1
|
Reiter RJ, De Almeida Chuffa LG, Simão VA, Martín Giménez VM, De Las Heras N, Spandidos DA, Manucha W. Melatonin and vitamin D as potential synergistic adjuvants for cancer therapy (Review). Int J Oncol 2024; 65:114. [PMID: 39450562 PMCID: PMC11575929 DOI: 10.3892/ijo.2024.5702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Significant advancements have been made in cancer therapy; however, limitations remain with some conventional approaches. Adjuvants are agents used alongside primary treatments to enhance their efficacy and the treatment outcomes of patients. Modern lifestyles contribute to deficiencies in melatonin and vitamin D. Limited sun exposure affects vitamin D synthesis, and artificial light at night suppresses melatonin production. Both melatonin and vitamin D possess anti‑inflammatory, immune‑boosting and anticancer properties, rendering them potential adjuvants of interest. Studies suggest melatonin and vitamin D supplementation may address antioxidant imbalances in lip, oral and pharyngeal cancers. Moreover, promising results from breast, head and neck, brain, and osteosarcoma research indicate potential for tumor growth inhibition, improved survival, and a better quality of life of patients with cancer. The radioprotective properties of melatonin and vitamin D are another exciting area of exploration, potentially enhancing radiotherapy effectiveness while reducing side effects. For its part, the sleep‑promoting effects of melatonin may indirectly benefit patients with cancer by influencing the immune system. Thus, the prevalence of vitamin D and melatonin deficiencies highlights the importance of supplementation, as lower levels can worsen side‑effects from cancer treatments. The present review explores the potential of combining melatonin and vitamin D as synergistic adjuvants for cancer therapy. These agents have shown promise individually in cancer prevention and treatment, and their combined effects warrant investigation. Therefore, large‑scale controlled trials are crucial to definitively determine the optimal dosage, safety and efficacy of this combination in improving the lives of patients with cancer.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, UT Health, San Antonio, TX 78229, USA
| | - Luiz Gustavo De Almeida Chuffa
- Department of Structural and Functional Biology, UNESP, São Paulo State University, Institute of Bio‑sciences, Botucatu, São Paulo, CEP 18618‑689, Brazil
| | - Vinícius Augusto Simão
- Department of Structural and Functional Biology, UNESP, São Paulo State University, Institute of Bio‑sciences, Botucatu, São Paulo, CEP 18618‑689, Brazil
| | - Virna Margarita Martín Giménez
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Natalia De Las Heras
- Department of Physiology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Walter Manucha
- Pharmacology Area, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo, 5500 Mendoza, Argentina
| |
Collapse
|
2
|
Ocanha-Xavier JP, Xavier-Junior JCC, Miot HA, da Silva MG, Marques MEA. Transcriptomic analysis of genes associated with vitamin D receptor signalling reveals differences between skin cancers. Exp Dermatol 2024; 33:e15160. [PMID: 39435723 DOI: 10.1111/exd.15160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 10/23/2024]
Abstract
Vitamin D activates the vitamin D receptor (VDR), which dimerizes preferentially with the retinoid X receptor-α (RXRα). This heterodimer connects with genetic elements responsive to vitamin D, inhibiting or stimulating gene activity. We performed Nanostring® analysis of VDR/RXRα to compare the mRNA expression of this heterodimer and their correlated transcriptomes in non-melanoma skin cancer (basal cell carcinomas (BCC) and squamous cell carcinomas (SCC)) and melanocytic lesions (intradermal nevi (IN), and melanomas (MM)) with control skin. To evaluate VDR, RXRα and other 22 correlated genes in BCC, SCC, IN and MM, paraffin samples had their transcriptomes analysed using Nanostring®, a platform that allows multiple mRNA analyses. There were 46 samples, including 11 BCC, 10 SCC, 10 IN, 12 MM and 3 pools of control skins. Most mRNAs differed between the lesion groups and the control group. BCC and SCC NCOR2 were upregulated; in MM and IN, RXRγ was higher than in the control group. TP53, FOXO3 and MED1 showed a significant difference when we compared the BCC group to the SCC group. Melanoma and intradermal nevi differed only in AhR. VDR and RXRα were lower than the control in all groups. The panel shows a clear difference between the non-melanocytic cancers and, on the other hand, a slight difference between the melanocytic lesions. The study of vitamin D's influence through its receptor and RXRα is an exciting issue for understanding the importance of this pathway, and the present study can impact the prevention and treatment strategies, mainly in non-melanocytic tumours.
Collapse
Affiliation(s)
- Juliana Polizel Ocanha-Xavier
- Department of Pathology, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
- Private Clinic (JPOX Clinic), Araçatuba, São Paulo, Brazil
| | - José Cândido Caldeira Xavier-Junior
- Department of Pathology, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
- Araçatuba Institute of Pathology, Araçatuba, São Paulo, Brazil
- Salesian Catholic University Center Auxilium (UNISALESIANO), Medical School, Araçatuba, São Paulo, Brazil
| | - Hélio Amante Miot
- Department of Dermatology, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | | | | |
Collapse
|
3
|
Doms S, Verlinden L, Janssens I, Vanhevel J, Eerlings R, Houtman R, Kato S, Mathieu C, Decallonne B, Carmeliet G, Verstuyf A. Coactivator-independent vitamin D receptor signaling causes severe rickets in mice, that is not prevented by a diet high in calcium, phosphate, and lactose. Bone Res 2024; 12:44. [PMID: 39164247 PMCID: PMC11335873 DOI: 10.1038/s41413-024-00343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/26/2024] [Accepted: 05/12/2024] [Indexed: 08/22/2024] Open
Abstract
The vitamin D receptor (VDR) plays a critical role in the regulation of mineral and bone homeostasis. Upon binding of 1α,25-dihydroxyvitamin D3 to the VDR, the activation function 2 (AF2) domain repositions and recruits coactivators for the assembly of the transcriptional machinery required for gene transcription. In contrast to coactivator-induced transcriptional activation, the functional effects of coactivator-independent VDR signaling remain unclear. In humans, mutations in the AF2 domain are associated with hereditary vitamin D-resistant rickets, a genetic disorder characterized by impaired bone mineralization and growth. In the present study, we used mice with a systemic or conditional deletion of the VDR-AF2 domain (VdrΔAF2) to study coactivator-independent VDR signaling. We confirm that ligand-induced transcriptional activation was disabled because the mutant VDRΔAF2 protein was unable to interact with coactivators. Systemic VdrΔAF2 mice developed short, undermineralized bones with dysmorphic growth plates, a bone phenotype that was more pronounced than that of systemic Vdr knockout (Vdr-/-) mice. Interestingly, a rescue diet that is high in calcium, phosphate, and lactose, normalized this phenotype in Vdr-/-, but not in VdrΔAF2 mice. However, osteoblast- and osteoclast-specific VdrΔAF2 mice did not recapitulate this bone phenotype indicating coactivator-independent VDR effects are more important in other organs. In addition, RNA-sequencing analysis of duodenum and kidney revealed a decreased expression of VDR target genes in systemic VdrΔAF2 mice, which was not observed in Vdr-/- mice. These genes could provide new insights in the compensatory (re)absorption of minerals that are crucial for bone homeostasis. In summary, coactivator-independent VDR effects contribute to mineral and bone homeostasis.
Collapse
Affiliation(s)
- Stefanie Doms
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lieve Verlinden
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Iris Janssens
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Justine Vanhevel
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Roy Eerlings
- Department of Cellular and Molecular Medicine, Laboratory of Molecular Endocrinology, KU Leuven, Leuven, Belgium
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| | | | - Shigeaki Kato
- Health Sciences Research Center, Iryo Sosei University, Iwaki, Fukuchima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukuchima, Japan
| | - Chantal Mathieu
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Brigitte Decallonne
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Annemieke Verstuyf
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Thirunavukkarasu R, Chitra A, Asirvatham A, Jayalakshmi M. Association of Vitamin D Deficiency and Vitamin D Receptor Gene Polymorphisms with Type 1 Diabetes Risk: A South Indian Familial Study. J Clin Res Pediatr Endocrinol 2024; 16:21-30. [PMID: 37559366 PMCID: PMC10938518 DOI: 10.4274/jcrpe.galenos.2023.2022-12-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/26/2023] [Indexed: 03/12/2024] Open
Abstract
Objective Vitamin D is a potent immune modulator and is associated with autoimmune diseases, including type 1 diabetes (T1D). The vitamin D levels and its receptor gene polymorphisms together in T1D are not yet investigated in the South Indian population. The present study focused on exploring the significance of vitamin D levels and vitamin D receptor (VDR) gene polymorphisms with the risk of developing T1D in the South Indian population. Methods Patients with T1D and unaffected first-degree relatives (FDRs) were included in this study. Genotyping of VDR polymorphisms at four different loci (FokI- F/f, BsmI- B/b, TaqI- T/t, and ApaI- A/a) was assessed through the amplification refractive mutation system-polymerase chain reaction method. Serum vitamin D levels were measured in 98 T1D patients and 75 age- and sex-matched siblings. Results A total of 120 patients with T1D and 214 FDRs were included. Vitamin D deficiency (VDD) was observed in a higher proportion of T1D patients than in controls (52% vs. 32%; p<0.03). The frequency of the FokI-FF genotype was significantly higher [odds ratio (OR)=1.66; p<0.03] in T1D patients conferring a susceptible association with the disease. Nevertheless, the increased frequency of heterozygous Ff genotype (OR=0.57; p<0.02) among controls may confer a protective association with T1D. Furthermore, the transmission disequilibrium test revealed over-transmission of ApaI-A (T: U=15/5; p<0.006) and BsmI-B alleles (T: U=17/5; p<0.01) and under-transmission of BsmI-b/ApaI-a/TaqI-T haplotype (T: U=5.4/14.4; p=0.04) from parents to T1D patients. Conclusion The present study concludes that VDD is the major contributing risk factor to T1D development in the South Indian population. Furthermore, the FokI-FF genotype, BsmI-B, and ApaI-A alleles were positively associated with T1D. In contrast, the FokI-Ff genotype and BsmI-b/ApaI-a/TaqI-T haplotype were negatively associated with T1D.
Collapse
Affiliation(s)
| | - Ayyappan Chitra
- Government Rajaji Hospital, Institute of Child Health and Research Centre, Madurai, India
| | | | | |
Collapse
|
5
|
Mady LJ, Zhong Y, Dhawan P, Christakos S. Role of Coactivator Associated Arginine Methyltransferase 1 (CARM1) in the Regulation of the Biological Function of 1,25-Dihydroxyvitamin D 3. Cells 2023; 12:1407. [PMID: 37408241 DOI: 10.3390/cells12101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the hormonally active form of vitamin D, activates the nuclear vitamin D receptor (VDR) to mediate the transcription of target genes involved in calcium homeostasis as well as in non-classical 1,25(OH)2D3 actions. In this study, CARM1, an arginine methyltransferase, was found to mediate coactivator synergy in the presence of GRIP1 (a primary coactivator) and to cooperate with G9a, a lysine methyltransferase, in 1,25(OH)2D3 induced transcription of Cyp24a1 (the gene involved in the metabolic inactivation of 1,25(OH)2D3). In mouse proximal renal tubule (MPCT) cells and in mouse kidney, chromatin immunoprecipitation analysis demonstrated that dimethylation of histone H3 at arginine 17, which is mediated by CARM1, occurs at Cyp24a1 vitamin D response elements in a 1,25(OH)2D3 dependent manner. Treatment with TBBD, an inhibitor of CARM1, repressed 1,25(OH)2D3 induced Cyp24a1 expression in MPCT cells, further suggesting that CARM1 is a significant coactivator of 1,25(OH)2D3 induction of renal Cyp24a1 expression. CARM1 was found to act as a repressor of second messenger-mediated induction of the transcription of CYP27B1 (involved in the synthesis of 1,25(OH)2D3), supporting the role of CARM1 as a dual function coregulator. Our findings indicate a key role for CARM1 in the regulation of the biological function of 1,25(OH)2D3.
Collapse
Affiliation(s)
- Leila J Mady
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yan Zhong
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
6
|
Meyer MB, Pike JW. Genomic mechanisms controlling renal vitamin D metabolism. J Steroid Biochem Mol Biol 2023; 228:106252. [PMID: 36657729 PMCID: PMC10006327 DOI: 10.1016/j.jsbmb.2023.106252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Vitamin D metabolism centers on regulation in the kidney of CYP27B1 induction by PTH, suppression by FGF23 and 1,25(OH)2D3, and reciprocal CYP24A1 suppression by PTH, and induction by FGF23 and 1,25(OH)2D3. This coordinated genomic regulation through enhancer modules results in the production and dynamic maintenance of circulating endocrine 1,25(OH)2D3 which, together with PTH and FGF23, controls mineral homeostasis. We discovered enhancers near Cyp27b1 in the mouse kidney located within intronic regions of Mettl1 and Mettl21b genes. These kidney-specific enhancers ("M1", "M21") control Cyp27b1. Through CRISPR/Cas deletion, we found that PTH activation of Cyp27b1 is lost with deletion of M1, whereas FGF23 suppression is lost with deletion of M21. The combination of both deletions (M1/M21-DIKO) eliminated the suppression by 1,25(OH)2D3. Cyp24a1 activation by 1,25(OH)2D3 is controlled by a promoter proximal pair of VDREs as well as a distal region - 35 to - 37 kb (DS2). We also found that FGF23 activation and PTH suppression of Cyp24a1 was located in a region - 21 to - 37 kb downstream (DS1). More recently, using in vivo ChIP-seq in mouse kidney, we demonstrate that PTH activation rapidly induces increased recruitment of pCREB and its coactivators, CBP and CRTC2, to the M1 and M21 enhancers near the Cyp27b1 gene. At distal enhancers of the Cyp24a1 gene, PTH suppression promotes dismisses CBP with only minor changes in pCREB and CRTC2 occupancy, all of which correlate with a suppression of basal histone acetylation across this locus and reduced transcripts. Surprisingly, we find that 1,25(OH)2D3 suppression increases the occupancy of CRTC2 in the M1 enhancer, a novel observation for CRTC2 and/or 1,25(OH)2D3 action. The suppressive actions of 1,25(OH)2D3 and FGF23 at the Cyp27b1 gene are associated with a reduction in CBP recruitment at these enhancers. Although FGF23-regulated transcription factors remain unknown, we hypothesize that VDR occupancy induced at the M1 and M21 enhancers by 1,25(OH)2D3 likely disrupts or competes with the active conformation of these CREB modules thereby preventing full induction by PTH. Our findings show coactivators such as CRTC2 and CBP contribute to Cyp27b1 and Cyp24a1 transcription and provide molecular insight into the coordinated mechanistic actions of PTH, FGF23, and 1,25(OH)2D3 in the kidney that regulate mineral homeostasis.
Collapse
Affiliation(s)
- Mark B Meyer
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - J Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Awasthi R, Manger PT, Khare RK. Fok I and Bsm I gene polymorphism of vitamin D receptor and essential hypertension: a mechanistic link. Clin Hypertens 2023; 29:5. [PMID: 36788562 PMCID: PMC9930263 DOI: 10.1186/s40885-022-00229-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/15/2022] [Indexed: 02/16/2023] Open
Abstract
The vitamin D receptor (VDR) gene serves as a good candidate gene for susceptibility to essential hypertension. The gene regulates the renin angiotensin system by influencing blood pressure regulation. Around 3% of the human genome is regulated by the vitamin D endocrine system. Several studies have reported mixed results with respect to relationship of VDR gene and hypertension. Observational evidence supports the concept that vitamin D plays a role in the pathogenesis of cardiovascular disease and arterial hypertension which is further supported by meta-analysis and case control studies reporting how VDR polymorphism leads to the onset and development of hypertension. In this review, we summarize the existing literature on the link between VDR and hypertension, including mechanistic studies, observational data, and clinical trials showing relationship of vitamin D level and hypertension with a focus on recent findings related to genetic studies that showed the relationship of VDR gene polymorphism with vitamin D level in hypertensive and normotensive groups. As a result, determining the association of VDR polymorphisms with essential hypertension is expected to aid in the risk assessment for the condition.
Collapse
Affiliation(s)
- Richa Awasthi
- grid.411723.20000 0004 1756 4240Department of Biochemistry, Integral Institute of Medical Sciences and Research, Integral University, Lucknow, India
| | - Priyanka Thapa Manger
- Department of Biochemistry, Integral Institute of Medical Sciences and Research, Integral University, Lucknow, India.
| | - Rajesh Kumar Khare
- grid.411723.20000 0004 1756 4240Department of Medicine, Integral Institute of Medical Sciences and Research, Integral University, Lucknow, India
| |
Collapse
|
8
|
Transcriptional Regulation of Hepatic Autophagy by Nuclear Receptors. Cells 2022; 11:cells11040620. [PMID: 35203271 PMCID: PMC8869834 DOI: 10.3390/cells11040620] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Autophagy is an adaptive self-eating process involved in degradation of various cellular components such as carbohydrates, lipids, proteins, and organelles. Its activity plays an essential role in tissue homeostasis and systemic metabolism in response to diverse challenges, including nutrient depletion, pathogen invasion, and accumulations of toxic materials. Therefore, autophagy dysfunctions are intimately associated with many human diseases such as cancer, neurodegeneration, obesity, diabetes, infection, and aging. Although its acute post-translational regulation is well described, recent studies have also shown that autophagy can be controlled at the transcriptional and post-transcriptional levels. Nuclear receptors (NRs) are in general ligand-dependent transcription factors consisting of 48 members in humans. These receptors extensively control transcription of a variety of genes involved in development, metabolism, and inflammation. In this review, we discuss the roles and mechanisms of NRs in an aspect of transcriptional regulation of hepatic autophagy, and how the NR-driven autophagy pathway can be harnessed to treat various liver diseases.
Collapse
|
9
|
Pike JW, Meyer MB. New Approaches to Assess Mechanisms of Action of Selective Vitamin D Analogues. Int J Mol Sci 2021; 22:ijms222212352. [PMID: 34830234 PMCID: PMC8619157 DOI: 10.3390/ijms222212352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/28/2022] Open
Abstract
Recent studies of transcription have revealed an advanced set of overarching principles that govern vitamin D action on a genome-wide scale. These tenets of vitamin D transcription have emerged as a result of the application of now well-established techniques of chromatin immunoprecipitation coupled to next-generation DNA sequencing that have now been linked directly to CRISPR-Cas9 genomic editing in culture cells and in mouse tissues in vivo. Accordingly, these techniques have established that the vitamin D hormone modulates sets of cell-type specific genes via an initial action that involves rapid binding of the VDR-ligand complex to multiple enhancer elements at open chromatin sites that drive the expression of individual genes. Importantly, a sequential set of downstream events follows this initial binding that results in rapid histone acetylation at these sites, the recruitment of additional histone modifiers across the gene locus, and in many cases, the appearance of H3K36me3 and RNA polymerase II across gene bodies. The measured recruitment of these factors and/or activities and their presence at specific regions in the gene locus correlate with the emerging presence of cognate transcripts, thereby highlighting sequential molecular events that occur during activation of most genes both in vitro and in vivo. These features provide a novel approach to the study of vitamin D analogs and their actions in vivo and suggest that they can be used for synthetic compound evaluation and to select for novel tissue- and gene-specific features. This may be particularly useful for ligand activation of nuclear receptors given the targeting of these factors directly to genetic sites in the nucleus.
Collapse
Affiliation(s)
- John Wesley Pike
- Correspondence: ; Tel.: +1-(608)-262-8229; Fax: +1-(608)-263-7609
| | | |
Collapse
|
10
|
Farcas AM, Nagarajan S, Cosulich S, Carroll JS. Genome-Wide Estrogen Receptor Activity in Breast Cancer. Endocrinology 2021; 162:bqaa224. [PMID: 33284960 PMCID: PMC7787425 DOI: 10.1210/endocr/bqaa224] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 12/13/2022]
Abstract
The largest subtype of breast cancer is characterized by the expression and activity of the estrogen receptor alpha (ERalpha/ER). Although several effective therapies have significantly improved survival, the adaptability of cancer cells means that patients frequently stop responding or develop resistance to endocrine treatment. ER does not function in isolation and multiple associating factors have been reported to play a role in regulating the estrogen-driven transcriptional program. This review focuses on the dynamic interplay between some of these factors which co-occupy ER-bound regulatory elements, their contribution to estrogen signaling, and their possible therapeutic applications. Furthermore, the review illustrates how some ER association partners can influence and reprogram the genomic distribution of the estrogen receptor. As this dynamic ER activity enables cancer cell adaptability and impacts the clinical outcome, defining how this plasticity is determined is fundamental to our understanding of the mechanisms of disease progression.
Collapse
Affiliation(s)
- Anca M Farcas
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Sankari Nagarajan
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Jason S Carroll
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Belorusova AY, Bourguet M, Hessmann S, Chalhoub S, Kieffer B, Cianférani S, Rochel N. Molecular determinants of MED1 interaction with the DNA bound VDR-RXR heterodimer. Nucleic Acids Res 2020; 48:11199-11213. [PMID: 32990725 PMCID: PMC7641746 DOI: 10.1093/nar/gkaa775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022] Open
Abstract
The MED1 subunit of the Mediator complex is an essential coactivator of nuclear receptor-mediated transcriptional activation. While structural requirements for ligand-dependent binding of classical coactivator motifs of MED1 to numerous nuclear receptor ligand-binding domains have been fully elucidated, the recognition of the full-length or truncated coactivator by full nuclear receptor complexes remain unknown. Here we present structural details of the interaction between a large part of MED1 comprising its structured N-terminal and the flexible receptor-interacting domains and the mutual heterodimer of the vitamin D receptor (VDR) and the retinoid X receptor (RXR) bound to their cognate DNA response element. Using a combination of structural and biophysical methods we show that the ligand-dependent interaction between VDR and the second coactivator motif of MED1 is crucial for complex formation and we identify additional, previously unseen, interaction details. In particular, we identified RXR regions involved in the interaction with the structured N-terminal domain of MED1, as well as VDR regions outside the classical coactivator binding cleft affected by coactivator recruitment. These findings highlight important roles of each receptor within the heterodimer in selective recognition of MED1 and contribute to our understanding of the nuclear receptor-coregulator complexes.
Collapse
Affiliation(s)
- Anna Y Belorusova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Maxime Bourguet
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Steve Hessmann
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Sandra Chalhoub
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Bruno Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
12
|
Xiao Y, Kim M, Lazar MA. Nuclear receptors and transcriptional regulation in non-alcoholic fatty liver disease. Mol Metab 2020; 50:101119. [PMID: 33220489 PMCID: PMC8324695 DOI: 10.1016/j.molmet.2020.101119] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As a result of a sedentary lifestyle and excess food consumption in modern society, non-alcoholic fatty liver disease (NAFLD) characterized by fat accumulation in the liver is becoming a major disease burden. Non-alcoholic steatohepatitis (NASH) is an advanced form of NAFLD characterized by inflammation and fibrosis that can lead to hepatocellular carcinoma and liver failure. Nuclear receptors (NRs) are a family of ligand-regulated transcription factors that closely control multiple aspects of metabolism. Their transcriptional activity is modulated by various ligands, including hormones and lipids. NRs serve as potential pharmacological targets for NAFLD/NASH and other metabolic diseases. SCOPE OF REVIEW In this review, we provide a comprehensive overview of NRs that have been studied in the context of NAFLD/NASH with a focus on their transcriptional regulation, function in preclinical models, and studies of their clinical utility. MAJOR CONCLUSIONS The transcriptional regulation of NRs is context-dependent. During the dynamic progression of NAFLD/NASH, NRs play diverse roles in multiple organs and different cell types in the liver, which highlights the necessity of targeting NRs in a stage-specific and cell-type-specific manner to enhance the efficacy and safety of treatment methods.
Collapse
Affiliation(s)
- Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mindy Kim
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Moena D, Nardocci G, Acevedo E, Lian J, Stein G, Stein J, Montecino M. Ezh2-dependent H3K27me3 modification dynamically regulates vitamin D3-dependent epigenetic control of CYP24A1 gene expression in osteoblastic cells. J Cell Physiol 2020; 235:5404-5412. [PMID: 31907922 DOI: 10.1002/jcp.29428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/22/2023]
Abstract
Epigenetic control is critical for the regulation of gene transcription in mammalian cells. Among the most important epigenetic mechanisms are those associated with posttranslational modifications of chromosomal histone proteins, which modulate chromatin structure and increased accessibility of promoter regulatory elements for competency to support transcription. A critical histone mark is trimethylation of histone H3 at lysine residue 27 (H3K27me3), which is mediated by Ezh2, the catalytic subunit of the polycomb group complex PRC2 to repress transcription. Treatment of cells with the active vitamin D metabolite 1,25(OH)2 D3 , results in transcriptional activation of the CYP24A1 gene, which encodes a 24-hydroxylase enzyme, that is, essential for physiological control of vitamin D3 levels. We report that the Ezh2-mediated deposition of H3K27me3 at the CYP24A1 gene promoter is a requisite regulatory component during transcriptional silencing of this gene in osteoblastic cells in the absence of 1,25(OH)2 D3 . 1,25(OH)2 D3 dependent transcriptional activation of the CYP24A1 gene is accompanied by a rapid release of Ezh2 from the promoter, together with the binding of the H3K27me3-specific demethylase Utx/Kdm6a and thereby subsequent erasing of the H3K27me3 mark. Importantly, we find that these changes in H3K27me3 enrichment at the CYP24A1 gene promoter are highly dynamic, as this modification is rapidly reacquired following the withdrawal of 1,25(OH)2 D3 .
Collapse
Affiliation(s)
- Daniel Moena
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Concepcion, Chile
| | - Gino Nardocci
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Elvis Acevedo
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Jane Lian
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Gary Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Janet Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Martin Montecino
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
14
|
Moena D, Merino P, Lian JB, Stein GS, Stein JL, Montecino M. Switches in histone modifications epigenetically control vitamin D3-dependent transcriptional upregulation of the CYP24A1 gene in osteoblastic cells. J Cell Physiol 2019; 235:5328-5339. [PMID: 31868234 DOI: 10.1002/jcp.29420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 01/17/2023]
Abstract
In bone cells vitamin D dependent regulation of gene expression principally occurs through modulation of gene transcription. Binding of the active vitamin D metabolite, 1,25-dihydroxy vitamin D3 (1,25(OH)2 D3 ) to the vitamin D receptor (VDR) induces conformational changes in its C-terminal domain enabling competency for interaction with physiologically relevant coactivators, including SRC-1. Consequently, regulatory complexes can be assembled that support intrinsic enzymatic activities with competency to posttranslationally modify chromatin histones at target genomic sequences to epigenetically alter transcription. Here we examine specific transitions in representation and/or enrichment of epigenetic histone marks during 1,25(OH)2 D3 mediated upregulation of CYP24A1 gene expression in osteoblastic cells. This gene encodes the 24-hydroxylase enzyme, essential for biological control of vitamin D levels. We demonstrate that as the CYP24A1 gene promoter remains transcriptionally silent, there is enrichment of H4R3me2s together with its "writing" enzyme PRMT5 and decreased abundance of the istone H3 and H4 acetylation, H3R17me2a, and H4R3me2a marks as well as of their corresponding "writers." Exposure of osteoblastic cells to 1,25(OH)2 D3 stimulates the recruitment of a VDR/SRC-1 containing complex to the CYP24A1 promoter to mediate increased H3/H4 acetylation. VDR/SRC-1 binding occurs concomitant with the release of PRMT5 and the recruitment of the arginine methyltransferases CARM1 and PRMT1 to catalyze the deposition of the H3R17me2a and H4R3me2a marks, respectively. Our results indicate that these dynamic transitions of histone marks at the CYP24A1 promoter, provide a "chromatin context" that is transcriptionally competent for activation of the CYP24A1 gene in osteoblastic cells in response to 1,25(OH)2 D3 .
Collapse
Affiliation(s)
- Daniel Moena
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Universidad Andres Bello-Santiago, Santiago, Chile.,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello-Concepcion, Santiago, Chile
| | - Paola Merino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Universidad Andres Bello-Santiago, Santiago, Chile
| | - Jane B Lian
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Janet L Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Martin Montecino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Universidad Andres Bello-Santiago, Santiago, Chile
| |
Collapse
|
15
|
Meyer MB, Lee SM, Carlson AH, Benkusky NA, Kaufmann M, Jones G, Pike JW. A chromatin-based mechanism controls differential regulation of the cytochrome P450 gene Cyp24a1 in renal and non-renal tissues. J Biol Chem 2019; 294:14467-14481. [PMID: 31439663 DOI: 10.1074/jbc.ra119.010173] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/08/2019] [Indexed: 12/18/2022] Open
Abstract
Cytochrome P450 family 27 subfamily B member 1 (CYP27B1) and CYP24A1 function to maintain physiological levels of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in the kidney. Renal Cyp27b1 and Cyp24a1 expression levels are transcriptionally regulated in a highly reciprocal manner by parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and 1,25(OH)2D3 In contrast, Cyp24a1 regulation in nonrenal target cells (NRTCs) is limited to induction by 1,25(OH)2D3 Herein, we used ChIP-Seq analyses of mouse tissues to identify regulatory regions within the Cyp24a1 gene locus. We found an extended region downstream of Cyp24a1 containing a cluster of sites, termed C24-DS1, binding PTH-sensitive cAMP-responsive element-binding protein (CREB) and a cluster termed C24-DS2 binding the vitamin D receptor (VDR). VDR-occupied sites were present in both the kidney and NRTCs, but pCREB sites were occupied only in the kidney. We deleted each segment in the mouse and observed that although the overt phenotypes of both cluster deletions were unremarkable, RNA analysis in the C24-DS1-deleted strain revealed a loss of basal renal Cyp24a1 expression, total resistance to FGF23 and PTH regulation, and secondary suppression of renal Cyp27b1; 1,25(OH)2D3 induction remained unaffected in all tissues. In contrast, loss of the VDR cluster in the C24-DS2-deleted strain did not affect 1,25(OH)2D3 induction of renal Cyp24a1 expression yet reduced but did not eliminate Cyp24a1 responses in NRTCs. We conclude that a chromatin-based mechanism differentially regulates Cyp24a1 in the kidney and NRTCs and is essential for the specific functions of Cyp24a1 in these two tissue types.
Collapse
Affiliation(s)
- Mark B Meyer
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Seong Min Lee
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Alex H Carlson
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Nancy A Benkusky
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Martin Kaufmann
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, Ontario K7L 3N6, Canada.,Department of Surgery, Queens University, Kingston, Ontario K7L 3N6, Canada
| | - Glenville Jones
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, Ontario K7L 3N6, Canada
| | - J Wesley Pike
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
16
|
Mutchie TR, Yu OB, Di Milo ES, Arnold LA. Alternative binding sites at the vitamin D receptor and their ligands. Mol Cell Endocrinol 2019; 485:1-8. [PMID: 30654005 PMCID: PMC6444937 DOI: 10.1016/j.mce.2019.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/04/2019] [Accepted: 01/11/2019] [Indexed: 01/02/2023]
Abstract
In recent decades, the majority of ligands developed for the vitamin D receptor (VDR) bind at its deeply buried genomic ligand binding pocket. Theses ligands can be categorized into agonists and partial agonists/antagonists. A limited number of ligands, most of them peptides, bind the VDR‒coactivator binding site that is formed in the presence of an agonist and inhibit coactivator recruitment, and therefore transcription. Another solvent exposed VDR‒ligand binding pocket was identified for lithocholic acid, improving the overall stability of the VDR complex. Additional proposed interactions with VDR are discussed herein that include the alternative VDR‒ligand binding pocket that may mediate both non-genomic cellular responses and binding function 3 that was identified for the androgen receptor. Many VDR ligands increase blood calcium levels at therapeutic concentrations in vivo, thus the identification of alternative VDR‒ligand binding pockets might be crucial to develop non-calcemic and potent ligands for VDR to treat cancer and inflammatory disease.
Collapse
Affiliation(s)
- Tania R Mutchie
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Olivia B Yu
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Elliot S Di Milo
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, Milwaukee, WI, 53211, USA.
| |
Collapse
|
17
|
Differential expression of vitamin D associated genes in the aorta of coronary artery disease patients with and without rheumatoid arthritis. PLoS One 2018; 13:e0202346. [PMID: 30138371 PMCID: PMC6107153 DOI: 10.1371/journal.pone.0202346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/31/2018] [Indexed: 12/27/2022] Open
Abstract
Background Vitamin D has an important role in the immune system, and has been linked to rheumatoid arthritis (RA) and coronary artery disease (CAD). The exact mechanisms by which vitamin D is involved in these processes are still unclear. Therefore, we wanted to search for differences in expression of genes involved in the vitamin D receptor (VDR) activation pathway and genes that are known to alter upon vitamin D stimulation, in the aortic adventitia of CAD patients with and without RA. Methods Affymetrix microarray was used to determine gene expression profile in surgical specimens from the adventitia of the ascending aorta of CAD patients with RA (n = 8) and without RA (n = 8) from the Feiring Heart Biopsy Study. Results We identified three vitamin D associated genes that were differentially expressed between RA and non-RA patients: Growth arrest and DNA-damage-inducible protein 45 alpha (GADD45A) (FC = 1.47; p = 0.006), Nuclear Receptor Co-repressor 1 (NCOR1) (FC = 1,21; p = 0.005) and paraoxonases 2 (PON2) (FC = -1.37; p = 0.01). High expression of GADD45A in RA tissues was confirmed by real-time qRT-PCR. GADD45A expression correlated with plasma levels of 1,25(OH)2D3 (rs = 0.69; p = 0.003). Conclusions Microarray analyses revealed higher expression of GADD45A and NCOR1; and lower expression of PON2 in the aortic adventitia of RA than non-RA patients. Further studies are needed to elucidate if and how GADD45A, NCOR1 and PON2 are involved in the development of accelerated atherosclerosis in RA. In theory, some of these factors might have proatherogenic effects whereas others might reflect an underlying vascular pathology promoting atherogenesis (such as vascular stress).
Collapse
|
18
|
Lu M, Taylor BV, Körner H. Genomic Effects of the Vitamin D Receptor: Potentially the Link between Vitamin D, Immune Cells, and Multiple Sclerosis. Front Immunol 2018; 9:477. [PMID: 29593729 PMCID: PMC5857605 DOI: 10.3389/fimmu.2018.00477] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/22/2018] [Indexed: 12/12/2022] Open
Abstract
Vitamin D has a plethora of functions that are important for the maintenance of general health and in particular, the functional integrity of the immune system, such as promoting an anti-inflammatory cytokine profile and reducing the Treg/Th17 ratio. Multiple sclerosis (MS) is a chronic, inflammatory, and neurodegenerative central nervous system (CNS) disorder of probable autoimmune origin. MS is characterized by recurring or progressive demyelination and degeneration of the CNS due in part to a misguided immune response to as yet undefined (CNS) antigens, potentially including myelin basic protein and proteolipid protein. MS has also been shown to be associated significantly with environmental factors such as the lack of vitamin D. The role of vitamin D in the pathogenesis and progression of MS is complex. Recent genetic studies have shown that various common MS-associated risk-single-nucleotide polymorphisms (SNPs) are located within or in the vicinity of genes associated with the complex metabolism of vitamin D. The functional aspects of these genetic associations may be explained either by a direct SNP-associated loss- or gain-of-function in a vitamin D-associated gene or due to a change in the regulation of gene expression in certain immune cell types. The development of new genetic tools using next-generation sequencing: e.g., chromatin immunoprecipitation sequencing (ChIP-seq) and the accompanying rapid progress of epigenomics has made it possible to recognize that the association between vitamin D and MS could be based on the extensive and characteristic genomic binding of the vitamin D receptor (VDR). Therefore, it is important to analyze comprehensively the spatiotemporal VDR binding patterns that have been identified using ChIP-seq in multiple immune cell types to reveal an integral profile of genomic VDR interaction. In summary, the aim of this review is to connect genomic effects vitamin D has on immune cells with MS and thus, to contribute to a better understanding of the influence of vitamin D on the etiology and the pathogenesis of this complex autoimmune disease.
Collapse
Affiliation(s)
- Ming Lu
- Menzies Institute for Medical Research Tasmania, Hobart, TAS, Australia
| | - Bruce V. Taylor
- Menzies Institute for Medical Research Tasmania, Hobart, TAS, Australia
| | - Heinrich Körner
- Menzies Institute for Medical Research Tasmania, Hobart, TAS, Australia
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Engineering Technology Research Center of Anti-inflammatory and Immunodrugs in Anhui Province, Hefei, China
| |
Collapse
|
19
|
Yang D, Anderson PH, Wijenayaka AR, Barratt KR, Triliana R, Stapledon CJM, Zhou H, Findlay DM, Morris HA, Atkins GJ. Both ligand and VDR expression levels critically determine the effect of 1α,25-dihydroxyvitamin-D 3 on osteoblast differentiation. J Steroid Biochem Mol Biol 2018; 177:83-90. [PMID: 28887147 DOI: 10.1016/j.jsbmb.2017.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/08/2017] [Accepted: 09/05/2017] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that 1α,25-dihydroxyvitamin D3 (1,25D) through vitamin D receptor (VDR) signalling has both catabolic and anabolic effects on osteoblast differentiation. However, the mechanism of these differential effects by 1,25D is not fully understood. In this study, mice with three different genetic backgrounds, representing a normal VDR level (wild-type, WT), VDR over-expression specifically in mature osteoblasts (ObVDR-B6) and global VDR knockout (VDRKO), were utilised to generate primary osteoblast-like cultures to further elucidate the effects of 1,25D on osteoblast differentiation. Our data confirm the importance of VDR in the late stage of osteogenic differentiation and also for the expression of factors critical for osteoblastic support of osteoclast formation. This study also demonstrates the differential effects of a pharmacological level of 1,25D (1nM) on the expression of osteogenic differentiation markers, including Ocn and Sost, depending on the relative level of VDR. Our findings suggest that 1,25D plays an inhibitory role in matrix mineralisation, possibly through the modulation of the tissue non-specific alkaline phosphatase to ectonucleotide pyrophosphatase/phosphodiesterase 1 axis, in a VDR level-dependent manner. We conclude that the relative VDR level and the 1,25D availability to cells, are important co-determinants for whether 1,25D plays a promoting or suppressive role in osteoblast-mediated osteogenic activity.
Collapse
Affiliation(s)
- Dongqing Yang
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia; Discipline of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Paul H Anderson
- Discipline of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia; Musculoskeletal Biology Research, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Asiri R Wijenayaka
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kate R Barratt
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia; Musculoskeletal Biology Research, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Rahma Triliana
- Musculoskeletal Biology Research, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Catherine J M Stapledon
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, 2139, Australia
| | - David M Findlay
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Howard A Morris
- Discipline of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia; Endocrine Bone Research, Chemical Pathology, SA Pathology, Adelaide, SA, 5000, Australia; Musculoskeletal Biology Research, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Gerald J Atkins
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
20
|
Abstract
The central role of hormonal 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] is to regulate calcium and phosphorus homeostasis via actions in intestine, kidney, and bone. These and other actions in many cell types not involved in mineral metabolism are mediated by the vitamin D receptor. Recent studies using genome-wide scale techniques have extended fundamental ideas regarding vitamin D-mediated control of gene expression while simultaneously revealing a series of new concepts. This article summarizes the current view of the biological actions of the vitamin D hormone and focuses on new concepts that drive the understanding of the mechanisms through which vitamin D operates.
Collapse
Affiliation(s)
- J Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Biochem Addition, Room 543D, 433 Babcock Drive, Madison, WI 53706, USA.
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
21
|
Abstract
The vitamin D receptor (VDR) binds the secosteroid hormone 1,25(OH)2D3 with high affinity and regulates gene programs that control a serum calcium levels, as well as cell proliferation and differentiation. A significant focus has been to exploit the VDR in cancer settings. Although preclinical studies have been strongly encouraging, to date clinical trials have delivered equivocal findings that have paused the clinical translation of these compounds. However, it is entirely possible that mining of genomic data will help to refine precisely what are the key anticancer actions of vitamin D compounds and where these can be used most effectively.
Collapse
Affiliation(s)
- Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, 536 Parks Hall, Columbus, OH 43210, USA.
| | - Donald L Trump
- Department of Medicine, Inova Schar Cancer Institute, Virginia Commonwealth University, 3221 Gallows Road, Fairfax, VA 22031, USA
| |
Collapse
|
22
|
Abstract
ZBTB transcription factors orchestrate gene transcription during tissue development. However, their roles in glioblastoma (GBM) remain unexplored. Here, through a functional screening of ZBTB genes, we identify that BCL6 is required for GBM cell viability and that BCL6 overexpression is associated with worse prognosis. In a somatic transgenic mouse model, depletion of Bcl6 inhibits the progression of KrasG12V-driven high-grade glioma. Transcriptome analysis demonstrates the involvement of BCL6 in tumor protein p53 (TP53), erythroblastic leukemia viral oncogene homolog (ErbB), and MAPK signaling pathways. Indeed, BCL6 represses the expression of wild-type p53 and its target genes in GBM cells. Knockdown of BCL6 augments the activation of TP53 pathway in response to radiation. Importantly, we discover that receptor tyrosine kinase AXL is a transcriptional target of BCL6 in GBM and mediates partially the regulatory effects of BCL6 on both MEK-ERK (mitogen-activated protein/extracellular signal-regulated kinase kinase-extracellular signal-regulated kinase) and S6K-RPS6 (ribosomal protein S6 kinase-ribosomal protein S6) axes. Similar to BCL6 silencing, depletion of AXL profoundly attenuates GBM proliferation both in vitro and in vivo. Moreover, targeted inhibition of BCL6/nuclear receptor corepressor 1 (NCoR) complex by peptidomimetic inhibitor not only significantly decreases AXL expression and the activity of MEK-ERK and S6K-RPS6 cascades but also displays a potent antiproliferative effect against GBM cells. Together, these findings uncover a glioma-promoting role of BCL6 and provide the rationale of targeting BCL6 as a potential therapeutic approach.
Collapse
|
23
|
Mano H, Nishikawa M, Yasuda K, Ikushiro S, Saito N, Sawada D, Honzawa S, Takano M, Kittaka A, Sakaki T. Novel screening system for high-affinity ligand of heredity vitamin D-resistant rickets-associated vitamin D receptor mutant R274L using bioluminescent sensor. J Steroid Biochem Mol Biol 2017; 167:61-66. [PMID: 27864003 DOI: 10.1016/j.jsbmb.2016.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/25/2016] [Accepted: 11/13/2016] [Indexed: 11/20/2022]
Abstract
Hereditary vitamin D-resistant rickets (HVDRR) is caused by mutations in the vitamin D receptor (VDR) gene. Arg274 located in the ligand binding domain (LBD) of VDR is responsible for anchoring 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) by forming a hydrogen bond with the 1α-hydroxyl group of 1α,25(OH)2D3. The Arg274Leu (R274L) mutation identified in patients with HVDRR causes a 1000-fold decrease in the affinity for 1α,25(OH)2D3, and dramatically reduces vitamin D- related gene expression. Recently, we successfully constructed fusion proteins consisting of split-luciferase and LBD of the VDR. The chimeric protein LucC-LBD-LucN, which displays the C-terminal domain of luciferase (LucC) at its N-terminus, can detect and discriminate between VDR agonists and antagonists. The LucC-LBD (R274L)-LucN was constructed to screen high-affinity ligands for the mutant VDR (R274L). Of the 33 vitamin D analogs, 5 showed much higher affinities for the mutant VDR (R274L) than 1α,25(OH)2D3, and 2α-[2-(tetrazol-2-yl)ethyl]-1α,25-(OH)2D3 showed the highest affinity. These compounds might be potential therapeutics for HVDRR caused by the mutant VDR (R274L).
Collapse
Affiliation(s)
- Hiroki Mano
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Imizu Institute, Topu Bio Research Co., Ltd, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kaori Yasuda
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Nozomi Saito
- Faculty of Pharmaceutical Sciences, Teikyo University, Itabashi, Tokyo 173-8605, Japan
| | - Daisuke Sawada
- Faculty of Pharmaceutical Sciences, Teikyo University, Itabashi, Tokyo 173-8605, Japan
| | - Shinobu Honzawa
- Faculty of Pharmaceutical Sciences, Teikyo University, Itabashi, Tokyo 173-8605, Japan
| | - Masashi Takano
- Faculty of Pharmaceutical Sciences, Teikyo University, Itabashi, Tokyo 173-8605, Japan
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, Itabashi, Tokyo 173-8605, Japan
| | - Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Imizu Institute, Topu Bio Research Co., Ltd, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
24
|
Pike JW, Meyer MB, Lee SM, Onal M, Benkusky NA. The vitamin D receptor: contemporary genomic approaches reveal new basic and translational insights. J Clin Invest 2017; 127:1146-1154. [PMID: 28240603 DOI: 10.1172/jci88887] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The vitamin D receptor (VDR) is the single known regulatory mediator of hormonal 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] in higher vertebrates. It acts in the nucleus of vitamin D target cells to regulate the expression of genes whose products control diverse, cell type-specific biological functions that include mineral homeostasis. In this Review we describe progress that has been made in defining new cellular sites of action of this receptor, the mechanisms through which this mediator controls the expression of genes, the biology that ensues, and the translational impact of this receptor on human health and disease. We conclude with a brief discussion of what comes next in understanding vitamin D biology and the mechanisms that underlie its actions.
Collapse
|
25
|
Vitamin D receptor regulates autophagy in the normal mammary gland and in luminal breast cancer cells. Proc Natl Acad Sci U S A 2017; 114:E2186-E2194. [PMID: 28242709 PMCID: PMC5358377 DOI: 10.1073/pnas.1615015114] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Epidemiological evidence suggests that vitamin D can protect women from developing breast cancer (BC). This study reveals that vitamin D and its receptor regulate autophagy in both normal mammary epithelial cells and luminal BCs, and suggests a potential mechanism underlying the link between vitamin D levels and BC risk. In addition, this work suggests that vitamin D receptor ligands could be exploited therapeutically for the treatment of a significant subset of BCs. Women in North America have a one in eight lifetime risk of developing breast cancer (BC), and a significant proportion of these individuals will develop recurrent BC and will eventually succumb to the disease. Metastatic, therapy-resistant BC cells are refractory to cell death induced by multiple stresses. Here, we document that the vitamin D receptor (VDR) acts as a master transcriptional regulator of autophagy. Activation of the VDR by vitamin D induces autophagy and an autophagic transcriptional signature in BC cells that correlates with increased survival in patients; strikingly, this signature is present in the normal mammary gland and is progressively lost in patients with metastatic BC. A number of epidemiological studies have shown that sufficient vitamin D serum levels might be protective against BC. We observed that dietary vitamin D supplementation in mice increases basal levels of autophagy in the normal mammary gland, highlighting the potential of vitamin D as a cancer-preventive agent. These findings point to a role of vitamin D and the VDR in modulating autophagy and cell death in both the normal mammary gland and BC cells.
Collapse
|
26
|
Abstract
Hypertension (HTN) or high blood pressure is one of the most chronic and deadliest disorders in the world. There are many risk factors responsible for HTN which include age, race, using tobacco, high salt intake, etc. One of the risk factors we would like to highlight is low vitamin D levels. While there is strong evidence that Vitamin D plays an important role in maintaining bone and muscle health, there has been recent debate regarding its role in hypertension. However, there are many studies that have shown an indirect relation between 25-hydroxyvitamin D serum level and blood pressure. However, we suggest that more studies, especially randomised trials, should be conducted.
Collapse
Affiliation(s)
- Varshil Mehta
- Department of Cardiology, Mount Sinai Hospital, New York, USA
| | - Shivika Agarwal
- Department of Forensic Medicine, ESIC Medical College, Faridabad, India
| |
Collapse
|
27
|
Pike JW, Meyer MB, Benkusky NA, Lee SM, St John H, Carlson A, Onal M, Shamsuzzaman S. Genomic Determinants of Vitamin D-Regulated Gene Expression. VITAMINS AND HORMONES 2015; 100:21-44. [PMID: 26827947 DOI: 10.1016/bs.vh.2015.10.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insight into mechanisms that link the actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to the regulation of gene expression has evolved extensively since the initial discovery of a nuclear protein known as the vitamin D receptor (VDR). Perhaps most important was the molecular cloning of this receptor which enabled its inclusion within the nuclear receptor gene family and further studies of both its structure and regulatory function. Current studies are now refocused on the vitamin D hormone's action at the genome, where VDR together with other transcription factors coordinates the recruitment of chromatin active coregulatory complexes that participate directly in the modification of gene output. These studies highlight the role of chromatin in the expression of genes and the dynamic impact of the epigenetic landscape that contextualizes individual gene loci thus influencing the VDR's transcriptional actions. In this chapter, we summarize advances made over the past few years in understanding vitamin D action on a genome-wide scale, focusing on overarching principles that have emerged at this level. Of particular significance is the finding that dynamic changes that occur to the genome during cellular differentiation at both genetic and epigenetic levels profoundly alter the ability of 1,25(OH)2D3 and its receptor to regulate gene expression. We address the broad impact of differentiation on specific epigenetic histone modifications that occur across the genome and the ability of the VDR to influence this activity at selected gene loci as well. These studies advance our understanding of not only vitamin D action but also of the complex and dynamic role played by the genome itself as a major determinant of VDR activity.
Collapse
Affiliation(s)
- J Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | - Mark B Meyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nancy A Benkusky
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Seong Min Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hillary St John
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alex Carlson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Melda Onal
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sohel Shamsuzzaman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
28
|
Relationship between Structure and Conformational Change of the Vitamin D Receptor Ligand Binding Domain in 1α,25-Dihydroxyvitamin D3 Signaling. Molecules 2015; 20:20473-86. [PMID: 26593892 PMCID: PMC6332228 DOI: 10.3390/molecules201119713] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/02/2015] [Accepted: 11/11/2015] [Indexed: 12/24/2022] Open
Abstract
Vitamin D Receptor (VDR) belongs to the nuclear receptor (NR) superfamily. Whereas the structure of the ligand binding domain (LBD) of VDR has been determined in great detail, the role of its amino acid residues in stabilizing the structure and ligand triggering conformational change is still under debate. There are 13 α-helices and one β-sheet in the VDR LBD and they form a three-layer sandwich structure stabilized by 10 residues. Thirty-six amino acid residues line the ligand binding pocket (LBP) and six of these residues have hydrogen-bonds linking with the ligand. In 1α,25-dihydroxyvitamin D3 signaling, H3 and H12 play an important role in the course of conformational change resulting in the provision of interfaces for dimerization, coactivator (CoA), corepressor (CoR), and hTAFII 28. In this paper we provide a detailed description of the amino acid residues stabilizing the structure and taking part in conformational change of VDR LBD according to functional domains.
Collapse
|
29
|
Chen S, Sun Y, Agrawal DK. Vitamin D deficiency and essential hypertension. JOURNAL OF THE AMERICAN SOCIETY OF HYPERTENSION : JASH 2015; 9:885-901. [PMID: 26419755 PMCID: PMC4641765 DOI: 10.1016/j.jash.2015.08.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/14/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022]
Abstract
Essential hypertension (EH) results when the balance between vasoconstriction and vasodilation is shifted in favor of vasoconstriction. This balance is controlled by the interaction of genetic and epigenetic factors. When there is an unstable balance, vitamin D deficiency as an epigenetic factor triggers a shift to the side of vasoconstriction. In this article, we critically analyze clinical findings on the effect of vitamin D on blood pressure, combined with progress in molecular mechanisms. We find that vitamin D repletion exerts a clinically significant antihypertensive effect in vitamin D-deficient EH patients. Of note, a few trials reported no antihypertensive effect from vitamin D due to suboptimal study design. Short-term vitamin D supplementation has no effect on blood pressure in normotensive subjects. This could explain the mixed results and may provide a theoretical basis for future trials to identify beneficial effects of vitamin D in intervention for EH.
Collapse
Affiliation(s)
- Songcang Chen
- Center for Clinical & Translational Science and Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA.
| | - Yingxian Sun
- Department of Cardiology, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Devendra K Agrawal
- Center for Clinical & Translational Science and Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
30
|
Mano H, Nishikawa M, Yasuda K, Ikushiro S, Saito N, Takano M, Kittaka A, Sakaki T. Development of Novel Bioluminescent Sensor to Detect and Discriminate between Vitamin D Receptor Agonists and Antagonists in Living Cells. Bioconjug Chem 2015; 26:2038-45. [DOI: 10.1021/acs.bioconjchem.5b00433] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroki Mano
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Miyu Nishikawa
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Imizu
Institute, TOPU BIO RESEARCH Co., Ltd, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kaori Yasuda
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinichi Ikushiro
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Nozomi Saito
- Faculty
of Pharmaceutical Sciences, Teikyo University, Itabashi, Tokyo 173-8605, Japan
| | - Masashi Takano
- Faculty
of Pharmaceutical Sciences, Teikyo University, Itabashi, Tokyo 173-8605, Japan
| | - Atsushi Kittaka
- Faculty
of Pharmaceutical Sciences, Teikyo University, Itabashi, Tokyo 173-8605, Japan
| | - Toshiyuki Sakaki
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Imizu
Institute, TOPU BIO RESEARCH Co., Ltd, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
31
|
Perspective on unraveling the versatility of ‘co-repressor’ complexes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1051-6. [DOI: 10.1016/j.bbagrm.2015.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/23/2015] [Accepted: 06/26/2015] [Indexed: 01/01/2023]
|
32
|
Abstract
Apart from its classical function in bone and calcium metabolism, vitamin D is also involved in immune regulation and has been linked to various cancers, immune disorders and allergic diseases. Within the innate and adaptive immune systems, the vitamin D receptor and enzymes in monocytes, dendritic cells, epithelial cells, T lymphocytes and B lymphocytes mediate the immune modulatory actions of vitamin D. Vitamin D insufficiency/deficiency early in life has been identified as one of the risk factors for food allergy. Several studies have observed an association between increasing latitude and food allergy prevalence, plausibly linked to lower ultraviolet radiation (UVR) exposure and vitamin D synthesis in the skin. Along with mounting epidemiological evidence of a link between vitamin D status and food allergy, mice and human studies have shed light on the modulatory properties of vitamin D on the innate and adaptive immune systems. This review will summarize the literature on the metabolism and immune modulatory properties of vitamin D, with particular reference to food allergy.
Collapse
|
33
|
Lee SM, Riley EM, Meyer MB, Benkusky NA, Plum LA, DeLuca HF, Pike JW. 1,25-Dihydroxyvitamin D3 Controls a Cohort of Vitamin D Receptor Target Genes in the Proximal Intestine That Is Enriched for Calcium-regulating Components. J Biol Chem 2015; 290:18199-18215. [PMID: 26041780 DOI: 10.1074/jbc.m115.665794] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 12/15/2022] Open
Abstract
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) plays an integral role in calcium homeostasis in higher organisms through its actions in the intestine, kidney, and skeleton. Interestingly, although several intestinal genes are known to play a contributory role in calcium homeostasis, the entire caste of key components remains to be identified. To examine this issue, Cyp27b1 null mice on either a normal or a high calcium/phosphate-containing rescue diet were treated with vehicle or 1,25(OH)2D3 and evaluated 6 h later. RNA samples from the duodena were then subjected to RNA sequence analysis, and the data were analyzed bioinformatically. 1,25(OH)2D3 altered expression of large collections of genes in animals under either dietary condition. 45 genes were found common to both 1,25(OH)2D3-treated groups and were composed of genes previously linked to intestinal calcium uptake, including S100g, Trpv6, Atp2b1, and Cldn2 as well as others. An additional distinct network of 56 genes was regulated exclusively by diet. We then conducted a ChIP sequence analysis of binding sites for the vitamin D receptor (VDR) across the proximal intestine in vitamin D-sufficient normal mice treated with vehicle or 1,25(OH)2D3. The residual VDR cistrome was composed of 4617 sites, which was increased almost 4-fold following hormone treatment. Interestingly, the majority of the genes regulated by 1,25(OH)2D3 in each diet group as well as those found in common in both groups contained frequent VDR sites that likely regulated their expression. This study revealed a global network of genes in the intestine that both represent direct targets of vitamin D action in mice and are involved in calcium absorption.
Collapse
Affiliation(s)
- Seong Min Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Erin M Riley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Mark B Meyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Nancy A Benkusky
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Lori A Plum
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Hector F DeLuca
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - J Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706.
| |
Collapse
|
34
|
Bellan M, Pirisi M, Sainaghi PP. Osteoporose na artrite reumatoide: papel do sistema vitamina D/hormônio paratireóideo. REVISTA BRASILEIRA DE REUMATOLOGIA 2015; 55:256-63. [DOI: 10.1016/j.rbr.2014.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/10/2014] [Accepted: 10/06/2014] [Indexed: 01/30/2023] Open
|
35
|
Zhou R, Chun RF, Lisse TS, Garcia AJ, Xu J, Adams JS, Hewison M. Vitamin D and alternative splicing of RNA. J Steroid Biochem Mol Biol 2015; 148:310-7. [PMID: 25447737 PMCID: PMC4361308 DOI: 10.1016/j.jsbmb.2014.09.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 02/07/2023]
Abstract
The active form of vitamin D (1α,25-dihydroxyvitamin D, 1,25(OH)2D) exerts its genomic effects via binding to a nuclear high-affinity vitamin D receptor (VDR). Recent deep sequencing analysis of VDR binding locations across the complete genome has significantly expanded our understanding of the actions of vitamin D and VDR on gene transcription. However, these studies have also promoted appreciation of the extra-transcriptional impact of vitamin D on gene expression. It is now clear that vitamin D interacts with the epigenome via effects on DNA methylation, histone acetylation, and microRNA generation to maintain normal biological functions. There is also increasing evidence that vitamin D can influence pre-mRNA constitutive splicing and alternative splicing, although the mechanism for this remains unclear. Pre-mRNA splicing has long been thought to be a post-transcription RNA processing event, but current data indicate that this occurs co-transcriptionally. Several steroid hormones have been recognized to coordinately control gene transcription and pre-mRNA splicing through the recruitment of nuclear receptor co-regulators that can both control gene transcription and splicing. The current review will discuss this concept with specific reference to vitamin D, and the potential role of heterogeneous nuclear ribonucleoprotein C (hnRNPC), a nuclear factor with an established function in RNA splicing. hnRNPC, has been shown to be involved in the VDR transcriptional complex as a vitamin D-response element-binding protein (VDRE-BP), and may act as a coupling factor linking VDR-directed gene transcription with RNA splicing. In this way hnRNPC may provide an additional mechanism for the fine-tuning of vitamin D-regulated target gene expression. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.
Collapse
Affiliation(s)
- Rui Zhou
- UCLA Orthopaedic Hospital, Department of Orthopaedic Surgery, Orthopaedic Hospital, University of California at Los Angeles, Los Angeles, CA 90095, USA; Department of Orthopaedics, the Orthopedic Surgery Center of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Rene F Chun
- UCLA Orthopaedic Hospital, Department of Orthopaedic Surgery, Orthopaedic Hospital, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas S Lisse
- Mount Desert Island Biological Laboratory, 159 Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - Alejandro J Garcia
- UCLA Orthopaedic Hospital, Department of Orthopaedic Surgery, Orthopaedic Hospital, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jianzhong Xu
- Department of Orthopaedics, the Orthopedic Surgery Center of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - John S Adams
- UCLA Orthopaedic Hospital, Department of Orthopaedic Surgery, Orthopaedic Hospital, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Martin Hewison
- UCLA Orthopaedic Hospital, Department of Orthopaedic Surgery, Orthopaedic Hospital, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
36
|
Pike JW, Meyer MB. Fundamentals of vitamin D hormone-regulated gene expression. J Steroid Biochem Mol Biol 2014; 144 Pt A:5-11. [PMID: 24239506 PMCID: PMC4144817 DOI: 10.1016/j.jsbmb.2013.11.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/24/2013] [Accepted: 11/05/2013] [Indexed: 12/20/2022]
Abstract
Initial research focused upon several known genetic targets provided early insight into the mechanism of action of the vitamin D hormone (1,25-dihydroxyvitamin D3 (1,25(OH)2D3)). Recently, however, a series of technical advances involving the coupling of chromatin immunoprecipitation (ChIP) to unbiased methodologies that initially involved tiled DNA microarrays (ChIP-chip analysis) and now Next Generation DNA Sequencing techniques (ChIP-seq analysis) has opened new avenues of research into the mechanisms through which 1,25(OH)2D3 regulates gene expression. In this review, we summarize briefly the results of this early work and then focus on more recent studies in which ChIP-chip and ChIP-seq analyses have been used to explore the mechanisms of 1,25(OH)2D3 action on a genome-wide scale providing specific target genes as examples. The results of this work have advanced our understanding of the mechanisms involved at both genetic and epigenetic levels and have revealed a series of new principles through which the vitamin D hormone functions to control the expression of genes. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.
Collapse
Affiliation(s)
- J Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States.
| | - Mark B Meyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| |
Collapse
|
37
|
Meyer MB, Benkusky NA, Lee CH, Pike JW. Genomic determinants of gene regulation by 1,25-dihydroxyvitamin D3 during osteoblast-lineage cell differentiation. J Biol Chem 2014; 289:19539-54. [PMID: 24891508 DOI: 10.1074/jbc.m114.578104] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The biological effects of 1α,25-dihydroxyvitamin D3 (1,25 (OH)2D3) on osteoblast differentiation and function differ significantly depending upon the cellular state of maturation. To explore this phenomenon mechanistically, we examined the impact of 1,25(OH)2D3 on the transcriptomes of both pre-osteoblastic (POBs) and differentiated osteoblastic (OBs) MC3T3-E1 cells, and assessed localization of the vitamin D receptor (VDR) at sites of action on a genome-scale using ChIP sequence analysis. We observed that the 1,25(OH)2D3-induced transcriptomes of POBs and OBs were quantitatively and qualitatively different, supporting not only the altered biology observed but the potential for a change in VDR interaction at the genome as well. This idea was confirmed through discovery that VDR cistromes in POBs and OBs were also strikingly different. Depletion of VDR-binding sites in OBs, due in part to reduced VDR expression, was the likely cause of the loss of VDR-target gene interaction. Continued novel regulation by 1,25(OH)2D3, however, suggested that factors in addition to the VDR might also be involved. Accordingly, we show that transcriptomic modifications are also accompanied by changes in genome binding of the master osteoblast regulator RUNX2 and the chromatin remodeler CCAAT/enhancer-binding protein β. Importantly, genome occupancy was also highlighted by the presence of epigenetic enhancer signatures that were selectively changed in response to both differentiation and 1,25(OH)2D3. The impact of VDR, RUNX2, and C/EBPβ on osteoblast differentiation is exemplified by their actions at the Runx2 and Sp7 gene loci. We conclude that each of these mechanisms may contribute to the diverse actions of 1,25(OH)2D3 on differentiating osteoblasts.
Collapse
Affiliation(s)
- Mark B Meyer
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Nancy A Benkusky
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Chang-Hun Lee
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - J Wesley Pike
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
38
|
St John HC, Bishop KA, Meyer MB, Benkusky NA, Leng N, Kendziorski C, Bonewald LF, Pike JW. The osteoblast to osteocyte transition: epigenetic changes and response to the vitamin D3 hormone. Mol Endocrinol 2014; 28:1150-65. [PMID: 24877565 DOI: 10.1210/me.2014-1091] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Osteocytes are derived from osteoblast lineage cells that become progressively embedded in mineralized bone. Development of the osteocytogenic cell line IDG-SW3 has enabled a temporal and mechanistic investigation of this process. Through RNA-sequencing analyses, we show that although substantial changes in gene expression occur during the osteoblast to osteocyte transition, the majority of the transcriptome remains qualitatively osteoblast like. Genes either up-regulated or expressed uniquely in the osteocyte include local and systemic factors such as Sost and Fgf23 as well as genes implicated in neuronal, muscle, vascular, or regulatory function. As assessed by chromatin immunoprecipitation coupled to high-throughput sequencing, numerous changes in epigenetic histone modifications also occur during osteocytogenesis; these are largely qualitative rather than quantitative. Specific epigenetic changes correlate with altered gene expression patterns that are observed during the transition. These genomic changes likely influence the highly restricted transcriptomic response to 1,25(OH)(2)D(3) that occurs during differentiation. VDR binding in osteocytes revealed an extensive cistrome co-occupied by retinoid X receptor and located predominantly at sites distal to regulated genes. Although sites of VDR binding were apparent near many 1,25(OH)(2)D(3)-regulated genes, the expression of others adjacent to VDR-binding sites were unaffected; lack of VDR binding was particularly prevalent at down-regulated genes. Interestingly, 1,25(OH)(2)D(3) was found to induce the Boc and Cdon coreceptors that are active in hedgehog signaling in osteocytes. We conclude that osteocytogenesis is accompanied by changes in gene expression that may be driven by both genetic and epigenetic components. These changes are likely responsible for the osteocyte phenotype and may contribute to reduced sensitivity to 1,25(OH)(2)D(3).
Collapse
Affiliation(s)
- Hillary C St John
- Department of Biochemistry (H.C.S., K.A.B., M.B.M., N.A.B., J.W.P.) and Department of Biostatistics (N.L., C.K.), University of Wisconsin-Madison, Madison, Wisconsin 53706; and Department of Oral Biology (L.F.B.), School of Dentistry, University of Missouri, Kansas City, Missouri 6410
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Malloy PJ, Feldman BJ. Cell-autonomous regulation of brown fat identity gene UCP1 by unliganded vitamin D receptor. Mol Endocrinol 2013; 27:1632-42. [PMID: 23906633 DOI: 10.1210/me.2013-1037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
White adipose tissue stores energy in the form of lipids, and brown adipose tissue expends energy via uncoupled fatty acid oxidation, which leads to the generation of heat. Obesity reflects an imbalance between energy storage and energy expenditure and is strongly associated with metabolic and cardiovascular disease. Therefore, there are important medical and biological implications for elucidating the mechanisms that promote energy expenditure in humans. Animal models with altered vitamin D receptor (VDR) expression have changes in energy expenditure. However, the specific mechanism for this effect has not been elucidated and the relevance for humans is unclear. Here we show, using human patient samples from individuals with hereditary vitamin D resistant rickets, that the VDR directly inhibits the expression of uncoupling protein-1 (UCP1), the critical protein for uncoupling fatty acid oxidation in brown fat and burning energy. The inhibition is enforced by VDR occupancy of a negative response element in the promoter proximal region of the UCP1 gene. Deletion of VDR increases UCP1 expression and results in a "browning" of adipocytes. Importantly, we found that this process occurs cell autonomously and is independent of the physiologic VDR hormone ligand, 1,25-dihydroxyvitamin D. These results identify a mechanism for modulating energy balance in humans.
Collapse
Affiliation(s)
- Peter J Malloy
- Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, California 94305-5457.
| | | |
Collapse
|