1
|
Keshavarzi Z, Amiresmaili S, Nazari M, Jafari E, Chahkandi M, Sindhu RK. Synergistic effects of auraptene and 17-β estradiol on traumatic brain injury treatment: oxidant/antioxidant status, inflammatory cytokines and pathology. Int J Neurosci 2024; 134:1477-1489. [PMID: 37815366 DOI: 10.1080/00207454.2023.2269478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE Despite significant advances that have been made in the treatment of traumatic brain injury (TBI), it remains a global health issue. This study aimed to investigate the synergistic effects of 17-β estradiol (E2) and auraptene (AUR) on TBI treatment. METHODS In total, 70 adult male Wistar rats were divided randomly into ten main groups: Sham, TBI, TBI + DMSO, TBI + AUR (4 mg/kg), TBI + AUR (8 mg/kg), TBI + AUR (25 mg/kg), TBI + E2 group, TBI + AUR (4 mg/kg) + E2 group, TBI + AUR (8 mg/kg) + E2 group and TBI + AUR (25 mg/kg) + E2 group. Diffuse TBI was caused by the Marmarou process in male rats. The brain's tissues were harvested to check the parameters of oxidative stress and levels of inflammatory cytokine. RESULTS The finding revealed that TBI induced a significant increase in brain edema, pro-inflammatory cytokines and oxidant levels [MDA and NO], and also a decrease in the brain's antioxidant biomarkers [GPx, SOD]. We also found that E2 and AUR (25 mg/kg) significantly preserved the levels of these biomarkers. The combination of AUR concentrations and E2 showed that this treatment efficiently preserved the levels of these biomarkers. Furthermore, the combination of E2 and AUR (25 mg/kg) c could cause the most effective synergistic interaction. CONCLUSION AUR could act synergistically with E2 to treat brain injury complications.
Collapse
Affiliation(s)
- Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Masoud Nazari
- College of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohadeseh Chahkandi
- Department of Physiology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rakesh K Sindhu
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| |
Collapse
|
2
|
Kim DS, Oh MJ, Kim SH. Alliin Induces Reconstitution of Testes Damaged by Estrogen Overstimulation by Regulating Apoptosis. Curr Issues Mol Biol 2024; 46:13021-13034. [PMID: 39590370 PMCID: PMC11593322 DOI: 10.3390/cimb46110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
We analyzed the effect of alliin on the recovery of mouse testicular function and structure following estradiol treatment as well as on apoptosis regulation. During the cultivation of testicular cells, high-concentration estradiol suppressed Casp-3; PCNA, mTOR, and PI3K signaling increased; and cell proliferation in the testes was abnormally increased. Therefore, estradiol treatment increased the proportion of abnormal cells. The estradiol and 2.5 μM of alliin treatment increased Casp-3 levels and suppressed Bcl-2, PCNA, mTOR, and PI3K expression. Additionally, treatment with estradiol caused tissue loss. Furthermore, Ca2+ deposition decreased, TNF-r protein expression increased, and the levels of other protein markers of cell survival and death decreased. Tissue recovery and restoration of the testes occurred after alliin treatment; the gene expression of cell survival and death markers, except for TNF-r, increased with increasing Ca2+ deposition. Cell proliferation and tissue reorganization may correlate with an increased signal of intrinsic apoptosis owing to increased Ca2+ deposition. Therefore, treatment with alliin may regulate the apoptosis of cells with normal or abnormal signal transduction and help to revert testicular dysfunction.
Collapse
Affiliation(s)
- Dae-Seung Kim
- Institute of Applied Humanimal Science, Hankyong National University, 327, Jungang-ro, Unsung 17579, Gyeonggi-do, Republic of Korea;
- General Graduate School of Animal Life Convergence Science, Hankyong National University, 327, Jungang-ro, Ansung 17579, Gyeonggi-do, Republic of Korea;
| | - Min-Jee Oh
- General Graduate School of Animal Life Convergence Science, Hankyong National University, 327, Jungang-ro, Ansung 17579, Gyeonggi-do, Republic of Korea;
| | - Sang-Hwan Kim
- Institute of Applied Humanimal Science, Hankyong National University, 327, Jungang-ro, Unsung 17579, Gyeonggi-do, Republic of Korea;
- School of Animal Life Convergence Science, Hankyong National University, 327, Jungang-ro, Ansung 17579, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Moreira-Pais A, Ferreira R, Baltazar T, Neuparth MJ, Vitorino R, Reis-Mendes A, Costa VM, Oliveira PA, Duarte JA. Long-term effects of the chronic administration of doxorubicin on aged skeletal muscle: An exploratory study in mice. Biochem Biophys Res Commun 2024; 733:150650. [PMID: 39255618 DOI: 10.1016/j.bbrc.2024.150650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
The widely used chemotherapeutic drug doxorubicin (DOX) has been associated with adverse effects on the skeletal muscle, which can persist for years after the end of the treatment. These adverse effects may be exacerbated in older patients, whose skeletal muscle might already be impaired by aging. Nonetheless, the mediators responsible for DOX-induced myotoxicity are still largely unidentified, particularly the ones involved in the long-term effects that negatively affect the quality of life of the patients. Therefore, this study aimed to investigate the long-term effects of the chronic administration of DOX on the soleus muscle of aged mice. For that and to mimic the clinical regimen, a dose of 1.5 mg kg-1 of DOX was administered two times per week for three consecutive weeks in a cumulative dose of 9 mg kg-1 to 19-month-old male mice, which were sacrificed two months after the last administration. Body wasting and the atrophy of the soleus muscle, as measured by a decrease in the cross-sectional area of the soleus muscle fibers, were identified as long-term effects of DOX administration. The atrophy observed was correlated with increased reactive oxygen species production and caspase-3 activity. An impaired skeletal muscle regeneration was also suggested due to the correlation between satellite cells activation and the soleus muscle fibers atrophy. Systemic inflammation, skeletal muscle energy metabolism and neuromuscular junction-related markers do not appear to be involved in the long-term DOX-induced skeletal muscle atrophy. The data provided by this study shed light on the mediators involved in the overlooked long-term DOX-induced myotoxicity, paving the way to the improvement of the quality of life and survival rates of older cancer patients.
Collapse
Affiliation(s)
- Alexandra Moreira-Pais
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP) and Laboratory for Integrative and Translational Research in Population Health (ITR), 4200-450, Porto, Portugal; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal; Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Telmo Baltazar
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Maria João Neuparth
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP) and Laboratory for Integrative and Translational Research in Population Health (ITR), 4200-450, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal.
| | - Rui Vitorino
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Ana Reis-Mendes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Paula A Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - José A Duarte
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal.
| |
Collapse
|
4
|
Moreira S, Martins AD, Alves MG, Pastor LM, Seco-Rovira V, Oliveira PF, Pereira MDL. Aminocarb Exposure Induces Cytotoxicity and Endoplasmic Reticulum Stress-Mediated Apoptosis in Mouse Sustentacular Sertoli Cells: Implications for Male Infertility and Environmental Health. BIOLOGY 2024; 13:721. [PMID: 39336148 PMCID: PMC11429014 DOI: 10.3390/biology13090721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Exposure to pesticides, poses a significant threat to male fertility by compromising crucial cells involved in spermatogenesis. Aminocarb, is a widely used carbamate insecticide, although its detrimental effects on the male reproductive system, especially on sustentacular Sertoli cells, pivotal for spermatogenesis, remains poorly understood. In this study, we investigated the effects of escalating concentrations of aminocarb on a mouse Sertoli cell line, TM4. Assessments included cytotoxic analysis, mitochondrial biogenesis and membrane potential, expression of apoptotic proteins, caspase-3 activity, and oxidative stress evaluation. Our findings revealed a dose-dependent reduction in the proliferation and viability of TM4 cells following exposure to increasing concentrations of aminocarb. Notably, exposure to 5 μM of aminocarb induced depolarization of mitochondria membrane potential, and a significant decrease in the ratio of phosphorylated eIF2α to total eIF2α, suggesting heightened endoplasmic reticulum stress via the activation of the eIF2α pathway. Moreover, the same aminocarb concentration was demonstrated to increase both caspase-3 protein levels and activity, indicating an apoptotic induction. Collectively, our results demonstrate that aminocarb serves as an apoptotic inducer for mouse sustentacular Sertoli cells in vitro, suggesting its potential to modulate independent pathways of the apoptotic cascade. These findings underscore the deleterious impact of aminocarb on spermatogenic performance and male fertility, highlighting the urgent need for further investigation into its mechanisms of action and mitigation strategies to safeguard male fertility.
Collapse
Affiliation(s)
- Sílvia Moreira
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- CICECO-Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana D Martins
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marco G Alves
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luis Miguel Pastor
- Departamento de Biología Celular e Histología, Faculdad de Medicina, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30120 Murcia, Spain
| | - Vicente Seco-Rovira
- Departamento de Biología Celular e Histología, Faculdad de Medicina, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30120 Murcia, Spain
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria de Lourdes Pereira
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- CICECO-Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Zeng J, Ge W, Duan H, Lv J, Ding Z, Wang W, Zhang Y, Zhao X, Hu J. Effect of dihydrotestosterone on melatonin secretion and the expression of melatonin receptors and apoptosis-related factors in sheep epididymides. Reprod Domest Anim 2022; 57:1244-1254. [PMID: 35775862 DOI: 10.1111/rda.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/28/2022] [Indexed: 12/01/2022]
Abstract
Melatonin (MEL) is involved in homeostasis of the epididymis lumen environment. Dihydrotestosterone (DHT) partakes in the development of gonads and organs in male animals. However, whether MEL secretion, the expression of its receptors, MT1 and MT2, and sheep epididymal epithelial cell apoptosis is regulated by DHT remains unclear. In this study, we used immunohistochemical staining to detect the distribution patterns of DHT synthetases [5α-reductase (5α-red)] and its androgen receptor (AR) in sheep epididymides. 5α-red1, 5α-red2, and AR were positively expressed in sperm, epididymal epithelial cells, and the smooth muscle cells of the caput, corpus, and cauda regions of the epididymis. DHT concentration and the expression levels of 5α-red and AR in the caput, corpus, and cauda regions were measured by enzyme-linked immunosorbent assay, liquid chromatography-mass spectrometry, real-time quantitative polymerase chain reaction, and western blot analysis. DHT concentration in the caput was significantly higher than those in corpus and cauda, probably because of the high expression of 5α-red2 in the caput and secretion and transport of DHT by the testicles. DHT inhibited MEL secretion, the expression of its membrane receptors, and MEL synthetases in cultured sheep epididymal epithelial cells in vitro. In addition, the Bax/Bcl-2 ratio, ACT CASP3, and caspase-3 mRNA expression were also decreased. The decreasing effect was partially reversed after flutamide treatment. Therefore, DHT regulates sheep epididymal function by influencing MEL expression and apoptosis-related factors. This study provides basic data for further research on the reproductive physiology of male animals.
Collapse
Affiliation(s)
- Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Wenbo Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Jianshu Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Ziqiang Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Wenjuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| |
Collapse
|
6
|
Kim M, Kim YS, Choi JI, Kim JM, Lee HH, Kim TH. G protein-coupled estrogen receptor 1 expression in normal myometrium, leiomyoma, and adenomyosis tissues of premenopausal women. Gynecol Endocrinol 2020; 36:599-604. [PMID: 32321334 DOI: 10.1080/09513590.2020.1751108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To verify the different expression of G protein-coupled estrogen receptor 1 (GPER1) among normal uterine, leiomyoma, and adenomyosis tissues. Normal uterine, leiomyoma, and adenomyosis tissue samples were obtained from women aged 35-52 years from a tertiary university hospital. The tissue samples were subjected to immunohistochemical, Western blot, and reverse-transcription polymerase chain reaction (RT-PCR) analyses of GPER1. GPER1 protein expression was confirmed in the tissues by immunohistochemical and Western blot analyses and compared with GPER1 mRNA levels using RT-PCR. GPER1 was detected in the tissue samples of leiomyoma and adenomyosis, which are estrogen-dependent diseases. GPER1 expression was similar between normal uterine and leiomyoma tissues but was reduced in adenomyosis tissue. The level of phosphorylated extracellular signal-regulated kinases 1/2 was lower and higher in leiomyoma and adenomyosis tissues, respectively, than in normal tissue, but the differences among the groups were not statistically significant. Our immunohistochemical, Western blot, and RT-PCR results suggest that GPER1 expression is involved in cell proliferation in leiomyoma and in cell invasion and migration in adenomyosis. Functional studies of GPER1 involving larger sample sizes should be performed to confirm the adenomyosis and leiomyoma disease mechanisms and eventually to develop new therapeutic interventions for these diseases.
Collapse
Affiliation(s)
- Mijin Kim
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang University Graduate School, Asan, Republic of Korea
| | - Yeon-Suk Kim
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang University Graduate School, Asan, Republic of Korea
| | - Jeong In Choi
- Department of Obstetrics and Gynecology, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Jun-Mo Kim
- Department of Urology, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Hae-Hyeog Lee
- Department of Obstetrics and Gynecology, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Tae-Hee Kim
- Department of Obstetrics and Gynecology, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| |
Collapse
|
7
|
Azarniad R, Razi M, Hasanzadeh S, Malekinejad H. Experimental diabetes negatively affects the spermatogonial stem cells' self-renewal by suppressing GDNF network interactions. Andrologia 2020; 52:e13710. [PMID: 32539191 DOI: 10.1111/and.13710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 01/09/2023] Open
Abstract
The present study was done to analyse the time-dependent effects of diabetes on Sertoli cells-spermatogonial stem cells' (SSCs) network interaction by focusing on glial cell line-derived neurotrophic factor (GDNF) and its special receptors, gfrα1 and c-RET as well as the Bcl-6b. In total, 40 Wistar rats were considered in; control, 20, 45 and 60 days diabetes-induced groups. An experimental diabetes was induced by STZ. The GDNF, gfrα1, c-RET and Bcl-6b expressions were evaluated. The serum level of testosterone, tubular repopulation (RI) and spermiogenesis (SPI) indices, general histological alterations, germ cells, mRNA damage, sperm count and viability were assessed. The diabetes, in a time-dependent manner, diminished mRNA and protein levels of GDNF, gfrα1, c-RET and Bcl-6b versus control group (p < .05), enhanced percentage of seminiferous tubules with negative RI, SPI, and diminished Leydig and Sertoli cells distribution, serum levels of testosterone, sperm count and viability. Finally, the number, percentage of cells and seminiferous tubules with normal mRNA content were significantly (p < .05) diminished. In conclusion, as a new data, we showed that the diabetes by inducing severe mRNA damage and suppressing GDNF, gfrα1, c-RET and Bcl-6b expressions, potentially affects the Sertoli-SSCs' network and consequently inhibits the SSCs' self-renewal process.
Collapse
Affiliation(s)
- Rozita Azarniad
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mazdak Razi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Shapour Hasanzadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.,Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
8
|
Martins AD, Jarak I, Morais T, Carvalho RA, Oliveira PF, Monteiro MP, Alves MG. Caloric restriction alters the hormonal profile and testicular metabolome, resulting in alterations of sperm head morphology. Am J Physiol Endocrinol Metab 2020; 318:E33-E43. [PMID: 31770015 DOI: 10.1152/ajpendo.00355.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Energy homeostasis is crucial for all physiological processes. Thus, when there is low energy intake, negative health effects may arise, including in reproductive function. We propose to study whether caloric restriction (CR) changes testicular metabolic profile and ultimately sperm quality. Male Wistar rats (n = 12) were randomized into a CR group fed with 30% fewer calories than weight-matched, ad libitum-fed animals (control group). Circulating hormonal profile, testicular glucagon-like peptide-1 (GLP-1), ghrelin and leptin receptors expression, and sperm parameters were analyzed. Testicular metabolite abundance and glycolysis-related enzymes were studied by NMR and Western blot, respectively. Oxidative stress markers were analyzed in testicular tissue and spermatozoa. Expressions of mitochondrial complexes and mitochondrial biogenesis in testes were determined. CR induced changes in body weight along with altered GLP-1, ghrelin, and leptin circulating levels. In testes, CR led to changes in receptor expression that followed those of the hormone levels; modified testicular metabolome, particularly amino acid content; and decreased oxidative stress-induced damage in testis and spermatozoa, although sperm head defects increased. In sum, CR induced changes in body weight, altering circulating hormonal profile and testicular metabolome and increasing sperm head defects. Ultimately, our data highlight that conditions of CR may compromise male fertility.
Collapse
Affiliation(s)
- Ana D Martins
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (UMIB-ICBAS), University of Porto, Porto, Portugal
| | - Ivana Jarak
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (UMIB-ICBAS), University of Porto, Porto, Portugal
| | - Tiago Morais
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (UMIB-ICBAS), University of Porto, Porto, Portugal
- Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rui A Carvalho
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (UMIB-ICBAS), University of Porto, Porto, Portugal
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Mariana P Monteiro
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (UMIB-ICBAS), University of Porto, Porto, Portugal
- Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Obesity and Bariatric Services and Centre for Obesity Research, University College of London Hospitals, UCL, London, United Kingdom
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (UMIB-ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Zhang X, Lin J, Ma Y, Zhao J. Overexpression of E74-Like Factor 5 (ELF5) Inhibits Migration and Invasion of Ovarian Cancer Cells. Med Sci Monit 2019; 25:856-865. [PMID: 30696803 PMCID: PMC6364457 DOI: 10.12659/msm.913058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background E74-like factor 5 (ELF5) plays a key role in the processes of cell differentiation, apoptosis, and occurrence of tumors. However, the effect of ELF5 on metastasis and invasion in human ovarian cancer remains poorly understood. Material/Methods Quantitative real-time polymerase chain reaction (qPCR) was performed to measure the expression of ELF5. The viability of cells was detected by cell counting kit (CCK-8). Cell apoptosis was tested by flow cytometry. Matrigel plug angiogenesis assay was employed to determine angiogenesis rate. The protein expression levels of vascular endothelial growth factor (VEGF), cleaved caspase-3, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), E-cadherin, N-cadherin, Snail, phosphoinositide 3 kinase (PI3K), phosphorylated (p)-PI3K, tyrosine kinase B (AKT), and phosphorylated (p)-AKT were determined by Western blot. Wound-healing assay and Transwell were used to determine invasion and migration. Results We found that expression of ELF5 was obviously decreased in ovarian cancer cell lines. The cells viability, invasion and metastasis were inhibited by overexpression ELF5. ELF5 suppressed angiogenesis rate and the expression of VEGF. Changes of the expressions of Bcl-2, cleaved caspase-3 and Bax showed that anti-apoptosis ability was improved by ELF5. ELF5 also repressed N-cadherin and Snail and increased E-cadherin. The expressions of p-PI3K and p-AKT were decreased by ELF5. Further study showed that IGF-I reversed the inhibitory effect of ELF5 on growth and metastasis of SKOV3 cells. Conclusions Overexpression of ELF5 promoted the apoptosis and reduced the migration and invasion of ovarian cancer cells; therefore, it could provide a new approach to gene treatment of ovarian carcinoma.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Gynecology, Chengyang People's Hospital, Qingdao, Shandong, China (mainland)
| | - Jing Lin
- Department of Gynecology, Chengyang People's Hospital, Qingdao, Shandong, China (mainland)
| | - Yanping Ma
- Department of Geriatrics, Chengyang People's Hospital, Qingdao, Shandong, China (mainland)
| | - Jiali Zhao
- Department of Gynecology, Dezhou Women's and Children's Hospital, Qingdao, Shandong, China (mainland)
| |
Collapse
|
10
|
Orozco-Hernández L, Gutiérrez-Gómez AA, SanJuan-Reyes N, Islas-Flores H, García-Medina S, Galar-Martínez M, Dublán-García O, Natividad R, Gómez-Oliván LM. 17β-Estradiol induces cyto-genotoxicity on blood cells of common carp (Cyprinus carpio). CHEMOSPHERE 2018; 191:118-127. [PMID: 29031051 DOI: 10.1016/j.chemosphere.2017.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/18/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
17β-Estradiol, a natural hormone present at high concentrations in aquatic ecosystems, affects and modifies endocrine function in animals. In recent years research workers have expressed concern over its potential effects on aquatic organisms; however, little is known about its capacity to induce genetic damage or the pro-apoptotic effects of such damage on fish. Therefore, this study aimed to evaluate 17β-estradiol-induced cyto-genotoxicity in blood cells of the common carp Cyprinus carpio exposed to different concentrations (1 ng, 1 μg and 1 mg L-1). Peripheral blood samples were collected and evaluated by comet assay, micronucleus test, determination of caspase-3 activity and TUNEL assay at 12, 24, 48, 72 and 96 h of exposure. Increases in frequency of micronuclei, TUNEL-positive cells and caspase-3 activity were observed, particularly at the highest concentration. In contrast, the comet assay detected significant increases at 24 and 96 h with the 1 μg and 1 ng L-1 concentrations respectively. The set of assays used in the present study constitutes a reliable early warning biomarker for evaluating the toxicity induced by this type of emerging contaminants on aquatic species.
Collapse
Affiliation(s)
- Luis Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Adriana Andrea Gutiérrez-Gómez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu S/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700, Ciudad de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu S/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700, Ciudad de México, Mexico
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Reyna Natividad
- Chemical Engineering Lab., Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano, Toluca, Estado de México, 50200, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico.
| |
Collapse
|
11
|
The role of prostate tumor overexpressed 1 in cancer progression. Oncotarget 2017; 8:12451-12471. [PMID: 28029646 PMCID: PMC5355357 DOI: 10.18632/oncotarget.14104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/14/2016] [Indexed: 12/15/2022] Open
|
12
|
Zanatta AP, Brouard V, Gautier C, Goncalves R, Bouraïma-Lelong H, Mena Barreto Silva FR, Delalande C. Interactions between oestrogen and 1α,25(OH) 2-vitamin D 3 signalling and their roles in spermatogenesis and spermatozoa functions. Basic Clin Androl 2017; 27:10. [PMID: 28491323 PMCID: PMC5421336 DOI: 10.1186/s12610-017-0053-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/16/2017] [Indexed: 02/07/2023] Open
Abstract
Oestrogens and 1α,25(OH)2-vitamin D3 (1,25-D3) are steroids that can provide effects by binding to their receptors localised in the cytoplasm and in the nucleus or the plasma membrane respectively inducing genomic and non-genomic effects. As confirmed notably by invalidation of the genes, coding for their receptors as tested with mice with in vivo and in vitro treatments, oestrogens and 1,25-D3 are regulators of spermatogenesis. Moreover, some functions of ejaculated spermatozoa as viability, DNA integrity, motility, capacitation, acrosome reaction and fertilizing ability are targets for these hormones. The studies conducted on their mechanisms of action, even though not completely elicited, have allowed the demonstration of putative interactions between their signalling pathways that are worth examining more closely. The present review focuses on the elements regulated by oestrogens and 1,25-D3 in the testis and spermatozoa as well as the interactions between the signalling pathways of both hormones.
Collapse
Affiliation(s)
- Ana Paula Zanatta
- INRA, OeReCa, Normandie University, UNICAEN, 14000 Caen, France.,Biochemistry Department, Laboratory of Hormones & Signal Transduction, UFSC, Florianópolis, Brazil
| | - Vanessa Brouard
- INRA, OeReCa, Normandie University, UNICAEN, 14000 Caen, France
| | - Camille Gautier
- INRA, OeReCa, Normandie University, UNICAEN, 14000 Caen, France
| | - Renata Goncalves
- INRA, OeReCa, Normandie University, UNICAEN, 14000 Caen, France.,Biochemistry Department, Laboratory of Hormones & Signal Transduction, UFSC, Florianópolis, Brazil
| | | | | | - Christelle Delalande
- INRA, OeReCa, Normandie University, UNICAEN, 14000 Caen, France.,Laboratoire Œstrogènes, Reproduction, Cancer (OeReCa), EA 2608 USC INRA1377, Université de Caen Normandie, Esplanade de la Paix, CS 14032, 14032 CAEN cedex 5, France
| |
Collapse
|
13
|
Leavy M, Trottmann M, Liedl B, Reese S, Stief C, Freitag B, Baugh J, Spagnoli G, Kölle S. Effects of Elevated β-Estradiol Levels on the Functional Morphology of the Testis - New Insights. Sci Rep 2017; 7:39931. [PMID: 28045098 PMCID: PMC5206739 DOI: 10.1038/srep39931] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/28/2016] [Indexed: 11/29/2022] Open
Abstract
Elevated estradiol levels are correlated with male infertility. Causes of hyperestrogenism include diseases of the adrenal cortex, testis or medications affecting the hypothalamus-pituitary-gonadal axis. The aim of our study was to elucidate the effects of estradiol treatment on testicular cellular morphology and function, with reference to the treatment regimen received. Testes samples (n = 9) were obtained post-orchiectomy from male-to-female transsexuals within the age range of 26–52 years. Each patient had a minimum of 1–6 years estradiol treatment. For comparison, additional samples were obtained from microscopically unaltered testicular tissue surrounding tumors (n = 7). The tissues obtained were investigated by stereomicroscopy, histochemistry, scanning electron microscopy (SEM) and immunohistochemistry. Our studies revealed that estradiol treatment significantly decreased the diameter of the seminiferous tubules (p < 0.05) and induced fatty degeneration in the surrounding connective tissue. An increase in collagen fiber synthesis in the extracellular matrix (ECM) surrounding the seminiferous tubules was also induced. Spermatogenesis was impaired resulting in mainly spermatogonia being present. Sertoli cells revealed diminished expression of estrogen receptor alpha (ERα). Both Sertoli and Leydig cells showed morphological alterations and glycoprotein accumulations. These results demonstrate that increased estradiol levels drastically impact the human testis.
Collapse
Affiliation(s)
- Myles Leavy
- School of Medicine and Medical Science, University College Dublin (UCD), Dublin, Ireland
| | - Matthias Trottmann
- Department of Urology, Klinikum Grosshadern, University of Munich, Germany
| | - Bernhard Liedl
- Department of Urogenital Surgery, Clinics for Surgery Munich-Bogenhausen, Munich, Germany
| | - Sven Reese
- Institute of Veterinary Anatomy, Histology and Embryology, University of Munich, Germany
| | - Christian Stief
- Department of Urology, Klinikum Grosshadern, University of Munich, Germany
| | - Benjamin Freitag
- Department of Urology, Klinikum Grosshadern, University of Munich, Germany
| | - John Baugh
- School of Medicine and Medical Science, University College Dublin (UCD), Dublin, Ireland
| | - Giulio Spagnoli
- Department of Biomedicine, University Hospital Basel, Switzerland
| | - Sabine Kölle
- School of Medicine and Medical Science, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
14
|
Chen C, Dienhart JA, Bolton EC. Androgen-Sensitized Apoptosis of HPr-1AR Human Prostate Epithelial Cells. PLoS One 2016; 11:e0156145. [PMID: 27203692 PMCID: PMC4874596 DOI: 10.1371/journal.pone.0156145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/10/2016] [Indexed: 01/27/2023] Open
Abstract
Androgen receptor (AR) signaling is crucial to the development and homeostasis of the prostate gland, and its dysregulation mediates common prostate pathologies. The mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells have been investigated in human and rodent adult prostate. However, the cellular stress response of human prostate epithelial cells is not well understood, though it is central to prostate health and pathology. Here, we report that androgen sensitizes HPr-1AR and RWPE-AR human prostate epithelial cells to cell stress agents and apoptotic cell death. Although 5α-dihydrotestosterone (DHT) treatment alone did not induce cell death, co-treatment of HPr-1AR cells with DHT and an apoptosis inducer, such as staurosporine (STS), TNFt, or hydrogen peroxide, synergistically increased cell death in comparison to treatment with each apoptosis inducer by itself. We found that the synergy between DHT and apoptosis inducer led to activation of the intrinsic/mitochondrial apoptotic pathway, which is supported by robust cleavage activation of caspase-9 and caspase-3. Further, the dramatic depolarization of the mitochondrial membrane potential that we observed upon co-treatment with DHT and STS is consistent with increased mitochondrial outer membrane permeabilization (MOMP) in the pro-apoptotic mechanism. Interestingly, the synergy between DHT and apoptosis inducer was abolished by AR antagonists and inhibitors of transcription and protein synthesis, suggesting that AR mediates pro-apoptotic synergy through transcriptional regulation of MOMP genes. Expression analysis revealed that pro-apoptotic genes (BCL2L11/BIM and AIFM2) were DHT-induced, whereas pro-survival genes (BCL2L1/BCL-XL and MCL1) were DHT-repressed. Hence, we propose that the net effect of these AR-mediated expression changes shifts the balance of BCL2-family proteins, such that androgen signaling sensitizes mitochondria to apoptotic signaling, thus rendering HPr-1AR more vulnerable to cell death signals. Our study offers insight into AR-mediated regulation of prostate epithelial cell death signaling.
Collapse
Affiliation(s)
- Congcong Chen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jason A. Dienhart
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Eric C. Bolton
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
15
|
Regulators in the apoptotic pathway during spermatogenesis: Killers or guards? Gene 2016; 582:97-111. [DOI: 10.1016/j.gene.2016.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/19/2016] [Accepted: 02/03/2016] [Indexed: 01/24/2023]
|
16
|
Valencia C, Molina C, Florez M, Buñay J, Moreno RD, Orihuela PA, Castro A, Parada-Bustamante A. 2-hydroxyoestradiol and 2-methoxyoestradiol, two endogenous oestradiol metabolites, induce DNA fragmentation in Sertoli cells. Andrologia 2016; 48:1294-1306. [PMID: 27071496 DOI: 10.1111/and.12576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2016] [Indexed: 01/14/2023] Open
Abstract
Elevated intratesticular levels of hydroxyoestradiols and methoxyoestradiols, two classes of endogenous oestradiol metabolites, have been associated with male infertility. The aim of this study was to explore the effects of 2-hydroxyoestradiol (2OHE2 ), 4-hydroxyoestradiol (4OHE2 ), 2-methoxyoestradiol (2ME2 ) and 4-methoxyoestradiol (4ME2 ) on Sertoli cell viability. For this, TM4 cells were incubated with different concentrations of these metabolites for 24 h to then evaluate the viability and DNA integrity by MTS and TUNEL assay respectively. The participation of classical oestrogen receptors and the involvement of oxidative stress and apoptotic mechanisms were also evaluated co-incubating TM4 cells with these estradiol metabolites and with the drugs ICI182780, N-acetylcysteine and Z-VAD-FMK respectively. Only high concentrations of 2OHE2 and 2ME2 decreased cell viability inducing DNA fragmentation. In addition, ICI182780 did not block the effect of 2OHE2 and 2ME2 , while N-Acetylcysteine and Z-VAD-FMK only blocked the effect of 2OHE2 . Moreover, 2OHE2 but not 2ME2 induced PARP and caspase-3 cleavage. Finally, lower 2OHE2 and 2ME2 concentrations (0.01-0.1-1.0 μmol l-1 ) decreased Sertoli cell viability 48 h post-treatment. Our results support the hypothesis that elevated intratesticular 2OHE2 or 2ME2 concentrations could be related to male infertility since 2OHE2 by apoptosis and 2ME2 by undetermined mechanisms induce DNA fragmentation in Sertoli cells.
Collapse
Affiliation(s)
- C Valencia
- Instituto de Investigaciones Materno Infantil, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - C Molina
- Instituto de Investigaciones Materno Infantil, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - M Florez
- Instituto de Investigaciones Materno Infantil, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - J Buñay
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - R D Moreno
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - P A Orihuela
- Laboratorio de Inmunología de la Reproducción y CEDENNA, Universidad de Santiago de Chile, Santiago, Chile
| | - A Castro
- Instituto de Investigaciones Materno Infantil, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - A Parada-Bustamante
- Instituto de Investigaciones Materno Infantil, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Gautam M, Bhattacharya I, Devi YS, Arya SP, Majumdar SS. Hormone responsiveness of cultured Sertoli cells obtained from adult rats after their rapid isolation under less harsh conditions. Andrology 2016; 4:509-19. [PMID: 26991307 DOI: 10.1111/andr.12161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 12/02/2015] [Accepted: 12/20/2015] [Indexed: 01/16/2023]
Abstract
During adulthood, testicular Sertoli cells (Sc) coordinate all stages of germ cell (Gc) development involved in sperm production. However, our understanding about the functions of adult Sc is limited because of the difficulties involved in the process of isolating these cells from the adult testis, mainly because of the presence of large number of advanced Gc which interfere with Sc isolation at this age. Most of our knowledge about Sc function are derived from studies which used pre-pubertal rat Sc (18 ± 2-day old) as it is easy to isolate and culture Sc at this age. To this end, we established a less time consuming and less harsh procedure of isolating Sc from adult (60 days of age) rat testis for facilitating research on Sc-mediated regulation of spermatogenesis during adulthood. The cells were isolated using collagenase digestion at higher temperature, reducing the exposure time of cells to the enzyme. Step-wise digestion with intermittent removal of small clusters of tissue helped in increasing the yield of Sc. Isolated Sc were cultured and treated with FSH and testosterone (T) to evaluate their hormone responsiveness in terms of lactate, E2 , cAMP production. Adult Sc were found to be active and produced high amounts of lactate in a FSH-independent manner. FSH-mediated augmentation of cAMP and E2 production by adult Sc was less as compared with that by pre-pubertal Sc obtained from 18-day-old rats. Androgen-binding ability of adult Sc was significantly higher than pre-pubertal Sc. Although T treatment remarkably augmented expression of Claudin 11, it failed to augment lactate production by adult Sc. This efficient and rapid procedure for isolation and culture of functionally viable adult rat Sertoli cells may pave the way for determining their role in regulation and maintenance of spermatogenesis.
Collapse
Affiliation(s)
- M Gautam
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India
| | - I Bhattacharya
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India
| | - Y S Devi
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India
| | - S P Arya
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India
| | - S S Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
18
|
Bernardino RL, Costa AR, Martins AD, Silva J, Barros A, Sousa M, Sá R, Alves MG, Oliveira PF. Estradiol modulates Na(+) -dependent HCO3 (-) transporters altering intracellular pH and ion transport in human Sertoli cells: A role on male fertility? Biol Cell 2016; 108:179-88. [PMID: 26888167 DOI: 10.1111/boc.201500094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND INFORMATION Infertile men often present deregulation of serum estrogen levels. Notably, high levels of estradiol (E2) are associated with low sperm production and quality. Sertoli cells (SCs) are responsible for spermatogenesis maintenance and are major targets for the hormonal signalling that regulates this complex process. RESULTS In this study, we used primary cultures of human SCs and studied the localisation, expression and functionality of the Na(+) -dependent HCO3 (-) transporters by confocal microscopy, immunoblot, epifluorescence and voltage clamp after 24 h of exposure to E2 (100 nM). All studied transporters were identified in human SCs. In E2-treated human SCs, there was an increase in NBCn1, NBCe1 and NDCBE protein levels, as well as an increase in intracellular pH and a decrease in transcellular transport. CONCLUSIONS We report an association between increased levels of E2 and the expression/function of Na(+) -dependent HCO3 (-) transporters in human SCs. Our results provide new evidence on the mechanisms by which E2 can regulate SCs physiology and consequently spermatogenesis. These mechanisms may have an influence on male reproductive potential and help to explain male infertility conditions associated with estrogen deregulation. SIGNIFICANCE Exposure to E2 increased human SCs intracellular pH. E2 is a modulator of ionic transcellular transport in human SCs.
Collapse
Affiliation(s)
- Raquel L Bernardino
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
| | - Ana R Costa
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana D Martins
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Joaquina Silva
- Centre for Reproductive Genetics Prof. Alberto Barros, Porto, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Prof. Alberto Barros, Porto, Portugal.,Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal.,I3S, Institute for Innovation and Health Research, University of Porto, Porto, Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,Centre for Reproductive Genetics Prof. Alberto Barros, Porto, Portugal
| | - Rosália Sá
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
| | - Marco G Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,I3S, Institute for Innovation and Health Research, University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Testosterone deficiency induced by progressive stages of diabetes mellitus impairs glucose metabolism and favors glycogenesis in mature rat Sertoli cells. Int J Biochem Cell Biol 2015; 66:1-10. [DOI: 10.1016/j.biocel.2015.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 06/10/2015] [Accepted: 07/01/2015] [Indexed: 12/20/2022]
|
20
|
Guo X, Chi S, Cong X, Li H, Jiang Z, Cao R, Tian W. Baicalin protects sertoli cells from heat stress-induced apoptosis via activation of the Fas/FasL pathway and Hsp72 expression. Reprod Toxicol 2015; 57:196-203. [PMID: 26103447 DOI: 10.1016/j.reprotox.2015.06.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/01/2015] [Accepted: 06/12/2015] [Indexed: 01/18/2023]
Abstract
Certain Chinese herbal medicines have antipyretic effects in both animal and human clinical practice. However, no report indicates their antipyretic effects on heat-stressed cells. The present study aimed to identify the protective effects of baicalin on the apoptosis of primary cultured bovine sertoli cells (SCs) subjected to heat stress (HS). The results demonstrated that HS induced apoptosis in the SCs exposed to 43°C for 1h as Fas/FasL was activated and caspase-3 was cleaved, the cells apoptotic rate was decreased. Moreover, the mRNA and protein levels of Hsp72 increased, whereas the cells apoptotic rate and expression of Fas, FasL, caspases 8 and 3 decreased in the SCs pretreated with various concentrations (0.1, 1, 10, 20μg/mL) of baicalin prior to HS. In conclusion, baicalin ameliorates heat stress-induced cell apoptosis via the modulation of the cell survival rate through Fas/FasL pathway activation and the upregulation of Hsp72 expression in bovine SCs.
Collapse
Affiliation(s)
- Xiaotong Guo
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China.
| | - Shikai Chi
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Xia Cong
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Huatao Li
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Zhongling Jiang
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Rongfeng Cao
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Wenru Tian
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China.
| |
Collapse
|
21
|
Abstract
In the mammalian testis, spermatogenesis is a highly coordinated process of germ cell development, which ends with the release of ‘mature’ spermatozoa. The fine regulation of spermatogenesis is strictly dependent on sex steroid hormones, which orchestrate the cellular and molecular events underlying normal development of germ cells. Sex steroids actions also rely on the control of germ cell survival, and the programmed cell death by apoptosis has been indicated as a critical process in regulating the size and quality of the germ line. Recently, oestrogens have emerged as important regulators of germ cell fate. However, the beneficial or detrimental effects of oestrogens in spermatogenesis are controversial, with independent reports arguing for their role as cell survival factors or as apoptosis-inducers. The dual behaviour of oestrogens, shifting from ‘angels to devils’ is supported by the clinical findings of increased oestrogens levels in serum and intratesticular milieu of idiopathic infertile men. This review aims to discuss the available information concerning the role of oestrogens in the control of germ cell death and summarises the signalling mechanisms driven oestrogen-induced apoptosis. The present data represent a valuable basis for the clinical management of hyperoestrogenism-related infertility and provide a rationale for the use of oestrogen-target therapies in male infertility.
Collapse
|
22
|
Rato L, Alves MG, Dias TR, Cavaco JE, Oliveira PF. Testicular Metabolic Reprogramming in Neonatal Streptozotocin-Induced Type 2 Diabetic Rats Impairs Glycolytic Flux and Promotes Glycogen Synthesis. J Diabetes Res 2015; 2015:973142. [PMID: 26064993 PMCID: PMC4443934 DOI: 10.1155/2015/973142] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 12/25/2022] Open
Abstract
Defects in testicular metabolism are directly implicated with male infertility, but most of the mechanisms associated with type 2 diabetes- (T2DM) induced male infertility remain unknown. We aimed to evaluate the effects of T2DM on testicular glucose metabolism by using a neonatal-streptozotocin- (n-STZ) T2DM animal model. Plasma and testicular hormonal levels were evaluated using specific kits. mRNA and protein expression levels were assessed by real-time PCR and Western Blot, respectively. Testicular metabolic profile was assessed by (1)H-NMR spectroscopy. T2DM rats showed increased glycemic levels, impaired glucose tolerance and hyperinsulinemia. Both testicular and serum testosterone levels were decreased, whereas those of 17β-estradiol were not altered. Testicular glycolytic flux was not favored in testicles of T2DM rats, since, despite the increased expression of both glucose transporters 1 and 3 and the enzyme phosphofructokinase 1, lactate dehydrogenase activity was severely decreased contributing to lower testicular lactate content. However, T2DM enhanced testicular glycogen accumulation, by modulating the availability of the precursors for its synthesis. T2DM also affected the reproductive sperm parameters. Taken together these results indicate that T2DM is able to reprogram testicular metabolism by enhancing alternative metabolic pathways, particularly glycogen synthesis, and such alterations are associated with impaired sperm parameters.
Collapse
Affiliation(s)
- L. Rato
- Health Sciences Research Centre (CICS), Faculty of Health Sciences, University of Beira Interior (UBI), Covilhã, Portugal
| | - M. G. Alves
- Health Sciences Research Centre (CICS), Faculty of Health Sciences, University of Beira Interior (UBI), Covilhã, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology and Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Portugal
| | - T. R. Dias
- Health Sciences Research Centre (CICS), Faculty of Health Sciences, University of Beira Interior (UBI), Covilhã, Portugal
| | - J. E. Cavaco
- Health Sciences Research Centre (CICS), Faculty of Health Sciences, University of Beira Interior (UBI), Covilhã, Portugal
| | - Pedro F. Oliveira
- Health Sciences Research Centre (CICS), Faculty of Health Sciences, University of Beira Interior (UBI), Covilhã, Portugal
- Department of Microscopy, Laboratory of Cell Biology, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto (UP), Portugal
- *Pedro F. Oliveira:
| |
Collapse
|
23
|
Alves MG, Martins AD, Vaz CV, Correia S, Moreira PI, Oliveira PF, Socorro S. Metformin and male reproduction: effects on Sertoli cell metabolism. Br J Pharmacol 2014; 171:1033-42. [PMID: 24261663 DOI: 10.1111/bph.12522] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 11/04/2013] [Accepted: 11/18/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Metformin is commonly used to treat type 2 diabetes (T2D). While new clinical applications have been ascribed to metformin, including treatment of anovulatory infertility, its effects on male reproduction have not been investigated. The Sertoli cell (SC) is crucial for germ cell development, exerting metabolic control of spermatogenesis, therefore, we investigated the effects of metformin on SC metabolism. EXPERIMENTAL APPROACH Rat SCs were cultured in the absence and presence of metformin (5, 50 and 500 μM). mRNA and protein levels of glucose transporters (GLUT1 and GLUT3), phosphofructokinase 1 (PFK 1), lactate dehydrogenase (LDH) and monocarboxylate transporter 4 (MCT4) were determined by quantitative PCR and Western blot respectively. LDH activity was assessed and metabolite production/consumption determined by (1) H-NMR. KEY RESULTS Metformin (50 μM) decreased mRNA and protein levels of GLUT1, GLUT3, MCT4 and PFK 1 but did not affect LDH mRNA or protein levels. However, although glucose consumption was maintained in metformin-treated cells, LDH activity, lactate and alanine production were increased, indicating an enhanced glycolytic flux. No metabolic cytotoxicity was detected in SCs exposed to supra-pharmacological concentration of metformin. CONCLUSIONS AND IMPLICATIONS Our results indicate that metformin: (i) decreases mRNA and protein levels of glycolysis-related transporters in SCs but increases their activity; and (ii) stimulates alanine production, which induces antioxidant activity and maintains the NADH/NAD(+) equilibrium. The increased lactate in metformin-treated SCs provides nutritional support and has an anti-apoptotic effect in developing germ cells. Thus, metformin can be considered as a suitable antidiabetic drug for male patients of reproductive age with T2D.
Collapse
Affiliation(s)
- M G Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | | | | | | | | | | |
Collapse
|
24
|
Rocha CS, Martins AD, Rato L, Silva BM, Oliveira PF, Alves MG. Melatonin alters the glycolytic profile of Sertoli cells: implications for male fertility. Mol Hum Reprod 2014; 20:1067-76. [PMID: 25205674 DOI: 10.1093/molehr/gau080] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Melatonin co-operates with insulin in the regulation of glucose homeostasis. Within the testis, glucose metabolism in the somatic Sertoli cells (SCs) is pivotal for spermatogenesis. Since the effects of melatonin on male reproductive physiology remain largely unknown, we hypothesized that melatonin may affect spermatogenesis by modulating SC metabolism, interacting with insulin. To test our hypothesis, rat SCs were maintained in culture for 24 h in the presence of insulin, melatonin or both and metabolite production/consumption was determined by proton nuclear magnetic resonance ((1)H-NMR). Protein levels of glucose transporters (GLUT1 and GLUT3), phosphofructokinase 1, lactate dehydrogenase (LDH) and monocarboxylate transporter 4 were determined by western blot. LDH activity was also assessed. SCs treated with melatonin showed an increase in glucose consumption via modulation of GLUT1 levels, but decreased LDH protein expression and activity, which resulted in lower lactate production. Moreover, SCs exposed to melatonin produced and accumulated less acetate than insulin-exposed cells. The combined treatment (insulin plus melatonin) increased acetate production by SCs, but intracellular acetate content remained lower than in insulin exposed cells. Finally, the intracellular redox state, as reflected by intracellular lactate/alanine ratio, was maintained at control levels in SCs by melatonin exposure (i.e. melatonin, alone or with insulin, increased the lactate/alanine ratio versus cells treated with insulin). Furthermore, SCs exposed to insulin plus melatonin produced more lactate and maintained the protein levels of some glycolysis-related enzymes and transporters at control levels. These findings illustrate that melatonin regulates SCs metabolism, and thus may affect spermatogenesis. Since lactate produced by SCs provides nutritional support and has an anti-apoptotic effect in developing germ cells, melatonin supplementation may be an effective therapy for diabetic male individuals facing subfertility/infertility.
Collapse
Affiliation(s)
- Cátia S Rocha
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana D Martins
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Luís Rato
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Branca M Silva
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Pedro F Oliveira
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Marco G Alves
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
25
|
Santos D, Matos M, Coimbra AM. Developmental toxicity of endocrine disruptors in early life stages of zebrafish, a genetic and embryogenesis study. Neurotoxicol Teratol 2014; 46:18-25. [PMID: 25172296 DOI: 10.1016/j.ntt.2014.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/01/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
Endocrine disrupting compounds (EDCs) are capable of interfering with the endocrine system and are increasingly widespread in the aquatic environments. In the present study, zebrafish (Danio rerio) embryos and larvae were used to assess how EDCs may interfere with embryogenesis. Therefore, zebrafish embryos were exposed to 17α-ethinylestradiol (EE2: 0.4, 2, 4 and 20 ng/L), genistein (Gen: 2, 20, 200 and 2000 ng/L) and fadrozole (Fad: 2, 10, 50 and 250 μg/L), between 2 and 144 h post-fertilization (hpf). Somite development, heartbeat, malformations, mortality and hatching rates were evaluated. In parallel, the expression patterns of hormone receptors (esr1, esr2a, esr2b and ar) and apoptotic pathways related genes (p53 and c-jun) were determined using quantitative real-time PCR. Results showed that EE2, Gen and Fad caused a higher mortality and also malformations in larvae compared with control. A significant toxic effect was observed in the heartbeat rate, at 144 hpf, in larvae exposed to EE2 and Fad. QPCR revealed alterations in the expression levels of all the evaluated genes, at different time points. esr1 and c-jun genes were upregulated by EE2 and Gen exposure while the expression of esr2a, esr2b and ar genes was downregulated. Fad exposure decreased esr1, p53 and c-jun expression levels. This study shows a toxic effect of EE2, Gen and Fad to vertebrate embryogenesis and a relation between hormones action and apoptosis pathways.
Collapse
Affiliation(s)
- Dércia Santos
- Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados 5000-801 Vila Real, Portugal.
| | - Manuela Matos
- Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados 5000-801 Vila Real, Portugal; Institute of Biotechnology and Bioengineering/Centre of Genomics and Biotechnology (IBB/CGB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados 5000-801 Vila Real, Portugal.
| | - Ana M Coimbra
- Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados 5000-801 Vila Real, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados 5000-801 Vila Real, Portugal.
| |
Collapse
|
26
|
Dai SH, Chen T, Wang YH, Zhu J, Luo P, Rao W, Yang YF, Fei Z, Jiang XF. Sirt3 protects cortical neurons against oxidative stress via regulating mitochondrial Ca2+ and mitochondrial biogenesis. Int J Mol Sci 2014; 15:14591-609. [PMID: 25196599 PMCID: PMC4159870 DOI: 10.3390/ijms150814591] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/13/2014] [Accepted: 07/22/2014] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress is a well-established event in the pathology of several neurobiological diseases. Sirt3 is a nicotinamide adenine nucleotide (NAD+)-dependent protein deacetylase that regulates mitochondrial function and metabolism in response to caloric restriction and stress. This study aims to investigate the role of Sirt3 in H2O2 induced oxidative neuronal injury in primary cultured rat cortical neurons. We found that H2O2 treatment significantly increased the expression of Sirt3 in a time-dependent manner at both mRNA and protein levels. Knockdown of Sirt3 with a specific small interfering RNA (siRNA) exacerbated H2O2-induced neuronal injury, whereas overexpression of Sirt3 by lentivirus transfection inhibited H2O2-induced neuronal damage reduced the generation of reactive oxygen species (ROS), and increased the activities of endogenous antioxidant enzymes. In addition, the intra-mitochondrial Ca2+ overload, but not cytosolic Ca2+ increase after H2O2 treatment, was strongly attenuated after Sirt3 overexpression. Overexpression of Sirt3 also increased the content of mitochondrial DNA (mtDNA) and the expression of mitochondrial biogenesis related transcription factors. All these results suggest that Sirt3 acts as a prosurvival factor playing an essential role to protect cortical neurons under H2O2 induced oxidative stress, possibly through regulating mitochondrial Ca2+ homeostasis and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Shu-Hui Dai
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Tao Chen
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Yu-Hai Wang
- Department of Neurosurgery, the 101th Hospital of People's Liberation Army, Rescue Center of Craniocerebral Injuries of PLA, Wuxi 214044, China.
| | - Jie Zhu
- Department of Neurosurgery, the 101th Hospital of People's Liberation Army, Rescue Center of Craniocerebral Injuries of PLA, Wuxi 214044, China.
| | - Peng Luo
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Wei Rao
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Yue-Fan Yang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhou Fei
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Xiao-Fan Jiang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
27
|
Oliveira PF, Martins AD, Moreira AC, Cheng CY, Alves MG. The Warburg effect revisited--lesson from the Sertoli cell. Med Res Rev 2014; 35:126-51. [PMID: 25043918 DOI: 10.1002/med.21325] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Otto Warburg observed that cancerous cells prefer fermentative instead of oxidative metabolism of glucose, although the former is in theory less efficient. Since Warburg's pioneering works, special attention has been given to this difference in cell metabolism. The Warburg effect has been implicated in cell transformation, immortalization, and proliferation during tumorigenesis. Cancer cells display enhanced glycolytic activity, which is correlated with high proliferation, and thus, glycolysis appears to be an excellent candidate to target cancer cells. Nevertheless, little attention has been given to noncancerous cells that exhibit a "Warburg-like" metabolism with slight, but perhaps crucial, alterations that may provide new directions to develop new and effective anticancer therapies. Within the testis, the somatic Sertoli cell (SC) presents several common metabolic features analogous to cancer cells, and a clear "Warburg-like" metabolism. Nevertheless, SCs actively proliferate only during a specific time period, ceasing to divide in most species after puberty, when they become terminally differentiated. The special metabolic features of SC, as well as progression from the immature but proliferative state, to the mature nonproliferative state, where a high glycolytic activity is maintained, make these cells unique and a good model to discuss new perspectives on the Warburg effect. Herein we provide new insight on how the somatic SC may be a source of new and exciting information concerning the Warburg effect and cell proliferation.
Collapse
Affiliation(s)
- Pedro F Oliveira
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | | | | | | |
Collapse
|
28
|
Oliveira PF, Alves MG, Martins AD, Correia S, Bernardino RL, Silva J, Barros A, Sousa M, Cavaco JE, Socorro S. Expression pattern of G protein-coupled receptor 30 in human seminiferous tubular cells. Gen Comp Endocrinol 2014; 201:16-20. [PMID: 24681226 DOI: 10.1016/j.ygcen.2014.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/23/2014] [Accepted: 02/26/2014] [Indexed: 12/30/2022]
Abstract
The role of estrogens in male reproductive physiology has been intensively studied over the last few years. Yet, the involvement of their specific receptors has long been a matter of debate. The selective testicular expression of the classic nuclear estrogen receptors (ERα and ERβ) argues in favor of ER-specific functions in the spermatogenic event. Recently, the existence of a G protein-coupled estrogen receptor (GPR30) mediating non-genomic effects of estrogens has also been described. However, little is known about the specific testicular expression pattern of GPR30, as well as on its participation in the control of male reproductive function. Herein, by means of immunohistochemical and molecular biology techniques (RT-PCR and Western blot), we aimed to present the first exhaustive evaluation of GPR30 expression in non-neoplastic human testicular cells. Indeed, we were able to demonstrate that GPR30 was expressed in human testicular tissue and that the staining pattern was consistent with its cytoplasmic localization. Additionally, by using cultured human Sertoli cells (SCs) and isolated haploid and diploid germ cells fractions, we confirmed that GPR30 is expressed in SCs and diploid germ cells but not in haploid germ cells. This specific expression pattern suggests a role for GPR30 in spermatogenesis.
Collapse
Affiliation(s)
- Pedro F Oliveira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Marco G Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana D Martins
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sara Correia
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Raquel L Bernardino
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Joaquina Silva
- Centre for Reproductive Genetics Alberto Barros, 4100-009 Porto, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Alberto Barros, 4100-009 Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Mário Sousa
- Centre for Reproductive Genetics Alberto Barros, 4100-009 Porto, Portugal; Department of Microscopy, Laboratory of Cell Biology and Biomedical Research Multidisciplinary Unit (UMIB-FCT), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4099-003 Porto, Portugal
| | - José E Cavaco
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
29
|
Correia S, Alves MG, Oliveira PF, Alves MR, van Pelt AMM, Cavaco JE, Socorro S. Transgenic overexpression of regucalcin leads to suppression of thapsigargin- and actinomycin D-induced apoptosis in the testis by modulation of apoptotic pathways. Andrology 2014; 2:290-8. [DOI: 10.1111/j.2047-2927.2014.00186.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 12/06/2013] [Accepted: 01/06/2014] [Indexed: 11/28/2022]
Affiliation(s)
- S. Correia
- CICS-UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - M. G. Alves
- CICS-UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - P. F. Oliveira
- CICS-UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - M. R. Alves
- CICS-UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - A. M. M. van Pelt
- Center for Reproductive Medicine; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - J. E. Cavaco
- CICS-UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - S. Socorro
- CICS-UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| |
Collapse
|
30
|
Oliveira C, Lourenço GJ, Rinck-Junior JA, Cintra ML, Moraes AM, Lima CSP. Association between genetic polymorphisms in apoptosis-related genes and risk of cutaneous melanoma in women and men. J Dermatol Sci 2014; 74:135-41. [PMID: 24461648 DOI: 10.1016/j.jdermsci.2013.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/20/2013] [Accepted: 12/25/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND The P53 Arg72Pro, MDM2 c.+309T>G, BAX c.-248G>A, and BCL2 c.-717C>A polymorphisms have variable roles in the apoptosis pathways. OBJECTIVE To clarify the roles of these polymorphisms in the risk for cutaneous melanoma (CM). METHODS Genomic DNA of 200 CM patients and 215 controls was analyzed by PCR-RFLP. RESULTS In women, the frequencies of BAX GG (83.0% vs. 71.0%, P=0.04), BCL2 AA (32.0% vs. 15.0%, P=0.003), P53 ArgArg plus BAX GG (84.9% vs. 63.2%, P=0.01), P53 ArgArg plus BCL2 AA (37.0% vs. 13.1%, P=0.003), BAX GG plus BCL2 AA (70.3% vs. 33.3%, P=0.001), MDM2 GG plus BAX GG plus BCL2 AA (27.3% vs. 3.7%, P=0.03), and P53 ArgArg plus MDM2 GG plus BAX GG plus BCL2 AA (33.3% vs. 5.6%, P=0.04) genotypes were higher in patients than in controls. Female carriers of the respective genotypes were under 1.98 (95% CI: 1.01-3.91), 2.87 (95% CI: 1.43-5.77), 3.48 (95% CI: 1.34-9.04), 4.23 (95% CI: 1.63-10.96), 6.04 (95% CI: 2.10-17.37), 25.61 (95% CI: 1.29-507.24), and 25.69 (95% CI: 1.11-593.59)-fold increased risks for CM than others, respectively. In men, the frequencies of BCL2 CA+AA (83.0% vs. 67.6%, P=0.01) and MDM2 TG+GG plus BCL2 CA+AA (94.2% vs. 68.3%, P=0.003) genotypes were higher in patients than in controls. Male carriers of the respective genotypes were under 2.43 (95% CI: 1.23-4.82) and 9.22 (95% CI: 2.16-39.31)-fold increased CM risks than others, respectively. CONCLUSION The data suggest for the first time that P53 Arg72Pro, MDM2 c.+309T>G, BAX c.-248G>A, and BCL2 c.-717C>A polymorphisms, enrolled in apoptosis pathways, constitute distinct determinants of CM in women and men.
Collapse
Affiliation(s)
- Cristiane Oliveira
- Clinical Oncology Service, Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - Gustavo Jacob Lourenço
- Clinical Oncology Service, Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - José Augusto Rinck-Junior
- Clinical Oncology Service, Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - Maria Letícia Cintra
- Pathology Dermatology Service, Faculty of Medical Sciences, Department of Anatomical Pathology, University of Campinas, Campinas, São Paulo, Brazil
| | - Aparecida Machado Moraes
- Dermatology Service, Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - Carmen Silvia Passos Lima
- Clinical Oncology Service, Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
31
|
Effect of white tea (Camellia sinensis (L.)) extract in the glycolytic profile of Sertoli cell. Eur J Nutr 2013; 53:1383-91. [PMID: 24363139 DOI: 10.1007/s00394-013-0640-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE Many health benefits have been attributed to tea (Camellia sinensis (L.)), and tea infusions are used as dietary agent and included in food supplements. Herein, we report the effect of a white tea (WTEA) extract in Sertoli cell (SC) metabolism. The SC is responsible for the nutritional support of the developing germ cells. METHODS An aqueous WTEA extract was prepared and analyzed by (1)H-NMR. Rat SCs were cultured with or without the WTEA extract. mRNA and protein levels of glucose transporters (GLUT1 and GLUT3), phosphofructokinase, lactate dehydrogenase (LDH) and monocarboxylate transporter 4 were determined by qPCR and western blot. LDH activity was assessed and metabolite production/consumption determined by (1)H-NMR. RESULTS WTEA-exposed SCs presented decreased protein and mRNA levels of GLUT1 and decreased glucose uptake. However, intracellular LDH activity was increased and SC lactate production was stimulated by the presence of the WTEA extract. Interestingly, alanine production was also found to be stimulated in WTEA extract-exposed SCs. CONCLUSION WTEA extract altered the glycolytic profile of cultured SCs, stimulating lactate production. Since lactate is used as metabolic substrate and has an anti-apoptotic effect in the developing germ cells, the supplementation with WTEA extract may be advantageous to improve male reproductive health.
Collapse
|
32
|
Rato L, Duarte AI, Tomás GD, Santos MS, Moreira PI, Socorro S, Cavaco JE, Alves MG, Oliveira PF. Pre-diabetes alters testicular PGC1-α/SIRT3 axis modulating mitochondrial bioenergetics and oxidative stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:335-44. [PMID: 24361842 DOI: 10.1016/j.bbabio.2013.12.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 11/19/2022]
Abstract
Pre-diabetes, a risk factor for type 2 diabetes development, leads to metabolic changes at testicular level. Peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α) and Sirtuin 3 (Sirt3) are pivotal in mitochondrial function. We hypothesized that pre-diabetes disrupts testicular PGC-1α/Sirt3 axis, compromising testicular mitochondrial function. Using a high-energy-diet induced pre-diabetic rat model, we evaluated testicular levels of PGC-1α and its downstream targets, nuclear respiratory factors 1 (NRF-1) and 2 (NRF-2), mitochondrial transcription factor A (TFAM) and Sirt3. We also assessed mitochondrial DNA (mtDNA) content, mitochondrial function, energy levels and oxidative stress parameters. Protein levels were quantified by Western Blot, mtDNA content was determined by qPCR. Mitochondrial complex activity and oxidative stress parameters were spectrophotometrically evaluated. Adenine nucleotide levels, adenosine and its metabolites (inosine and hypoxanthine) were determined by reverse-phase HPLC. Pre-diabetic rats showed increased blood glucose levels and impaired glucose tolerance. Both testicular PGC-1α and Sirt3 levels were decreased. NRF-1, NRF-2 and TFAM were not altered. Testicular mtDNA content was decreased. Mitochondrial complex I activity was increased, whereas mitochondrial complex III activity was decreased. Adenylate energy charge was decreased in pre-diabetic rats, as were ATP and ADP levels. Conversely, AMP levels were increased, evidencing a decreased ATP/AMP ratio. Concerning to oxidative stress pre-diabetes decreased testicular antioxidant capacity and increased lipid and protein oxidation. In sum, pre-diabetes compromises testicular mitochondrial function by repressing PGC-1α/Sirt3 axis and mtDNA copy number, declining respiratory capacity and increasing oxidative stress. This study gives new insights into overall testicular bioenergetics at this prodromal stage of disease.
Collapse
Affiliation(s)
- Luís Rato
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Ana I Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Gonçalo D Tomás
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Maria S Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Life Sciences Department, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Paula I Moreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - José E Cavaco
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Marco G Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Pedro F Oliveira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal.
| |
Collapse
|
33
|
Ramalho-Santos J, Amaral S. Mitochondria and mammalian reproduction. Mol Cell Endocrinol 2013; 379:74-84. [PMID: 23769709 DOI: 10.1016/j.mce.2013.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/22/2013] [Accepted: 06/06/2013] [Indexed: 12/22/2022]
Abstract
Mitochondria are cellular organelles with crucial roles in ATP synthesis, metabolic integration, reactive oxygen species (ROS) synthesis and management, the regulation of apoptosis (namely via the intrinsic pathway), among many others. Additionally, mitochondria in different organs or cell types may have distinct properties that can decisively influence functional analysis. In terms of the importance of mitochondria in mammalian reproduction, and although there are species-specific differences, these aspects involve both energetic considerations for gametogenesis and fertilization, control of apoptosis to ensure the proper production of viable gametes, and ROS signaling, as well as other emerging aspects. Crucially, mitochondria are the starting point for steroid hormone biosynthesis, given that the conversion of cholesterol to pregnenolone (a common precursor for all steroid hormones) takes place via the activity of the cytochrome P450 side-chain cleavage enzyme (P450scc) on the inner mitochondrial membrane. Furthermore, mitochondrial activity in reproduction has to be considered in accordance with the very distinct strategies for gamete production in the male and female. These include distinct gonad morpho-physiologies, different types of steroids that are more prevalent (testosterone, estrogens, progesterone), and, importantly, the very particular timings of gametogenesis. While spermatogenesis is complete and continuous since puberty, producing a seemingly inexhaustible pool of gametes in a fixed environment; oogenesis involves the episodic production of very few gametes in an environment that changes cyclically. These aspects have always to be taken into account when considering the roles of any common element in mammalian reproduction.
Collapse
Affiliation(s)
- João Ramalho-Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Portugal.
| | | |
Collapse
|
34
|
Insulin deprivation decreases caspase-dependent apoptotic signaling in cultured rat sertoli cells. ISRN UROLOGY 2013; 2013:970370. [PMID: 24228182 PMCID: PMC3817687 DOI: 10.1155/2013/970370] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/12/2013] [Indexed: 11/30/2022]
Abstract
Insulin is essential for the regulation of glucose homeostasis. Insulin dysfunction occurs in several pathologies, such as diabetes mellitus, which is associated with fertility problems. Somatic Sertoli cells (SCs) not only metabolize glucose to lactate, which is the central energy source used by developing germ cells, but also determine the germ cell population size. If a deregulation in SCs apoptosis occurs, it will affect germ cells, compromising spermatogenesis. As SCs apoptotic signaling is a hormonally regulated process, we hypothesized that the lack of insulin could lead to alterations in apoptotic signaling. Therefore, we examined the effect of insulin deprivation on several markers of apoptotic signaling in cultured rat SCs. We determined mRNA and protein expression of apoptotic markers as well as caspase-3 activity. SCs cultured in insulin deprivation demonstrated a significant decrease on mRNA levels of p53, Bax, caspase-9, and caspase-3 followed by a significant increase of Bax and decrease of caspase-9 protein levels relatively to the control. Caspase-3 activity was also decreased in SCs cultured in insulin deprivation conditions. Our results show that insulin deprivation decreases caspase-dependent apoptotic signaling in cultured rat SCs evidencing a possible mechanism by which lack of insulin can affect spermatogenesis and fertility.
Collapse
|
35
|
Zhang H, Liu B, Qiu Y, Fan JF, Yu SJ. Pure cultures and characterization of yak Sertoli cells. Tissue Cell 2013; 45:414-20. [PMID: 23938058 DOI: 10.1016/j.tice.2013.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/07/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
The culture of primary Sertoli cells has become an important resource in the study of their function. However, their use is limited because of contamination of isolated cells with other testicular cells, mainly germ cells. The aim was to establish technique to obtain pure yak Sertoli cells as well as to study the growth kinetics and biological characteristics of Sertoli cells in vitro. Two-step enzyme digestion was used to separate and culture yak Sertoli cells. Cultured using starvation method and the hypotonic treatment were also invented to get pure yak Sertoli cells. Furthermore, the purification of Yak Sertoli cells were identified according to their characteristics, such as bipolar corpuscular around the nucleus and expression of Fasl, in addition to their morphology. The average viability of the Sertoli cells was 97% before freezing and 94.5% after thawing, indicating that cryopreservation in liquid nitrogen had little influence on the viability of Sertoli cells. The growth tendency of yak Sertoli cells was similar to an S-shaped growth curve. Purified yak Sertoli cells frequently exhibited bipolar corpuscula in nucleus after Feulgen staining, and did have a positive reaction of Fasl by the immunocytochemical identification. After recovery chromosomal analysis of Sertoli cells had a normal chromosomal number of 60, comprising 29 pairs of autosomes and one pair of sex chromosomes. Assays for bacteria, fungi and mycoplasmas were negative. In conclusion, yak Sertoli cells have been successfully purified and cultured in vitro, and maintain stable biological characteristics after thawing. Therefore, it will not only preserve the genetic resources of yaks at the cellular level, but also provide valuable materials for transgenic research and feeder layer and nuclear donor cells in yak somatic cell cloning technology.
Collapse
Affiliation(s)
- Hua Zhang
- Academic of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| | | | | | | | | |
Collapse
|
36
|
Androgen receptor (AR) positive vs negative roles in prostate cancer cell deaths including apoptosis, anoikis, entosis, necrosis and autophagic cell death. Cancer Treat Rev 2013; 40:31-40. [PMID: 23993415 DOI: 10.1016/j.ctrv.2013.07.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/20/2013] [Accepted: 07/29/2013] [Indexed: 12/21/2022]
Abstract
Androgen/androgen receptor (AR) signaling plays pivotal roles in the prostate development and homeostasis as well as in the progression of prostate cancer (PCa). Androgen deprivation therapy (ADT) with anti-androgens remains as the main treatment for later stage PCa, and it has been shown to effectively suppress PCa growth during the first 12-24 months. However, ADT eventually fails and tumors may re-grow and progress into the castration resistant stage. Recent reports revealed that AR might play complicated and even opposite roles in PCa progression that might depend on cell types and tumor stages. Importantly, AR may influence PCa progression via differential modulation of various cell deaths including apoptosis, anoikis, entosis, necrosis, and autophagic cell deaths. Targeting AR may induce PCa cell apoptosis, autophagic cell deaths and programmed necrosis, yet targeting AR may suppress cell deaths via anoikis and entosis that may potentially lead to increased metastasis. These differential functions of AR in various types of PCa cell death might challenge the current ADT with anti-androgens treatment. Further detailed dissection of molecular mechanisms by which AR modulates different PCa cell deaths will help us to develop a better therapy to battle PCa.
Collapse
|
37
|
Alves MG, Martins AD, Rato L, Moreira PI, Socorro S, Oliveira PF. Molecular mechanisms beyond glucose transport in diabetes-related male infertility. Biochim Biophys Acta Mol Basis Dis 2013; 1832:626-35. [PMID: 23348098 DOI: 10.1016/j.bbadis.2013.01.011] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/15/2013] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) is one of the greatest public health threats in modern societies. Although during a few years it was suggested that DM had no significant effect in male reproductive function, this view has been challenged in recent years. The increasing incidence of DM worldwide will inevitably result in a higher prevalence of this pathology in men of reproductive age and subfertility or infertility associated with DM is expected to dramatically rise in upcoming years. From a clinical perspective, the evaluation of semen parameters, as well as spermatozoa deoxyribonucleic acid (DNA) integrity, are often studied due to their direct implications in natural and assisted conception. Nevertheless, recent studies based on the molecular mechanisms beyond glucose transport in testicular cells provide new insights in DM-induced alterations in male reproductive health. Testicular cells have their own glucose sensing machinery that react to hormonal fluctuations and have several mechanisms to counteract hyper- and hypoglycemic events. Moreover, the metabolic cooperation between testicular cells is crucial for normal spermatogenesis. Sertoli cells (SCs), which are the main components of blood-testis barrier, are not only responsible for the physical support of germ cells but also for lactate production that is then metabolized by the developing germ cells. Any alteration in this tied metabolic cooperation may have a dramatic consequence in male fertility potential. Therefore, we present an overview of the clinical significance of DM in the male reproductive health with emphasis on the molecular mechanisms beyond glucose fluctuation and transport in testicular cells.
Collapse
Affiliation(s)
- M G Alves
- University of Beira Interior, Covilhã, Portugal.
| | | | | | | | | | | |
Collapse
|
38
|
LEE MYUNGJOO, CHA HWAJUN, LIM KYUNGMI, LEE OKKYU, BAE SEUNGHEE, KIM CHUNHO, LEE KEEHO, LEE YUNA, AHN KYUJOONG, AN SUNGKWAN. Analysis of the microRNA expression profile of normal human dermal papilla cells treated with 5α-dihydrotestosterone. Mol Med Rep 2012; 12:1205-12. [DOI: 10.3892/mmr.2015.3478] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/24/2015] [Indexed: 11/05/2022] Open
|