1
|
de Medina P, Ayadi S, Diallo K, Buñay J, Pucheu L, Soulès R, Record M, Brillouet S, Vija L, Courbon F, Silvente-Poirot S, Poirot M. The Cholesterol-5,6-Epoxide Hydrolase: A Metabolic Checkpoint in Several Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:149-161. [PMID: 38036879 DOI: 10.1007/978-3-031-43883-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cholesterol-5,6-epoxides (5,6-ECs) are oxysterols (OS) that have been linked to several pathologies including cancers and neurodegenerative diseases. 5,6-ECs can be produced from cholesterol by several mechanisms including reactive oxygen species, lipoperoxidation, and cytochrome P450 enzymes. 5,6-ECs exist as two different diastereoisomers: 5,6α-EC and 5,6β-EC with different metabolic fates. They can be produced as a mixture or as single products of epoxidation. The epoxide ring of 5,6α-EC and 5,6β-EC is very stable and 5,6-ECs are prone to hydration by the cholesterol-5,6-epoxide hydrolase (ChEH) to give cholestane-3β,5α,6β-triol, which can be further oxidized into oncosterone. 5,6α-EC is prone to chemical and enzymatic conjugation reactions leading to bioactive compounds such as dendrogenins, highlighting the existence of a new metabolic branch on the cholesterol pathway centered on 5,6α-EC. We will summarize in this chapter current knowledge on this pathway which is controlled by the ChEH.
Collapse
Affiliation(s)
- Philippe de Medina
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Silia Ayadi
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Khadijetou Diallo
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Julio Buñay
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Laly Pucheu
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Regis Soulès
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Michel Record
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Severine Brillouet
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
- Department of Radiopharmacy, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Lavinia Vija
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
- Department of Medical Imaging, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Frederic Courbon
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
- Department of Medical Imaging, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France.
- Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France.
- French Network for Nutrition Physical Activity and Cancer Research (NACRe Network), Jouy-en-Josas, France.
| |
Collapse
|
2
|
Ayadi S, Friedrichs S, Soulès R, Pucheu L, Lütjohann D, Silvente-Poirot S, Poirot M, de Medina P. 27-Hydroxylation of oncosterone by CYP27A1 switches its activity from pro-tumor to anti-tumor. J Lipid Res 2023; 64:100479. [PMID: 37981011 PMCID: PMC10770617 DOI: 10.1016/j.jlr.2023.100479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023] Open
Abstract
Oncosterone (6-oxo-cholestane-3β,5α-diol; OCDO) is an oncometabolite and a tumor promoter on estrogen receptor alpha-positive breast cancer (ER(+) BC) and triple-negative breast cancers (TN BC). OCDO is an oxysterol formed in three steps from cholesterol: 1) oxygen addition at the double bond to give α- or β- isomers of 5,6-epoxycholestanols (5,6-EC), 2) hydrolyses of the epoxide ring of 5,6-ECs to give cholestane-3β,5α,6β-triol (CT), and 3) oxidation of the C6 hydroxyl of CT to give OCDO. On the other hand, cholesterol can be hydroxylated by CYP27A1 at the ultimate methyl carbon of its side chain to give 27-hydroxycholesterol ((25R)-Cholest-5-ene-3beta,26-diol, 27HC), which is a tumor promoter for ER(+) BC. It is currently unknown whether OCDO and its precursors can be hydroxylated at position C27 by CYP27A1, as is the impact of such modification on the proliferation of ER(+) and TN BC cells. We investigated, herein, whether 27H-5,6-ECs ((25R)-5,6-epoxycholestan-3β,26-diol), 27H-CT ((25R)-cholestane-3β,5α,6β,26-tetrol) and 27H-OCDO ((25R)-cholestane-6-oxo-3β,5α,26-triol) exist as metabolites and can be produced by cells expressing CYP27A1. We report, for the first time, that these compounds exist as metabolites in humans. We give pharmacological and genetic evidence that CYP27A1 is responsible for their production. Importantly, we found that 27-hydroxy-OCDO (27H-OCDO) inhibits BC cell proliferation and blocks OCDO and 27-HC-induced proliferation in BC cells, showing that this metabolic conversion commutes the proliferative properties of OCDO into antiproliferative ones. These data suggest an unprecedented role of CYP27A1 in the control of breast carcinogenesis by inhibiting the tumor promoter activities of oncosterone and 27-HC.
Collapse
Affiliation(s)
- Silia Ayadi
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France; French Network for Nutrition Physical Acitivity and Cancer Research (NACRe network), Jouy en Josas, France
| | - Silvia Friedrichs
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Regis Soulès
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France; French Network for Nutrition Physical Acitivity and Cancer Research (NACRe network), Jouy en Josas, France
| | - Laly Pucheu
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France; French Network for Nutrition Physical Acitivity and Cancer Research (NACRe network), Jouy en Josas, France
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France.
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France; French Network for Nutrition Physical Acitivity and Cancer Research (NACRe network), Jouy en Josas, France.
| | - Philippe de Medina
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France; French Network for Nutrition Physical Acitivity and Cancer Research (NACRe network), Jouy en Josas, France.
| |
Collapse
|
3
|
Ben Hassen C, Goupille C, Vigor C, Durand T, Guéraud F, Silvente-Poirot S, Poirot M, Frank PG. Is cholesterol a risk factor for breast cancer incidence and outcome? J Steroid Biochem Mol Biol 2023; 232:106346. [PMID: 37321513 DOI: 10.1016/j.jsbmb.2023.106346] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Cholesterol plays important roles in many physiological processes, including cell membrane structure and function, hormone synthesis, and the regulation of cellular homeostasis. The role of cholesterol in breast cancer is complex, and some studies have suggested that elevated cholesterol levels may be associated with an increased risk of developing breast cancer, while others have found no significant association. On the other hand, other studies have shown that, for total cholesterol and plasma HDL-associated cholesterol levels, there was inverse association with breast cancer risk. One possible mechanism by which cholesterol may contribute to breast cancer risk is as a key precursor of estrogen. Other potential mechanisms by which cholesterol may contribute to breast cancer risk include its role in inflammation and oxidative stress, which have been linked to cancer progression. Cholesterol has also been shown to play a role in signaling pathways regulating the growth and proliferation of cancer cells. In addition, recent studies have shown that cholesterol metabolism can generate tumor promoters such as cholesteryl esters, oncosterone, 27-hydroxycholesterol but also tumor suppressor metabolites such as dendrogenin A. This review summarizes some of the most important clinical studies that have evaluated the role of cholesterol or its derivatives in breast cancer. It also addresses the role of cholesterol and its derivatives at the cellular level.
Collapse
Affiliation(s)
| | - Caroline Goupille
- INSERM N2C UMR1069, University of Tours, 37032 Tours, France; Department of Gynecology, CHRU Hôpital Bretonneau, boulevard Tonnellé, 37044 Tours, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 CEDEX 5 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 CEDEX 5 Montpellier, France
| | - Françoise Guéraud
- INRAE, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France
| | - Philippe G Frank
- INSERM N2C UMR1069, University of Tours, 37032 Tours, France; SGS Health and Nutrition, Saint Benoît, France.
| |
Collapse
|
4
|
Li Q, Zhang L, Lang J, Tan Z, Feng Q, Zhu F, Liu G, Ying Z, Yu X, Feng H, Yi H, Wen Q, Jin T, Cheng K, Zhao X, Ge M. Lipid-Peptide-mRNA Nanoparticles Augment Radioiodine Uptake in Anaplastic Thyroid Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204334. [PMID: 36453580 PMCID: PMC9875617 DOI: 10.1002/advs.202204334] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Restoring sodium iodide symporter (NIS) expression and function remains a major challenge for radioiodine therapy in anaplastic thyroid cancer (ATC). For more efficient delivery of messenger RNA (mRNA) to manipulate protein expression, a lipid-peptide-mRNA (LPm) nanoparticle (NP) is developed. The LPm NP is prepared by using amphiphilic peptides to assemble a peptide core and which is then coated with cationic lipids. An amphiphilic chimeric peptide, consisting of nine arginine and hydrophobic segments (6 histidine, C18 or cholesterol), is synthesized for adsorption of mRNA encoding NIS in RNase-free conditions. In vitro studies show that LP(R9H6) m NP is most efficient at delivering mRNA and can increase NIS expression in ATC cells by more than 10-fold. After intratumoral injection of NIS mRNA formulated in optimized LPm NP, NIS expression in subcutaneous ATC tumor tissue increases significantly in nude mice, resulting in more iodine 131 (131 I) accumulation in the tumor, thereby significantly inhibiting tumor growth. Overall, this work designs three arginine-rich peptide nanoparticles, contributing to the choice of liposome cores for gene delivery. LPm NP can serve as a promising adjunctive therapy for patients with ATC by restoring iodine affinity and enhancing the therapeutic efficacy of radioactive iodine.
Collapse
Affiliation(s)
- Qinglin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Lizhuo Zhang
- Department of Head and Neck SurgeryCenter of Otolaryngology-head and neck surgeryZhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiang310014China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Jiayan Lang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Zhuo Tan
- Department of Head and Neck SurgeryCenter of Otolaryngology-head and neck surgeryZhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiang310014China
| | - Qingqing Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Fei Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Zhangguo Ying
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Xuefei Yu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - He Feng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Heqing Yi
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Qingliang Wen
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Tiefeng Jin
- Department of Head and Neck SurgeryCenter of Otolaryngology-head and neck surgeryZhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiang310014China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Minghua Ge
- Department of Head and Neck SurgeryCenter of Otolaryngology-head and neck surgeryZhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiang310014China
| |
Collapse
|
5
|
Peckham M, Spencer HJ, Syed S, Armstrong WB, Farwell DG, Gal TJ, Goldenberg D, Russell MD, Solis RN, King D, Stack BC. Breast and thyroid cancer: A multicenter study with Accrual to Clinical Trials Network. J Surg Oncol 2022; 125:1211-1217. [PMID: 35195923 PMCID: PMC9106860 DOI: 10.1002/jso.26825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 02/03/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate a possible link between breast and thyroid cancer. METHODS A multicenter retrospective review of patients in the electronic medical records of six Accrual to Clinical Trial (ACT) institutions with both breast cancer and thyroid carcinoma. Each center queried its data using a predefined data dictionary. Information on thyroid and breast cancer included dates of diagnosis, histology, and patient demographics. RESULTS A random-effects model was used. There were 4.24 million women's records screened, 44 605 with breast cancer and 11 846 with thyroid cancer. The relative risks observed at each institution ranged from 0.49 to 13.47. The combined risk ratio (RR) estimate was 1.77 (95% confidence interval: 0.50-5.18). CONCLUSION There was no association between the risk of developing thyroid cancer and being a breast cancer survivor compared to no history of breast cancer, but the range of relative risks among the participating institutions was wide. Our findings warrant further study of more institutions with larger sample size. Additionally, further analysis of the significance of regional RR differences may be enlightening.
Collapse
Affiliation(s)
- Merry Peckham
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Shorabuddin Syed
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - William B. Armstrong
- Department of Otolaryngology – Head and Neck Surgery, University of California, Irvine, Orange, CA, USA
| | - D. Gregory Farwell
- Department of Otorhinolaryngology – Head and Neck Surgery, University of Pennsylvania. Philadelphia, PA, USA
| | - Thomas J. Gal
- Department of Otolaryngology – Head and Neck Surgery, University of Kentucky, Lexington, KY, USA
| | - David Goldenberg
- Department of Otolaryngology – Head and Neck Surgery, The Pennsylvania State University, Hershey, PA, USA
| | - Marika D. Russell
- Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Roberto N. Solis
- Department of Otolaryngology – Head and Neck Surgery, University of California, Davis, Sacramento, CA, USA
| | - Deanne King
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brendan C. Stack
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Otolaryngology – Head and Neck Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
6
|
Efficacy and Safety of Fuzheng Yiqi Kang-Ai Decoction Combined with External Irradiation in the Treatment of Undifferentiated Thyroid Carcinoma and Its Influence on Antiangiogenesis. JOURNAL OF ONCOLOGY 2022; 2022:3589924. [PMID: 35615246 PMCID: PMC9126711 DOI: 10.1155/2022/3589924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022]
Abstract
Objective To explore the efficacy and safety of Fuzheng Yiqi Kang-ai (FZYQKA for short) decoction with external irradiation in the treatment of undifferentiated thyroid carcinoma (UTC) and its influence on antiangiogenesis. Methods. In this retrospective study, the clinical data of 120 patients with UTC admitted to Zibo Central Hospital (February 2019-February 2020) were retrospectively analyzed, and the patients were equally divided into the experimental group (EG) and the control group (CG) according to the order of admission. All patients received external irradiation, and the EG received FZYQKA decoction additionally. FZYQKA decoction was taken orally 1 dose daily in 3 times with a total of 100 ml, for a total of 2 months. Short-term efficacy, incidence of acute radiotoxic responses, levels of matrix metalloproteinases (MMPs), indexes of immune function, and level of vascular endothelial growth factor (VEGF) were compared between both groups. Results Compared with the CG, the disease control rate of the EG was obviously higher (73.3% vs. 40.0%, P < 0.001). The acute radiotoxic responses of the two groups were mainly grade I-II oral mucositis, radiodermatitis, pharyngitis, esophagitis, and myelosuppression, and only three patients (5.0%) had grade III-IV toxic reactions. Compared with the CG, the incidence of grade I-II oral mucositis, radiodermatitis, pharyngitis, and esophagitis in the EG was obviously lower (P < 0.05). After treatment, compared with the CG, levels of MMPs and VEGF of the EG were obviously lower (P < 0.001). After treatment, compared with the CG, indexes of immune function of the EG were obviously higher (P < 0.001). Conclusion For patients with UTC, FZYQKA decoction combined with external irradiation can exert the antiangiogenesis effect, reduce levels of MMPs, and optimize the short-term efficacy. The safe treatment method has mild toxic and side effects, which should be popularized in practice.
Collapse
|
7
|
Oxysterols are potential physiological regulators of ageing. Ageing Res Rev 2022; 77:101615. [PMID: 35351610 DOI: 10.1016/j.arr.2022.101615] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022]
Abstract
Delaying and even reversing ageing is a major public health challenge with a tremendous potential to postpone a plethora of diseases including cancer, metabolic syndromes and neurodegenerative disorders. A better understanding of ageing as well as the development of innovative anti-ageing strategies are therefore an increasingly important field of research. Several biological processes including inflammation, proteostasis, epigenetic, oxidative stress, stem cell exhaustion, senescence and stress adaptive response have been reported for their key role in ageing. In this review, we describe the relationships that have been established between cholesterol homeostasis, in particular at the level of oxysterols, and ageing. Initially considered as harmful pro-inflammatory and cytotoxic metabolites, oxysterols are currently emerging as an expanding family of fine regulators of various biological processes involved in ageing. Indeed, depending of their chemical structure and their concentration, oxysterols exhibit deleterious or beneficial effects on inflammation, oxidative stress and cell survival. In addition, stem cell differentiation, epigenetics, cellular senescence and proteostasis are also modulated by oxysterols. Altogether, these data support the fact that ageing is influenced by an oxysterol profile. Further studies are thus required to explore more deeply the impact of the "oxysterome" on ageing and therefore this cholesterol metabolic pathway constitutes a promising target for future anti-ageing interventions.
Collapse
|
8
|
Record M, Attia M, Carayon K, Pucheu L, Bunay J, Soulès R, Ayadi S, Payré B, Perrin‐Cocon L, Bourgailh F, Lamazière A, Lotteau V, Poirot M, Silvente‐Poirot S, de Medina P. Targeting the liver X receptor with dendrogenin A differentiates tumour cells to secrete immunogenic exosome-enriched vesicles. J Extracell Vesicles 2022; 11:e12211. [PMID: 35411723 PMCID: PMC9001168 DOI: 10.1002/jev2.12211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 01/02/2023] Open
Abstract
Tumour cells are characterized by having lost their differentiation state. They constitutively secrete small extracellular vesicles (sEV) called exosomes when they come from late endosomes. Dendrogenin A (DDA) is an endogenous tumour suppressor cholesterol‐derived metabolite. It is a new class of ligand of the nuclear Liver X receptors (LXR) which regulate cholesterol homeostasis and immunity. We hypothesized that DDA, which induces tumour cell differentiation, inhibition of tumour growth and immune cell infiltration into tumours, could functionally modify sEV secreted by tumour cells. Here, we have shown that DDA differentiates tumour cells by acting on the LXRβ. This results in an increased production of sEV (DDA‐sEV) which includes exosomes. The DDA‐sEV secreted from DDA‐treated cells were characterized for their content and activity in comparison to sEV secreted from control cells (C‐sEV). DDA‐sEV were enriched, relatively to C‐sEV, in several proteins and lipids such as differentiation antigens, “eat‐me” signals, lipidated LC3 and the endosomal phospholipid bis(monoacylglycero)phosphate, which stimulates dendritic cell maturation and a Th1 T lymphocyte polarization. Moreover, DDA‐sEV inhibited the growth of tumours implanted into immunocompetent mice compared to control conditions. This study reveals a pharmacological control through a nuclear receptor of exosome‐enriched tumour sEV secretion, composition and immune function. Targeting the LXR may be a novel way to reprogram tumour cells and sEV to stimulate immunity against cancer.
Collapse
Affiliation(s)
- Michel Record
- Team “Cholesterol Metabolism and Therapeutic Innovations” Cancer Research Centre of Toulouse (CRCT)UMR 1037 INSERMUMR 5071 CNRSUniversité de Toulouse IIIEquipe labellisée par la Ligue Nationale Contre le CancerFrench network for Nutrition And Cancer Research (NACRe network)France
| | - Mehdi Attia
- Team “Cholesterol Metabolism and Therapeutic Innovations” Cancer Research Centre of Toulouse (CRCT)UMR 1037 INSERMUMR 5071 CNRSUniversité de Toulouse IIIEquipe labellisée par la Ligue Nationale Contre le CancerFrench network for Nutrition And Cancer Research (NACRe network)France
| | - Kevin Carayon
- Team “Cholesterol Metabolism and Therapeutic Innovations” Cancer Research Centre of Toulouse (CRCT)UMR 1037 INSERMUMR 5071 CNRSUniversité de Toulouse IIIEquipe labellisée par la Ligue Nationale Contre le CancerFrench network for Nutrition And Cancer Research (NACRe network)France
| | - Laly Pucheu
- Team “Cholesterol Metabolism and Therapeutic Innovations” Cancer Research Centre of Toulouse (CRCT)UMR 1037 INSERMUMR 5071 CNRSUniversité de Toulouse IIIEquipe labellisée par la Ligue Nationale Contre le CancerFrench network for Nutrition And Cancer Research (NACRe network)France
| | - Julio Bunay
- Team “Cholesterol Metabolism and Therapeutic Innovations” Cancer Research Centre of Toulouse (CRCT)UMR 1037 INSERMUMR 5071 CNRSUniversité de Toulouse IIIEquipe labellisée par la Ligue Nationale Contre le CancerFrench network for Nutrition And Cancer Research (NACRe network)France
| | - Régis Soulès
- Team “Cholesterol Metabolism and Therapeutic Innovations” Cancer Research Centre of Toulouse (CRCT)UMR 1037 INSERMUMR 5071 CNRSUniversité de Toulouse IIIEquipe labellisée par la Ligue Nationale Contre le CancerFrench network for Nutrition And Cancer Research (NACRe network)France
| | - Silia Ayadi
- Team “Cholesterol Metabolism and Therapeutic Innovations” Cancer Research Centre of Toulouse (CRCT)UMR 1037 INSERMUMR 5071 CNRSUniversité de Toulouse IIIEquipe labellisée par la Ligue Nationale Contre le CancerFrench network for Nutrition And Cancer Research (NACRe network)France
| | - Bruno Payré
- Team “Cholesterol Metabolism and Therapeutic Innovations” Cancer Research Centre of Toulouse (CRCT)UMR 1037 INSERMUMR 5071 CNRSUniversité de Toulouse IIIEquipe labellisée par la Ligue Nationale Contre le CancerFrench network for Nutrition And Cancer Research (NACRe network)France
| | - Laure Perrin‐Cocon
- Team “ VIRal InfectionMetabolism and ImmunityCIRICentre International de Recherche en InfectiologieUniv LyonInsermU1111Université Claude Bernard Lyon 1CNRSUMR5308ENS de LyonLyonFrance
| | - Florence Bourgailh
- Centre de Microscopie Electronique Appliquée à la BiologieFaculté de Médecine RangueilToulouseFrance
| | - Antonin Lamazière
- Sorbonne UniversitéINSERMCentre de Recherche Saint‐AntoineCRSAAP‐HP.SUHôpital Saint AntoineDépartement de métabobolomique cliniqueParisFrance
| | - Vincent Lotteau
- Team “ VIRal InfectionMetabolism and ImmunityCIRICentre International de Recherche en InfectiologieUniv LyonInsermU1111Université Claude Bernard Lyon 1CNRSUMR5308ENS de LyonLyonFrance
| | - Marc Poirot
- Team “Cholesterol Metabolism and Therapeutic Innovations” Cancer Research Centre of Toulouse (CRCT)UMR 1037 INSERMUMR 5071 CNRSUniversité de Toulouse IIIEquipe labellisée par la Ligue Nationale Contre le CancerFrench network for Nutrition And Cancer Research (NACRe network)France
| | - Sandrine Silvente‐Poirot
- Team “Cholesterol Metabolism and Therapeutic Innovations” Cancer Research Centre of Toulouse (CRCT)UMR 1037 INSERMUMR 5071 CNRSUniversité de Toulouse IIIEquipe labellisée par la Ligue Nationale Contre le CancerFrench network for Nutrition And Cancer Research (NACRe network)France
| | - Philippe de Medina
- Team “Cholesterol Metabolism and Therapeutic Innovations” Cancer Research Centre of Toulouse (CRCT)UMR 1037 INSERMUMR 5071 CNRSUniversité de Toulouse IIIEquipe labellisée par la Ligue Nationale Contre le CancerFrench network for Nutrition And Cancer Research (NACRe network)France
| |
Collapse
|
9
|
Identification of an immune-related signature indicating the dedifferentiation of thyroid cells. Cancer Cell Int 2021; 21:231. [PMID: 33892730 PMCID: PMC8067302 DOI: 10.1186/s12935-021-01939-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
Background Immune cells account for a large proportion of the tumour microenvironment in anaplastic thyroid carcinomas (ATCs). However, the expression pattern of immune-related genes (IRGs) in ATCs is unclear. Our study aimed to identify an immune-related signature indicating the dedifferentiation of thyroid cells. Methods We compared the differences in thyroid differentiation score (TDS), infiltration of immune cells and enriched pathways between ATCs and papillary thyroid carcinomas (PTCs) or normal thyroid tissues in the Gene Expression Omnibus database. Univariate and multivariable Cox analyses were used to screen prognosis-associated IRGs in The Cancer Genome Atlas database. After constructing a risk score, we investigated its predictive value for differentiation and survival by applying receiver operating characteristic and Kaplan–Meier curves. We further explored its associations with important immune checkpoint molecules, infiltrating immune cells and response to immunotherapy. Results Compared with PTCs or normal thyroid tissues, ATCs exhibited lower TDS values and higher enrichment of immune cells and activation of the inflammatory response. The quantitative analyses and immunohistochemical staining validated that most ATC cell lines and ATC tissues had higher expression of MMP9 and lower expression of SDC2 than normal thyroid samples and PTC. Higher risk scores indicates dedifferentiation and a worse prognosis. Additionally, the risk score was positively correlated with the immune checkpoint molecules PDL1, CTLA4, IDO1, and HAVCR2 and infiltration of multiple immune cells. Importantly, we found that the samples with higher risk scores tended to have a better response to immunotherapy than those with lower scores. Conclusion Our findings indicate that the risk score may not only contribute to the determination of differentiation and prognosis of thyroid carcinomas but also help the prediction of immune cells infiltration and immunotherapy response. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01939-3.
Collapse
|
10
|
Oh JM, Ahn BC. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: Impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS. Theranostics 2021; 11:6251-6277. [PMID: 33995657 PMCID: PMC8120202 DOI: 10.7150/thno.57689] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
The advanced, metastatic differentiated thyroid cancers (DTCs) have a poor prognosis mainly owing to radioactive iodine (RAI) refractoriness caused by decreased expression of sodium iodide symporter (NIS), diminished targeting of NIS to the cell membrane, or both, thereby decreasing the efficacy of RAI therapy. Genetic aberrations (such as BRAF, RAS, and RET/PTC rearrangements) have been reported to be prominently responsible for the onset, progression, and dedifferentiation of DTCs, mainly through the activation of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT signaling pathways. Eventually, these alterations result in a lack of NIS and disabling of RAI uptake, leading to the development of resistance to RAI therapy. Over the past decade, promising approaches with various targets have been reported to restore NIS expression and RAI uptake in preclinical studies. In this review, we summarized comprehensive molecular mechanisms underlying the dedifferentiation in RAI-refractory DTCs and reviews strategies for restoring RAI avidity by tackling the mechanisms.
Collapse
|
11
|
Hutchinson SA, Websdale A, Cioccoloni G, Røberg-Larsen H, Lianto P, Kim B, Rose A, Soteriou C, Pramanik A, Wastall LM, Williams BJ, Henn MA, Chen JJ, Ma L, Moore JB, Nelson E, Hughes TA, Thorne JL. Liver x receptor alpha drives chemoresistance in response to side-chain hydroxycholesterols in triple negative breast cancer. Oncogene 2021; 40:2872-2883. [PMID: 33742124 PMCID: PMC8062267 DOI: 10.1038/s41388-021-01720-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022]
Abstract
Triple negative breast cancer (TNBC) is challenging to treat successfully because targeted therapies do not exist. Instead, systemic therapy is typically restricted to cytotoxic chemotherapy, which fails more often in patients with elevated circulating cholesterol. Liver x receptors are ligand-dependent transcription factors that are homeostatic regulators of cholesterol, and are linked to regulation of broad-affinity xenobiotic transporter activity in non-tumor tissues. We show that LXR ligands confer chemotherapy resistance in TNBC cell lines and xenografts, and that LXRalpha is necessary and sufficient to mediate this resistance. Furthermore, in TNBC patients who had cancer recurrences, LXRalpha and ligands were independent markers of poor prognosis and correlated with P-glycoprotein expression. However, in patients who survived their disease, LXRalpha signaling and P-glycoprotein were decoupled. These data reveal a novel chemotherapy resistance mechanism in this poor prognosis subtype of breast cancer. We conclude that systemic chemotherapy failure in some TNBC patients is caused by co-opting the LXRalpha:P-glycoprotein axis, a pathway highly targetable by therapies that are already used for prevention and treatment of other diseases.
Collapse
Affiliation(s)
- Samantha A Hutchinson
- School of Food Science and Nutrition, University of Leeds, Leeds, UK.,Institute for Cancer Research, London, UK
| | - Alex Websdale
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | | | | | - Priscilia Lianto
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Baek Kim
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Ailsa Rose
- School of Medicine, University of Leeds, Leeds, UK
| | - Chrysa Soteriou
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | | | | | | | - Madeline A Henn
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | - Joy J Chen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | - Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | | | - Erik Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, Illinois, USA.,Cancer Center at Illinois, University of Illinois at Urbana Champaign, Urbana, Illinois, USA.,Division of Nutritional Sciences, University of Illinois at Urbana Champaign, Urbana, Illinois, USA.,University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | - Thomas A Hughes
- School of Medicine, University of Leeds, Leeds, UK. .,Leeds Breast Cancer Research Group, Faculty of Medicine and Health, University of Leeds, Leeds, UK.
| | - James L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds, UK. .,Leeds Breast Cancer Research Group, Faculty of Medicine and Health, University of Leeds, Leeds, UK.
| |
Collapse
|
12
|
Font-Díaz J, Jiménez-Panizo A, Caelles C, Vivanco MDM, Pérez P, Aranda A, Estébanez-Perpiñá E, Castrillo A, Ricote M, Valledor AF. Nuclear receptors: Lipid and hormone sensors with essential roles in the control of cancer development. Semin Cancer Biol 2020; 73:58-75. [PMID: 33309851 DOI: 10.1016/j.semcancer.2020.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that act as biological sensors and use a combination of mechanisms to modulate positively and negatively gene expression in a spatial and temporal manner. The highly orchestrated biological actions of several NRs influence the proliferation, differentiation, and apoptosis of many different cell types. Synthetic ligands for several NRs have been the focus of extensive drug discovery efforts for cancer intervention. This review summarizes the roles in tumour growth and metastasis of several relevant NR family members, namely androgen receptor (AR), estrogen receptor (ER), glucocorticoid receptor (GR), thyroid hormone receptor (TR), retinoic acid receptors (RARs), retinoid X receptors (RXRs), peroxisome proliferator-activated receptors (PPARs), and liver X receptors (LXRs). These studies are key to develop improved therapeutic agents based on novel modes of action with reduced side effects and overcoming resistance.
Collapse
Affiliation(s)
- Joan Font-Díaz
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain
| | - Alba Jiménez-Panizo
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain; Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Carme Caelles
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, Spain
| | - María dM Vivanco
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Derio, 48160, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, Valencia, 46010, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, 28029, Spain
| | - Eva Estébanez-Perpiñá
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain; Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, 28029, Spain; Unidad de Biomedicina, (Unidad Asociada al CSIC), Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Universidad de Las Palmas, Gran Canaria, 35001, Spain
| | - Mercedes Ricote
- Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Annabel F Valledor
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain.
| |
Collapse
|
13
|
Kurashige T, Shimamura M, Nagayama Y. Reevaluation of the Effect of Iodine on Thyroid Cell Survival and Function Using PCCL3 and Nthy-ori 3-1 Cells. J Endocr Soc 2020; 4:bvaa146. [PMID: 33123658 PMCID: PMC7577408 DOI: 10.1210/jendso/bvaa146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/23/2020] [Indexed: 12/04/2022] Open
Abstract
The appropriate amount of iodine is critical for normal function of thyroid cells synthesizing thyroid hormones. Although normal thyroid cell lines such as rat PCCL3 and FRTL5 and human Nthy-ori 3-1 have been widely used for in vitro studies on physiological and pathophysiological effects of iodine on thyroid cells, we have recently pointed out the critical differences between FRTL5/PCCL3 cells and Nthy-ori 3-1 cells. Therefore, we here directly compared some of the cellular characteristics—iodine uptake, differentiated status, iodine-induced cytotoxicity, and iodine-regulation of autophagy—between PCCL3 and Nthy-ori 3-1 cells. PCCL3 cells express messenger RNAs for thyrotropin receptor and sodium/iodine symporter and incorporate iodine in a thyrotropin-dependent manner, whereas Nthy-ori 3-1 cells do not either. Nevertheless, both cells were comparably resistant to iodine cytotoxicity: Only far excess iodine (5 × 10–2 M) killed 20% to 40% cells in 24 hours with perchlorate exhibiting no effect, suggesting this cytotoxic effect is due to extracellular iodine. In contrast, a wide range of iodine (5 × 10–9 to 5 × 10–2 M) induced autophagy in PCCL3 cells, which was abolished by perchlorate, indicating intracellular iodine-induction of autophagy, but this effect was not observed in Nthy-ori 3-1 cells. In conclusion, it is critical to discriminate the effect of iodine incorporated into cells from that of extracellular iodine on thyroid cells. Iodine-uptake competent thyroid cells such as PCCL3 and FRTL5 cells, not Nthy-ori 3-1 cells, should be used for studies on iodine effect on thyroid cells.
Collapse
Affiliation(s)
- Tomomi Kurashige
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Mika Shimamura
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
14
|
Mouchel PL, Serhan N, Betous R, Farge T, Saland E, De Medina P, Hoffmann JS, Sarry JE, Poirot M, Silvente-Poirot S, Récher C. Dendrogenin A Enhances Anti-Leukemic Effect of Anthracycline in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12102933. [PMID: 33053669 PMCID: PMC7601603 DOI: 10.3390/cancers12102933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Recently, several molecules have improved the clinical outcome of acute myeloid leukemia (AML) patients. Despite these recent advances, their prognosis remains poor and new strategies to improve the standard anthracycline and Ara-C-based chemotherapy are needed. We recently published that dendrogenin A (DDA), a mammalian cholesterol metabolite with tumor-suppressor properties, can potentiate the effect of Ara-C to kill AML cells. In this study, we find that DDA can also potentiate anthracycline against AML. The potentiation of Ara-C by DDA is due to a switch from a protective autophagy to a deadly autophagy. Regarding anthracyclines, the potentiation of daunorubicin is caused by the modulation of the efflux by the PgP pump, and that of idarubicin, to an increase in DNA damage and to the induction of a rapid and lethal autophagy. This is caused by rapid modulation of AKT/mTOR and JNK activity, two major pathways involved both in DNA repair and lethal autophagy. Abstract Dendrogenin A (DDA), a mammalian cholesterol metabolite with tumor suppressor properties, has recently been shown to exhibit strong anti-leukemic activity in acute myeloid leukemia (AML) cells by triggering lethal autophagy. Here, we demonstrated that DDA synergistically enhanced the toxicity of anthracyclines in AML cells but not in normal hematopoietic cells. Combination index of DDA treatment with either daunorubicin or idarubicin indicated a strong synergism in KG1a, KG1 and MV4-11 cell lines. This was confirmed in vivo using immunodeficient mice engrafted with MOLM-14 cells as well as in a panel of 20 genetically diverse AML patient samples. This effect was dependent on Liver X Receptor β, a major target of DDA. Furthermore, DDA plus idarubicin strongly increased p53BP1 expression and the number of DNA strand breaks in alkaline comet assays as compared to idarubicin alone, whereas DDA alone was non-genotoxic. Mechanistically, DDA induced JNK phosphorylation and the inhibition of AKT phosphorylation, thereby maximizing DNA damage induced by idarubicin and decreasing DNA repair. This activated autophagic cell death machinery in AML cells. Overall, this study shows that the combination of DDA and idarubicin is highly promising and supports clinical trials of dendrogenin A in AML patients.
Collapse
Affiliation(s)
- Pierre-Luc Mouchel
- Service d’Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, 31059 Toulouse, France;
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037 Toulouse, France; (N.S.); (T.F.); (E.S.); (J.-E.S.)
| | - Nizar Serhan
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037 Toulouse, France; (N.S.); (T.F.); (E.S.); (J.-E.S.)
- Team “Cholesterol Metabolism and Therapeutic Innovations”, Cancer Research Center of Toulouse (CRCT), UMR 1037, Inserm-Université de Toulouse 3, Equipe labellisée par la ligue contre le cancer, 31037 Toulouse, France;
| | - Rémy Betous
- CRCT, Université de Toulouse, Inserm, CNRS, UPS, 31000 Toulouse, France;
- Equipe Labellisée Ligue Contre le Cancer, Laboratoire d’Excellence Toulouse Cancer, 31037 Toulouse, France
| | - Thomas Farge
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037 Toulouse, France; (N.S.); (T.F.); (E.S.); (J.-E.S.)
| | - Estelle Saland
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037 Toulouse, France; (N.S.); (T.F.); (E.S.); (J.-E.S.)
| | | | - Jean-Sébastien Hoffmann
- Laboratoire d’Excellence Toulouse Cancer (TOUCAN), Laboratoire de pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 31037 Toulouse, France;
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037 Toulouse, France; (N.S.); (T.F.); (E.S.); (J.-E.S.)
| | - Marc Poirot
- Team “Cholesterol Metabolism and Therapeutic Innovations”, Cancer Research Center of Toulouse (CRCT), UMR 1037, Inserm-Université de Toulouse 3, Equipe labellisée par la ligue contre le cancer, 31037 Toulouse, France;
- Correspondence: (M.P.); (C.R.)
| | - Sandrine Silvente-Poirot
- Team “Cholesterol Metabolism and Therapeutic Innovations”, Cancer Research Center of Toulouse (CRCT), UMR 1037, Inserm-Université de Toulouse 3, Equipe labellisée par la ligue contre le cancer, 31037 Toulouse, France;
| | - Christian Récher
- Service d’Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, 31059 Toulouse, France;
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037 Toulouse, France; (N.S.); (T.F.); (E.S.); (J.-E.S.)
- Correspondence: (M.P.); (C.R.)
| |
Collapse
|
15
|
de Medina P, Diallo K, Huc-Claustre E, Attia M, Soulès R, Silvente-Poirot S, Poirot M. The 5,6-epoxycholesterol metabolic pathway in breast cancer: Emergence of new pharmacological targets. Br J Pharmacol 2020; 178:3248-3260. [PMID: 32696532 DOI: 10.1111/bph.15205] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic pathways have emerged as cornerstones in carcinogenic deregulation providing new therapeutic strategies for cancer management. Recently, a new branch of cholesterol metabolism has been discovered involving the biochemical transformation of 5,6-epoxycholesterols (5,6-ECs). The 5,6-ECs are metabolized in breast cancers to the tumour promoter oncosterone whereas, in normal breast tissue, they are metabolized to the tumour suppressor metabolite, dendrogenin A (DDA). Blocking the mitogenic and invasive potential of oncosterone will present new opportunities for breast cancer treatment. The reactivation of DDA biosynthesis, or its use as a drug, represents promising therapeutic approaches such as DDA-deficiency complementation, activation of breast cancer cell re-differentiation and breast cancer chemoprevention. This review presents current knowledge of the 5,6-EC metabolic pathway in breast cancer, focusing on the 5,6-EC metabolic enzymes ChEH and HSD11B2 and on 5,6-EC metabolite targets, the oxysterol receptor (LXRβ) and the glucocorticoid receptor. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Philippe de Medina
- UMR-1037, Cancer Research Center of Toulouse (CRCT), Team "Cholesterol Metabolism and Therapeutic Innovations"; Equipe labellisée par la Ligue Nationale Contre le Cancer, The French Network for Nutrition and Cancer Research (NACRe Network), INSERM-Université de Toulouse, Toulouse, France
| | - Khadijetou Diallo
- UMR-1037, Cancer Research Center of Toulouse (CRCT), Team "Cholesterol Metabolism and Therapeutic Innovations"; Equipe labellisée par la Ligue Nationale Contre le Cancer, The French Network for Nutrition and Cancer Research (NACRe Network), INSERM-Université de Toulouse, Toulouse, France
| | - Emilie Huc-Claustre
- UMR-1037, Cancer Research Center of Toulouse (CRCT), Team "Cholesterol Metabolism and Therapeutic Innovations"; Equipe labellisée par la Ligue Nationale Contre le Cancer, The French Network for Nutrition and Cancer Research (NACRe Network), INSERM-Université de Toulouse, Toulouse, France
| | - Mehdi Attia
- UMR-1037, Cancer Research Center of Toulouse (CRCT), Team "Cholesterol Metabolism and Therapeutic Innovations"; Equipe labellisée par la Ligue Nationale Contre le Cancer, The French Network for Nutrition and Cancer Research (NACRe Network), INSERM-Université de Toulouse, Toulouse, France
| | - Régis Soulès
- UMR-1037, Cancer Research Center of Toulouse (CRCT), Team "Cholesterol Metabolism and Therapeutic Innovations"; Equipe labellisée par la Ligue Nationale Contre le Cancer, The French Network for Nutrition and Cancer Research (NACRe Network), INSERM-Université de Toulouse, Toulouse, France
| | - Sandrine Silvente-Poirot
- UMR-1037, Cancer Research Center of Toulouse (CRCT), Team "Cholesterol Metabolism and Therapeutic Innovations"; Equipe labellisée par la Ligue Nationale Contre le Cancer, The French Network for Nutrition and Cancer Research (NACRe Network), INSERM-Université de Toulouse, Toulouse, France
| | - Marc Poirot
- UMR-1037, Cancer Research Center of Toulouse (CRCT), Team "Cholesterol Metabolism and Therapeutic Innovations"; Equipe labellisée par la Ligue Nationale Contre le Cancer, The French Network for Nutrition and Cancer Research (NACRe Network), INSERM-Université de Toulouse, Toulouse, France
| |
Collapse
|
16
|
Pontini L, Marinozzi M. Shedding light on the roles of liver X receptors in cancer by using chemical probes. Br J Pharmacol 2020; 178:3261-3276. [PMID: 32673401 DOI: 10.1111/bph.15200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Nuclear receptors, liver X receptor-α (LXRα; NR1H3) and liver X receptor-β (LXRβ; NR1H2), are considered master regulators of lipid homeostasis. During the last couple of decades, their pivotal roles in several physiological and pathological processes ranging from energy supply, immunity, cardiovascular, neurodegenerative disorders and cancer have been highlighted. In this review, the main results achieved during more recent years about our understanding of the LXR involvement in cancer has been mainly obtained using small-molecule chemical probes. Remarkably, all these probes, albeit having different structure and biological properties, have a well demonstrated anti-tumoral activity arising from LXR modulation, indicating a high potential of LXR targeting for the treatment of cancer. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Lorenzo Pontini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maura Marinozzi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
17
|
Liu J, Cao L, Qu JZ, Chen TT, Su ZJ, Hu YL, Wang Y, Yao MD, Xiao WH, Li C, Li B, Yuan YJ. NVD-BM-mediated genetic biosensor triggers accumulation of 7-dehydrocholesterol and inhibits melanoma via Akt1/NF-ĸB signaling. Aging (Albany NY) 2020; 12:15021-15036. [PMID: 32712598 PMCID: PMC7425431 DOI: 10.18632/aging.103562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/05/2020] [Indexed: 01/08/2023]
Abstract
Aberrant activation of the cholesterol biosynthesis supports tumor cell growth. In recent years, significant progress has been made by targeting rate-limiting enzymes in cholesterol biosynthesis pathways to prevent carcinogenesis. However, precise mechanisms behind cholesterol degradation in cancer cells have not been comprehensively investigated. Here, we report that codon optimization of the orthologous cholesterol 7-desaturase, NVD-BM from Bombyx mori, significantly slowed melanoma cell proliferation and migration, and inhibited cancer cell engraftment in nude mice, by converting cholesterol to toxic 7-dehydrocholesterol. Based on these observations, we established a synthetic genetic circuit to induce melanoma cell regression by sensing tumor specific signals in melanoma cells. The dual-input signals, RELA proto-oncogene (RELA) and signal transducer and activator of transcription 1 (STAT1), activated NVD-BM expression and repressed melanoma cell proliferation and migration. Mechanically, we observed that NVD-BM decreased Akt1-ser473 phosphorylation and inhibited cytoplasmic RELA translocation. Taken together, NVD-BM was identified as a tumor suppressor in malignant melanoma, and we established a dual-input biosensor to promote cancer cell regression, via Akt1/NF-κB signaling. Our results demonstrate the potential therapeutic effects of cholesterol 7-desaturase in melanoma metabolism, and provides insights for genetic circuits targeting 7-dehydrocholesterol accumulation in tumors.
Collapse
Affiliation(s)
- Jia Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lei Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jun-Ze Qu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ting-Ting Chen
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Carson International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Zi-Jie Su
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Carson International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Yun-Long Hu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University, Health Science Center, Shenzhen 518055, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ming-Dong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wen-Hai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chun Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bo Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University, Health Science Center, Shenzhen 518055, China
| | - Ying-Jin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
18
|
Serhan N, Mouchel PL, de Medina P, Segala G, Mougel A, Saland E, Rives A, Lamaziere A, Despres G, Sarry JE, Larrue C, Vergez F, Largeaud L, Record M, Récher C, Silvente-Poirot S, Poirot M. Dendrogenin A synergizes with Cytarabine to Kill Acute Myeloid Leukemia Cells In Vitro and In Vivo. Cancers (Basel) 2020; 12:cancers12071725. [PMID: 32610562 PMCID: PMC7407291 DOI: 10.3390/cancers12071725] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Dendrogenin A (DDA) is a mammalian cholesterol metabolite that displays potent antitumor properties on acute myeloid leukemia (AML). DDA triggers lethal autophagy in cancer cells through a biased activation of the oxysterol receptor LXRβ, and the inhibition of a sterol isomerase. We hypothesize that DDA could potentiate the activity of an anticancer drug acting through a different molecular mechanism, and conducted in vitro and in vivo combination tests on AML cell lines and patient primary tumors. We report here results from tests combining DDA with antimetabolite cytarabine (Ara-C), one of the main drugs used for AML treatment worldwide. We demonstrated that DDA potentiated and sensitized AML cells, including primary patient samples, to Ara-C in vitro and in vivo. Mechanistic studies revealed that this sensitization was LXRβ-dependent and was due to the activation of lethal autophagy. This study demonstrates a positive in vitro and in vivo interaction between DDA and Ara-C, and supports the clinical evaluation of DDA in combination with Ara-C for the treatment of AML.
Collapse
Affiliation(s)
- Nizar Serhan
- Unité Mixte de Recherche (UMR) 1037, Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) Université de Toulouse, Team Cholesterol Metabolism and Therapeutic Innovations, Equipe labellisée par la Ligue Contre le Cancer, 31037 Toulouse, France; (N.S.); (P.d.M.); (G.S.); (A.M.); (M.R.)
| | - Pierre-Luc Mouchel
- Cancer Research Center of Toulouse (CRCT), Unité Mixte de Recherche (UMR) 1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 Centre national de la recherche scientifique (CNRS), Team Drug Resistance and Oncometabolism in Acute Myeloid Leukemia, 31037 Toulouse, France; (P.-L.M.); (E.S.); (J.-E.S.); (C.L.)
- Service d’Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Université de Toulouse, 31400 Toulouse, France; (F.V.); (L.L.)
| | - Philippe de Medina
- Unité Mixte de Recherche (UMR) 1037, Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) Université de Toulouse, Team Cholesterol Metabolism and Therapeutic Innovations, Equipe labellisée par la Ligue Contre le Cancer, 31037 Toulouse, France; (N.S.); (P.d.M.); (G.S.); (A.M.); (M.R.)
| | - Gregory Segala
- Unité Mixte de Recherche (UMR) 1037, Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) Université de Toulouse, Team Cholesterol Metabolism and Therapeutic Innovations, Equipe labellisée par la Ligue Contre le Cancer, 31037 Toulouse, France; (N.S.); (P.d.M.); (G.S.); (A.M.); (M.R.)
| | - Aurélie Mougel
- Unité Mixte de Recherche (UMR) 1037, Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) Université de Toulouse, Team Cholesterol Metabolism and Therapeutic Innovations, Equipe labellisée par la Ligue Contre le Cancer, 31037 Toulouse, France; (N.S.); (P.d.M.); (G.S.); (A.M.); (M.R.)
| | - Estelle Saland
- Cancer Research Center of Toulouse (CRCT), Unité Mixte de Recherche (UMR) 1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 Centre national de la recherche scientifique (CNRS), Team Drug Resistance and Oncometabolism in Acute Myeloid Leukemia, 31037 Toulouse, France; (P.-L.M.); (E.S.); (J.-E.S.); (C.L.)
| | - Arnaud Rives
- AFFICHEM, 31400 Toulouse, France;
- Dendrogenix, 4000 Liège, Belgium
| | - Antonin Lamaziere
- Laboratory of Mass Spectrometry, Institut National de la Santé et de la Recherche Médicale (INSERM) ERL 1157, Centre national de la recherche scientifique (CNRS) Unité Mixte de Recherche (UMR) 7203 LBM, Sorbonne Universités-UPMC, CHU Saint-Antoine, 75012 Paris, France; (A.L.); (G.D.)
| | - Gaëtan Despres
- Laboratory of Mass Spectrometry, Institut National de la Santé et de la Recherche Médicale (INSERM) ERL 1157, Centre national de la recherche scientifique (CNRS) Unité Mixte de Recherche (UMR) 7203 LBM, Sorbonne Universités-UPMC, CHU Saint-Antoine, 75012 Paris, France; (A.L.); (G.D.)
| | - Jean-Emmanuel Sarry
- Cancer Research Center of Toulouse (CRCT), Unité Mixte de Recherche (UMR) 1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 Centre national de la recherche scientifique (CNRS), Team Drug Resistance and Oncometabolism in Acute Myeloid Leukemia, 31037 Toulouse, France; (P.-L.M.); (E.S.); (J.-E.S.); (C.L.)
| | - Clément Larrue
- Cancer Research Center of Toulouse (CRCT), Unité Mixte de Recherche (UMR) 1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 Centre national de la recherche scientifique (CNRS), Team Drug Resistance and Oncometabolism in Acute Myeloid Leukemia, 31037 Toulouse, France; (P.-L.M.); (E.S.); (J.-E.S.); (C.L.)
| | - François Vergez
- Service d’Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Université de Toulouse, 31400 Toulouse, France; (F.V.); (L.L.)
| | - Laetitia Largeaud
- Service d’Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Université de Toulouse, 31400 Toulouse, France; (F.V.); (L.L.)
| | - Michel Record
- Unité Mixte de Recherche (UMR) 1037, Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) Université de Toulouse, Team Cholesterol Metabolism and Therapeutic Innovations, Equipe labellisée par la Ligue Contre le Cancer, 31037 Toulouse, France; (N.S.); (P.d.M.); (G.S.); (A.M.); (M.R.)
| | - Christian Récher
- Cancer Research Center of Toulouse (CRCT), Unité Mixte de Recherche (UMR) 1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 Centre national de la recherche scientifique (CNRS), Team Drug Resistance and Oncometabolism in Acute Myeloid Leukemia, 31037 Toulouse, France; (P.-L.M.); (E.S.); (J.-E.S.); (C.L.)
- Service d’Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Université de Toulouse, 31400 Toulouse, France; (F.V.); (L.L.)
- Correspondence: (C.R.); (S.S.-P.); (M.P.); Tel.: +33-5-31-15-63-55 (C.R.); +33-5-82-74-16-28 (S.S.-P.); +33-5-82-74-16-26 (M.P.)
| | - Sandrine Silvente-Poirot
- Unité Mixte de Recherche (UMR) 1037, Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) Université de Toulouse, Team Cholesterol Metabolism and Therapeutic Innovations, Equipe labellisée par la Ligue Contre le Cancer, 31037 Toulouse, France; (N.S.); (P.d.M.); (G.S.); (A.M.); (M.R.)
- Correspondence: (C.R.); (S.S.-P.); (M.P.); Tel.: +33-5-31-15-63-55 (C.R.); +33-5-82-74-16-28 (S.S.-P.); +33-5-82-74-16-26 (M.P.)
| | - Marc Poirot
- Unité Mixte de Recherche (UMR) 1037, Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) Université de Toulouse, Team Cholesterol Metabolism and Therapeutic Innovations, Equipe labellisée par la Ligue Contre le Cancer, 31037 Toulouse, France; (N.S.); (P.d.M.); (G.S.); (A.M.); (M.R.)
- Correspondence: (C.R.); (S.S.-P.); (M.P.); Tel.: +33-5-31-15-63-55 (C.R.); +33-5-82-74-16-28 (S.S.-P.); +33-5-82-74-16-26 (M.P.)
| |
Collapse
|
19
|
Soulès R, Audouard-Combe F, Huc-Claustre E, de Medina P, Rives A, Chatelut E, Dalenc F, Franchet C, Silvente-Poirot S, Poirot M, Allal B. A fast UPLC-HILIC method for an accurate quantification of dendrogenin A in human tissues. J Steroid Biochem Mol Biol 2019; 194:105447. [PMID: 31415823 DOI: 10.1016/j.jsbmb.2019.105447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/05/2019] [Accepted: 08/11/2019] [Indexed: 11/20/2022]
Abstract
Dendrogenin A (DDA) is a newly-discovered steroidal alkaloid, which remains to date the first ever found in mammals. DDA is a cholesterol metabolites that induces cancer cell differentiation and death in vitro and in vivo, and thus behave like a tumor suppressor metabolite. Preliminary studies performed on 10 patients with estrogen receptor positive breast cancers (ER(+)BC) showed a strong decrease in DDA levels between normal matched tissue and tumors. This suggests that a deregulation on DDA metabolism is associated with breast carcinogenesis. To further investigate DDA metabolism on large cohorts of patients we have developed an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS) procedure for the quantification of DDA in liquid and in solid tissues. This method enabled the identification of DDA analogues such as its geometric isomer C17 and dendrogenin B (C26) in human samples showing that other 5,6α-epoxycholesterol conjugation products with biogenic amines exist as endogenous metabolites . We report here the first complete method of quantification of DDA in liquid and solid tissues using hydrophilic interaction liquid chromatography (HILIC). Two different methods of extraction using either a Bligh and Dyer organic extraction or protein precipitation were successfully applied to quantify DDA in solid and liquid tissues. The protein precipitation method was the fastest. The fact that this method is automatable opens up possibilities to study DDA metabolism in large cohorts of patients.
Collapse
Affiliation(s)
- Régis Soulès
- Team « Cholesterol metabolism and therapeutic innovations », Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France; Equipe labellisée par la Ligue Nationale Contre le Cancer, France
| | | | - Emilie Huc-Claustre
- Team « Cholesterol metabolism and therapeutic innovations », Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France; Equipe labellisée par la Ligue Nationale Contre le Cancer, France
| | - Philippe de Medina
- Team « Cholesterol metabolism and therapeutic innovations », Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France; Equipe labellisée par la Ligue Nationale Contre le Cancer, France
| | - Arnaud Rives
- Affichem, Toulouse, France; Dendrogenix, Liège, Belgium
| | - Etienne Chatelut
- Team "Dose individualization of anticancer drugs », Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France; Institut Claudius Regaud, Institut Universitaire du Cancer-Oncopole, Toulouse, France
| | - Florence Dalenc
- Team « Cholesterol metabolism and therapeutic innovations », Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France; Equipe labellisée par la Ligue Nationale Contre le Cancer, France; Institut Claudius Regaud, Institut Universitaire du Cancer-Oncopole, Toulouse, France
| | - Camille Franchet
- Service d'Anatomo-Pathologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Sandrine Silvente-Poirot
- Team « Cholesterol metabolism and therapeutic innovations », Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France; Equipe labellisée par la Ligue Nationale Contre le Cancer, France
| | - Marc Poirot
- Team « Cholesterol metabolism and therapeutic innovations », Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France; Equipe labellisée par la Ligue Nationale Contre le Cancer, France.
| | - Ben Allal
- Team "Dose individualization of anticancer drugs », Cancer Research Center of Toulouse, UMR 1037 INSERM-University of Toulouse, Toulouse, France; Institut Claudius Regaud, Institut Universitaire du Cancer-Oncopole, Toulouse, France.
| |
Collapse
|