1
|
Song L, Zhang S. Anti-Aging Activity and Modes of Action of Compounds from Natural Food Sources. Biomolecules 2023; 13:1600. [PMID: 38002283 PMCID: PMC10669485 DOI: 10.3390/biom13111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Aging is a natural and inescapable phenomenon characterized by a progressive deterioration of physiological functions, leading to increased vulnerability to chronic diseases and death. With economic and medical development, the elderly population is gradually increasing, which poses a great burden to society, the economy and the medical field. Thus, healthy aging has now become a common aspiration among people over the world. Accumulating evidence indicates that substances that can mediate the deteriorated physiological processes are highly likely to have the potential to prolong lifespan and improve aging-associated diseases. Foods from natural sources are full of bioactive compounds, such as polysaccharides, polyphenols, carotenoids, sterols, terpenoids and vitamins. These bioactive compounds and their derivatives have been shown to be able to delay aging and/or improve aging-associated diseases, thereby prolonging lifespan, via regulation of various physiological processes. Here, we summarize the current understanding of the anti-aging activities of the compounds, polysaccharides, polyphenols, carotenoids, sterols, terpenoids and vitamins from natural food sources, and their modes of action in delaying aging and improving aging-associated diseases. This will certainly provide a reference for further research on the anti-aging effects of bioactive compounds from natural food sources.
Collapse
Affiliation(s)
- Lili Song
- Key Laboratory of Biomedical Materials of Zhangjiakou, College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China;
| | - Shicui Zhang
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China
- Xinjiang Key Laboratory of Biological Resources and Ecology of Pamirs Plateau, Kashi 844000, China
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
2
|
Cirlini M, Righetti L, Del Vecchio L, Tonni E, Lucini L, Dall’Asta C, Galaverna G. Untargeted Metabolomics of Meat Digests: Its Potential to Differentiate Pork Depending on the Feeding Regimen. Molecules 2023; 28:7306. [PMID: 37959726 PMCID: PMC10650005 DOI: 10.3390/molecules28217306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Meat quality seems to be influenced by the dietary regimes applied for animal feeding. Several research studies are aimed at improving meat quality, preserving it from oxidative processes, by the incorporation of antioxidant components in animal feeding. The main part of these studies evaluates meat quality, determining different parameters directly on meat, while few research studies take into account what may happen after meat ingestion. To address this topic, in this study, an in vitro gastrointestinal digestion protocol was applied to two different pork muscles, longissimus dorsi and rectus femoris, obtained from pigs fed with different diets. In detail, two groups of 12 animals each were subjected to either a conventional diet or a supplemented diet with extruded linseeds as a source of omega-3 fatty acids and plant extracts as a source of phenolics antioxidant compounds. The digested meat was subjected to an untargeted metabolomics approach. Several metabolites deriving from lipid and protein digestion were detected. Our untargeted approach allowed for discriminating the two different meat cuts, based on their metabolomic profiles. Nonetheless, multivariate statistics allowed clearly discriminating between samples obtained from different animal diets. In particular, the inclusion of linseeds and polyphenols in the animal diet led to a decrease in metabolites generated from oxidative degradation reactions, in comparison to the conventional diet group. In the latter, fatty acyls, fatty aldehydes and oxylipins, as well as cholesterol and vitamin D3 precursors and derivatives, could be highlighted.
Collapse
Affiliation(s)
- Martina Cirlini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.R.); (L.D.V.); (E.T.); (C.D.); (G.G.)
| | - Laura Righetti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.R.); (L.D.V.); (E.T.); (C.D.); (G.G.)
- Laboratory of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
- Wageningen Food Safety Research, Wageningen University & Research, 6700 AE Wageningen, The Netherlands
| | - Lorenzo Del Vecchio
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.R.); (L.D.V.); (E.T.); (C.D.); (G.G.)
| | - Elena Tonni
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.R.); (L.D.V.); (E.T.); (C.D.); (G.G.)
| | - Luigi Lucini
- Department for Sustainable Food Process, University Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Chiara Dall’Asta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.R.); (L.D.V.); (E.T.); (C.D.); (G.G.)
| | - Gianni Galaverna
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.R.); (L.D.V.); (E.T.); (C.D.); (G.G.)
- Interdepartmental Center for Safety, Technologies and Innovation in Agrifood (SITEIA.PARMA), University of Parma, Parco Area delle Scienze, Padiglione 33, 43124 Parma, Italy
| |
Collapse
|
3
|
Wu D, Nealon G, Liu Y, Kim TK, Slominski AT, Tuckey RC. Metabolism of Lumisterol 2 by CYP27A1. J Steroid Biochem Mol Biol 2023; 233:106370. [PMID: 37499840 DOI: 10.1016/j.jsbmb.2023.106370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Lumisterol2 (L2) is a photoproduct of UVB action on the fungal membrane sterol, ergosterol. Like vitamin D2, it is present in edible mushrooms, especially after UV irradiation. Lumisterol3 is similarly produced in human skin from 7-dehydrocholesterol by UVB and can be converted to hydroxy-metabolites by CYP27A1 and CYP11A1. These products are biologically active on human cells with actions that include photoprotection and inhibition of proliferation. The aim of this study was to test the ability of CYP11A1 and CYP27A1 to metabolise L2. Purified CYP27A1 was found to efficiently metabolise L2 to three major products and several minor products, whilst CYP11A1 did not act appreciably on L2. The three major products of CYP27A1 action on L2 were identified by mass spectrometry and NMR as 24-hydroxyL2, 27-hydroxyL2 and 28-hydroxyL2. Minor products included two dihydroxy L2 species, one which was identified as 24,27(OH)2L2, and another metabolite with one oxo and one hydroxyl group added. A comparison on the kinetics of the metabolism of L2 by CYP27A1 with that of the structurally similar compounds, L3 and ergosterol, was carried out with substrates incorporated into phospholipid vesicles. CYP27A1 displayed a 12-fold lower Km with L2 as substrate compared to L3 and a 5-fold lower turnover number (kcat), resulting in a 2.2 fold higher catalytic efficiency (kcat/Km) for L2 metabolism. L2 was a much better substrate for CYP27A1 than its precursor, ergosterol, with a catalytic efficiency 18-fold higher. The major CYP27A1-derived hydroxy-L2 products, 24-hydroxyL2, 27-hydroxyL2 and 28-hydroxyL2, inhibited the proliferation of melanoma and epidermoid cancer cell lines. In conclusion, this study shows that L2 is not metabolized appreciably by CYP11A1, but it is a good substrate for CYP27A1 which hydroxylates its side chain to produce 3 major products that display anti-proliferative activity on skin-cancer cell lines.
Collapse
Affiliation(s)
- Dongxian Wu
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Gareth Nealon
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia
| | - Yuchen Liu
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA; VA Medical Center, Birmingham, AL, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
4
|
Norlin M, Wikvall K. Enzymatic activation in vitamin D signaling - Past, present and future. Arch Biochem Biophys 2023; 742:109639. [PMID: 37196753 DOI: 10.1016/j.abb.2023.109639] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Vitamin D signaling is important in regulating calcium homeostasis essential for bone health but also displays other functions in cells of several tissues. Disturbed vitamin D signaling is linked to a large number of diseases. The multiple cytochrome P450 (CYP) enzymes catalyzing the different hydroxylations in bioactivation of vitamin D3 are crucial for vitamin D signaling and function. This review is focused on the progress achieved in identification of the bioactivating enzymes and their genes in production of 1α,25-dihydroxyvitamin D3 and other active metabolites. Results obtained on species- and tissue-specific expression, catalytic reactions, substrate specificity, enzyme kinetics, and consequences of gene mutations are evaluated. Matters of incomplete understanding regarding the physiological roles of some vitamin D hydroxylases are critically discussed and the authors will give their view of the importance of each enzyme for vitamin D signaling. Roles of different vitamin D receptors and an alternative bioactivation pathway, leading to 20-hydroxylated vitamin D3 metabolites, are also discussed. Considerable progress has been achieved in knowledge of the vitamin D3 bioactivating enzymes. Nevertheless, several intriguing areas deserve further attention to understand the pleiotropic and diverse activities elicited by vitamin D signaling and the mechanisms of enzymatic activation necessary for vitamin D-induced responses.
Collapse
Affiliation(s)
- Maria Norlin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | - Kjell Wikvall
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Tuckey RC, Cheng CYS, Li L, Jiang Y. Analysis of the ability of vitamin D3-metabolizing cytochromes P450 to act on vitamin D3 sulfate and 25-hydroxyvitamin D3 3-sulfate. J Steroid Biochem Mol Biol 2023; 227:106229. [PMID: 36455719 DOI: 10.1016/j.jsbmb.2022.106229] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/08/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
25-Hydroxyvitamin D3 (25(OH)D3) is present in the human circulation esterified to sulfate with some studies showing that 25(OH)D3 3-sulfate levels are almost as high as unconjugated 25(OH)D3. Vitamin D3 is also present in human serum in the sulfated form as are other metabolites. Our aim was to determine whether sulfated forms of vitamin D3 and vitamin D3 metabolites can be acted on by vitamin D-metabolizing cytochromes P450 (CYPs), one of which (CYP11A1) is known to act on cholesterol sulfate. We used purified, bacterially expressed CYPs to test if they could act on the sulfated forms of their natural substrates. Purified CYP27A1 converted vitamin D3 sulfate to 25(OH)D3 3-sulfate with a catalytic efficiency (kcat/Km) approximately half that for the conversion of vitamin D3 to 25(OH)D3. Similarly, the rate of metabolism of vitamin D3 sulfate was half that of vitamin D3 for CYP27A1 in rat liver mitochondria. CYP2R1 which is also a vitamin D 25-hydroxylase did not act on vitamin D3 sulfate. CYP11A1 was able to convert vitamin D3 sulfate to 20(OH)D3 3-sulfate but at a considerably lower rate than for conversion of vitamin D3 to 20(OH)D3. 25(OH)D3 3-sulfate was not metabolized by the activating enzyme, CYP27B1, nor by the inactivating enzyme, CYP24A1. Thus, we conclude that 25(OH)D3 3-sulfate in the circulation may act as a pool of metabolically inactive vitamin D3 to be released by hydrolysis at times of need whereas vitamin D3 sulfate can be metabolized in a similar manner to free vitamin D3 by CYP27A1 and to a lesser degree by CYP11A1.
Collapse
Affiliation(s)
- Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Chloe Y S Cheng
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Lei Li
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Yuhan Jiang
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
6
|
Slominski AT, Brożyna AA, Kim TK, Elsayed MM, Janjetovic Z, Qayyum S, Slominski RM, Oak AS, Li C, Podgorska E, Li W, Jetten AM, Tuckey RC, Tang EK, Elmets C, Athar M. CYP11A1‑derived vitamin D hydroxyderivatives as candidates for therapy of basal and squamous cell carcinomas. Int J Oncol 2022; 61:96. [PMID: 35775377 PMCID: PMC9262157 DOI: 10.3892/ijo.2022.5386] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Hydroxyderivatives of vitamin D3, including classical 1,25(OH)2D3 and novel CYP11A1‑derived hydroxyderivatives, exert their biological activity by acting as agonists on the vitamin D receptor (VDR) and inverse agonists on retinoid‑related orphan receptors (ROR)α and γ. The anticancer activities of CYP11A1‑derived hydroxyderivatives were tested using cell biology, tumor biology and molecular biology methods in human A431 and SCC13 squamous (SCC)‑ and murine ASZ001 basal (BCC)‑cell carcinomas, in comparison with classical 1,25(OH)2D3. Vitamin D3‑hydroxyderivatives with or without a C1α(OH) inhibited cell proliferation in a dose‑dependent manner. While all the compounds tested had similar effects on spheroid formation by A431 and SCC13 cells, those with a C1α(OH) group were more potent in inhibiting colony and spheroid formation in the BCC line. Potent anti‑tumorigenic activity against the BCC line was exerted by 1,25(OH)2D3, 1,20(OH)2D3, 1,20,23(OH)3D3, 1,20,24(OH)3D3, 1,20,25(OH)3D3 and 1,20,26(OH)3D3, with smaller effects seen for 25(OH)D3, 20(OH)D3 and 20,23(OH)2D3. 1,25(OH)2D3, 1,20(OH)2D3 and 20(OH)D3 inhibited the expression of GLI1 and β‑catenin in ASZ001 cells. In A431 cells, these compounds also decreased the expression of GLI1 and stimulated involucrin expression. VDR, RORγ, RORα and CYP27B1 were detected in A431, SCC13 and ASZ001 lines, however, with different expression patterns. Immunohistochemistry performed on human skin with SCC and BCC showed nuclear expression of all three of these receptors, as well as megalin (transmembrane receptor for vitamin D‑binding protein), the level of which was dependent on the type of cancer and antigen tested in comparison with normal epidermis. Classical and CYP11A1‑derived vitamin D3‑derivatives exhibited anticancer‑activities on skin cancer cell lines and inhibited GLI1 and β‑catenin signaling in a manner that was dependent on the position of hydroxyl groups. The observed expression of VDR, RORγ, RORα and megalin in human SCC and BCC suggested that they might provide targets for endogenously produced or exogenously applied vitamin D hydroxyderivatives and provide excellent candidates for anti‑cancer therapy.
Collapse
Affiliation(s)
- Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
- VA Medical Center, Birmingham, AL 35233, USA
| | - Anna A. Brożyna
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń 87-100, Poland
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Mahmoud M. Elsayed
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Radomir M. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Allen S.W. Oak
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Ewa Podgorska
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Anton M. Jetten
- Cell Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Robert C. Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Edith K.Y. Tang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Craig Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| |
Collapse
|
7
|
Slominski AT, Kim TK, Slominski RM, Song Y, Janjetovic Z, Podgorska E, Reddy SB, Song Y, Raman C, Tang EKY, Fabisiak A, Brzeminski P, Sicinski RR, Atigadda V, Jetten AM, Holick MF, Tuckey RC. Metabolic activation of tachysterol 3 to biologically active hydroxyderivatives that act on VDR, AhR, LXRs, and PPARγ receptors. FASEB J 2022; 36:e22451. [PMID: 35838947 PMCID: PMC9345108 DOI: 10.1096/fj.202200578r] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
CYP11A1 and CYP27A1 hydroxylate tachysterol3 , a photoproduct of previtamin D3 , producing 20S-hydroxytachysterol3 [20S(OH)T3 ] and 25(OH)T3 , respectively. Both metabolites were detected in the human epidermis and serum. Tachysterol3 was also detected in human serum at a concentration of 7.3 ± 2.5 ng/ml. 20S(OH)T3 and 25(OH)T3 inhibited the proliferation of epidermal keratinocytes and dermal fibroblasts and stimulated the expression of differentiation and anti-oxidative genes in keratinocytes in a similar manner to 1,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ]. They acted on the vitamin D receptor (VDR) as demonstrated by image flow cytometry and the translocation of VDR coupled GFP from the cytoplasm to the nucleus of melanoma cells, as well as by the stimulation of CYP24A1 expression. Functional studies using a human aryl hydrocarbon receptor (AhR) reporter assay system revealed marked activation of AhR by 20S(OH)T3 , a smaller effect by 25(OH)T3 , and a minimal effect for their precursor, tachysterol3 . Tachysterol3 hydroxyderivatives showed high-affinity binding to the ligan-binding domain (LBD) of the liver X receptor (LXR) α and β, and the peroxisome proliferator-activated receptor γ (PPARγ) in LanthaScreen TR-FRET coactivator assays. Molecular docking using crystal structures of the LBDs of VDR, AhR, LXRs, and PPARγ revealed high docking scores for 20S(OH)T3 and 25(OH)T3 , comparable to their natural ligands. The scores for the non-genomic-binding site of the VDR were very low indicating a lack of interaction with tachysterol3 ligands. Our identification of endogenous production of 20S(OH)T3 and 25(OH)T3 that are biologically active and interact with VDR, AhR, LXRs, and PPARγ, provides a new understanding of the biological function of tachysterol3 .
Collapse
Affiliation(s)
- Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Radomir M. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yuwei Song
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ewa Podgorska
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sivani B. Reddy
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Edith K. Y. Tang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Adrian Fabisiak
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| | | | | | - Venkatram Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anton M. Jetten
- Cell Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Michael F. Holick
- Department of Medicine, Boston University, Boston, Massachusetts, USA
| | - Robert C. Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
8
|
CYP27A1 inhibits proliferation and migration of clear cell renal cell carcinoma via activation of LXRs/ABCA1. Exp Cell Res 2022; 419:113279. [PMID: 35810773 DOI: 10.1016/j.yexcr.2022.113279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022]
Abstract
Cholesterol homeostasis plays an important role in the maintenance of normal body functions. CYP27A1 is a key enzyme known to regulate cholesterol homeostasis, which catalyzes the conversion of cholesterol to 27-HC and has been implicated in the occurrence and metastasis of various cancer types. The present study aimed to explore the regulatory role of CYP27A1 in the development of clear cell renal cell carcinoma (ccRCC). In particular, the effect of CYP27A1 on the proliferation and migration of ccRCC cells was investigated. The construction of a stable 786-O cell line overexpressing CYP27A1/pLVX was mediated by lentiviral infection. The proliferative capacity was assessed using MTT and colony formation. Wound healing assay was used to measure cell migration. Production of intracellular cholesterol and 27-HC was detected by enzyme-linked immunosorbent assay. The LXRs/ABCA1 pathway of cholesterol metabolism regulation was studied by RT-qPCR and Western blotting analysis after cells were treated with stimulation agents of 27-HC or T0901317 and inhibition agents of siRNA or GSK2033. The results revealed that overexpression of CYP27A1 could increase the intracellular production of 27-HC and inhibit the proliferation and migration of 786-O cells. And the treatment of 786-O cells with 27-HC induced a similar effect. CYP27A1/27HC mediated activation of the liver X receptors (LXRs) could up-regulate the expression of ATP-binding cassette transporter A1 (ABCA1), further resulting in the reduction of intracellular cholesterol contents. All of these findings indicated a regulatory role of CYP27A1 in the proliferation and migration of ccRCC, via activating LXRs/ABCA1 to regulate cholesterol homeostasis.
Collapse
|
9
|
Varghese JE, Balasubramanian B, Velayuthaprabhu S, Thirunavukkarasu V, Rengarajan RL, Murugesh E, Manikandan P, Arun M, Anand AV. Therapeutic effects of vitamin D and cancer: An overview. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Jisha Elsa Varghese
- Department of Human Genetics and Molecular Biology Bharathiar University Tamil Nadu India
| | | | | | | | | | - Easwaran Murugesh
- Nutritional Improvement of Crops International Centre for Genetic Engineering and Biotechnology New Delhi India
| | | | - Meyyazhagan Arun
- Department of Life Sciences CHRIST (Deemed to be University) Karnataka India
| | - Arumugam Vijaya Anand
- Department of Human Genetics and Molecular Biology Bharathiar University Tamil Nadu India
| |
Collapse
|
10
|
Slominski AT, Kim TK, Qayyum S, Song Y, Janjetovic Z, Oak ASW, Slominski RM, Raman C, Stefan J, Mier-Aguilar CA, Atigadda V, Crossman DK, Golub A, Bilokin Y, Tang EKY, Chen JY, Tuckey RC, Jetten AM, Song Y. Vitamin D and lumisterol derivatives can act on liver X receptors (LXRs). Sci Rep 2021; 11:8002. [PMID: 33850196 PMCID: PMC8044163 DOI: 10.1038/s41598-021-87061-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The interactions of derivatives of lumisterol (L3) and vitamin D3 (D3) with liver X receptors (LXRs) were investigated. Molecular docking using crystal structures of the ligand binding domains (LBDs) of LXRα and β revealed high docking scores for L3 and D3 hydroxymetabolites, similar to those of the natural ligands, predicting good binding to the receptor. RNA sequencing of murine dermal fibroblasts stimulated with D3-hydroxyderivatives revealed LXR as the second nuclear receptor pathway for several D3-hydroxyderivatives, including 1,25(OH)2D3. This was validated by their induction of genes downstream of LXR. L3 and D3-derivatives activated an LXR-response element (LXRE)-driven reporter in CHO cells and human keratinocytes, and by enhanced expression of LXR target genes. L3 and D3 derivatives showed high affinity binding to the LBD of the LXRα and β in LanthaScreen TR-FRET LXRα and β coactivator assays. The majority of metabolites functioned as LXRα/β agonists; however, 1,20,25(OH)3D3, 1,25(OH)2D3, 1,20(OH)2D3 and 25(OH)D3 acted as inverse agonists of LXRα, but as agonists of LXRβ. Molecular dynamics simulations for the selected compounds, including 1,25(OH)2D3, 1,20(OH)2D3, 25(OH)D3, 20(OH)D3, 20(OH)L3 and 20,22(OH)2L3, showed different but overlapping interactions with LXRs. Identification of D3 and L3 derivatives as ligands for LXRs suggests a new mechanism of action for these compounds.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA.
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35249, USA.
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, 35249, USA.
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Yuwei Song
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Allen S W Oak
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Radomir M Slominski
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Joanna Stefan
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
- Department of Oncology, Nicolaus Copernicus University Medical College, Romanowskiej str. 2, 85-796, Bydgoszcz, Poland
| | - Carlos A Mier-Aguilar
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Venkatram Atigadda
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | - David K Crossman
- Department of Genetics, Genomics Core Facility, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | | | | | - Edith K Y Tang
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jake Y Chen
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Anton M Jetten
- Cell Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, Shelby 803, Birmingham, AL, 35249, USA.
| |
Collapse
|
11
|
Cho H, Shen Q, Zhang LH, Okumura M, Kawakami A, Ambrose J, Sigoillot F, Miller HR, Gleim S, Cobos-Correa A, Wang Y, Piechon P, Roma G, Eggimann F, Moore C, Aspesi P, Mapa FA, Burks H, Ross NT, Krastel P, Hild M, Maimone TJ, Fisher DE, Nomura DK, Tallarico JA, Canham SM, Jenkins JL, Forrester WC. CYP27A1-dependent anti-melanoma activity of limonoid natural products targets mitochondrial metabolism. Cell Chem Biol 2021; 28:1407-1419.e6. [PMID: 33794192 DOI: 10.1016/j.chembiol.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/24/2021] [Accepted: 03/09/2021] [Indexed: 01/18/2023]
Abstract
Three limonoid natural products with selective anti-proliferative activity against BRAF(V600E) and NRAS(Q61K)-mutation-dependent melanoma cell lines were identified. Differential transcriptome analysis revealed dependency of compound activity on expression of the mitochondrial cytochrome P450 oxidase CYP27A1, a transcriptional target of melanogenesis-associated transcription factor (MITF). We determined that CYP27A1 activity is necessary for the generation of a reactive metabolite that proceeds to inhibit cellular proliferation. A genome-wide small interfering RNA screen in combination with chemical proteomics experiments revealed gene-drug functional epistasis, suggesting that these compounds target mitochondrial biogenesis and inhibit tumor bioenergetics through a covalent mechanism. Our work suggests a strategy for melanoma-specific targeting by exploiting the expression of MITF target gene CYP27A1 and inhibiting mitochondrial oxidative phosphorylation in BRAF mutant melanomas.
Collapse
Affiliation(s)
- Hyelim Cho
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Qiong Shen
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lydia H Zhang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA
| | - Mikiko Okumura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA
| | - Akinori Kawakami
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jessi Ambrose
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Frederic Sigoillot
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Howard R Miller
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Scott Gleim
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Amanda Cobos-Correa
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, 4056 Basel, Switzerland
| | - Ying Wang
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, 4056 Basel, Switzerland
| | - Philippe Piechon
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, 4056 Basel, Switzerland
| | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, 4056 Basel, Switzerland
| | - Fabian Eggimann
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, 4056 Basel, Switzerland
| | - Charles Moore
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, 4056 Basel, Switzerland
| | - Peter Aspesi
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Felipa A Mapa
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Heather Burks
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Nathan T Ross
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Philipp Krastel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, 4056 Basel, Switzerland
| | - Marc Hild
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Thomas J Maimone
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA; Innovative Genomics Institute, Berkeley, CA 94720, USA
| | - John A Tallarico
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA
| | - Stephen M Canham
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA
| | - Jeremy L Jenkins
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - William C Forrester
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Zhang P, Zhao J, Peng XM, Qian YY, Zhao XM, Zhou WH, Wang JS, Wu BB, Wang HJ. Cholestasis as a dominating symptom of patients with CYP27A1 mutations: An analysis of 17 Chinese infants. J Clin Lipidol 2021; 15:116-123. [PMID: 33414089 DOI: 10.1016/j.jacl.2020.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND CYP27A1 is the disease-causing gene of cerebrotendinous xanthomatosis (CTX). As a treatable lipid storage disease, early treatment can improve the prognosis. However, CTX patients reported in the literature are mostly adult patients; the phenotype spectrum of CTX in the infantile population remains elusive. OBJECTIVE We aimed to investigate the phenotype spectrum of infants who carried pathogenic or likely pathogenic variants in the CYP27A1 gene and were suspected of having CTX. METHODS From June 2014 to May 2020, infants with pathogenic or likely pathogenic variants in CYP27A1 gene were enrolled, who underwent next-generation sequencing or Sanger sequencing in Children's Hospital of Fudan University. Patient characteristics, clinical treatments and outcomes were extracted from electronic medical records. RESULTS A total of 17 patients with an average onset age of 8 (1-42) days were found. The average diagnosis age was ten months. Cholestasis was the dominant symptom of these infants. Thirteen variants were detected, of which c.379C > T was a hotspot variant (26.5% alleles, 9/34). Cholestatic CTX is usually underestimated, but it could be severe or even fatal in infancy. For outcomes, 5 suffered from liver failure (36%, 5/14), 1 still showed cholestasis (7%, 1/14), 7 were asymptomatic (50%, 7/14), and 1 presented seizure and developmental delay in later childhood (7%, 1/14). CONCLUSION Based on this infantile cohort, we concluded that it is necessary to consider the possibility of CTX caused by CYP27A1 gene variants for infants with cholestasis.
Collapse
Affiliation(s)
- Ping Zhang
- Center for Molecular Medicine and Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Jing Zhao
- Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Xiao-Min Peng
- Center for Molecular Medicine and Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Yan-Yan Qian
- Center for Molecular Medicine and Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Xue-Mei Zhao
- Center for Molecular Medicine and Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Wen-Hao Zhou
- Center for Molecular Medicine and Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China; Department of Neonates, Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai, China
| | - Jian-She Wang
- Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Bing-Bing Wu
- Center for Molecular Medicine and Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China.
| | - Hui-Jun Wang
- Center for Molecular Medicine and Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Martini M, Altomonte I, Licitra R, Bartaloni FV, Salari F. A preliminary investigation into the unsaponifiable fraction of donkey milk: Sterols of animal origin, phytosterols, and tocopherols. J Dairy Sci 2020; 104:1378-1383. [PMID: 33189282 DOI: 10.3168/jds.2020-19268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/29/2020] [Indexed: 12/26/2022]
Abstract
We investigated the main sterols, phytosterols, and the α- and γ-tocopherol content in donkey milk during the first 2 mo of lactation. Cholesterol was the main sterol in milk (mean ± standard deviation = 0.97 ± 0.443 g/100 g of fat). Lanosterol was the main minor sterol of animal origin, followed by desmosterol (0.003 ± 0.001 and 0.001 ± 0.001 g/100 g of fat, respectively). Of the phytosterols, β-sitosterol was the main sterol of vegetal origin in donkey milk (0.005 ± 0.002 g/100 g of fat), but lower levels of campesterol, brassicasterol, and stigmasterol were also recorded. Mean levels of α- and γ-tocopherol were 0.01 ± 0.007 and 0.003 ± 0.001 g/100 g of fat, respectively. We observed no significant changes in sterol or tocopherol content during the first 2 mo of lactation. The presence of lanosterol in donkey milk is of particular interest, because lanosterol is a potential drug and has important physiological effects. The presence of phytosterols, which are considered nutraceutical molecules, enhances the nutritional quality of donkey milk fat for consumers.
Collapse
Affiliation(s)
- M Martini
- Department of Veterinary Science, University of Pisa, Pisa 56124, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health," University of Pisa, Pisa 56124, Italy
| | - I Altomonte
- Interdepartmental Center for Agricultural and Environmental Research "E. Avanzi," University of Pisa, San Piero a Gardo (PI) 56122, Italy.
| | - R Licitra
- Department of Veterinary Science, University of Pisa, Pisa 56124, Italy
| | - F V Bartaloni
- Department of Veterinary Science, University of Pisa, Pisa 56124, Italy
| | - F Salari
- Department of Veterinary Science, University of Pisa, Pisa 56124, Italy
| |
Collapse
|
14
|
Slominski AT, Chaiprasongsuk A, Janjetovic Z, Kim TK, Stefan J, Slominski RM, Hanumanthu VS, Raman C, Qayyum S, Song Y, Song Y, Panich U, Crossman DK, Athar M, Holick MF, Jetten AM, Zmijewski MA, Zmijewski J, Tuckey RC. Photoprotective Properties of Vitamin D and Lumisterol Hydroxyderivatives. Cell Biochem Biophys 2020; 78:165-180. [PMID: 32441029 PMCID: PMC7347247 DOI: 10.1007/s12013-020-00913-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
We have previously described new pathways of vitamin D3 activation by CYP11A1 to produce a variety of metabolites including 20(OH)D3 and 20,23(OH)2D3. These can be further hydroxylated by CYP27B1 to produce their C1α-hydroxyderivatives. CYP11A1 similarly initiates the metabolism of lumisterol (L3) through sequential hydroxylation of the side chain to produce 20(OH)L3, 22(OH)L3, 20,22(OH)2L3 and 24(OH)L3. CYP11A1 also acts on 7-dehydrocholesterol (7DHC) producing 22(OH)7DHC, 20,22(OH)27DHC and 7-dehydropregnenolone (7DHP) which can be converted to the D3 and L3 configurations following exposure to UVB. These CYP11A1-derived compounds are produced in vivo and are biologically active displaying anti-proliferative, anti-inflammatory, anti-cancer and pro-differentiation properties. Since the protective role of the classical form of vitamin D3 (1,25(OH)2D3) against UVB-induced damage is recognized, we recently tested whether novel CYP11A1-derived D3- and L3-hydroxyderivatives protect against UVB-induced damage in epidermal human keratinocytes and melanocytes. We found that along with 1,25(OH)2D3, CYP11A1-derived D3-hydroxyderivatives and L3 and its hydroxyderivatives exert photoprotective effects. These included induction of intracellular free radical scavenging and attenuation and repair of DNA damage. The protection of human keratinocytes against DNA damage included the activation of the NRF2-regulated antioxidant response, p53-phosphorylation and its translocation to the nucleus, and DNA repair induction. These data indicate that novel derivatives of vitamin D3 and lumisterol are promising photoprotective agents. However, detailed mechanisms of action, and the involvement of specific nuclear receptors, other vitamin D binding proteins or mitochondria, remain to be established.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA.
- Veteran Administration Medical Center, Birmingham, Al, USA.
| | - Anyamanee Chaiprasongsuk
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Joanna Stefan
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Radomir M Slominski
- Department of Medicine and Microbiology, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA
| | - Vidya Sagar Hanumanthu
- Department of Medicine and Microbiology, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA
| | - Chander Raman
- Department of Medicine and Microbiology, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Yuwei Song
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | | | - Anton M Jetten
- Cell Biology Section, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | | | - Jaroslaw Zmijewski
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
15
|
Slominski AT, Brożyna AA, Zmijewski MA, Janjetovic Z, Kim TK, Slominski RM, Tuckey RC, Mason RS, Jetten AM, Guroji P, Reichrath J, Elmets C, Athar M. The Role of Classical and Novel Forms of Vitamin D in the Pathogenesis and Progression of Nonmelanoma Skin Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:257-283. [PMID: 32918223 PMCID: PMC7490773 DOI: 10.1007/978-3-030-46227-7_13] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonmelanoma skin cancers including basal and squamous cell carcinomas (SCC and BCC) represent a significant clinical problem due to their relatively high incidence, imposing an economic burden to healthcare systems around the world. It is accepted that ultraviolet radiation (UVR: λ = 290-400 nm) plays a crucial role in the initiation and promotion of BCC and SCC with UVB (λ = 290-320 nm) having a central role in this process. On the other hand, UVB is required for vitamin D3 (D3) production in the skin, which supplies >90% of the body's requirement for this prohormone. Prolonged exposure to UVB can also generate tachysterol and lumisterol. Vitamin D3 itself and its canonical (1,25(OH)2D3) and noncanonical (CYP11A1-intitated) D3 hydroxyderivatives show photoprotective functions in the skin. These include regulation of keratinocyte proliferation and differentiation, induction of anti-oxidative responses, inhibition of DNA damage and induction of DNA repair mechanisms, and anti-inflammatory activities. Studies in animals have demonstrated that D3 hydroxyderivatives can attenuate UVB or chemically induced epidermal cancerogenesis and inhibit growth of SCC and BCC. Genomic and non-genomic mechanisms of action have been suggested. In addition, vitamin D3 itself inhibits hedgehog signaling pathways which have been implicated in many cancers. Silencing of the vitamin D receptor leads to increased propensity to develop UVB or chemically induced epidermal cancers. Other targets for vitamin D compounds include 1,25D3-MARRS, retinoic orphan receptors α and γ, aryl hydrocarbon receptor, and Wnt signaling. Most recently, photoprotective effects of lumisterol hydroxyderivatives have been identified. Clinical trials demonstrated a beneficial role of vitamin D compounds in the treatment of actinic keratosis. In summary, recent advances in vitamin D biology and pharmacology open new exciting opportunities in chemoprevention and treatment of skin cancers.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA.
- VA Medical Center, Birmingham, AL, USA.
| | - Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | | | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Radomir M Slominski
- Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Rebecca S Mason
- Physiology & Bosch Institute, School of Medical Sciences, Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Anton M Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Purushotham Guroji
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jörg Reichrath
- Center for Clinical and Experimental Photodermatology and Department of Dermatology, Saarland University Medical Center, Homburg, Germany
| | - Craig Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
16
|
Jenkinson C. The vitamin D metabolome: An update on analysis and function. Cell Biochem Funct 2019; 37:408-423. [PMID: 31328813 DOI: 10.1002/cbf.3421] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/03/2019] [Accepted: 06/05/2019] [Indexed: 01/08/2023]
Abstract
Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25-hydroxyvitamin D3 (25OHD3) and its conversion to the active hormonal form, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2 D3) via the enzyme 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1). However, whilst these metabolites form the endocrine backbone of vitamin D physiology, it is important to recognise that there are other metabolic and catabolic pathways that are now recognised as being crucially important to vitamin D function. These pathways include C3-epimerization, CYP24A1 hydroxylase, CYP11A1 alternative metabolism of vitamin D3, and phase II metabolism. Endogenous metabolites beyond 25OHD3 are usually present at low endogenous levels and may only be functional in specific target tissues rather than in the general circulation. However, the technologies available to measure these metabolites have also improved, so that measurement of alternative vitamin D metabolic pathways may become more routine in the near future. The aim of this review is to provide a comprehensive overview of the various pathways of vitamin D metabolism, as well as describe the analytical techniques currently available to measure these vitamin D metabolites.
Collapse
Affiliation(s)
- Carl Jenkinson
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
17
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
18
|
Tuckey RC, Cheng CYS, Slominski AT. The serum vitamin D metabolome: What we know and what is still to discover. J Steroid Biochem Mol Biol 2019; 186:4-21. [PMID: 30205156 PMCID: PMC6342654 DOI: 10.1016/j.jsbmb.2018.09.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023]
Abstract
Vitamin D, referring to the two forms, D2 from the diet and D3 primarily derived from phototransformation in the skin, is a prohormone important in human health. The most hormonally active form, 1α,25-dihydroxyvitamin D (1α,25(OH)2D), formed from vitamin D via 25-hydroxyvitamin D (25(OH)D), is not only important for regulating calcium metabolism, but has many pleiotropic effects including regulation of the immune system and has anti-cancer properties. The major circulating form of vitamin D is 25(OH)D and both D2 and D3 forms are routinely measured by LC/MS/MS to assess vitamin D status, due to their relatively long half-lives and much higher concentrations compared to 1α,25(OH)2D. Inactivation of both 25(OH)D and 1α,25(OH)2D is catalyzed by CYP24A1 and 25-hydroxyvitamin D3 3-epimerase. Initial products from these enzymes acting on 25(OH)D3 are 24R,25(OH)2D3 and 3-epi-25(OH)D3, respectively, and both of these can also be measured routinely in some clinical laboratories to further document vitamin D status. With advances in LC/MS/MS and its increased availability, and with the help of studies with recombinant vitamin D-metabolizing enzymes, many other vitamin D metabolites have now been detected and in some cases quantitated, in human serum. CYP11A1 which catalyzes the first step in steroidogenesis, has been found to also act on vitamins D3 and D2 hydroxylating both at C20, but with some secondary metabolites produced by subsequent hydroxylations at other positions on the side chain. The major vitamin D3 metabolite, 20S-hydroxyvitamin D3 (20S(OH)D3), shows biological activity, often similar to 1α,25(OH)2D3 but without calcemic effects. Using standards produced enzymatically by purified CYP11A1 and characterized by NMR, many of these new metabolites have been detected in human serum, with semi-quantitative measurement of 20S(OH)D3 indicating it is present at comparable concentrations to 24R,25(OH)2D3 and 3-epi-25(OH)D3. Recently, vitamin D-related hydroxylumisterols derived from lumisterol3, a previtamin D3 photoproduct, have also been measured in human serum and displayed biological activity in initial in vitro studies. With the current extensive knowledge on the reactions and pathways of metabolism of vitamin D, especially those catalyzed by CYP24A1, CYP27A1, CYP27B1, CYP3A4 and CYP11A1, it is likely that many other of the resulting hydroxyvitamin D metabolites will be measured in human serum in the future, some contributing to a more detailed understanding of vitamin D status in health and disease.
Collapse
Affiliation(s)
- Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Chloe Y S Cheng
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, AL, 35294, USA; Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, AL, 35294, USA; VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
19
|
Vitamin D pathway gene polymorphisms influenced vitamin D level among pregnant women. Clin Nutr 2018; 37:2230-2237. [DOI: 10.1016/j.clnu.2017.10.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/23/2017] [Accepted: 10/29/2017] [Indexed: 11/22/2022]
|
20
|
Tuckey RC, Li W, Ma D, Cheng CYS, Wang KM, Kim TK, Jeayeng S, Slominski AT. CYP27A1 acts on the pre-vitamin D3 photoproduct, lumisterol, producing biologically active hydroxy-metabolites. J Steroid Biochem Mol Biol 2018; 181:1-10. [PMID: 29452159 PMCID: PMC5992068 DOI: 10.1016/j.jsbmb.2018.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 01/03/2023]
Abstract
Prolonged exposure of the skin to UV radiation causes previtamin D3, the initial photoproduct formed by opening of the B ring of 7-dehydrocholesterol, to undergo a second photochemical reaction where the B-ring is reformed giving lumisterol3 (L3), a stereoisomer of 7-dehydrocholesterol. L3 was believed to be an inactive photoproduct of excessive UV radiation whose formation prevents excessive vitamin D production. Recently, we reported that L3 is present in serum and that CYP11A1 can act on L3 producing monohydroxy- and dihydroxy-metabolites which inhibit skin cell proliferation similarly to 1α,25-dihydroxyvitamin D3. In this study we tested the ability of human CYP27A1 to hydroxylate L3. L3 was metabolized by purified CYP27A1 to 3 major products identified as 25-hydroxyL3, (25R)-27-hydroxyL3 and (25S)-27-hydroxyL3, by NMR. These three products were also seen when mouse liver mitochondria containing CYP27A1 were incubated with L3. The requirement for CYP27A1 for their formation by mitochondria was confirmed by the inhibition of their synthesis by 5β-cholestane-3α,7α,12α-triol, an intermediate in bile acid synthesis which serves as an efficient competitive substrate for CYP27A1. CYP27A1 displayed a high kcat for the metabolism of L3 (76 mol product/min/mol CYP27A1) and a catalytic efficiency (kcat/Km) that was 260-fold higher than that for vitamin D3. The CYP27A1-derived hydroxy-derivatives inhibited the proliferation of cultured human melanoma cells and colony formation with IC50 values in the nM range. Thus, L3 is metabolized efficiently by CYP27A1 with hydroxylation at C25 or C27 producing metabolites potent in their ability to inhibit melanoma cell proliferation, supporting that L3 is a prohormone which can be activated by CYP-dependent hydroxylations.
Collapse
Affiliation(s)
- Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Dejian Ma
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Chloe Y S Cheng
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Katie M Wang
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, AL 35294, USA
| | - Saowanee Jeayeng
- Department of Dermatology, University of Alabama at Birmingham, AL 35294, USA; Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, AL 35294, USA; VA Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
21
|
Wang P, Qin X, Liu M, Wang X. The burgeoning role of cytochrome P450-mediated vitamin D metabolites against colorectal cancer. Pharmacol Res 2018; 133:9-20. [PMID: 29719203 DOI: 10.1016/j.phrs.2018.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/28/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
Abstract
The metabolites of vitamin D3 (VD3) mediated by different cytochrome P450 (CYP) enzymes, play fundamental roles in many physiological processes in relation to human health. These metabolites regulate a variety of cellular signal pathways through the direct binding of activated vitamin D receptor/retinoic X receptor (VDR/RXR) heterodimeric complex to specific DNA sequences. Thus, the polymorphisms of VDR and VD3 metabolizing enzymes lead to differentiated efficiency of VD3 and further affect serum VD3 levels. Moreover, VDR activation is demonstrated to inhibit the growth of various cancers, including colorectal cancer. However, excessive intake of vitamin D may lead to hypercalcemia, which limits the application of vitamin D tremendously. In this review, we have summarized the advances in VD3 research, especially the metabolism map of VD3 and the molecular mechanisms of inhibiting growth and inducing differentiation in colorectal cancer mediated by VDR-associated cellular signal pathways. The relationship between VDR polymorphism and the risk of colorectal cancer is also illustrated. In particular, novel pathways of the activation of VD3 started by CYP11A1 and CYP3A4 are highlighted, which produce several noncalcemic and antiproliferative metabolites. At last, the hypothesis is put forward that further research of CYP-mediated VD3 metabolites may develop therapeutic agents for colorectal cancer without resulting in hypercalcemia.
Collapse
Affiliation(s)
- Peili Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xuan Qin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Sciences Center, Houston, TX, USA
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
22
|
Chen JM, Zhang QS, Li XY, Gong X, Ruan YJ, Zeng SJ, Lu LL, Qi XX, Wang Y, Hu M, Zhu LJ, Liu ZQ. Tissue Distribution and Gender-Specific Protein Expression of Cytochrome P450 in five Mouse Genotypes with a Background of FVB. Pharm Res 2018; 35:114. [DOI: 10.1007/s11095-018-2389-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/14/2018] [Indexed: 01/21/2023]
|
23
|
Cheng CYS, Kim TK, Jeayeng S, Slominski AT, Tuckey RC. Properties of purified CYP2R1 in a reconstituted membrane environment and its 25-hydroxylation of 20-hydroxyvitamin D3. J Steroid Biochem Mol Biol 2018; 177:59-69. [PMID: 28716760 PMCID: PMC5767547 DOI: 10.1016/j.jsbmb.2017.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 12/31/2022]
Abstract
Recent studies indicate that CYP2R1 is the major 25-hydroxylase catalyzing the first step in vitamin D activation. Since the catalytic properties of CYP2R1 have been poorly studied to date and it is a membrane protein, we examined the purified enzyme in a membrane environment. CYP2R1 was expressed in E. coli and purified by nickel affinity- and hydrophobic interaction-chromatography and assayed in a reconstituted membrane system comprising phospholipid vesicles plus purified human NADPH-P450 oxidoreductase. CYP2R1 converted vitamin D3 in the vesicle membrane to 25-hydroxyvitamin D3 [25(OH)D3] with good adherence to Michaelis-Menten kinetics. The kinetic parameters for 25-hydroxylation of vitamin D3 by the two major vitamin D 25-hydroxylases, CYP2R1 and CYP27A1, were examined in vesicles under identical conditions. CYP2R1 displayed a slightly lower kcat than CYP27A1 but a much lower Km for vitamin D3, and thus an overall 17-fold higher catalytic efficiency (kcat/Km), consistent with CYP2R1 being the major vitamin D 25-hydroxylase. 20-Hydroxyvitamin D3 [20(OH)D3], the main product of vitamin D3 activation by an alternative pathway catalyzed by CYP11A1, was metabolized by CYP2R1 to 20,25-dihydroxyvitamin D3 [20,25(OH)2D3], with catalytic efficiency similar to that for the 25-hydroxylation of vitamin D3. 20,25(OH)2D3 retained full, or somewhat enhanced activity compared to the parent 20(OH)D3 for the inhibition of the proliferation of melanocytes and dermal fibroblasts, with a potency comparable to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. The 20,25(OH)2D3 was also able to act as an inverse agonist on retinoic acid-related orphan receptor α, like its parent 20(OH)D3. Thus, the major findings of this study are that CYP2R1 can metabolize substrates in a membrane environment, the enzyme displays higher catalytic efficiency than CYP27A1 for the 25-hydroxylation of vitamin D, it efficiently hydroxylates 20(OH)D3 at C25 and this product retains the biological activity of the parent compound.
Collapse
Affiliation(s)
- Chloe Y S Cheng
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, AL, 35294, USA
| | - Saowanee Jeayeng
- Department of Dermatology, University of Alabama at Birmingham, AL, 35294, USA; Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, AL, 35294, USA; VA Medical Center, Birmingham, AL, 35294, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
24
|
Slominski AT, Kim TK, Hobrath JV, Oak ASW, Tang EKY, Tieu EW, Li W, Tuckey RC, Jetten AM. Endogenously produced nonclassical vitamin D hydroxy-metabolites act as "biased" agonists on VDR and inverse agonists on RORα and RORγ. J Steroid Biochem Mol Biol 2017; 173:42-56. [PMID: 27693422 PMCID: PMC5373926 DOI: 10.1016/j.jsbmb.2016.09.024] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/17/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023]
Abstract
The classical pathway of vitamin D activation follows the sequence D3→25(OH)D3→1,25(OH)2D3 with the final product acting on the receptor for vitamin D (VDR). An alternative pathway can be started by the action of CYP11A1 on the side chain of D3, primarily producing 20(OH)D3, 22(OH)D3, 20,23(OH)2D3, 20,22(OH)2D3 and 17,20,23(OH)3D3. Some of these metabolites are hydroxylated by CYP27B1 at C1α, by CYP24A1 at C24 and C25, and by CYP27A1 at C25 and C26. The products of these pathways are biologically active. In the epidermis and/or serum or adrenals we detected 20(OH)D3, 22(OH)D3, 20,22(OH)2D3, 20,23(OH)2D3, 17,20,23(OH)3D3, 1,20(OH)2D3, 1,20,23(OH)3D3, 1,20,22(OH)3D3, 20,24(OH)2D3, 1,20,24(OH)3D3, 20,25(OH)2D3, 1,20,25(OH)3D3, 20,26(OH)2D3 and 1,20,26(OH)3D3. 20(OH)D3 and 20,23(OH)2D3 are non-calcemic, while the addition of an OH at C1α confers some calcemic activity. Molecular modeling and functional assays show that the major products of the pathway can act as "biased" agonists for the VDR with high docking scores to the ligand binding domain (LBD), but lower than that of 1,25(OH)2D3. Importantly, cell based functional receptor studies and molecular modeling have identified the novel secosteroids as inverse agonists of both RORα and RORγ receptors. Specifically, they have high docking scores using crystal structures of RORα and RORγ LBDs. Furthermore, 20(OH)D3 and 20,23(OH)2D3 have been tested in a cell model that expresses a Tet-on RORα or RORγ vector and a RORE-LUC reporter (ROR-responsive element), and in a mammalian 2-hybrid model that test interactions between an LBD-interacting LXXLL-peptide and the LBD of RORα/γ. These assays demonstrated that the novel secosteroids have ROR-antagonist activities that were further confirmed by the inhibition of IL17 promoter activity in cells overexpressing RORα/γ. In conclusion, endogenously produced novel D3 hydroxy-derivatives can act both as "biased" agonists of the VDR and/or inverse agonists of RORα/γ. We suggest that the identification of large number of endogenously produced alternative hydroxy-metabolites of D3 that are biologically active, and of possible alternative receptors, may offer an explanation for the pleiotropic and diverse activities of vitamin D, previously assigned solely to 1,25(OH)2D3 and VDR.
Collapse
MESH Headings
- Animals
- Cholesterol Side-Chain Cleavage Enzyme/metabolism
- Humans
- Hydroxycholecalciferols/metabolism
- Hydroxycholecalciferols/pharmacology
- Models, Molecular
- Nuclear Receptor Subfamily 1, Group F, Member 1/agonists
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/agonists
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Receptors, Calcitriol/agonists
- Receptors, Calcitriol/metabolism
- Vitamins/metabolism
- Vitamins/pharmacology
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, USA; Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, USA; Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, 35249, USA.
| | | | - Judith V Hobrath
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | - Edith K Y Tang
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA, Australia
| | - Elaine W Tieu
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA, Australia
| | - Wei Li
- Department of Pharmaceutical Sciences University of Tennessee HSC, Memphis, TN 38163, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA, Australia
| | - Anton M Jetten
- Cell Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
25
|
Vitamin D signaling and melanoma: role of vitamin D and its receptors in melanoma progression and management. J Transl Med 2017; 97:706-724. [PMID: 28218743 PMCID: PMC5446295 DOI: 10.1038/labinvest.2017.3] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
Ultraviolet B (UVB), in addition to having carcinogenic activity, is required for the production of vitamin D3 (D3) in the skin which supplies >90% of the body's requirement. Vitamin D is activated through hydroxylation by 25-hydroxylases (CYP2R1 or CYP27A1) and 1α-hydroxylase (CYP27B1) to produce 1,25(OH)2D3, or through the action of CYP11A1 to produce mono-di- and trihydroxy-D3 products that can be further modified by CYP27B1, CYP27A1, and CYP24A1. The active forms of D3, in addition to regulating calcium metabolism, exert pleiotropic activities, which include anticarcinogenic and anti-melanoma effects in experimental models, with photoprotection against UVB-induced damage. These diverse effects are mediated through an interaction with the vitamin D receptor (VDR) and/or as most recently demonstrated through action on retinoic acid orphan receptors (ROR)α and RORγ. With respect to melanoma, low levels of 25(OH)D are associated with thicker tumors and reduced patient survival. Furthermore, single-nucleotide polymorphisms of VDR and the vitamin D-binding protein (VDP) genes affect melanomagenesis or disease outcome. Clinicopathological analyses have shown positive correlation between low or undetectable expression of VDR and/or CYP27B1 in melanoma with tumor progression and shorter overall (OS) and disease-free survival (DFS) times. Paradoxically, this correlation was reversed for CYP24A1 (inactivating 24-hydroxylase), indicating that this enzyme, while inactivating 1,25(OH)2D3, can activate other forms of D3 that are products of the non-canonical pathway initiated by CYP11A1. An inverse correlation has been found between the levels of RORα and RORγ expression and melanoma progression and disease outcome. Therefore, we propose that defects in vitamin D signaling including D3 activation/inactivation, and the expression and activity of the corresponding receptors, affect melanoma progression and the outcome of the disease. The existence of multiple bioactive forms of D3 and alternative receptors affecting the behavior of melanoma should be taken into consideration when applying vitamin D management for melanoma therapy.
Collapse
|
26
|
Cheng CYS, Slominski AT, Tuckey RC. Hydroxylation of 20-hydroxyvitamin D3 by human CYP3A4. J Steroid Biochem Mol Biol 2016; 159:131-41. [PMID: 26970587 PMCID: PMC4821771 DOI: 10.1016/j.jsbmb.2016.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/16/2016] [Accepted: 03/07/2016] [Indexed: 01/08/2023]
Abstract
20S-Hydroxyvitamin D3 [20(OH)D3] is the biologically active major product of the action of CYP11A1 on vitamin D3 and is present in human plasma. 20(OH)D3 displays similar therapeutic properties to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], but without causing hypercalcaemia and therefore has potential for development as a therapeutic drug. CYP24A1, the kidney mitochondrial P450 involved in inactivation of 1,25(OH)2D3, can hydroxylate 20(OH)D3 at C24 and C25, with the products displaying more potent inhibition of melanoma cell proliferation than 20(OH)D3. CYP3A4 is the major drug-metabolising P450 in liver endoplasmic reticulum and can metabolise other active forms of vitamin D, so we examined its ability to metabolise 20(OH)D3. We found that CYP3A4 metabolises 20(OH)D3 to three major products, 20,24R-dihydroxyvitamin D3 [20,24R(OH)2D3], 20,24S-dihydroxyvitamin D3 [20,24S(OH)2D3] and 20,25-dihydroxyvitamin D3 [20,25(OH)2D3]. 20,24R(OH)2D3 and 20,24S(OH)2D3, but not 20,25(OH)2D3, were further metabolised to trihydroxyvitamin D3 products by CYP3A4 but with low catalytic efficiency. The same three primary products, 20,24R(OH)2D3, 20,24S(OH)2D3 and 20,25(OH)2D3, were observed for the metabolism of 20(OH)D3 by human liver microsomes, in which CYP3A4 is a major CYP isoform present. Addition of CYP3A family-specific inhibitors, troleandomycin and azamulin, almost completely inhibited production of 20,24R(OH)2D3, 20,24S(OH)2D3 and 20,25(OH)2D3 by human liver microsomes, further supporting that CYP3A4 plays the major role in 20(OH)D3 metabolism by microsomes. Since both 20,24R(OH)2D3 and 20,25(OH)2D3 have previously been shown to display enhanced biological activity in inhibiting melanoma cell proliferation, our results show that CYP3A4 further activates, rather than inactivates, 20(OH)D3.
Collapse
Affiliation(s)
- Chloe Y S Cheng
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, AL, USA; VA Medical Center, Birmingham, AL, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
27
|
|
28
|
Detection of novel CYP11A1-derived secosteroids in the human epidermis and serum and pig adrenal gland. Sci Rep 2015; 5:14875. [PMID: 26445902 PMCID: PMC4597207 DOI: 10.1038/srep14875] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/10/2015] [Indexed: 01/18/2023] Open
Abstract
To investigate whether novel pathways of vitamin D3 (D3) and 7-dehydrocholesterol (7DHC) metabolism initiated by CYP11A1 and previously characterized in vitro, occur in vivo, we analyzed samples of human serum and epidermis, and pig adrenals for the presence of intermediates and products of these pathways. We extracted human epidermis from 13 individuals and sera from 13 individuals and analyzed them by LC/qTOF-MS alongside the corresponding standards. Pig adrenal glands were also analyzed for these steroids and secosteroids. Epidermal, serum and adrenal samples showed the presence of D3 hydroxy-derivatives corresponding to 20(OH)D3, 22(OH)D3, 25(OH)D3, 1,25(OH)2D3, 20,22(OH)2D3, 20,23(OH)2D3, 20,24(OH)2D3, 20,25(OH)2D3, 20,26(OH)2D3, 1,20,23(OH)3D3 and 17,20,23(OH)3D3, plus 1,20(OH)2D3 which was detectable only in the epidermis. Serum concentrations of 20(OH)D3 and 22(OH)D3 were only 30- and 15-fold lower than 25(OH)D3, respectively, and at levels above those required for biological activity as measured in vitro. We also detected 1,20,24(OH)3D3, 1,20,25(OH)3D3 and 1,20,26(OH)3D3 in the adrenals. Products of CYP11A1 action on 7DHC, namely 22(OH)7DHC, 20,22(OH)27DHC and 7-dehydropregnenolone were also detected in serum, epidermis and the adrenal. Thus, we have detected novel CYP11A1-derived secosteroids in the skin, serum and adrenal gland and based on their concentrations and biological activity suggest that they act as hormones in vivo.
Collapse
|
29
|
Slominski AT, Li W, Kim TK, Semak I, Wang J, Zjawiony JK, Tuckey RC. Novel activities of CYP11A1 and their potential physiological significance. J Steroid Biochem Mol Biol 2015; 151:25-37. [PMID: 25448732 PMCID: PMC4757911 DOI: 10.1016/j.jsbmb.2014.11.010] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 01/08/2023]
Abstract
CYP11A1, found only in vertebrates, catalyzes the first step of steroidogenesis where cholesterol is converted to pregnenolone. The purified enzyme, also converts desmosterol and plant sterols including campesterol and β-sitosterol, to pregnenolone. Studies, initially with purified enzyme, reveal that 7-dehydrocholesterol (7DHC), ergosterol, lumisterol 3, and vitamins D3 and D2 also serve as substrates for CYP11A1, with 7DHC being better and vitamins D3 and D2 being poorer substrates than cholesterol. Adrenal glands, placenta, and epidermal keratinocytes can also carry out these conversions and 7-dehydropregnenolone has been detected in the epidermis, adrenal glands, and serum, and 20-hydroxyvitamin D3 was detected in human serum and the epidermis. Thus, this metabolism does appear to occur in vivo, although its quantitative importance and physiological role remain to be established. CYP11A1 action on 7DHC in vivo is further supported by detection of Δ(7)steroids in Smith-Lemli-Opitz syndrome patients. The activity of CYP11A1 is affected by the structure of the substrate with sterols having steroidal or Δ(7)-steroidal structures undergoing side chain cleavage following hydroxylations at C22 and C20. In contrast, metabolism of vitamin D involves sequential hydroxylations that start at C20 but do not lead to cleavage. Molecular modeling using the crystal structure of CYP11A1 predicts that other intermediates of cholesterol synthesis could also serve as substrates for CYP11A1. Finally, CYP11A1-derived secosteroidal hydroxy-derivatives and Δ(7)steroids are biologically active when administered in vitro in a manner dependent on the structure of the compound and the lineage of the target cells, suggesting physiological roles for these metabolites. This article is part of a special issue entitled 'SI: Steroid/Sterol signaling'.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Division of Rheumatology of the Department of Medicine, University of Tennessee HSC, Memphis, TN, USA.
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee HSC, Memphis, TN, USA
| | - Tae-Kang Kim
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA
| | - Igor Semak
- Department of Biochemistry, Belarusian State University, Minsk, Belarus
| | - Jin Wang
- Department of Pharmaceutical Sciences, University of Tennessee HSC, Memphis, TN, USA
| | - Jordan K Zjawiony
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
30
|
Tieu EW, Li W, Chen J, Kim TK, Ma D, Slominski AT, Tuckey RC. Metabolism of 20-hydroxyvitamin D3 and 20,23-dihydroxyvitamin D3 by rat and human CYP24A1. J Steroid Biochem Mol Biol 2015; 149:153-65. [PMID: 25727742 PMCID: PMC4380815 DOI: 10.1016/j.jsbmb.2015.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/15/2015] [Accepted: 02/16/2015] [Indexed: 11/19/2022]
Abstract
CYP11A1 hydroxylates vitamin D3 producing 20S-hydroxyvitamin D3 [20(OH)D3] and 20S,23-dihydroxyvitamin D3 [20,23(OH)2D3] as the major and most characterized metabolites. Both display immuno-regulatory and anti-cancer properties while being non-calcemic. A previous study indicated 20(OH)D3 can be metabolized by rat CYP24A1 to products including 20S,24-dihydroxyvitamin D3 [20,24(OH)2D3] and 20S,25-dihydroxyvitamin D3, with both producing greater inhibition of melanoma colony formation than 20(OH)D3. The aim of this study was to characterize the ability of rat and human CYP24A1 to metabolize 20(OH)D3 and 20,23(OH)2D3. Both isoforms metabolized 20(OH)D3 to the same dihydroxyvitamin D species with no secondary metabolites being observed. Hydroxylation at C24 produced both enantiomers of 20,24(OH)2D3. For rat CYP24A1 the preferred initial site of hydroxylation was at C24 whereas the human enzyme preferred C25. 20,23(OH)2D3 was initially metabolized to 20S,23,24-trihydroxyvitamin D3 and 20S,23,25-trihydroxyvitamin D3 by rat and human CYP24A1 as determined by NMR, with both isoforms showing a preference for initial hydroxylation at C25. CYP24A1 was able to further oxidize these metabolites in a series of reactions which included the cleavage of C23-C24 bond, as indicated by high resolution mass spectrometry of the products, analogous to the catabolism of 1,25(OH)2D3 via the C24-oxidation pathway. Similar catalytic efficiencies were observed for the metabolism of 20(OH)D3 and 20,23(OH)2D3 by human CYP24A1 and were lower than for the metabolism of 1,25(OH)2D3. We conclude that rat and human CYP24A1 metabolizes 20(OH)D3 producing only dihydroxyvitamin D3 species as products which retain biological activity, whereas 20,23(OH)2D3 undergoes multiple oxidations which include cleavage of the side chain.
Collapse
Affiliation(s)
- Elaine W Tieu
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jianjun Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Pharmaceutical Sciences, School of Pharmacy, South College, Knoxville, TN, USA
| | - Tae-Kang Kim
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Dejian Ma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Dermatology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
31
|
Slominski AT, Kim TK, Li W, Yi AK, Postlethwaite A, Tuckey RC. The role of CYP11A1 in the production of vitamin D metabolites and their role in the regulation of epidermal functions. J Steroid Biochem Mol Biol 2014; 144 Pt A:28-39. [PMID: 24176765 PMCID: PMC4002668 DOI: 10.1016/j.jsbmb.2013.10.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/30/2013] [Accepted: 10/17/2013] [Indexed: 01/08/2023]
Abstract
Research over the last decade has revealed that CYP11A1 can hydroxylate the side chain of vitamin D3 at carbons 17, 20, 22 and 23 to produce at least 10 metabolites, with 20(OH)D3, 20,23(OH)2D3, 20,22(OH)2D3, 17,20(OH)2D3 and 17,20,23(OH)3D3 being the main products. However, CYP11A1 does not act on 25(OH)D3. The placenta, adrenal glands and epidermal keratinocytes have been shown to metabolize vitamin D3 via this CYP11A1-mediated pathway that is modified by the activity of CYP27B1, with 20(OH)D3 (the major metabolite), 20,23(OH)2D3, 1,20(OH)2D3, 1,20,23(OH)3D3 and 17,20,23(OH)3D3 being detected, defining these secosteroids as endogenous regulators/natural products. This is supported by the detection of a mono-hydroxyvitamin D3 with the retention time of 20(OH)D3 in human serum. In new work presented here we demonstrate that the CYP11A1-initiated pathways also occurs in Caco-2 colon cells. Our previous studies show that 20(OH)D3 and 20,23(OH)2D3 are non-calcemic at pharmacological doses, dependent in part on their lack of a C1α hydroxyl group. In epidermal keratinocytes, 20(OH)D3, 20(OH)D2 and 20,23(OH)2D3 inhibited cell proliferation, stimulated differentiation and inhibited NF-κB activity with potencies comparable to 1,25(OH)2D3, acting as partial agonists on the VDR. 22(OH)D3 and 20,22(OH)2D3, as well as secosteroids with a short or no side chain, showed antiproliferative and prodifferentiation effects, however, with lower potency than 20(OH)D3 and 20,23(OH)2D3. The CYP11A1-derived secosteroids also inhibited melanocyte proliferation while having no effect on melanogenesis, and showed anti-melanoma activities in terms of inhibiting proliferation and the ability to grow in soft agar. Furthermore, 20(OH)D3 and 20,23(OH)2D3 showed anti-fibrosing effects in vitro, and also in vivo for the former. New data presented here shows that 20(OH)D3 inhibits LPS-induced production of TNFα in the J774 line, TNFα and IL-6 in peritoneal macrophages and suppresses the production of proinflammatory Th1/Th17-related cytokines, while promoting the production of the anti-inflammatory cytokine IL-10 in vivo. In summary, CYP11A1 initiates new pathways of vitamin D metabolism in a range of tissues and products could have important physiological roles at the local or systemic level. In the skin, CYP11A1-derived secosteroids could serve both as endogenous regulators of skin functions and as excellent candidates for treatment of hyperproliferative and inflammatory skin disorders, and skin cancer. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, Memphis, TN, USA; Division of Rheumatology and Connective Tissue Diseases of the Department of Medicine, Memphis, TN, USA; Center for Adult Cancer Research, University of Tennessee HSC, Memphis, TN, USA.
| | - Tae-Kang Kim
- Department of Pathology and Laboratory Medicine, Memphis, TN, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, Memphis, TN, USA
| | | | - Arnold Postlethwaite
- Division of Rheumatology and Connective Tissue Diseases of the Department of Medicine, Memphis, TN, USA; Veteran Administration, Memphis, TN, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
32
|
Cheng CYS, Slominski AT, Tuckey RC. Metabolism of 20-hydroxyvitamin D3 by mouse liver microsomes. J Steroid Biochem Mol Biol 2014; 144 Pt B:286-93. [PMID: 25138634 PMCID: PMC4195795 DOI: 10.1016/j.jsbmb.2014.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 11/29/2022]
Abstract
20-Hydroxyvitamin D3 [20(OH)D3], the major product of CYP11A1 action on vitamin D3, is biologically active and like 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] can inhibit proliferation and promote differentiation of a range of cells, and has anti-inflammatory properties. However, unlike 1,25(OH)2D3, it does not cause toxic hypercalcemia at high doses and is therefore a good candidate for therapeutic use to treat hyperproliferative and autoimmune disorders. In this study we analyzed the ability of mouse liver microsomes to metabolize 20(OH)D3. The two major products were identified from authentic standards as 20,24-dihydroxyvitamin D3 [20,24(OH)2D3] and 20,25-dihydroxyvitamin D3 [20,25(OH)2D3]. The reactions for synthesis of these two products from 20(OH)D3 displayed similar Km values suggesting that they were catalyzed by the same cytochrome P450. Some minor metabolites were produced by reactions with higher Km values for 20(OH)D3. Some metabolites gave mass spectra suggesting that they were the result of hydroxylation followed by dehydrogenation. One product had an increase in the wavelength for maximum absorbance from 263nm seen for 20(OH)D3, to 290nm, suggesting a new double bond was interacting with the vitamin D-triene chromophore. The two major products, 20,24(OH)2D3 and 20,25(OH)2D3 have both previously been shown to have higher potency for inhibition of colony formation by melanoma cells than 20(OH)D3, thus it appears that metabolism of 20(OH)D3 by mouse liver microsomes can generate products with enhanced activity.
Collapse
Affiliation(s)
- Chloe Y S Cheng
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
33
|
Slominski AT, Zmijewski MA, Semak I, Zbytek B, Pisarchik A, Li W, Zjawiony J, Tuckey RC. Cytochromes p450 and skin cancer: role of local endocrine pathways. Anticancer Agents Med Chem 2014; 14:77-96. [PMID: 23869782 DOI: 10.2174/18715206113139990308] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/30/2013] [Accepted: 04/10/2013] [Indexed: 12/19/2022]
Abstract
Skin is the largest body organ forming a metabolically active barrier between external and internal environments. The metabolic barrier is composed of cytochromes P450 (CYPs) that regulate its homeostasis through activation or inactivation of biologically relevant molecules. In this review we focus our attention on local steroidogenic and secosteroidogenic systems in relation to skin cancer, e.g., prevention, attenuation of tumor progression and therapy. The local steroidogenic system is composed of locally expressed CYPs involved in local production of androgens, estrogens, gluco- and mineralo-corticosteroids from cholesterol (initiated by CYP11A1) or from steroid precursors delivered to the skin, and of their metabolism and/or inactivation. Cutaneous 7-hydroxylases (CYP7A1, CYP7B1 and CYP39) potentially can produce 7-hydroxy/oxy-steroids/sterols with modifying effects on local tumorigenesis. CYP11A1 also transforms 7-dehydrocholesterol (7DHC)→22(OH)7DHC→20,22(OH)2-7DHC→7-dehydropregnenolone, which can be further metabolized to other 5,7- steroidal dienes. These 5,7-dienal intermediates are converted by ultraviolet radiation B (UVB) into secosteroids which show pro-differentiation and anti-cancer properties. Finally, the skin is the site of activation of vitamin D3 through two alternative pathways. The classical one involves sequential hydroxylation at positions 25 and 1 to produce active 1,25(OH)2D3, which is further inactivated through hydroxylation at C24. The novel pathway is initiated by CYP11A1 with predominant production of 20(OH)D3 which is further metabolized to biologically active but non-calcemic D3-hydroxyderivatives. Classical and non-classical (novel) vitamin D analogs show pro-differentiation, anti-proliferative and anticancer properties. In addition, melatonin is metabolized by local CYPs. In conclusion cutaneously expressed CYPs have significant effects on skin physiology and pathology trough regulation of its chemical milieu.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Robert C Tuckey
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, 930 Madison Avenue, RM525, Memphis, TN 38163, USA.
| |
Collapse
|
34
|
Tieu EW, Tang EKY, Tuckey RC. Kinetic analysis of human CYP24A1 metabolism of vitamin D via the C24-oxidation pathway. FEBS J 2014; 281:3280-96. [PMID: 24893882 DOI: 10.1111/febs.12862] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/14/2014] [Accepted: 05/30/2014] [Indexed: 11/30/2022]
Abstract
CYP24A1 is the multicatalytic cytochrome P450 responsible for the catabolism of vitamin D via the C23- and C24-oxidation pathways. We successfully expressed the labile human enzyme in Escherichia coli and partially purified it in an active state that permitted detailed characterization of its metabolism of 1,25-dihydroxyvitamin D3 [1,25(OH)2 D3] and the intermediates of the C24-oxidation pathway in a phospholipid-vesicle reconstituted system. The C24-oxidation pathway intermediates, 1,24,25-trihydroxyvitamin D3, 24-oxo-1,25-dihydroxyvitamin D3, 24-oxo-1,23,25-trihydroxyvitamin D3 and tetranor-1,23-dihydroxyvitamin D3, were enzymatically produced from 1,25(OH)2 D3 using rat CYP24A1. Both 1,25(OH)2 D3 and 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3 were found to partition strongly into the phospholipid bilayer when in aqueous medium. Changes to the phospholipid concentration did not affect the kinetic parameters for the metabolism of 1,25(OH)2 D3 by CYP24A1, indicating that it is the concentration of substrates in the membrane phase (mol substrate·mol phospholipid(-1) ) that determines their rate of metabolism. CYP24A1 exhibited Km values for the different C24-intermediates ranging from 0.34 to 15 mmol·mol phospholipid(-1) , with 24-oxo-1,23,25-trihydroxyvitamin D3 [24-oxo-1,23,25(OH)3 D3] displaying the lowest and 1,24,25-trihydroxyvitamin D3 [1,24,25(OH)3 D3] displaying the highest. The kcat values varied by up to 3.8-fold, with 1,24,25(OH)3 D3 displaying the highest kcat (34 min(-1) ) and 24-oxo-1,23,25(OH)3 D3 the lowest. The data show that the cleavage of the side chain of 24-oxo-1,23,25(OH)3 D3 occurs with the highest catalytic efficiency (kcat /Km ) and produces 1-hydroxy-23-oxo-24,25,26,27-tetranorvitamin D3 and not 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3, as the primary product. These kinetic analyses also show that intermediates of the C24-oxidation pathway effectively compete with precursor substrates for binding to the active site of the enzyme, which manifests as an accumulation of intermediates, indicating that they dissociate after each catalytic step.
Collapse
Affiliation(s)
- Elaine W Tieu
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Australia
| | | | | |
Collapse
|
35
|
Slominski A, Kim TK, Zmijewski MA, Janjetovic Z, Li W, Chen J, Kusniatsova EI, Semak I, Postlethwaite A, Miller DD, Zjawiony JK, Tuckey RC. Novel vitamin D photoproducts and their precursors in the skin. DERMATO-ENDOCRINOLOGY 2014; 5:7-19. [PMID: 24494038 PMCID: PMC3897599 DOI: 10.4161/derm.23938] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/04/2013] [Accepted: 02/09/2013] [Indexed: 01/20/2023]
Abstract
Novel metabolic pathways initiated by the enzymatic action of CYP11A1 on 7DHC (7-dehydrocholesterol), ergosterol, vitamins D3 and D2 were characterized with help of chemical synthesis, UV and mass spectrometry and NMR analyses. The first pathway follows the sequence 7DHC→22(OH)7DHC → 20,22(OH)27DHC → 7DHP (7-dehydropregnenolone), which can further be metabolized by steroidogenic enzymes. The resulting 5,7-dienes can be transformed by UVB to corresponding, biologically active, secosteroids. Action of CYP11A1 on vitamin D3 and D2 produces novel hydroxyderivatives with OH added at positions C17, C20, C22, C23 and C24, some of which can be hydroxylated by CYP27B1 and/or by CYP27A1 and/ or by CYP24A1.The main products of these pathways are biologically active with a potency related to their chemical structure and the target cell type. Main products of CYP11A1-mediated metabolism on vitamin D are non-calcemic and non-toxic at relatively high doses and serve as partial agonists on the vitamin D receptor. New secosteroids are excellent candidates for therapy of fibrosing, inflammatory or hyperproliferative disorders including cancers and psoriasis.
Collapse
Affiliation(s)
- Andrzej Slominski
- Department of Pathology and Laboratory Medicine; Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| | - Tae-Kang Kim
- Department of Pathology and Laboratory Medicine; Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| | | | - Zorica Janjetovic
- Department of Pathology and Laboratory Medicine; Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN USA
| | - Jianjun Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN USA
| | | | - Igor Semak
- Department of Biochemistry; Belarusian State University; Minsk, Belarus
| | - Arnold Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases; University of Tennessee Health Science Center; Memphis, TN USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN USA
| | - Jordan K Zjawiony
- Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences; School of Pharmacy; University of Mississippi; University, MS USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry; University of Western Australia; Crawley, WA, Australia
| |
Collapse
|
36
|
A Novel Mechanism for Cross-Adaptation between Heat and Altitude Acclimation: The Role of Heat Shock Protein 90. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/121402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Heat shock protein 90 (HSP90) is a member of a family of molecular chaperone proteins which can be upregulated by various stressors including heat stress leading to increases in HSP90 protein expression. Its primary functions include (1) renaturing and denaturing of damaged proteins caused by heat stress and (2) interacting with client proteins to induce cell signaling for gene expression. The latter function is of interest because, in cancer cells, HSP90 has been reported to interact with the transcription hypoxic-inducible factor 1α (HIF1α). In a normoxic environment, HIF1α is degraded and therefore has limited physiological function. In contrast, in a hypoxic environment, stabilized HIF1α acts to promote erythropoiesis and angiogenesis. Since HSP90 interacts with HIF1α, and HSP90 can be upregulated from heat acclimation in humans, we present a proposal that heat acclimation can mimic molecular adaptations to those of altitude exposure. Specifically, we propose that heat acclimation increases HSP90 which then stabilizes HIF1α in a normoxic environment. This has many implications since HIF1α regulates red blood cell and vasculature formation. In this paper we will discuss (1) the functional roles of HSP90 and HIF1α, (2) the interaction between HSP90 and other client proteins including HIF1α, and (3) results from in vitro studies that may suggest how the relationship between HSP90 and HIF1α might be applied to individuals preparing to make altitude sojourns.
Collapse
|
37
|
Chen J, Wang J, Kim TK, Tieu EW, Tang EKY, Lin Z, Kovacic D, Miller DD, Postlethwaite A, Tuckey RC, Slominski AT, Li W. Novel vitamin D analogs as potential therapeutics: metabolism, toxicity profiling, and antiproliferative activity. Anticancer Res 2014; 34:2153-2163. [PMID: 24778017 PMCID: PMC4015637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
AIM To discover novel [20(OH)D3] analogs as antiproliferative therapeutics. MATERIALS AND METHODS We studied in vitro liver microsome stability, in vivo toxicity using mice, vitamin D receptor (VDR) translocation, in vitro antiproliferative effect, CYP enzyme metabolism. RESULTS 20S- and 20R(OH)D3 had reasonable half-lives of 50 min and 30 min (average) respectively in liver microsomes. They were non-hypercalcemic at a high dose of 60 μg/kg. Three new 20(OH)D3 analogs were designed, synthesized and tested. They showed higher or comparable potency for inhibition of proliferation of normal keratinocytes and in the induction of VDR translocation from cytoplasm to nucleus, compared to 1,25(OH)2D3. These new analogs demonstrated different degrees of metabolism through a range of vitamin D-metabolizing CYP enzymes. CONCLUSION Their lack of calcemic toxicity at high doses and their high biological activity suggest that this novel 20(OH)D3 scaffold may represent a promising platform for further development of therapeutically-useful agents.
Collapse
Affiliation(s)
- Jianjun Chen
- Department of Pharmaceutical Science, University of Tennessee Health Science Center, 847 Monroe Avenue, Memphis, TN 38163, U.S.A.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Inanloorahatloo K, Zand Parsa AF, Huse K, Rasooli P, Davaran S, Platzer M, Fan JB, Amini S, Steemers F, Elahi E. Mutation in CYP27A1 identified in family with coronary artery disease. Eur J Med Genet 2013; 56:655-60. [PMID: 24080357 DOI: 10.1016/j.ejmg.2013.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 09/11/2013] [Indexed: 12/12/2022]
Abstract
Coronary artery disease (CAD) is a leading cause of death worldwide. Myocardial infarction is the most severe outcome of CAD. Despite extensive efforts, the genetics of CAD is poorly understood. We aimed to identify the genetic cause of CAD in a pedigree with several affected individuals. Exome sequencing led to identification of a mutation in CYP27A1 that causes p.Arg225His in the encoded protein sterol 27-hydroxylase as the likely cause of CAD in the pedigree. The enzyme is multifunctional, and several of its functions including its functions in vitamin D metabolism and reverse cholesterol transport (RCT) are relevant to the CAD phenotype. Measurements of vitamin D levels suggested that the mutation does not affect CAD by affecting this parameter. We suggest that the mutation may cause CAD by affecting RCT. Screening of all coding regions of the CYP27A1 in 100 additional patients led to finding four variations (p.Arg14Gly, p.Arg26Lys, p.Ala27Arg, and p.Val86Met) in seven patients that may contribute to their CAD status. CYP27A1 is the known causative gene of cerebrotendinous xanthomatosis, a disorder which is sometimes accompanied by early onset atherosclerosis. This and the observation of potentially harmful variations in unrelated CAD patients provide additional evidence for the suggested causative role of the p.Arg225His mutation in CAD.
Collapse
Affiliation(s)
- Kolsoum Inanloorahatloo
- School of Biology, College of Science, University of Tehran, Tehran, Iran; Genome Analysis, Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang Z, He JW, Fu WZ, Zhang CQ, Zhang ZL. An analysis of the association between the vitamin D pathway and serum 25-hydroxyvitamin D levels in a healthy Chinese population. J Bone Miner Res 2013; 28:1784-92. [PMID: 23505139 DOI: 10.1002/jbmr.1926] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 02/19/2013] [Accepted: 03/04/2013] [Indexed: 12/31/2022]
Abstract
Vitamin D deficiency has been recognized as a major public health issue worldwide. Recent studies have indicated that genetic factors might play an important role in determining serum 25-hydroxyvitamin D [25(OH)D] levels in Caucasians and African Americans. However, the genes that contribute to the variation in serum 25(OH)D levels in Chinese are unknown. In this study, we screened 15 key genes within the vitamin D metabolic pathway using 96 single-nucleotide polymorphism (SNP) markers in a group of 2897 unrelated healthy Chinese subjects. Significant confounding factors that may influence the variability in serum 25(OH)D levels were used as covariates for association analyses. An association test for quantitative traits was performed to evaluate the association between candidate genes and serum 25(OH)D levels. In the present study, variants and/or haplotypes in GC, CYP2R1, and DHCR7/NADSYN1 were identified as being associated with 25(OH)D levels. Participants with three or four risk alleles of the two variants (GC-rs4588 and CYP2R1-rs10766197) had an increased chance of presenting with a 25(OH)D concentration lower than 20 ng/mL (odds ratio 2.121, 95% confidence interval 1.586-2.836, p = 6.1 × 10(-8) ) compared with those lacking the risk alleles. Each additional copy of a risk allele was significantly associated with a 0.12-fold decrease in the log-25(OH)D concentration (p = 3.7 × 10(-12) ). Haplotype TGA of GC rs705117-rs2282679-rs1491710, haplotype GAGTAC of GC rs842999-rs705120-rs222040-rs4588-rs7041-rs10488854, haplotype CA of GC rs1155563-rs222029, and haplotype AAGA of CYP2R1 rs7936142-rs12794714-rs2060793-rs16930609 were genetic risk factors toward a lower 25(OH)D concentration. In contrast, haplotype TGGGCCC of DHCR7/NADSYN1 rs1790349-rs7122671-rs1790329-rs11606033-rs2276360-rs1629220-rs2282618 were genetic protective factors. The results suggest that the GC, CYP2R1, and DHCR7/NADSYN1 genes might contribute to variability in the serum 25(OH)D levels in a healthy Chinese population in Shanghai. These markers could be used as tools in Mendelian randomization analyses of vitamin D, and they could potentially be drug targets in the Chinese population in Shanghai.
Collapse
Affiliation(s)
- Zeng Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
40
|
Tang EKY, Chen J, Janjetovic Z, Tieu EW, Slominski AT, Li W, Tuckey RC. Hydroxylation of CYP11A1-derived products of vitamin D3 metabolism by human and mouse CYP27B1. Drug Metab Dispos 2013; 41:1112-24. [PMID: 23454830 DOI: 10.1124/dmd.113.050955] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
CYP11A1 can hydroxylate vitamin D3 at carbons 17, 20, 22, and 23, producing a range of secosteroids which are biologically active with respect to their ability to inhibit proliferation and stimulate differentiation of various cell types, including cancer cells. As 1α-hydroxylation of the primary metabolite of CYP11A1 action, 20S-hydroxyvitamin D3 [20(OH)D3], greatly influences its properties, we examined the ability of both human and mouse CYP27B1 to 1α-hydroxylate six secosteroids generated by CYP11A1. Based on their kcat/Km values, all CYP11A1-derived metabolites are poor substrates for CYP27B1 from both species compared with 25-hydroxyvitamin D3. No hydroxylation of metabolites with a 17α-hydroxyl group was observed. 17α,20-Dihydroxyvitamin D3 acted as an inhibitor on human CYP27B1 but not the mouse enzyme. We also tested CYP27B1 activity on 20,24-, 20,25-, and 20,26-dihydroxyvitamin D3, which are products of CYP24A1 or CYP27A1 activity on 20(OH)D3. All three compounds were metabolized with higher catalytic efficiency (kcat/Km) by both mouse and human CYP27B1 than 25-hydroxyvitamin D3. CYP27B1 action on these new dihydroxy derivatives was confirmed to be 1α-hydroxylation by mass spectrometry and nuclear magnetic resonance analyses. Both 1,20,25- and 1,20,26- trihydroxyvitamin D3 were tested for their ability to inhibit melanoma (SKMEL-188) colony formation, and were significantly more active than 20(OH)D3. This study shows that CYP11A1-derived secosteroids are 1α-hydroxylated by both human and mouse CYP27B1 with low catalytic efficiency, and that the presence of a 17α-hydroxyl group completely blocks 1α-hydroxylation. In contrast, the secondary metabolites produced by subsequent hydroxylation of 20(OH)D3 at C24, C25, or C26 are very good substrates for CYP27B1.
Collapse
Affiliation(s)
- Edith K Y Tang
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Tieu EW, Tang EKY, Chen J, Li W, Nguyen MN, Janjetovic Z, Slominski A, Tuckey RC. Rat CYP24A1 acts on 20-hydroxyvitamin D(3) producing hydroxylated products with increased biological activity. Biochem Pharmacol 2012; 84:1696-704. [PMID: 23041230 DOI: 10.1016/j.bcp.2012.09.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 11/18/2022]
Abstract
20-Hydroxyvitamin D(3) (20(OH)D(3)), the major product of CYP11A1 action on vitamin D(3), is biologically active and is produced in vivo. As well as potentially having important physiological actions, it is of interest as a therapeutic agent due to its lack of calcemic activity. In the current study we have examined the ability of CYP24A1, the enzyme that inactivates 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), to metabolize 20(OH)D(3). Rat CYP24A1 was expressed in Escherichia coli, purified by Ni-affinity chromatography and assayed with substrates incorporated into phospholipid vesicles which served as a model of the inner mitochondrial membrane. In this system CYP24A1 metabolized 1,25(OH)(2)D(3) with a catalytic efficiency 1.4-fold higher than that seen for 25-hydroxyvitamin D(3) (25(OH)D(3)). CYP24A1 hydroxylated 20(OH)D(3) to several dihydroxy-derivatives with the major two identified by NMR as 20,24-dihydroxyvitamin D(3) (20,24(OH)(2)D(3)) and 20,25-dihydroxyvitamin D(3) (20,25(OH)(2)D(3)). The catalytic efficiency of CYP24A1 for 20(OH)D(3) metabolism was more than 10-fold lower than for either 25(OH)D(3) or 1,25(OH)(2)D(3) and no secondary metabolites were produced. The two major products, 20,24(OH)(2)D(3) and 20,25(OH)(2)D(3), caused significantly greater inhibition of colony formation by SKMEL-188 melanoma cells than either 1,25(OH)(2)D(3) or the parent 20(OH)D(3), showing that CYP24A1 plays an activating, rather than an inactivating role on 20(OH)D(3).
Collapse
Affiliation(s)
- Elaine W Tieu
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Slominski AT, Janjetovic Z, Kim TK, Wright AC, Grese LN, Riney SJ, Nguyen MN, Tuckey RC. Novel vitamin D hydroxyderivatives inhibit melanoma growth and show differential effects on normal melanocytes. Anticancer Res 2012; 32:3733-3742. [PMID: 22993313 PMCID: PMC3458587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND/AIMS To test the activity of novel hydroxyvitamin D(3) analogs (20(OH)D(3), 20,23(OH)(2)D and 1,20(OH)(2)D(3)) on normal and malignant melanocytes in comparison to 1,25(OH)(2)D(3). MATERIALS AND METHODS Human epidermal melanocytes and human and hamster melanoma cells were used to measure effects on proliferation and colony formation in monolayer and soft agar. Cell morphology and melanogenesis were also analyzed. QPCR was used to measure gene expression. RESULTS Novel secosteroids inhibited proliferation and colony formation by melanoma cells in a similar fashion to 1,25(OH)(2)D(3), having no effect on melanogenesis. These effects were accompanied by ligand-induced translocation of VDR to the nucleus. In normal melanocytes 1α-hydroxyderivatives (1,25(OH)(2)D(3) and 1,20(OH)(2)D(3)) had stronger anti-proliferative effects than 20(OH)D(3) and 20,23(OH)(2)D(3), and inhibited dendrite formation. The cells tested expressed genes encoding VDR and enzymes that activate or inactivate vitamin D(3). CONCLUSION Novel secosteroids show potent anti-melanoma activity in vitro with 20(OH)D(3) and 20,23(OH)(2)D(3) being excellent candidates for pre-clinical testing.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tang EKY, Tieu EW, Tuckey RC. Expression of human CYP27B1 inEscherichia coliand characterization in phospholipid vesicles. FEBS J 2012; 279:3749-3761. [DOI: 10.1111/j.1742-4658.2012.08736.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|