1
|
Suharyani I, Mohammed AFA, Muchtaridi M, El-Rayyes A, Abdassah M, Suhandi C, Wathoni N. Complexation of α-Mangostin with γ-Cyclodextrin and Its Application in Alginate/Chitosan Hydrogel Mucoadhesive Film for Treatment of Recurrent Aphthous Stomatitis. J Inflamm Res 2025; 18:2185-2204. [PMID: 39974816 PMCID: PMC11837747 DOI: 10.2147/jir.s482582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/03/2024] [Indexed: 02/21/2025] Open
Abstract
Introduction α-Mangostin (α-M), one of the xanthon compound isolated from Garcinia mangostana rind, demonstrates the efficacy in the treatment of recurrent aphthous stomatitis (RAS). The lack of solubility of α-mangostin in water limited its pharmacological application. Purpose The lack of solubility of α-mangostin in water limited its formulation and pharmacological application. This study was done to enhance the solubility of α-M by complexation with γ-cyclodextrin (γ-CD) and its application in Alginate/Chitosan Hydrogel Mucoadhesive Film (HMF) for RAS treatment. Methods This complex was made by dissolved α-M and γ-CD in separated solution. α-M solution gradualy added into γ-CD to formed α-M/γ-CD complex (α-M/γ-CD CX). This complex then evaporated to yield the dry complex powder. The complex was successfully formulated into hydrogel mucoadhesive film (HMF) preparations based on characterization using Scanning Electron Microscope (SEM), Fourier Transform Infra-Red (FTIR), and X-Ray Diffractometry (XRD). The complex was formulated in hydrogel mucoadhesive film, followed by in-vitro drug release and the study of recurrent aphthous stomatitis (RAS) activity in rats. Results The α-M/γ-CD CX HMF film has a higher mucoadhesive force and mucoadhesive time than other HMFs resulting in a prolonged retention time in the oral mucosa. The drug release of α-M/γ-CD CX HMF followed the Korsmeyer-Peppas Model with a total amount of drug released 80.34+0.32%. The inclusion complex of α-M/γ-CD CX HMF exhibited increased anti-RAS activity compared to HMF base, α-M HMF, and α-M/γ-CD PM HMF. This was evidenced by a significant decrease in wound area of approximately 79.05±3.30%, an increase in epithelial thickness of about 1.24±0.09 μm, and a decrease in neutrophil score 1.10±0.26. These findings highlight the potential use of α-M/γ-CD CX as an effective RAS agent in HMF. Conclusion The complex of α-M/γ-CD CX has improved solubility of α-M, resulting in the transparent and homogenous film. The film containing this complex has the better physical characteristic, increasing the release and RAS activity.
Collapse
Affiliation(s)
- Ine Suharyani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Faculty of Pharmacy, Universitas Muhammadiyah Ahmad Dahlan Cirebon, Cirebon, West Java, 45153, Indonesia
| | | | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Ali El-Rayyes
- Center for Scientific Research and Entrepreneurship, Northern Border University, Arar, 73213, Saudi Arabia
| | - Marline Abdassah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
2
|
El-Sayed SE, Abdelaziz NA, El-Housseiny GS, Aboshanab KM. Nanosponge hydrogel of octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate of Alcaligenes faecalis. Appl Microbiol Biotechnol 2024; 108:100. [PMID: 38217256 PMCID: PMC10786974 DOI: 10.1007/s00253-023-12819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024]
Abstract
Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate (ODHP) was extracted in a previous study from the culture broth of soil isolate Alcaligenes faecalis MT332429 and showed a promising antimycotic activity. This study was aimed to formulate ODHP loaded β-cyclodextrins (CD) nanosponge (NS) hydrogel (HG) to control skin fungal ailments since nanosponges augment the retention of tested agents in the skin. Box-Behnken design was used to produce the optimized NS formulation, where entrapment efficiency percent (EE%), polydispersity index (PDI), and particle size (PS) were assigned as dependent parameters, while the independent process parameters were polyvinyl alcohol % (w/v %), polymer-linker ratio, homogenization time, and speed. The carbopol 940 hydrogel was then created by incorporating the nanosponges. The hydrogel fit Higuchi's kinetic release model the best, according to in vitro drug release. Stability and photodegradation studies revealed that the NS-HG remained stable under tested conditions. The formulation also showed higher in vitro antifungal activity against Candida albicans compared to the control fluconazole. In vivo study showed that ODHP-NS-HG increased survival rates, wound contraction, and healing of wound gap and inhibited the inflammation process compared to the other control groups. The histopathological examinations and Masson's trichrome staining showed improved healing and higher records of collagen deposition. Moreover, the permeability of ODHP-NS-HG was higher through rats' skin by 1.5-folds compared to the control isoconazole 1%. Therefore, based on these results, NS-HG formulation is a potential carrier for enhanced and improved topical delivery of ODHP. Our study is a pioneering research on the development of a formulation for ODHP produced naturally from soil bacteria. KEY POINTS: • Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate was successfully formulated as a nanosponge hydrogel and statistically optimized. • The new formula exhibited in vitro good stability, drug release, and higher antifungal activity against C. albicans as compared to the fluconazole. • Ex vivo showed enhanced skin permeability, and in vivo analysis showed high antifungal activity as evidenced by measurement of various biochemical parameters and histopathological examination.
Collapse
Affiliation(s)
- Sayed E El-Sayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Sixth of October City, Giza, 12451, Egypt
| | - Neveen A Abdelaziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Sixth of October City, Giza, 12451, Egypt
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
3
|
Nguyen NNT, Nguyen TTD, Vo DL, Than DTM, Tien GP, Pham DT. Microemulsion-based topical hydrogels containing lemongrass leaf essential oil (Cymbopogon citratus (DC.) Stapf) and mango seed kernel extract (Mangifera indica Linn) for acne treatment: Preparation and in-vitro evaluations. PLoS One 2024; 19:e0312841. [PMID: 39480758 PMCID: PMC11527213 DOI: 10.1371/journal.pone.0312841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Current treatments for severe acne include combinations of synthetic anti-inflammatory and antibacterial drugs, which possess numerous side effects. Therefore, this study developed microemulsion-based hydrogel containing lemongrass leaf essential oil (Cymbopogon citratus (DC.) Stapf) and mango seed kernel extract (Mangifera indica Linn) as a potential natural therapy for inflammatory acne. To this end, the microemulsions were first prepared using pseudo-ternary phase diagrams with soybean oil and coconut oil, cremophor RH40, and PEG 400. The optimal formula could load 1% lemongrass oil and 10% mango extract, possessed a spherical droplet size of ~18.98 nm, a zeta potential of -5.56 mV, and a thermodynamic stability. Secondly, the microemulsion-based hydrogel was developed by simple mixing the optimal microemulsion in carbopol-940 hydrogel (3.5% w/w). The product showed a viscosity of ~3728 cPs, a pH of 5.4-6.2, a spreadability of ~24 cm, an in-vitro Franz-cell cumulative release rate of ~80% for polyphenol content and ~60% for citral within 12 h, and a good physicochemical stability of > 3 months. Thirdly, the skin compatibility/irritability of the microemulsion-based hydrogel was determined by the HET-CAM assay, which showed non-irritation level. Finally, the anti-inflammatory activities of the hydrogel, using heat-induced BSA denaturation assay and LPS-stimulated RAW 264.7 NO inhibition assay, was 4-times higher than that of the reference drug Klenzit-C® (adapalene and clindamycin gel). Moreover, the hydrogel possessed strong anti-biofilm activity in Cutibacterium acnes, comparable with Klenzit-C®. Conclusively, the microemulsion-based hydrogel containing lemongrass oil and mango seed extract demonstrated much potentials to be a promising natural drug for acne treatment.
Collapse
Affiliation(s)
- Ngoc Nha Thao Nguyen
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Thi Trang Dai Nguyen
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Duc Linh Vo
- DHG Pharmaceutical Joint-Stock Company, Can Tho, Vietnam
| | - Dang Tuyet Minh Than
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | | | - Duy Toan Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| |
Collapse
|
4
|
Biswas A, A JM, Lewis SA, Raja S, Paul A, Ghosal K, Mahmood S, Ansari MD. Design and Evaluation of Microemulsion-Based Drug Delivery Systems for Biofilm-Based Infection in Burns. AAPS PharmSciTech 2024; 25:203. [PMID: 39237802 DOI: 10.1208/s12249-024-02909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
Normal skin is the first line of defense in the human body. A burn injury makes the skin susceptible to bacterial infection, thereby delaying wound healing and ultimately leading to sepsis. The chances of biofilm formation are high in burn wounds due to the presence of avascular necrotic tissue. The most common pathogen to cause burn infection and biofilm is Pseudomonas aeruginosa. The purpose of this study was to create a microemulsion (ME) formulation for topical application to treat bacterial burn infection. In the present study, tea tree oil was used as the oil phase, Tween 80 and transcutol were used as surfactants, and water served as the aqueous phase. Pseudo ternary phase diagrams were used to determine the design space. The ranges of components as suggested by the design were chosen, optimization of the microemulsion was performed, and in vitro drug release was assessed. Based on the characterization studies performed, it was found that the microemulsion were formulated properly, and the particle size obtained was within the desired microemulsion range of 10 to 300 nm. The I release study showed that the microemulsion followed an immediate release profile. The formulation was further tested based on its ability to inhibit biofilm formation and bacterial growth. The prepared microemulsion was capable of inhibiting biofilm formation.
Collapse
Affiliation(s)
- Avirup Biswas
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Jesil Mathew A
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India.
- Manipal Center for Infectious Diseases (MAC ID), Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Shaila Angela Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Selvaraj Raja
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Arpita Paul
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Kajal Ghosal
- Division of Industrial Pharmacy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Mohd Danish Ansari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Dehi, India
| |
Collapse
|
5
|
Arpa MD, Çağlar EŞ, Güreşçi D, Sipahi H, Üstündağ Okur N. Novel Microemulsion Containing Benzocaine and Fusidic Acid Simultaneously: Formulation, Characterization, and In Vitro Evaluation for Wound Healing. AAPS PharmSciTech 2024; 25:53. [PMID: 38443698 DOI: 10.1208/s12249-024-02762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Modern drug carrier technologies, such as microemulsions with small droplet sizes and high surface areas, improve the ability of low water solubility active ingredients to permeate and localize. The goal of this study was to create microemulsion formulations for wound healing that contained both fusidic acid (FA), an antibacterial agent, and benzocaine (BNZ), a local anesthetic. Studies on characterization were carried out, including viscosity, droplet size, and zeta potential. The drug-loaded microemulsion had a stable structure with -3.014 ± 1.265 mV of zeta potential and 19.388 ± 0.480 nm of droplet size. In both in vitro release and ex vivo permeability studies, the microemulsion was compared with Fucidin cream and oily BNZ solution. According to the drug release studies, BNZ release from the microemulsion and the BNZ solution showed a similar profile (p > 0.05), while FA release from the microemulsion had a higher drug release compared to Fucidin cream (p < 0.001). The microemulsion presented lower drug permeation (p > 0.05) for both active ingredients, on the other hand, provided higher drug accumulation compared to the control preparations. Moreover, according to the results of in vitro wound healing activity, the microemulsion indicated a dose-dependent wound healing potential with the highest wound healing activity at the highest concentrations. To the best of our knowledge, this developed BNZ- and FA-loaded microemulsion would be a promising candidate to create new opportunities for wound healing thanks to present the active ingredients, which have low water solubility, in a single formulation and achieved higher accumulation than control preparations.
Collapse
Affiliation(s)
- Muhammet Davut Arpa
- Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Medipol University, 34815, Istanbul, Turkey
| | - Emre Şefik Çağlar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Health Sciences, 34668, Istanbul, Turkey
| | - Dilara Güreşçi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Turkey
| | - Hande Sipahi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Turkey
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, 34668, Istanbul, Turkey.
| |
Collapse
|
6
|
Alissa M, Hjazi A, Abusalim GS, Aloraini GS, Alghamdi SA, Alharthi NS, Rizg WY, Hosny KM, Binmadi N. Utilization of nanotechnology and experimental design in the development and optimization of a posaconazole‒calendula oil nanoemulgel for the treatment of mouth disorders. Front Pharmacol 2024; 15:1347551. [PMID: 38434704 PMCID: PMC10905964 DOI: 10.3389/fphar.2024.1347551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction: Essential oil‒based nanoemulsions (NEs) are the subjects of extensive investigation due to their potential to address a variety of oral health issues. NEs are delivery systems that improve lipid medicine solubility and distribution to intended sites. The goal of the current study was to create and enhance a self-nanoemulsifying drug delivery paradigm based on calendula oil (CO) and decorated with chitosan (CS) that could deliver posaconazole (PSZ) for the treatment of gingivitis. Method: Employing a response-surface Box‒Behnken design, PSZ-CO-CS NEs were created with varying amounts of PSZ (10, 15, and 20 mg), percentages of CO (6%, 12%, and 18%), and percentages of CS (0.5%, 1.5%, and 2.5%). Results and conclusion: The optimized formulation resulted in a 22-mm bacterial growth suppression zone, 25-mm fungal growth inhibition zone, droplet sizes of 110 nm, and a viscosity of 750 centipoise (cP). Using the appropriate design, the ideal formulation was produced; it contained 20 mg of PSZ, 18% of CO, and 1.35% of CS. Furthermore, the optimal formulation had a more controlled drug release, larger inhibition zones of bacterial and fungal growth, and desirable rheologic properties. Additionally, the optimized formulation substantially lowered the ulcer index in rats when tested against other formulations. Thus, this investigation showed that PSZ-CO-CS NEs could provide efficient protection against microbially induced gingivitis.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ghadah S. Abusalim
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ghfren S. Aloraini
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Suad A. Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nahed S. Alharthi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nada Binmadi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Al Ashmawy AZG, Balata GF. Formulation and in vitro characterization of nanoemulsions containing remdesivir or licorice extract: A potential subcutaneous injection for coronavirus treatment. Colloids Surf B Biointerfaces 2024; 234:113703. [PMID: 38096607 DOI: 10.1016/j.colsurfb.2023.113703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 02/09/2024]
Abstract
The management of coronavirus necessitates that medicines are available, reasonably priced, and easy to administer. The work aimed at formulating and characterizing remdesivir and licorice extract nanoemulsions and comparing their efficacy against coronavirus for further subcutaneous injection. First, the solubility of remdesivir was determined in different oils, surfactants, and co-surfactants to choose the optimal nanoemulsion components. Nanoemulsions were optimized concerning surfactant: co-surfactant ratio (5:1, 4:1, 3:1, 2:1, and 1:1) and oil to surfactant: co-surfactant ratio (1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, and 1:1). The formulations were evaluated concerning % transmittance, emulsification time, pH, viscosity, droplet size, polydispersity index, zeta potential, drug content, transmission electron microscopy, in-vitro drug release, stability (of the optimal formulas), and antiviral effect against coronavirus. The optimal nanoemulsion formula was F7, exhibiting an acceptable pH level, a rapid emulsification rate, a viscosity of 20 cP, and 100% drug content. The formulation droplet size was 16 and 17 nm, the polydispersity index was 0.18 and 0.26, and the zeta potential was - 6.29 and - 10.34 mV for licorice extract and remdesivir nanoemulsions, respectively. However, licorice extract nanoemulsion exhibited better release and physical stability. Licorice extract nanoemulsion may be a potential subcutaneous injection for combating mild to moderate coronavirus.
Collapse
Affiliation(s)
- Al Zahraa G Al Ashmawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Gehan F Balata
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44511, Egypt; Pharmacy Practice Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
8
|
Giri Y, Habibullah S, Dixit PK, Mahalik G, Mohanty B, Behera A. Development of microemulgel formulations with varied permeation enhancers for transungual delivery of luliconazole in onychomycosis management. Colloids Surf B Biointerfaces 2024; 234:113718. [PMID: 38176335 DOI: 10.1016/j.colsurfb.2023.113718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Luliconazole-loaded microemulgels containing different permeation enhancers were formulated for transungual drug delivery for the management of onychomycosis, onychomycosis, which affects nails. The physicochemical properties like droplet size, zeta potential, pH, viscosity, spreadability, extrudability, oil binding capacity, drug content, and microscopic study were evaluated. The Pseudo-ternary phase diagram was constructed for the formulation of microemulsions (MEs) by keeping the Km ratio constant at 3:1 and characterized for clarity, mean droplet size, zeta potential, viscosity, pH, transmittance, refractive index, and stability. The ME mean droplet size and zeta potential were found in the range of 38.78 to 171.4 nm, and 0.00 to - 6.6 mV, respectively. Prepared MEs were converted into microemulgel by adding a 2.5% gelling agent (Carbapol 934) in the external phase, and a drug release study was conducted. Formulation E3 showed better drug release and was chosen as the control. Four different penetration enhancers were added separately within E3 and further evaluated for pH, viscosity, spreadability, extrudability, oil binding capacity, drug content, microscopic study, Compatibility study, XRD, and DSC. A favorable docking score was observed between luliconazole and Lanosterol 14-alpha-demethylase. In-vitro cumulative drug release at the end of 24 h from E3-SS, containing sodium sulfide as a penetration enhancer, was found to be 94.70% and was 2 times more than the control formulation. Ex-vivo transungual permeation studies through cutting nail clippings were found to be in the range of 28.18 - 36.52 µg/mm2. The microemulgels tagged as E3, E3-SS, and E3-SL showed a significant zone of inhibition against Candida albicans and Aspergillus fumigatus as compared to the marketed formulation.
Collapse
Affiliation(s)
- Yashwant Giri
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
| | - Sk Habibullah
- Department of Pharmaceutics, Siksha 'O' Anusandhan University, Odisha, India
| | - Pradyumna Kumar Dixit
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
| | - Gyanranjan Mahalik
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | | | - Amulyaratna Behera
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India.
| |
Collapse
|
9
|
Song Y, Chen W, Yin Y, Li J, Wang M, Liu Y, Ren X. Advancements in the Transdermal Drug Delivery Systems Utilizing Microemulsion-based Gels. Curr Pharm Des 2024; 30:2753-2764. [PMID: 39092731 DOI: 10.2174/0113816128305190240718112945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 08/04/2024]
Abstract
Microemulsion gel, as a promising transdermal nanoparticle delivery system, addresses the limitations of microemulsions and enhances their performance in drug delivery and release. This article aims to discuss the advantages of microemulsion gel, including improved drug bioavailability, reduced drug irritation, enhanced drug penetration and skin adhesion, and increased antimicrobial properties. It explores the methods for selecting microemulsion formulations and the general processes of microemulsion preparation, as well as commonly used oil phases, surfactants, and co-surfactants. Additionally, the biomedical applications of microemulsion gel in treating conditions, such as acne and psoriasis, are also discussed. Overall, this article elucidates the significant potential of microemulsion gel in topical drug delivery, providing insights into future development and clinical applications.
Collapse
Affiliation(s)
- Yongjian Song
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Yin
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiunian Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meng Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
10
|
Ramalingam S, Chandrasekar MJN, Krishnan GGN, Nanjan MJ. Plant-based Natural Products as inhibitors for Efflux Pumps to Reverse Multidrug Resistance in Staphylococcus aureus: A Mini Review. Mini Rev Med Chem 2024; 24:272-288. [PMID: 37038687 DOI: 10.2174/1389557523666230406092128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 04/12/2023]
Abstract
Wounds provide a favourable site for microbial infection. Wound infection makes the healing more complex and does not proceed in an orchestrated manner leading to the chronic wound. Clinically infected wounds require proper antimicrobial therapy. Broad-spectrum antibiotics are usually prescribed first before going to targeted therapy. The current conventional mode of therapy mainly depends on the use of antibiotics topically or systemically. Repeated and prolonged use of antibiotics, however, leads to multidrug resistance. Staphylococcus aureus is the most common multidrugresistant microorganism found in wounds. It effectively colonizes the wound and produces many toxins, thereby reducing the host immune response and causing recurrent infection, thus making the wound more complex. The overexpression of efflux pumps is one of the major reasons for the emergence of multidrug resistance. Inhibition of efflux pumps is, therefore, a potential strategy to reverse this resistance. The effective therapy to overcome this antibiotic resistance is to use combination therapy, namely the combination of an inhibitor, and a non-antibiotic compound with an antibiotic for their dual function. Many synthetic efflux pump inhibitors to treat wound infections are still under clinical trials. In this connection, several investigations have been carried out on plant-based natural products as multidrug resistance-modifying agents as they are believed to be safe, inexpensive and suitable for chronic wound infections.
Collapse
Affiliation(s)
- Shalini Ramalingam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643001, India
| | - Moola Joghee Nanjan Chandrasekar
- School of Life Sciences, JSS Academy of Higher Education & Research (Ooty Campus), Longwood, Mysuru Road, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Ganesh G N Krishnan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643001, India
| | | |
Collapse
|
11
|
Silva-Correa CR, Rosas-Cruz GP, Calderón-Peña AA, Torre VEVL, Aspajo-Villalaz CL, Castañeda-Carranza JA, Dionicio-Rosado DY, Gómez-Arce RM, Rodríguez-Silva CN, Rosario-Chávarri JD, Cruzado-Razco JL. Effects of Solanum tuberosum L. ointment on second-degree burns in mice. Vet World 2023; 16:2440-2445. [PMID: 38328356 PMCID: PMC10844784 DOI: 10.14202/vetworld.2023.2440-2445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/02/2023] [Indexed: 02/09/2024] Open
Abstract
Background and Aim Potato (Solanum tuberosum L.) is mainly characterized by its antioxidant and healing properties. Therefore, this study aimed to evaluate the effects of an ointment based on S. tuberosum L. "papa tumbay" on burns induced in Balb/c mice (Mus musculus). Materials and Methods The experimental animals were divided into four groups (n = 5/group) 48 h before second-degree burns were inducted. After epilating the loin areas of the mice and anesthetizing them with ketamine/xylazine (80 mg/kg/10 mg/kg) through intraperitoneal (i.p.) route, a round metal rod (0.7 cm in diameter) was placed on the depilated skin at a temperature of 100°C for 5 s. Group I was not given any treatment, Group II was treated with silver sulfadiazine (1%), and the other two groups (III and IV) were treated with the ointment formulated based on S. tuberosum L. "papa tumbay" at 1% and 2%, respectively. After performing the treatment for 21 days, the mice were euthanized using i.p. sodium pentobarbital (185 mg/kg) to obtain skin samples. The samples were preserved in 10% neutral-buffered formalin and subjected to histopathological analysis. Results We found statistically significant differences in the histopathological sections between the groups (p < 0.05). The abundant collagen and fibroblasts observed in the direction of the dermis in Groups III and IV indicate that the phytoconstituents present in the potato might promote the healing of the second-degree burns until day 21 of treatment. Conclusion Our findings showed that the ointments based on the ethanolic extracts of S. tuberosum L. "papa tumbay," especially the 2% ointment, might accelerate the healing of second-degree burns induced in Balb/c mice.
Collapse
Affiliation(s)
- Carmen R. Silva-Correa
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, Peru
| | - Galy P. Rosas-Cruz
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, Peru
| | - Abhel A. Calderón-Peña
- Department of Biological Chemistry and Animal Physiology, Faculty of Biological Sciences, National University of Trujillo, Peru
| | | | - Cinthya L. Aspajo-Villalaz
- Department of Biological Chemistry and Animal Physiology, Faculty of Biological Sciences, National University of Trujillo, Peru
| | - Julio A. Castañeda-Carranza
- Professional Department of Statistics, Faculty of Physical Sciences and Mathematics, National University of Trujillo, Peru
| | - Deivy Y. Dionicio-Rosado
- Professional Department of Statistics, Faculty of Physical Sciences and Mathematics, National University of Trujillo, Peru
| | - Ricardo M. Gómez-Arce
- Professional Department of Statistics, Faculty of Physical Sciences and Mathematics, National University of Trujillo, Peru
| | - Cristhian N. Rodríguez-Silva
- Department of Biological Chemistry and Animal Physiology, Faculty of Biological Sciences, National University of Trujillo, Peru
| | - Jorge Del Rosario-Chávarri
- Department of Biological Chemistry and Animal Physiology, Faculty of Biological Sciences, National University of Trujillo, Peru
| | - José L. Cruzado-Razco
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, Peru
| |
Collapse
|
12
|
Manzoor A, Asif M, Khalid SH, Ullah Khan I, Asghar S. Nanosizing of Lavender, Basil, and Clove Essential Oils into Microemulsions for Enhanced Antioxidant Potential and Antibacterial and Antibiofilm Activities. ACS OMEGA 2023; 8:40600-40612. [PMID: 37929152 PMCID: PMC10621020 DOI: 10.1021/acsomega.3c05394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Plant essential oils (EOs) possess significant bioactivities (antibacterial and antioxidant) and can be substituted for potentially harmful synthetic preservatives in the food industry. However, limited water solubility, bioavailability, volatility, and stability limit their use. Therefore, the goal of this research was nanosizing lavender essential oil (LEO), basil essential oil (BEO), and clove essential oil (CEO) in a microemulsion (ME) to improve their physicochemical attributes and bioefficacy. Tween 80 and Transcutol P were utilized for construction of pseudoternary phase diagrams. It was observed that the concentration of EOs had a great impact on the physicochemical and biological properties of MEs. A spherical droplet of MEs with a diameter of less than 20 nm with a narrower size distribution (polydispersity index (PDI) = 0.10-0.27) and a ζ potential of -0.27 to -9.03 was observed. ME formulations were also evaluated for viscosity, conductivity, and the refractive index. Moreover, the impact of delivery systems on the antibacterial property of EOs was assessed by determining the zone of inhibition and minimum inhibitory concentration against two distinct pathogen classes (S. aureus and E. coli). Crystal violet assay was used to measure the growth and development of biofilms. According to bioefficacy assays, ME demonstrated more efficient antibacterial activity against microorganisms at concentrations lower than pure EOs. CEO ME had superior activity againstS. aureus and E. coli. Similarly, dose-dependent antioxidant capacity was noted for MEs. Consequently, nanosized EO formulations with improved physicochemical properties and enhanced bioactivities can be employed in the food processing sector as a preservation agent.
Collapse
Affiliation(s)
- Aneela Manzoor
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Asif
- Faculty
of Pharmacy, Islamia University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Syed Haroon Khalid
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ikram Ullah Khan
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajid Asghar
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
13
|
Alven S, Ubanako P, Adeyemi SA, Ndinteh DT, Choonara YE, Aderibigbe BA. Carboxymethyl cellulose/poloxamer gels enriched with essential oil and Ag nanoparticles: promising wound dressings. Ther Deliv 2023; 14:139-156. [PMID: 37125434 DOI: 10.4155/tde-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Aim: Essential oils are promising antibacterial and wound-healing agents that should be explored for the design of wound dressings. Materials & methods: Topical gels prepared from a combination of carboxymethyl cellulose and poloxamer were incorporated with tea tree and lavender oil together with Ag nanoparticles. In vitro release, cytotoxicity, antibacterial, and wound healing studies were performed. Results: The gels displayed good spreadability with viscosity in the range of 210-1200 cP. The gels displayed promising antibacterial activity against selected Gram-positive and Gram-negative bacteria used in the study. The % cell viability of the gels was more than 90.83%. Conclusion: The topical gels displayed excellent wound closure in vitro revealing that they are potential wound dressings for bacteria-infected wounds.
Collapse
Affiliation(s)
- Sibusiso Alven
- Department of Chemistry University of Fort Hare, Alice Eastern Cape, 5700, South Africa
| | - Philemon Ubanako
- Department of Pharmacy & Pharmacology, Wits Advanced Drug Delivery Platform Research Unit, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Samson A Adeyemi
- Department of Pharmacy & Pharmacology, Wits Advanced Drug Delivery Platform Research Unit, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Derek T Ndinteh
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Yahya E Choonara
- Department of Pharmacy & Pharmacology, Wits Advanced Drug Delivery Platform Research Unit, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
14
|
Suthar T, Patel P, Singh P, Datusalia AK, Yadav AK, Jain K. Hesperidin microemulsion: Formulation optimization, characterization, and in vitro evaluation. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Muñoz LN, Jaramillo V, Gantiva-Diaz M, Cifuentes J, Muñoz-Camargo C, Cruz JC, González Barrios AF. Formulation of a novel antibacterial topical treatment based on Magnetite-Buforin-II-silver nanobioconjugates. Front Bioeng Biotechnol 2022; 10:1003004. [DOI: 10.3389/fbioe.2022.1003004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Community acquired infections caused by Meticillin-resistant Staphylococcus aureus (MRSA) have become a growing concern due to its impact on the world public health. This microorganism is a commonly spreading pathogen associated predominantly with skin infections and connected to other more severe conditions (septic shock, and generalized infection). The lack of highly effective antibiotics and treatments to control skin infections with S. aureus has led to the search of novel therapies using alternative agents such as antimicrobial peptides (AMPs). In order to obtain a viable administration route to counteract superficial skin infections (impetigo, abscesses, furuncles, and cellulitis), a topical formulation based on Magnetite-Buforin-II-silver nanobioconjugates as active antibacterial agents was designed by their dispersion in O/W concentrated emulsions. The prepared topical characterization indicated that O/W emulsions were stable in time, the droplets size remained within the appropriate values (∼1 µm) and their rheological properties, such as pseudoplastic and shear-thinning behavior, remained unchanged for up to 3 months. Additionally, hemolysis and platelet aggregation tests were acceptable (i.e., 14.72 ± 2.62% and 8.06 ± 2.90%, respectively) in compliance with the ISO-10993 standard. Furthermore, the treatment reduced significantly (p < 0.0001) the growth of both clinical isolated MRSA and wild Type S. aureus strains as evidenced by the contact diffusion method. These results are important in the context of proposing new alternatives that allow manage effectively the threat posed by the antibiotic resistant bacterial strains, which jeopardize the lives of thousands of people every year.
Collapse
|
16
|
Lamoudi L, Akretche S, Hadjsadok A, Daoud K. Fusidic Acid Microemulsion Based on a Pseudoternary Phase Diagram: Development, Characterization, and Evaluation. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
17
|
Mehanna MM, Abla KK, Domiati S, Elmaradny H. Superiority of Microemulsion-based Hydrogel for Non-Steroidal Anti-Inflammatory Drug Transdermal Delivery: A Comparative Safety and Anti-nociceptive Efficacy Study. Int J Pharm 2022; 622:121830. [PMID: 35589005 DOI: 10.1016/j.ijpharm.2022.121830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) represent the foundation of pain management caused by inflammatory disorders. Nevertheless, their oral administration induces several side effects exemplified by gastric ulceration, thus, delivering NSAIDs via the skin has become an attractive alternative. Herein, microemulsion-based hydrogel (MBH), proliposomal, and cubosomal gels were fabricated, loaded with diclofenac, and physicochemically characterized. The sizes, charges, surface morphologies, and the state of diclofenac within the reconstituted gels were also addressed. The release pattern and ex-vivo permeation studies using Franz cells were performed via the rat abdominal skin. The formulations were assessed in-vivo on mice skin for their irritation effect and their anti-nociceptive efficacy through the tail-flick test. Biosafety study of the optimal gel was also pointed out. The gels and their dispersion forms displayed accepted physicochemical properties. Diclofenac released in a prolonged manner from the prepared gels. MBH revealed a significantly higher skin permeation and the foremost results regarding in-vivo assessment where no skin irritation or altered histopathological features were observed. MBH further induced a significant anti-nociceptive effect during the tail-flick test with a lower tendency to evoke systemic toxicity. Therefore, limonene-containing microemulsion hydrogel is a promising lipid-based vehicle to treat pain with superior safety and therapeutic efficacy.
Collapse
Affiliation(s)
- Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Kawthar K Abla
- Pharmaceutical Technology Department, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Souraya Domiati
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Hoda Elmaradny
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
18
|
Laksmitawati DR, Noor SU, Sumiyati Y, Hartanto A, Widowati W, Pratami DK. The effect of mesenchymal stem cell-conditioned medium gel on burn wound healing in rat. Vet World 2022; 15:841-847. [PMID: 35698516 PMCID: PMC9178599 DOI: 10.14202/vetworld.2022.841-847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Stem cells are cells that can proliferate to form a new tissue, leading to its use in regenerative therapy. Stem cells will secrete biological factors, such as growth factors, cytokines, and other proteins to their surroundings and culture medium/conditioned medium (CM), altering tissue physiology. These factors can help wound healing, but their effect on third-degree burns is poorly understood. This research aimed to study the activity of mesenchymal stem cell-conditioned medium gel in healing and repairing third-degree burns on rats skin.
Materials and Methods: Twenty-four Sprague–Dawley rats with burn wounds on the dorsal area were divided into four groups; the first group was treated with CM gel, with a concentration equivalent to 0.05% protein, the second group was treated with a placebo gel, the third group with silver sulfadiazine (SSD) cream (SSD-Burnazin contain 10 mg/g SSD), and the fourth group was not given any treatment, for 21 days, and on the final day, the rats were sacrificed, and the skins were taken. All topical treatments completely cover the wound area.
Results: Wound healing process indicators observed include wound diameter, scabs' formation, blister formation, and hair growth every day. The skins taken were processed with hematoxylin-eosin and Masson's trichrome staining. The indicators studied include neutrophil infiltration, mononuclear cell infiltration, neovascularization, collagen area, and re-epithelization ratio.
Conclusion: CM shows better wound healing than other groups and faster hair growth.
Collapse
Affiliation(s)
- Dian Ratih Laksmitawati
- Laboratory of Biochemistry, Faculty of Pharmacy, Universitas Pancasila, Jakarta, 12640, Indonesia
| | - Siti Umrah Noor
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Pancasila, Jakarta, 12640, Indonesia
| | - Yati Sumiyati
- Laboratory of Biochemistry, Faculty of Pharmacy, Universitas Pancasila, Jakarta, 12640, Indonesia
| | - Adrian Hartanto
- Laboratory of Biochemistry, Faculty of Pharmacy, Universitas Pancasila, Jakarta, 12640, Indonesia
| | - Wahyu Widowati
- Medical Research Center, Faculty of Medicine, Maranatha University, Bandung, West Java, 40164, Indonesia
| | - Diah Kartika Pratami
- Laboratory of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Pancasila University, Jakarta, 12640, Indonesia
| |
Collapse
|
19
|
Arpa MD, Seçen İM, Erim ÜC, Hoş A, Üstündağ Okur N. Azelaic acid loaded chitosan and HPMC based hydrogels for treatment of acne: formulation, characterization, in vitro- ex vivo evaluation. Pharm Dev Technol 2022; 27:268-281. [PMID: 35112652 DOI: 10.1080/10837450.2022.2038620] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, hydrogels containing azelaic acid were developed using chitosan or HPMC (1-7%) for local treatment of acne vulgaris. Physicochemical properties such as viscosity, pH and mechanical properties were evaluated. In vitro release and ex vivo permeability studies were performed using Franz diffusion cell system. The pH of the hydrogels were highly compatible with the skin pH and varied between 4.38-5.84. The cumulative release percentages of the hydrogels at the end of 6 hours were 65-78%, whereas the marketed product yielded 50% drug release. According to the ex vivo permeability results, azelaic acid accumulated in the skin were found to be 9.38 ± 0.65% (marketed cream), 19.53 ± 1.06% (K3), 10.96 ± 1.91% (H6). The antiacne studies with Cutibacterium acnes revealed that K3 (29.45 ± 0.95) and H6 (32.35 ± 0.15) had higher inhibition zones compared to the marketed cream (24.50 ± 0.90). Additionally, the gels were found to be highly stable as a result of the stability studies for 6 months. Among the hydrogels that were prepared based on experimental findings, K3 (3% Chitosan) and H6 (6% HPMC) represented elevated in vitro release profile, higher permeability and increased antiacne activity. The findings of this research suggest that the developed hydrogels might be an alternative to the marketed product.
Collapse
Affiliation(s)
- Muhammet Davut Arpa
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Technology, 34085, Istanbul, Turkey
| | - İkbal Merve Seçen
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Technology, 34085, Istanbul, Turkey
| | - Ümit Can Erim
- Istanbul Medipol University, School of Pharmacy, Department of Analytical Chemistry, 34085, Istanbul, Turkey
| | - Ayşegül Hoş
- Istanbul Medipol University, School of Pharmacy, Department of Microbiology, 34085, Istanbul, Turkey
| | - Neslihan Üstündağ Okur
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmaceutical Technology, 34668, Istanbul, Turkey
| |
Collapse
|
20
|
ÜSTÜNDAĞ OKUR N, ONAY E, KADIOĞLU YAMAN B, SİPAHİ H. New topical microemulsions of etofenamate as sufficient management of osteoarthritis. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
21
|
Nazeam JA, Ragab GM, El-Gazar AA, El-Mancy SS, Jamil L, Fayez SM. Topical Nano Clove/Thyme Gel against Genetically Identified Clinical Skin Isolates: In Vivo Targeting Behavioral Alteration and IGF-1/pFOXO-1/PPAR γ Cues. Molecules 2021; 26:molecules26185608. [PMID: 34577079 PMCID: PMC8465895 DOI: 10.3390/molecules26185608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance is a dramatic global threat; however, the slow progress of new antibiotic development has impeded the identification of viable alternative strategies. Natural antioxidant-based antibacterial approaches may provide potent therapeutic abilities to effectively block resistance microbes' pathways. While essential oils (EOs) have been reported as antimicrobial agents, its application is still limited ascribed to its low solubility and stability characters; additionally, the related biomolecular mechanisms are not fully understood. Hence, the study aimed to develop a nano-gel natural preparation with multiple molecular mechanisms that could combat bacterial resistance in an acne vulgaris model. A nano-emulgel of thyme/clove EOs (NEG8) was designed, standardized, and its antimicrobial activity was screened in vitro and in vivo against genetically identified skin bacterial clinical isolates (Pseudomonas stutzeri, Enterococcus faecium and Bacillus thuringiensis). As per our findings, NEG8 exhibited bacteriostatic and potent biofilm inhibition activities. An in vivo model was also established using the commercially available therapeutic, adapalene in contra genetically identified microorganism. Improvement in rat behavior was reported for the first time and NEG8 abated the dermal contents/protein expression of IGF-1, TGF-β/collagen, Wnt/β-catenin, JAK2/STAT-3, NE, 5-HT, and the inflammatory markers; p(Ser536) NF-κBp65, TLR-2, and IL-6. Moreover, the level of dopamine, protective anti-inflammatory cytokine, IL-10 and PPAR-γ protein were enhanced, also the skin histological structures were improved. Thus, NEG8 could be a future potential topical clinical alternate to synthetic agents, with dual merit mechanism as bacteriostatic antibiotic action and non-antibiotic microbial pathway inhibitor.
Collapse
Affiliation(s)
- Jilan A. Nazeam
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
- Correspondence: ; Tel.: +20-010-0302-1798
| | - Ghada M. Ragab
- Pharmacology and Toxicological Department, Faculty of Pharmacy, Misr University, Giza 12585, Egypt;
| | - Amira A. El-Gazar
- Pharmacology and Toxicological Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt;
| | - Shereen S. El-Mancy
- Pharmaceutics Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt; (S.S.E.-M.); (S.M.F.)
| | - Lina Jamil
- Microbiology and Immunology Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt;
| | - Sahar M. Fayez
- Pharmaceutics Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt; (S.S.E.-M.); (S.M.F.)
| |
Collapse
|
22
|
Hosny K, Asfour H, Rizg W, Alhakamy NA, Sindi A, Alkhalidi H, Abualsunun W, Bakhaidar R, Almehmady AM, Akeel S, Ali S, Alghaith A, Alshehri S, Khallaf R. Formulation, Optimization, and Evaluation of Oregano Oil Nanoemulsions for the Treatment of Infections Due to Oral Microbiota. Int J Nanomedicine 2021; 16:5465-5478. [PMID: 34413644 PMCID: PMC8370598 DOI: 10.2147/ijn.s325625] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/31/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Natural oil-based nanoemulsions (NEs) have been widely investigated in many diseases that affect the oral cavity. NEs are delivery systems that enhance the solubility of lipid therapeutics and improve their delivery to target sites; they are known as self-nanoemulsifying drug delivery systems (SNEDDSs). The current investigation's aim was to produce an oregano essential oil-based nanoemulsion (OEO-SNEDD) that would have antibacterial and antifungal effects against oral microbiota and improve oral health. Methods Several OEO-SNEDDSs were developed using different percentages of OEO (10%, 14%, and 18%), percentages of a surfactant mixture Pluracare L64:Lauroglycol FCC (18%, 32%, and 36%), Smix ratios (1:2, 1:1, and 2:1), and hydrophilic-lipophilic balances (HLBs) of the surfactant mixture (8, 10, and 12) using the Box‒Behnken design. The optimized concentration of excipients was determined using a pseudoternary phase diagram to obtain the NEs. The formulations were evaluated for their droplet size, stability index, and antibacterial and antifungal activities. Results The NEs had a droplet size of 150 to 500 nm and stability index of 47% to 95%, and the produced formulation reached antibacterial and antifungal inhibition zones of up to 19 and 17 mm, respectively. The Box‒Behnken design was adopted to get the optimum formulation, which was 18% OEO, 36% Smix, 10.29 HLB of Smix, and a 1.25:1 Smix ratio. The optimized formulation had a lower ulcer index compared with various other formulations evaluated in rats. Conclusion This study illustrated that OEO-SNEDDSs can provide good protection against oral microbial infections.
Collapse
Affiliation(s)
- Khaled Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hani Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Waleed Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amal Sindi
- Oral diagnostic sciences department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hala Alkhalidi
- Department of Clinical pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Walaa Abualsunun
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rana Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alshaimaa M Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sara Akeel
- Oral diagnostic sciences department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah Ali
- Oral diagnostic sciences department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rasha Khallaf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
23
|
Preparation and characterization of mucoadhesive gels containing pentoxifylline loaded nanoparticles for vaginal delivery of genital ulcer. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00913-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Kajbafvala A, Salabat A. Microemulsion and microemulsion gel formulation for transdermal delivery of rutin: Optimization, in-vitro/ex-vivo evaluation and SPF determination. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1880928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Azar Kajbafvala
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
| | - Alireza Salabat
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran
| |
Collapse
|
25
|
Alghaith AF, Alshehri S, Alhakamy NA, Hosny KM. Development, optimization and characterization of nanoemulsion loaded with clove oil-naftifine antifungal for the management of tinea. Drug Deliv 2021; 28:343-356. [PMID: 33517791 PMCID: PMC8725874 DOI: 10.1080/10717544.2021.1879314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tinea is a common superficial infection caused by keratinophylic fungi called dermatophytes. The objective of the current investigation was to develop and optimize a self-nanoemulsion drug delivery system (SENDDs) using clove oil loaded with naftifine (NF). Clove oil possesses good anti-inflammatory and antifungal properties that can support naftifine action. Box–Behnken designs were used to prepare plain and naftifine loaded SENDDs. The plain SENDDs were evaluated for their globule size. The medicated formulations (NF-CO-SENDDs) were characterized by measuring their globular size, ex vivo % NF permeated, level of interleukin-31 in rats, and antifungal activity. The optimum clove oil level was found to be 10–17%, while NF-CO-SENDDs formulations displayed globular sizes ranging from 119 to 310 nm. The statistical design confirmed the synergistic effect of clove oil and NF in the treatment of fungal infections, confirming that the anti-inflammatory effect of clove oil can counteract the side effects of NF. The optimized formulation composed of 14% clove oil, 12.5 mg Naftifine, and prepared with an Smix ratio equaling 3:1, exhibited good antifungal and anti-inflammatory activity, achieving up to 2-, 3-, 5.75-, and 2.74-fold increases in the amount of permeated NF, steady-state flux, permeability, and diffusion coefficients, respectively, compared with a commercial product. Moreover, the optimum formulation revealed an adequate zeta potential value of 28.31 ± 1.37 mV and showed reasonable stability with no or mild signs of skin sensitivity. Therefore, the designed nanoemulsions containing a combination of clove oil and naftifine could be considered promising delivery systems for the treatment of tinea.
Collapse
Affiliation(s)
- Adel F Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh, Saudi Arabia
| | - Nabil A Alhakamy
- Faculty of Pharmacy, Department of Pharmaceutics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled M Hosny
- Faculty of Pharmacy, Department of Pharmaceutics, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
26
|
Khan BA, Khan A, Khan MK, Braga VA. Preparation and properties of High sheared Poly(Vinyl Alcohol)/Chitosan blended Hydrogels films with Lawsonia inermis extract as wound dressing. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Ali Khan B, Ullah S, Khan MK, Alshahrani SM, Braga VA. Formulation and evaluation of Ocimum basilicum-based emulgel for wound healing using animal model. Saudi Pharm J 2020; 28:1842-1850. [PMID: 33424273 PMCID: PMC7783209 DOI: 10.1016/j.jsps.2020.11.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/21/2020] [Indexed: 01/31/2023] Open
Abstract
The main aim of the topically applied drugs is to provide local drug contact to the skin and minimize general absorption of drugs. Ocimum basilicum (OB) is popular for folk medicines, having official acceptance in many countries. The aim of this study was to formulate and evaluate the efficacy of topical application of OB-based emulgel on wound healing in animal model. The prepared formulations (OB emulgel) were assessed for FTIR analysis, stability studies, physical appearance, rheological behavior, spreadability, patch/sensitivity test and in vitro drug release. The in vivo wound healing effect was evaluated and compared with commercially available Silver Sulfadiazine cream Quench® in wound-induced rabbits by macroscopic and histopathological evidence. The OB extract/drug was compatible with the selected polymer and other excipients and indicated the suitability of the polymers/excipients for preparation of topical emulgel. The formulated OB emulgel exhibited good physical properties. The release profile of emulgel was satisfactory and released 81.71 ± 1.7% of the drug in 250 min. In vivo wound healing studies showed that OB emulgel exhibited the highest percent wound contraction similar to the commercial product (p > 0.05). This activity was statistically significant (p < 0.05) in comparison to control. Histopathological assessment showed marked improvement in the skin histological architecture after 16 days of OB emulgel treatment. In conclusion, the data demonstrated here signify the prospective of 5% OB emulgel as an innovative therapeutic approach in wound healing.
Collapse
Affiliation(s)
- Barkat Ali Khan
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29500, Pakistan
| | - Shafi Ullah
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29500, Pakistan
| | - M Khalid Khan
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29500, Pakistan
| | | | - Valdir A Braga
- Center of Biotechnology, Federal University of Paraiba, Brazil
| |
Collapse
|
28
|
Talianu MT, Dinu-Pîrvu CE, Ghica MV, Anuţa V, Jinga V, Popa L. Foray into Concepts of Design and Evaluation of Microemulsions as a Modern Approach for Topical Applications in Acne Pathology. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2292. [PMID: 33228156 PMCID: PMC7699607 DOI: 10.3390/nano10112292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/19/2023]
Abstract
With a fascinating complexity, governed by multiple physiological processes, the skin is considered a mantle with protective functions which during lifetime are frequently impaired, triggering dermatologic disorders. As one of the most prevalent dermatologic conditions worldwide, characterized by a complex pathogenesis and a high recurrence, acne can affect the patient's quality of life. Smart topical vehicles represent a good option in the treatment of a versatile skin condition. By surpassing the stratum corneum known for diffusional resistance, a superior topical bioavailability can be obtained at the affected place. In this direction, the literature study presents microemulsions as a part of a condensed group of modern formulations. Microemulsions are appreciated for their superior profile in matters of drug delivery, especially for challenging substances with hydrophilic or lipophilic structures. Formulated as transparent and thermodynamically stable systems, using simplified methods of preparation, microemulsions have a simple and clear appearance. Their unique structures can be explained as a function of the formulation parameters which were found to be the mainstay of a targeted therapy.
Collapse
Affiliation(s)
- Marina-Theodora Talianu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Valentina Anuţa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Viorel Jinga
- Department of Clinical Sciences, no.3, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| |
Collapse
|
29
|
Hosny KM, Alhakamy NA, Sindi AM, Khallaf RA. Coconut Oil Nanoemulsion Loaded with a Statin Hypolipidemic Drug for Management of Burns: Formulation and In Vivo Evaluation. Pharmaceutics 2020; 12:pharmaceutics12111061. [PMID: 33171816 PMCID: PMC7695003 DOI: 10.3390/pharmaceutics12111061] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
Burn wound healing is a complex process that involves the repair of injured tissues and the control of infection to diminish the scar formation, pain, and discomfort associated with such injuries. The aim of this research was to formulate and optimize a self-nanoemulsion drug delivery system based on the use of coconut oil and loaded with simvastatin. Coconut oil possesses antiinflammatory and antibacterial activity, and simvastatin has interesting properties for promoting the wound-healing process because it increases the production of the vascular endothelial growth factor at the site of injury. The Box–Behnken design was employed for the optimization of the coconut oil–simvastatin self-nanoemulsion drug delivery system. The prepared formulations were characterized according to globular size and their activity in the healing of burn wounds by assessing the mean wound diameter and level of interlukin-6 in experimental animals. Additionally, the antimicrobial activity of the prepared formulations was assessed. The nanoemulsion was considered adequately formed when it had droplets of between 65 and 195 nm. The statistical design proved the important synergistic effect of coconut oil and simvastatin for burn wound management in their synergistic potentiation of wound closure and their anti-inflammatory and antimicrobial effects. The optimum formulation achieved up to a 5.3-fold decrease in the mean burn wound diameter, a 4.25-fold decrease in interleukin-6 levels, and a 6-fold increase in the inhibition zone against Staphylococcus aureus when compared with different control formulations. Therefore, the designed nanoemulsions containing a combination of coconut oil and simvastatin could be considered promising platforms for the treatment of chronic and burn wounds.
Collapse
Affiliation(s)
- Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt;
- Correspondence:
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amal M. Sindi
- Oral Diagnostic Science Department, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Rasha A. Khallaf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt;
| |
Collapse
|
30
|
Gundogdu G, Nalci KA, Ugur Kaplan AB, Gundogdu K, Demirci T, Demirkaya Miloglu F, Hacımuftuoglu A, Cetin M. The Evaluation of the Effects of Nanoemulsion Formulations Containing Boron and/or Zinc on the Wound Healing in Diabetic Rats. INT J LOW EXTR WOUND 2020; 21:492-501. [PMID: 33045865 DOI: 10.1177/1534734620961892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wound healing remains a challenging clinical problem, especially in the presence of diabetes. Diabetic patients have the impaired ability to fight infection and insufficient inflammatory response. The aim of this study was to evaluate the effects of boronophenylalanine (BFA) and/or Zn-containing nanoemulsion (NE) formulations on wound healing in diabetic rats. MTT and scratch assays were performed to evaluate the proliferative effects of BFA and/or Zn on human dermal fibroblast (HDF) cells and the migration of these cells, respectively. The BFA and/or Zn-NE were prepared, and the effects of NEs on wound healing in diabetic rats were evaluated by applying once a day for 14 days. MTT assay showed that 10 to 25 µM BFA and/or 50 µM Zn had very significant positive effects on cell proliferation. In the scratch assay, 10 µM BFA significantly increased the migration of HDF cell compared with control. The droplet sizes of all the NEs were <115 nm and their zeta potential values were in range of (-) 23.9 ± 2.356 to (-) 33.1 ± 1.438 mV. There was a significant reduction in the wound contraction values (%) of the groups treated with the BFA and/or Zn-NE on the 14th day compared with the untreated diabetic rats group. According to histopathological findings, wound healing was nearly complete in BFA and/or Zn-NE compared with untreated diabetic rats. Especially, the group treated with the NE containing the low concentration of BFA showed highly promising results in wound healing of diabetic rats within 14 days with complete epithelialization and the completely closed wound area.
Collapse
|
31
|
Rasool N, Kanwal Q, Waseem M, Mehrunnisa, Khan MI. Analytical method development and determination of hydrocortisone acetate and fusidic acid simultaneously in cream formulation, by reversed-phase HPLC. Biomed Chromatogr 2020; 35:e4997. [PMID: 33037664 DOI: 10.1002/bmc.4997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 11/11/2022]
Abstract
In this study, an accurate, simple, economical, precise and reproducible reversed-phase HPLC method was developed for the estimation of fusidic acid and hydrocortisone acetate, according to the International Conference on Harmonization guidelines, in a cream formulation. Chromatographic separation was achieved by isocratic elution, on a Shimadzu reversed-phased high-pressure liquid chromatography instrument, equipped with a C18 column (150 × 4.6 mm, 5 μm) and UV detector at 225 nm wavelength, using acetonitrile and 0.05% trifluoroacetic acid (60:40), as a mobile phase and diluent, at flow rate 2 ml/min and an injection volume of 20 μl. The calibration curves were acquired with concentration range 80-120% and mean percentage recoveries for hydrocortisone acetate and fusidic acid were 100.14 and 100.81%, respectively. The limits of detection was obtained as 6.0667 and 6.807 μm ml-1 and the limits of quantification were 20.204 and 20.628 μm ml-1 for hydrocortisone acetate and fusidic acid, respectively. All of the validation parameters were within the acceptance criteria, as per International Conference on Harmonization requirements, for hydrocortisone acetate and fusidic acid. This method was found to be validated, simple, rapid and applicable for the simultaneous estimation of hydrocortisone acetate and fusidic acid by reversed-phased high-pressure liquid chromatography, for routine analytical testing in quality control, with a run time of 8 min.
Collapse
Affiliation(s)
- Nawaz Rasool
- Department of Chemistry, University of Lahore, Lahore, Pakistan
| | - Qudsia Kanwal
- Department of Chemistry, University of Lahore, Lahore, Pakistan
| | - Muhammad Waseem
- Department of Chemistry, University of Lahore, Lahore, Pakistan.,Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mehrunnisa
- Department of Chemistry, University of Lahore, Lahore, Pakistan
| | - Muhammad Irfan Khan
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Lahore, Lahore, Pakistan
| |
Collapse
|
32
|
Development of inter-polymeric complex of anionic polysaccharides, alginate/k-carrageenan bio-platform for burn dressing. Int J Biol Macromol 2020; 157:83-95. [DOI: 10.1016/j.ijbiomac.2020.04.157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
|
33
|
Špaglová M, Čuchorová M, Šimunková V, Matúšová D, Čierna M, Starýchová L, Bauerová K. Possibilities of the microemulsion use as indomethacin solubilizer and its effect on in vitro and ex vivo drug permeation from dermal gels in comparison with transcutol ®. Drug Dev Ind Pharm 2020; 46:1468-1476. [PMID: 32715801 DOI: 10.1080/03639045.2020.1802483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Transcutol® is a perfect solubilizer and an effective permeation enhancer of many active substances commonly used in cosmetics. Microemulsions due to the content of surfactant and co-surfactant could be also considered as chemical permeation enhancers that may support transdermal delivery of poorly water- soluble drugs. The purpose of this study was to investigate the effect of Transcutol® and potential microemulsions on diffusion of poorly soluble indomethacin through an artificial membrane and excised rat skin. METHODS After drug solubilization in different enhancers, drug was dispersed in sodium alginate or carbopol gel used as dermal basis. For characterization of the microemulsions, the basic physico-chemical properties were determined. In vitro as well as ex vivo drug release was determined by vertical Franz cells. RESULTS Enhancing effect of the examined microemulsions was observed only in carbopol gel. There was an increase in cumulative drug amount released through synthetic membrane by 37.7-39.8% from the microemulsion formulation and 90.6% from Transcutol® formulation within 6 h compared to the control samples. The differences between the permeation curves with or without the content of the enhancers were statistically significant (p < .05). Pearson correlation coefficients indicate a very high degree of dependence (r > 0.9) between in vitro and ex vivo drug release from all dermal vehicles used. CONCLUSION It can be stated that Transcutol® is the best solubilizer and also penetration enhancer from the examined, and therefore it seems to be effective excipient/solubilizer in topical IND formulation.
Collapse
Affiliation(s)
- Miroslava Špaglová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Mária Čuchorová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Veronika Šimunková
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Desana Matúšová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Martina Čierna
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | | | - Katarína Bauerová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia.,Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
34
|
Jyoti K, Malik G, Chaudhary M, Sharma M, Goswami M, Katare OP, Singh SB, Madan J. Chitosan and phospholipid assisted topical fusidic acid drug delivery in burn wound: Strategies to conquer pharmaceutical and clinical challenges, opportunities and future panorama. Int J Biol Macromol 2020; 161:325-335. [PMID: 32485249 DOI: 10.1016/j.ijbiomac.2020.05.230] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
Burn is the immense public health issue globally. Low and middle income countries face extensive deaths owing to burn injuries. Availability of conventional therapies for burns has always been painful for patients as well as expensive for our health system. Pharmaceutical experts are still searching reliable, cheap, safe and effective treatment options for burn injuries. Fusidic acid is an antibiotic of choice for the management of burns. However, fusidic acid is encountering several pharmaceutical and clinical challenges like poor skin permeability and growing drug resistance against burn wound microbes like Methicillin resistant Staphylococcus aureus (MRSA). Therefore, an effort has been made to present a concise review about molecular pathway followed by fusidic acid in the treatment of burn wound infection in addition to associated pros and cons. Furthermore, we have also summarized chitosan and phospholipid based topical dermal delivery systems customized by our team for the delivery of fusidic acid in burn wound infections on case-to-case basis. However, every coin has two sides. We recommend the integration of in-silico docking techniques with natural biomacromolecules while designing stable, patient friendly and cost effective topical drug delivery systems of fusidic acid for the management of burn wound infection as future opportunities.
Collapse
Affiliation(s)
- Kiran Jyoti
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India; IKG Punjab Technical University, Jalandhar, Punjab, India
| | - Garima Malik
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India
| | | | - Monika Sharma
- University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, Punjab, India
| | - Manish Goswami
- University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, Punjab, India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, Punjab University, Chandigarh, India
| | - Shashi Bala Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|