Lin J, Ding L, Jin R, Zhang H, Cheng L, Qin X, Chai J, Ye Q. Four and a half LIM domains 1 (FHL1) and receptor interacting protein of 140kDa (RIP140) interact and cooperate in estrogen signaling. Int J Biochem Cell Biol 2009; 41:1613-8. [PMID: 19401155 DOI: 10.1016/j.biocel.2009.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 02/01/2009] [Accepted: 02/10/2009] [Indexed: 01/06/2023]
Abstract
Four and a half LIM domains 1 (FHL1) belongs to a family of LIM-only proteins that regulate gene transcription, cell proliferation, differentiation and apoptosis. However, the biological function of FHL1 remains largely unknown. We used a yeast two-hybrid system and identified receptor interacting protein of 140kDa (RIP140) as a novel FHL1-binding protein. RIP140 interacted with FHL1 both in vitro and in mammalian cells and estrogen enhanced this interaction. All domains of FHL1 are required to interact with RIP140. Overexpression of FHL1 enhanced RIP140 repression of estrogen signaling in breast cancer cells in a reporter assay, whereas reduction of endogenous FHL1 with FHL1 small interfering RNA abolished this effect. Furthermore, overexpression of the FHL1 deletion mutant that lacks the RIP140-binding sites had no effect on RIP140 repression of estrogen signaling. Consistent with the results of the reporter assays, FHL1 and RIP140 synergistically inhibited the transcription of the estrogen-responsive gene pS2. The results presented here suggested the cooperative transcriptional regulation of estrogen signaling by FHL1 and RIP140, and might provide a new regulation mechanism by which estrogen signaling-related diseases such as breast cancer develop.
Collapse
Affiliation(s)
- Jing Lin
- Beijing Institute of Biotechnology, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang D, Xia X, Liu Y, Oetting A, Walker RL, Zhu Y, Meltzer P, Cole PA, Shi YB, Yen PM. Negative regulation of TSHalpha target gene by thyroid hormone involves histone acetylation and corepressor complex dissociation. Mol Endocrinol 2009; 23:600-9. [PMID: 19196836 DOI: 10.1210/me.2008-0389] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Currently, little is known about histone modifications and molecular mechanisms of negatively regulated transcription. In pituitary cells, thyroid hormone (T(3)) decreased transcription, and surprisingly increased histone acetylation, of TSHalpha promoter. This increase was mediated directly by thyroid hormone receptor. Histone acetylation of H3K9 and H3K18 sites, two modifications usually associated with transcriptional activation, occur in negative regulation of TSHalpha promoter. T(3) also caused release of a corepressor complex composed of histone deacetylase 3 (HDAC3), transducin beta-like protein 1, and nuclear receptor coprepressor (NCoR)/ silencing mediator for retinoic and thyroid hormone receptor from TSHalpha promoter in chromatin immunoprecipitation assays. NCoR and HDAC3 overexpression selectively increased ligand-independent basal transcription. Two histone acetyltransferase inhibitors increased overall transcription but did not abrogate negative regulation or NCoR/HDAC3 complex release by T(3). Chromatin immunoprecipitation analyses of an endogenous positively regulated target gene showed increased histone acetylation and corepressor complex release with T(3) treatment. Finally, microarray analyses suggested there is a subset of negatively regulated genes with increased histone acetylation. These findings demonstrate the critical role of NCoR/HDAC3 complex in negative regulation of TSHalpha gene expression and show that similar complexes and overlapping epigenetic modifications can participate in both negative and positive transcriptional regulation.
Collapse
Affiliation(s)
- Dongqing Wang
- Endocrinology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Perissi V, Scafoglio C, Zhang J, Ohgi KA, Rose DW, Glass CK, Rosenfeld MG. TBL1 and TBLR1 phosphorylation on regulated gene promoters overcomes dual CtBP and NCoR/SMRT transcriptional repression checkpoints. Mol Cell 2008; 29:755-66. [PMID: 18374649 DOI: 10.1016/j.molcel.2008.01.020] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 11/23/2007] [Accepted: 01/16/2008] [Indexed: 11/29/2022]
Abstract
A key strategy to achieve regulated gene expression in higher eukaryotes is to prevent illegitimate signal-independent activation by imposing robust control on the dismissal of corepressors. Here, we report that many signaling pathways, including Notch, NF-kappaB, and nuclear receptor ligands, are subjected to a dual-repression "checkpoint" based on distinct corepressor complexes. Gene activation requires the release of both CtBP1/2- and NCoR/SMRT-dependent repression, through the coordinate action of two highly related exchange factors, the transducer beta-like proteins TBL1 and TBLR1, that license ubiquitylation and degradation of CtBP1/2 and NCoR/SMRT, respectively. Intriguingly, their function and differential specificity reside in only five specific Ser/Thr phosphorylation site differences, regulated by direct phosphorylation at the level of the promoter, as exemplified by the role of PKCdelta in TBLR1-dependent dismissal of NCoR. Thus, our data reveal a strategy of dual-factor repression checkpoints, in which dedicated exchange factors serve as sensors for signal-specific dismissal of distinct corepressors, with specificity imposed by upstream signaling pathways.
Collapse
Affiliation(s)
- Valentina Perissi
- Howard Hughes Medical Institute, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Rytinki MM, Palvimo JJ. SUMOylation modulates the transcription repressor function of RIP140. J Biol Chem 2008; 283:11586-95. [PMID: 18211901 DOI: 10.1074/jbc.m709359200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RIP140/NRIP1 (receptor-interacting protein 140) functions as a corepressor of nuclear receptors. It plays an important role in the transcriptional control of energy metabolism and female fertility. RIP140 contains four distinct repression domains (RD1-RD4), and the repressive activity of RIP140 involves complex mechanisms. The function of both RD1 and RD2 is linked to recruitment of histone deacetylases and C-terminal binding protein, respectively, but the mechanism of repression for RD3 and RD4 has remained elusive. Because covalent modification by small ubiquitin-like modifiers (SUMO-1, -2, and -3; SUMOylation) is often associated with transcriptional repression, we studied whether SUMOylation is involved in the repressive activity of RIP140. We show that two conserved lysines, Lys(756) and Lys(1154), located in RD3 and RD4, respectively, are subject to reversible SUMOylation, with SUMO-1 being more efficiently conjugated than SUMO-2. Interestingly, mutations of the RIP140 SUMOylation sites compromised the transcription repressor function of RIP140 and blunted its capacity to repress estrogen receptor alpha-dependent transcription. Conjugation of SUMO-1 also influenced the subnuclear distribution pattern of RIP140. In sum, our demonstration that the function of RIP140 repression domains 3 and 4 can be modulated by reversible SUMO modification thus adds a novel level to the regulation of RIP140 activity, which may have ramifications in the control of gene networks exerted by RIP140.
Collapse
Affiliation(s)
- Miia M Rytinki
- Institute of Biomedicine/Medical Biochemistry, University of Kuopio, FI-70211 Kuopio, Finland
| | | |
Collapse
|
34
|
Heim KC, White KA, Deng D, Tomlinson CR, Moore JH, Freemantle SJ, Spinella MJ. Selective repression of retinoic acid target genes by RIP140 during induced tumor cell differentiation of pluripotent human embryonal carcinoma cells. Mol Cancer 2007; 6:57. [PMID: 17880687 PMCID: PMC2034384 DOI: 10.1186/1476-4598-6-57] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 09/19/2007] [Indexed: 11/10/2022] Open
Abstract
Background The use of retinoids as anti-cancer agents has been limited due to resistance and low efficacy. The dynamics of nuclear receptor coregulation are incompletely understood. Cell-and context-specific activities of nuclear receptors may be in part due to distinct coregulator complexes recruited to distinct subsets of target genes. RIP140 (also called NRIP1) is a ligand-dependent corepressor that is inducible with retinoic acid (RA). We had previously shown that RIP140 limits RA induced tumor cell differentiation of embryonal carcinoma; the pluriopotent stem cells of testicular germ cell tumors. This implies that RIP140 represses key genes required for RA-mediated tumor cell differentiation. Identification of these genes would be of considerable interest. Results To begin to address this issue, microarray technology was employed to elucidate in a de novo fashion the global role of RIP140 in RA target gene regulation of embryonal carcinoma. Subclasses of genes were affected by RIP140 in distinct manners. Interestingly, approximately half of the RA-dependent genes were unaffected by RIP140. Hence, RIP140 appears to discriminate between different classes of RA target genes. In general, RIP140-dependent gene expression was consistent with RIP140 functioning to limit RA signaling and tumor cell differentiation. Few if any genes were regulated in a manner to support a role for RIP140 in "active repression". We also demonstrated that RIP140 silencing sensitizes embryonal carcinoma cells to low doses of RA. Conclusion Together the data demonstrates that RIP140 has profound effects on RA-mediated gene expression in this cancer stem cell model. The RIP140-dependent RA target genes identified here may be particularly important in mediating RA-induced tumor cell differentiation and the findings suggest that RIP140 may be an attractive target to sensitize tumor cells to retinoid-based differentiation therapy. We discuss these data in the context of proposed models of RIP140-mediated repression.
Collapse
Affiliation(s)
- Kelly C Heim
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, USA
| | - Kristina A White
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, USA
| | - Dexin Deng
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, USA
| | - Craig R Tomlinson
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, USA
| | - Jason H Moore
- Department of Genetics, Dartmouth Medical School, Hanover, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, USA
| | - Sarah J Freemantle
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, USA
| | - Michael J Spinella
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, USA
| |
Collapse
|
35
|
Shoji Y, Osman W, Zilliacus J. Polyamine-modulated factor 1 represses glucocorticoid receptor activity. Biochem Biophys Res Commun 2007; 361:176-81. [PMID: 17637456 DOI: 10.1016/j.bbrc.2007.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 07/05/2007] [Accepted: 07/05/2007] [Indexed: 01/14/2023]
Abstract
Polyamine-modulated factor 1 (PMF-1) has been reported to interact with NF-E2 related factor 2 (Nrf-2) and activate the polyamine-induced transcription of spermidine/spermine N(1)-acetyltransferase (SSAT) gene. Polyamines are important regulators of cell growth and cell death and have been implicated in glucocorticoid-induced apoptosis. In the present study, we have identified and characterized new functional binding partners for PMF-1. Our results demonstrate that PMF-1 binds to the glucocorticoid receptor (GR). PMF-1 also represses glucocorticoid-induced transcription. Furthermore, we show that PMF-1 has an intrinsic repression activity, which could contribute to the repressive effect on GR. PMF-1 can also interact with the GR corepressor, receptor-interacting protein 140 (RIP140), but does not further enhance the repressive effect of RIP140. Our results suggest that PMF-1 has a broader function in regulation of genes and can contribute to glucocorticoid signaling.
Collapse
Affiliation(s)
- Yutaka Shoji
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 86 Huddinge, Sweden
| | | | | |
Collapse
|
36
|
Gurevich I, Flores AM, Aneskievich BJ. Corepressors of agonist-bound nuclear receptors. Toxicol Appl Pharmacol 2007; 223:288-98. [PMID: 17628626 PMCID: PMC2148130 DOI: 10.1016/j.taap.2007.05.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/18/2007] [Accepted: 05/23/2007] [Indexed: 12/24/2022]
Abstract
Nuclear receptors (NRs) rely on coregulator proteins to modulate transcription of target genes. NR coregulators can be broadly subdivided into coactivators which potentiate transcription and corepressors which silence gene expression. The prevailing view of coregulator action holds that in the absence of agonist the receptor interacts with a corepressor via the corepressor nuclear receptor (CoRNR, "corner") box motifs within the corepressor. Upon agonist binding, a conformational change in the receptor causes the shedding of corepressor and the binding of a coactivator which interacts with the receptor via NR boxes within the coregulator. This view was challenged with the discovery of RIP140 which acts as a NR corepressor in the presence of agonist and utilizes NR boxes. Since then a number of other corepressors of agonist-bound NRs have been discovered. Among them are LCoR, PRAME, REA, MTA1, NSD1, and COPR1 Although they exhibit a great diversity of structure, mechanism of repression and pathophysiological function, these corepressors frequently have one or more NR boxes and often recruit histone deacetylases to exert their repressive effects. This review highlights these more recently discovered corepressors and addresses their potential functions in transcription regulation, disease pharmacologic responses and xenobiotic metabolism.
Collapse
Affiliation(s)
- Igor Gurevich
- Graduate Program in Pharmacology/Toxicology, Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
37
|
Rangwala SM, Li X, Lindsley L, Wang X, Shaughnessy S, Daniels TG, Szustakowski J, Nirmala NR, Wu Z, Stevenson SC. Estrogen-related receptor alpha is essential for the expression of antioxidant protection genes and mitochondrial function. Biochem Biophys Res Commun 2007; 357:231-6. [PMID: 17418099 DOI: 10.1016/j.bbrc.2007.03.126] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 03/21/2007] [Indexed: 01/07/2023]
Abstract
Estrogen-related receptor alpha (ERRalpha) is an important mediator of mitochondrial biogenesis and function. To investigate the transcriptional network controlling these phenomena, we investigated mitochondrial gene expression in embryonic fibroblasts isolated from ERRalpha null mice. Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) stimulated mitochondrial gene expression program in control cells, but not in the ERRalpha null cells. Interestingly, the induction of levels of mitochondrial oxidative stress protection genes in response to increased PGC-1alpha levels was dependent on ERRalpha. Furthermore, we found that the PGC-1alpha-mediated induction of estrogen-related receptor gamma and nuclear respiratory factor 2 (NRF-2), was dependent on the presence of ERRalpha. Basal levels of NRF-2 were decreased in the absence of ERRalpha. The absence of ERRalpha resulted in a decrease in citrate synthase enzyme activity in response to PGC-1alpha overexpression. Our results indicate an essential role for ERRalpha as a key regulator of oxidative metabolism.
Collapse
Affiliation(s)
- Shamina M Rangwala
- Diabetes and Metabolism Disease Area, Novartis Institutes of BioMedical Research Institutes, 100 Technology Square, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Karamouzis MV, Konstantinopoulos PA, Badra FA, Papavassiliou AG. SUMO and estrogen receptors in breast cancer. Breast Cancer Res Treat 2007; 107:195-210. [PMID: 17377839 DOI: 10.1007/s10549-007-9552-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Small ubiquitin-like modifier (SUMO) is a family of proteins structurally similar to ubiquitin that have been found to be covalently attached to certain lysine residues of specific target proteins. By contrast to ubiquitination, however, SUMO proteins do not promote protein degradation but, instead, modulate important functional properties, depending on the protein substrate. These properties include--albeit not limited to--subcellular localization, protein dimerization, DNA binding and/or transactivation of transcription factors, among them estrogen receptors. Moreover, it has been suggested that SUMO proteins might affect transcriptional co-factor complexes of the estrogen receptor signalling cascade. Tissue and/or state specificity seems to be one of their intriguing features. In this regard, elucidation of their contribution to estrogen receptor-mediated transcriptional activity during breast carcinogenesis will offer new insights into the molecular mechanisms governing sensitivity/resistance in currently applied endocrine treatment and/or chemoprevention, and provide novel routes to breast carcinoma therapeutics.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, University of Athens, Athens, Greece.
| | | | | | | |
Collapse
|