1
|
Wang Y, Wang E, Anany M, Füllsack S, Huo YH, Dutta S, Ji B, Hoeppner LH, Kilari S, Misra S, Caulfield T, Vander Kooi CW, Wajant H, Mukhopadhyay D. The crosstalk between neuropilin-1 and tumor necrosis factor-α in endothelial cells. Front Cell Dev Biol 2024; 12:1210944. [PMID: 38994453 PMCID: PMC11236538 DOI: 10.3389/fcell.2024.1210944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Tumor necrosis factor-α (TNFα) is a master cytokine which induces expression of chemokines and adhesion molecules, such as intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in endothelial cells to initiate the vascular inflammatory response. In this study, we identified neuropilin-1 (NRP1), a co-receptor of several structurally diverse ligands, as a modulator of TNFα-induced inflammatory response of endothelial cells. NRP1 shRNA expression suppressed TNFα-stimulated leukocyte adhesion and expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVECs). Likewise, it reduced TNFα-induced phosphorylation of MAPK p38 but did not significantly affect other TNF-induced signaling pathways, such as the classical NFκB and the AKT pathway. Immunofluorescent staining demonstrated co-localization of NRP1 with the two receptors of TNF, TNFR1 and TNFR2. Co-immunoprecipitation further confirmed that NRP1 was in the same protein complex or membrane compartment as TNFR1 and TNFR2, respectively. Modulation of NRP1 expression, however, neither affected TNFR levels in the cell membrane nor the receptor binding affinities of TNFα. Although a direct interface between NRP1 and TNFα/TNFR1 appeared possible from a protein docking model, a direct interaction was not supported by binding assays in cell-free microplates and cultured cells. Furthermore, TNFα was shown to downregulate NRP1 in a time-dependent manner through TNFR1-NFκB pathway in HUVECs. Taken together, our study reveals a novel reciprocal crosstalk between NRP1 and TNFα in vascular endothelial cells.
Collapse
Affiliation(s)
- Ying Wang
- Department of Cardiovascular Medicine, Rochester, MN, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Mohamed Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Department of Microbial Biotechnology, Institute of Biotechnology, National Research Centre, Giza, Egypt
| | - Simone Füllsack
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Yu Henry Huo
- Department of Cardiovascular Medicine, Rochester, MN, United States
| | - Shamit Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Baoan Ji
- Department of Cancer Biology, Jacksonville, FL, United States
| | - Luke H Hoeppner
- The Hormel Institute, University of Minnesota, Austin, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | | | - Sanjay Misra
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Thomas Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Craig W Vander Kooi
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
2
|
Chikh A, Raimondi C. Endothelial Neuropilin-1: a multifaced signal transducer with an emerging role in inflammation and atherosclerosis beyond angiogenesis. Biochem Soc Trans 2024; 52:137-150. [PMID: 38323651 PMCID: PMC10903451 DOI: 10.1042/bst20230329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Neuropilin-1 (NRP1) is a transmembrane glycoprotein expressed by several cell types including, neurons, endothelial cells (ECs), smooth muscle cells, cardiomyocytes and immune cells comprising macrophages, dendritic cells and T cell subsets. Since NRP1 discovery in 1987 as an adhesion molecule in the frog nervous system, more than 2300 publications on PubMed investigated the function of NRP1 in physiological and pathological contexts. NRP1 has been characterised as a coreceptor for class 3 semaphorins and several members of the vascular endothelial growth factor (VEGF) family. Because the VEGF family is the main regulator of blood and lymphatic vessel growth in addition to promoting neurogenesis, neuronal patterning, neuroprotection and glial growth, the role of NRP1 in these biological processes has been extensively investigated. It is now established that NRP1 promotes the physiological growth of new vessels from pre-existing ones in the process of angiogenesis. Furthermore, several studies have shown that NRP1 mediates signalling pathways regulating pathological vascular growth in ocular neovascular diseases and tumour development. Less defined are the roles of NRP1 in maintaining the function of the quiescent established vasculature in an adult organism. This review will focus on the opposite roles of NRP1 in regulating transforming growth factor β signalling pathways in different cell types, and on the emerging role of endothelial NRP1 as an atheroprotective, anti-inflammatory factor involved in the response of ECs to shear stress.
Collapse
Affiliation(s)
- Anissa Chikh
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, U.K
| | - Claudio Raimondi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, U.K
| |
Collapse
|
3
|
Circulating Biomarkers in Patients With Locally Advanced or Metastatic Renal Cell Carcinoma Treated With Everolimus in the Pre-nephrectomy Setting. Clin Oncol (R Coll Radiol) 2023; 35:e245-e255. [PMID: 36526521 DOI: 10.1016/j.clon.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/28/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Many drugs are available in renal cell carcinoma (RCC), yet clinicians are still looking for predictive biomarkers of disease recurrence or progression supporting more personalised treatments. An assessment of circulating biomarkers over time was carried out in this French, open-label, single-arm, multicentre trial conducted in 25 patients with either locally advanced (n = 14) or metastatic RCC (n = 11) who received everolimus (10 mg daily) for 6 weeks prior to nephrectomy (NEORAD, NCT01715935). Circulating biomarkers, including circulating tumour cells, haematopoietic and endothelial cells, plasma angiogenesis and inflammatory markers were quantified at baseline, upon everolimus and post-nephrectomy. We assessed tumour burden, objective response rate upon RECIST1.1, disease-free survival (DFS) and progression-free survival (PFS). The correlation between circulating biomarkers was evaluated with multiple factor analysis and biomarker association with DFS/PFS by Cox regression. No objective response rate was obtained before nephrectomy. Upon everolimus, neutrophils, platelets and sVEGFR2 significantly decreased. We did not find any association between circulating biomarkers and DFS/PFS, but patients with the highest tumour burden at baseline had significantly higher plasma levels of interleukin-6, an inflammatory circulating biomarker, and lower levels of sVEGFR2, related to angiogenesis. Further understanding of the link between these circulating biomarkers could help to optimise drug combinations in RCC.
Collapse
|
4
|
Multi-Layered Human Blood Vessels-on-Chip Design Using Double Viscous Finger Patterning. Biomedicines 2022; 10:biomedicines10040797. [PMID: 35453546 PMCID: PMC9027030 DOI: 10.3390/biomedicines10040797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
Blood vessel-on-a-chip models aim at reproducing vascular functions. However, very few efficient methods have been designed to address the need for biological replicates in medium- to high-throughput screenings. Here, vessels-on-chip were designed in polydimethylsiloxane-glass chips using the viscous finger patterning technique which was adapted to create channels with various internal diameters inside a collagen solution and to simultaneously seed cells. This method was refined to create blood vessels composed of two concentric, distinct, and closely appositioned layers of human endothelial and perivascular cells arranged around a hollow lumen. These approaches allowed the formation of structurally correct blood vessels-on-chips which were constituted of either only endothelial cells or of both cell types in order to distinguish the vascular barrier reactivity to drugs in the presence or not of perivascular cells. The established vessels showed a tight vascular barrier, as assessed by immunostaining of the adherens junctions, and were reactive to the natural vasopermeant thrombin and to inflammatory cytokines. The presence of perivascular cells markedly increased the tightness of the vascular barrier and lowered its response to thrombin. The design allowed us to simultaneously challenge in real-time several tens of 3D-reconstituted, multicellular blood vessels in a standard multiwell plate format suitable for high-throughput drug screening.
Collapse
|
5
|
MiR-195 modulates oxidative stress-induced apoptosis and mitochondrial energy production in human trophoblasts via flavin adenine dinucleotide-dependent oxidoreductase domain-containing protein 1 and pyruvate dehydrogenase phosphatase regulatory subunit. J Hypertens 2019; 36:306-318. [PMID: 28858979 DOI: 10.1097/hjh.0000000000001529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Preeclampsia is a severe pregnancy-specific syndrome defined as newly onset hypertension and proteinuria. Abnormal placental development has been generally accepted as the initial cause of the disorder. Recently, miR-195 was identified as one of the downregulated small RNAs in preeclamptic placentas. METHODS The potential targets of miR-195 in human trophoblast cells were screened by isobaric tags for relative and absolute quantification-based mass spectrum analysis. Localization of miR-195 and its targets was examined by in-situ hybridization and immunohistochemistry in human placenta. Real-time PCR, western blotting and luciferase assay were used for target validation. Apoptosis was accessed by Annexin V/PI costaining, whereas mitochondrial function by ATP measurement and tetramethylrhodamine ethyl ester fluorescence. RESULTS Two mitochondria-associated proteins, flavin adenine dinucleotide-dependent oxidoreductase domain-containing protein 1 (FOXRED1) and pyruvate dehydrogenase phosphatase regulatory subunit (PDPR), were identified as targets of miR-195. Overexpression of miR-195 in HTR8/SVneo cells resulted in enhanced apoptosis, decreased mitochondrial membrane potential and cellular ATP content upon hydrogen peroxide stimulation. The effects could be partially rescued by FOXRED1 or PDPR. In preeclamptic patients, lowered circulating level of miR-195 were found at early-to-mid gestation and term pregnancy, and marked increase in FOXRED1 and PDPR expression were observed in the placenta when compared with gestational week-matched controls. In addition, chronic hydrogen peroxide stimuli suppressed miR-195 expression in trophoblast cells. CONCLUSION MiR-195 could suppress mitochondrial energy production via targeting FOXRED1 and PDPR, and lead to trophoblast cell apoptosis under oxidative stress. In preeclamptic placenta, lowered level of miR-195 might be induced by chorionic oxidative stress and subsequently form a compensation mechanism to defend the disturbed energy production and cell apoptosis upon oxidative stress.
Collapse
|
6
|
Dong L, Sun W, Li F, Shi M, Meng X, Wang C, Meng M, Tang W, Liu H, Wang L, Song L. The harmful effects of acute PM 2.5 exposure to the heart and a novel preventive and therapeutic function of CEOs. Sci Rep 2019; 9:3495. [PMID: 30837634 PMCID: PMC6401085 DOI: 10.1038/s41598-019-40204-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/11/2019] [Indexed: 01/29/2023] Open
Abstract
Epidemiological researches have demonstrated the relationship between PM2.5 exposure and increased morbidity and mortality of cardiovascular injury. However, no effective therapeutic method was established. The purpose of this study is to investigate the effect of acute PM2.5 exposure on the mice heart tissue and explore the therapeutic effects of compound essential oils (CEOs) in this model. In this study, after mice were exposed to PM2.5 intratracheally, some obvious histopathological changes as well as some great alterations of proinflammatory cytokines were observed in the heart tissue. The imbalance of oxidative stress, the altered Ca2+ channel related proteins and the increased intracellular free Ca2+ were all involved in the heart impairment and would also be investigated in this model. The CEOs alleviated the heart impairment via its antioxidant effect rather than its anti-inflammatory function because our results revealed that oxidative stress related indicators were restored after CEOs administration. At the same time, increased concentration of intracellular free Ca2+ and ROS induced by PM2.5 were reduced after NAC (N-Acetyl-L-cysteine) administration. These data suggested that the acute PM2.5 exposure would damage heart tissue by inducing the inflammatory response, oxidative stress and intracellular free Ca2+ overload. PM2.5-induced oxidative stress probably increase intracellular free Ca2+ via RYR2 and SERCA2a. CEOs have the potential to be a novel effective and convenient therapeutic method to prevent and treat the acute heart impairment induced by PM2.5 via its antioxidant function.
Collapse
Affiliation(s)
- Lu Dong
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
- Department of Clinical Laboratory, Xinyi People's Hospital, Xinyi, 221400, Jiangsu Province, People's Republic of China
| | - Wenping Sun
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Fasheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Min Shi
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Xianzong Meng
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Chunyuan Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Meiling Meng
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Wenqi Tang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Hui Liu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Lili Wang
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, People's Republic of China.
| | - Laiyu Song
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China.
| |
Collapse
|
7
|
MiR-195 participates in the placental disorder of preeclampsia via targeting activin receptor type-2B in trophoblastic cells. J Hypertens 2016; 34:1371-9. [DOI: 10.1097/hjh.0000000000000948] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Qin TT, Xu GC, Qi JW, Yang GL, Zhang K, Liu HL, Xu LX, Xiang R, Xiao G, Cao H, Wei Y, Zhang QZ, Li LY. Tumour necrosis factor superfamily member 15 (Tnfsf15) facilitates lymphangiogenesis via up-regulation of Vegfr3
gene expression in lymphatic endothelial cells. J Pathol 2015; 237:307-18. [PMID: 26096340 DOI: 10.1002/path.4577] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/13/2015] [Accepted: 06/17/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Ting-Ting Qin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| | - Guo-Ce Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| | - Jian-Wei Qi
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin China
| | - Gui-Li Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| | - Kun Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| | - Hai-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| | - Li-Xia Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| | - Rong Xiang
- School of Medicine; Nankai University; Tianjin China
- Collaborative Innovation Center for Biotherapy, Nankai University, West China Hospital; Sichuan University; China
| | - Guozhi Xiao
- Department of Biology; South University of Science and Technology of China; Shenzhen China
| | - Huiling Cao
- Department of Biology; South University of Science and Technology of China; Shenzhen China
| | - Yuquan Wei
- Collaborative Innovation Center for Biotherapy, Nankai University, West China Hospital; Sichuan University; China
- State Key Laboratory of Biotherapy, West China Hospital; Sichuan University; Chengdu China
| | - Qiang-Zhe Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
- Collaborative Innovation Center for Biotherapy, Nankai University, West China Hospital; Sichuan University; China
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
- Collaborative Innovation Center for Biotherapy, Nankai University, West China Hospital; Sichuan University; China
| |
Collapse
|
9
|
Hertel J, Hirche C, Wissmann C, Ebert MP, Höcker M. Transcription of the vascular endothelial growth factor receptor-3 (VEGFR3) gene is regulated by the zinc finger proteins Sp1 and Sp3 and is under epigenetic control: transcription of vascular endothelial growth factor receptor 3. Cell Oncol (Dordr) 2014; 37:131-45. [PMID: 24710631 DOI: 10.1007/s13402-014-0169-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In the past, the vascular endothelial growth factor receptor-3 (VEGFR-3) has been linked to the regulation of lymphangiogenesis and the lymphatic spread of solid malignancies. The molecular mechanisms controlling VEGFR3 gene expression have, however, remained poorly understood. Here, we aimed at assessing these mechanisms through VEGFR3 gene promoter analysis and the identification of transcription factors binding to it. In addition, we focussed on epigenetic modifications underlying VEGFR3 transcription regulation. METHODS 5' Deletion analyses for the identification of functional promoter elements, electrophoretic mobility shift assays, chromatin immunoprecipitations, methylation-specific PCRs, and Trichostatin A (TSA) and 5-Aza desoxycytidine (5-Aza dC) treatments were performed in this study. RESULTS Following the isolation of a 2 kb stretch of 5'-flanking DNA of VEGFR3, we identified a novel GC-rich element (GRE) spanning -101/-66 sufficient for VEGFR3 transcription and activated by Sp1 and Sp3, respectively. Histone de-acetylase inhibition by TSA led to the accumulation of acetylated histones H3/H4 at the VEGFR3 gene promoter, up-regulation of its mRNA levels, and transactivation of promoter reporter constructs in endothelial cell lines. Similarly, methylation inhibition by 5-Aza dC triggered up-regulation of VEGFR3 mRNA levels and increased promoter activity. TSA and 5-Aza-dC did not influence Sp1/Sp3 binding, but increased the transactivating capacity of both transcription factors, suggesting epigenetic modification as an underlying mechanism. CONCLUSIONS Here we describe the identification of regulatory elements controlling human VEGFR3 gene expression and show that histone acetylation and CpG methylation are important determinants of VEGFR3 transcription regulation. These findings may facilitate the development of intervention strategies aimed at targeting VEGFR3-based tumor lymphangiogenesis and/or lymphatic tumor spread.
Collapse
Affiliation(s)
- Johannes Hertel
- Laboratory for Angiogenesis and Tumor Metastasis, Campus Mitte, Charité University Hospital Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | | | | | | | | |
Collapse
|
10
|
Roles of bone-marrow-derived cells and inflammatory cytokines in neointimal hyperplasia after vascular injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:945127. [PMID: 24551856 PMCID: PMC3914557 DOI: 10.1155/2014/945127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/22/2013] [Accepted: 12/21/2013] [Indexed: 12/30/2022]
Abstract
Bone-marrow-derived cells can generate vascular progenitor cells that contribute to pathological remodeling in models of restenosis after percutaneous coronary intervention (PCI). We created models of vascular injury in mice with bone marrow transplants (BMT) to determine relationships between bone-marrow-derived cells and subsequent biological factors. Mesenchymal stromal cells (MSCs) seemed to inhibit the inflammatory reaction and help stabilize injured vascular regions through mobilizing more endogenous bone-marrow-derived (EBMD) cells to the peripheral circulation. Granulocyte-colony stimulating factor (G-CSF) mobilized more EBMD cells to the peripheral circulation, and they accumulated on the injured side of the vascular lumen. The inflammatory cytokines, tumor necrosis factor (TNF)-alpha, and interleukin (IL)-6 mobilized EBMD cells that play an important role in the process of neointimal hyperplasia after vascular injury. These factors might comprise a mechanism that alters the transdifferentiation or paracrine capabilities of EBMD cells and are potential targets of treatment for patients with cardiovascular diseases.
Collapse
|
11
|
Shoji M, Furuyama F, Yokota Y, Omori Y, Sato T, Tsunoda F, Iso Y, Koba S, Geshi E, Katagiri T, Suzuki H, Kobayashi Y. IL-6 mobilizes bone marrow-derived cells to the vascular wall, resulting in neointima formation via inflammatory effects. J Atheroscler Thromb 2013; 21:304-12. [PMID: 24366256 DOI: 10.5551/jat.19414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Among the many factors related to bone marrow cell mobilization, local inflammation induced by cytokines may drive bone marrow cells to the vascular wall, resulting in a thickened neointima. However, the relationship between inflammatory reactions and bone marrow cell invasion has not yet been fully clarified. METHODS We inserted a large wire into the femoral artery in male balb/c(WT), interleukin (IL)-6-knockout (KO) and bone marrow-transplanted (BMT) mice that had received bone marrow cells from KO mice. Immunohistochemistry was performed to evaluate the degree of intimal hyperplasia and inflammation following vascular injury. RESULTS Three days after the vascular injury, the number of CD34/Sca-1-positive cells in the blood was higher in the KO mice. The numbers of apoptotic cells in the neointima was lower in the KO and BMT mice at two hours after injury. The morphometric analysis performed at one and four weeks after injury showed that the intima/media ratio was significantly lower in the KO and BMT mice, while CD34-positive cells were much more frequent in the WT mice. Furthermore, re-endothelialization appeared earlier in the KO and BMT mice than in the WT mice. No differences in the levels of vascular endothelial growth factor or hepatocyte growth factor were observed in the mice sera between the WT, KO and BMT mice after injury. The in vitro culture of bone marrow cells showed more differentiated smooth muscle-like cells in the WT mice than in the KO mice. CONCLUSIONS IL-6 is involved in neointimal formation following vascular injury, possibly acting through inflammatory effects inducing the production of bone marrow cells.
Collapse
Affiliation(s)
- Makoto Shoji
- Department of Medicine, Division of Cardiology, Showa University School of Medicine
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The acute phase reactant orosomucoid-1 is a bimodal regulator of angiogenesis with time- and context-dependent inhibitory and stimulatory properties. PLoS One 2012; 7:e41387. [PMID: 22916107 PMCID: PMC3419235 DOI: 10.1371/journal.pone.0041387] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/25/2012] [Indexed: 11/19/2022] Open
Abstract
Background Tissues respond to injury by releasing acute phase reaction (APR) proteins which regulate inflammation and angiogenesis. Among the genes upregulated in wounded tissues are tumor necrosis factor-alpha (TNFα) and the acute phase reactant orosomucoid-1 (ORM1). ORM1 has been shown to modulate the response of immune cells to TNFα, but its role on injury- and TNFα-induced angiogenesis has not been investigated. This study was designed to characterize the role of ORM1 in the angiogenic response to injury and TNFα. Methods and Results Angiogenesis was studied with in vitro, ex vivo, and in vivo angiogenesis assays. Injured rat aortic rings cultured in collagen gels produced an angiogenic response driven by macrophage-derived TNFα. Microarray analysis and qRT-PCR showed that TNFα and ORM1 were upregulated prior to angiogenic sprouting. Exogenous ORM1 delayed the angiogenic response to injury and inhibited the proangiogenic effect of TNFα in cultures of aortic rings or isolated endothelial cells, but stimulated aortic angiogenesis over time while promoting VEGF production and activity. ORM1 inhibited injury- and TNFα-induced phosphorylation of MEK1/2 and p38 MAPK in aortic rings, but not of NFκB. This effect was injury/TNFα-specific since ORM1 did not inhibit VEGF-induced signaling, and cell-specific since ORM1 inhibited TNFα-induced phosphorylation of MEK1/2 and p38 MAPK in macrophages and endothelial cells, but not mural cells. Experiments with specific inhibitors demonstrated that the MEK/ERK pathway was required for angiogenesis. ORM1 inhibited angiogenesis in a subcutaneous in vivo assay of aortic ring-induced angiogenesis, but stimulated developmental angiogenesis in the chorioallantoic membrane (CAM) assay. Conclusion ORM1 regulates injury-induced angiogenesis in a time- and context-dependent manner by sequentially dampening the initial TNFα-induced angiogenic response and promoting the downstream stimulation of the angiogenic process by VEGF. The context-dependent nature of ORM1 angioregulatory function is further demonstrated in the CAM assay where ORM1 stimulates developmental angiogenesis without exerting any inhibitory activity.
Collapse
|
13
|
Alexander JS, Chaitanya GV, Grisham MB, Boktor M. Emerging roles of lymphatics in inflammatory bowel disease. Ann N Y Acad Sci 2010; 1207 Suppl 1:E75-85. [PMID: 20961310 DOI: 10.1111/j.1749-6632.2010.05757.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mobilization and recruitment of blood and lymphatic vasculatures are widely described in inflammatory bowel diseases (IBDs). Although angiogenesis contributes to intense gut inflammation, it remains unclear whether and when lymphangiogenesis amplifies or protects in IBD. The prolonged maintenance of lymphatic (over blood vessels) in inflammation indicates that lymphatic-blood vessel interactions may regulate IBD pathogenesis and restitution. Although lymphatic expansion helps to restore fluid balance and clear cytokines and immune cells, lymphatic failure results in accumulation of these factors and exacerbates IBD. Lymphatic obstruction and remodeling may impair lymphatic pumping, leading to repeated rounds of lymphangiogenesis. Early descriptions of Crohn's disease and ulcerative colitis describe colon lymphatic congestion, remodeling, expansion, and many other features that are recapitulated in experimental IBD and also by intestinal lymphatic obstruction, supporting lymphangitis as a cause and consequence of IBD. Growth factors, cytokines, gut flora, Toll receptors, and leukocytes all regulate inflammation and gut lymphatic remodeling in IBD. This review summarizes the importance of lymphatics and lymphangiogenesis in IBD etiology that may be useful in diagnosis and therapy of gut inflammation.
Collapse
Affiliation(s)
- J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana 71130-3932, USA.
| | | | | | | |
Collapse
|
14
|
Neuropilin-1 and neuropilin-2 are differentially expressed in human proteinuric nephropathies and cytokine-stimulated proximal tubular cells. J Transl Med 2009; 89:1304-16. [PMID: 19736548 DOI: 10.1038/labinvest.2009.96] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuropilin-1 (NRP1) and neuropilin-2 (NRP2) are transmembrane glycoproteins with large extracellular domains that interact with class 3 semaphorins, vascular endothelial growth factor (VEGF) family members, and ligands, such as hepatocyte growth factor, platelet-derived growth factor BB, transforming growth factor-beta1 (TGF-beta1), and fibroblast growth factor2 (FGF2). Neuropilins (NRPs) have been implicated in tumor growth and vascularization, as novel mediators of the primary immune response and in regeneration and repair; however, their role in renal pathophysiology is largely unknown. Here, we report upregulation of tubular and interstitial NRP2 protein expression in patients with focal segmental glomerulosclerosis (FSGS). In an additional cohort of patients with minimal change disease (MCD), membranous nephropathy (MN), and FSGS, elevated NRP2 mRNA expression in kidney biopsies inversely correlated with estimated glomerular filtration rate (eGFR) at the time of biopsy. Furthermore, upregulation of NRP2 mRNA correlated with post-bioptic decline of kidney function. Expression of NRP1 and NRP2 in human proximal tubular cells (PTCs) was differentially affected after stimulation with TGF-beta1, interleukin-1beta (IL-1beta), and oncostatin M (OSM). Although the pro-fibrotic mediators, TGF-beta1 and IL-1beta, induced upregulation of NRP2 expression but downregulation of NRP1 expression, OSM stimulated the expression of both NRP1 and NRP2. Basal and OSM-induced NRP1 mRNA expression, as well as TGF-beta1-induced NRP2 mRNA and protein expression were partially mediated by MEK1/2-ERK1/2 signaling. This is the first report suggesting a differential role of NRP1 and NRP2 in renal fibrogenesis, and TGF-beta1, IL-1beta, and OSM represent the first ligands known to stimulate NRP2 expression in mammalian cells.
Collapse
|
15
|
Prahl S, Kueper T, Biernoth T, Wöhrmann Y, Münster A, Fürstenau M, Schmidt M, Schulze C, Wittern KP, Wenck H, Muhr GM, Blatt T. Aging skin is functionally anaerobic: importance of coenzyme Q10 for anti aging skin care. Biofactors 2008; 32:245-55. [PMID: 19096122 DOI: 10.1002/biof.5520320129] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The functional loss of mitochondria represents an inherent part in modern theories trying to explain the cutaneous aging process. The present study shows significant age-dependent differences in mitochondrial function of keratinocytes isolated from skin biopsies of young and old donors. Our data let us postulate that energy metabolism shifts to a predominantly non-mitochondrial pathway and is therefore functionally anaerobic with advancing age. CoQ10 positively influences the age-affected cellular metabolism and enables to combat signs of aging starting at the cellular level. As a consequence topical application of CoQ10 is beneficial for human skin as it rapidly improves mitochondrial function in skin in vivo.
Collapse
Affiliation(s)
- S Prahl
- R&D, Beiersdorf AG, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The Role of Vascular Endothelial Growth Factor in Lung Injury and Repair. Intensive Care Med 2007. [DOI: 10.1007/978-0-387-49518-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Zhu XY, Daghini E, Chade AR, Napoli C, Ritman EL, Lerman A, Lerman LO. Simvastatin prevents coronary microvascular remodeling in renovascular hypertensive pigs. J Am Soc Nephrol 2007; 18:1209-17. [PMID: 17344424 DOI: 10.1681/asn.2006090976] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Patients with hypertension and chronic kidney disease are at risk for cardiovascular diseases, possibly related to inflammation. Statins have beneficial anti-inflammatory effects on vascular structure regardless of cholesterol reduction. It was hypothesized that alterations in myocardial microvascular structure in swine renovascular hypertension (RVH) would be improved by simvastatin treatment. Three groups of pigs were studied after 12 wk: normal (n = 7), RVH (n = 7), or RVH+simvastatin (RVH+S; 80 mg/d; n = 6). Left ventricular muscle mass and myocardial perfusion were determined in vivo using electron beam computed tomography, and myocardial samples then were scanned ex vivo using micro-computed tomography for measurement of the spatial density of myocardial microvessels (80 to 500 microm) in situ. Capillary density and myocardial expression of inflammatory and growth factors were determined in myocardial tissue. The effects of simvastatin on inflammation-induced tube formation were evaluated in vitro in human umbilical vein endothelial cells that were exposed to TNF-alpha. RVH and RVH+S had similarly increased arterial pressure and serum creatinine. However, left ventricular hypertrophy was prevented by simvastatin, and myocardial perfusion was increased. Compared with normal, RVH showed increased spatial density of microvessels (169.6 +/- 21 versus 107.7 +/- 15.2 vessels/cm(2); P < 0.05), which was decreased in RVH+S (72.5 +/- 14.9 vessels/cm(2)), whereas capillary density remained similar to normal. RVH also increased myocardial expression of inflammatory and growth factors, which were reversed by simvastatin. Furthermore, simvastatin attenuated TNF-alpha-induced angiogenesis in vitro. Simvastatin prevents myocardial microvascular remodeling and hypertrophy in experimental RVH independent of lipid lowering. This protective effect is partly mediated by blunted expression as well as angiogenic activity of inflammatory cytokines.
Collapse
Affiliation(s)
- Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Man XY, Yang XH, Cai SQ, Yao YG, Zheng M. Immunolocalization and expression of vascular endothelial growth factor receptors (VEGFRs) and neuropilins (NRPs) on keratinocytes in human epidermis. Mol Med 2007; 12:127-36. [PMID: 17088944 PMCID: PMC1626599 DOI: 10.2119/2006-00024.man] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 07/25/2006] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays an important role in normal and pathological angiogenesis. VEGF receptors (VEGFRs, including VEGFR-1, VEGFR-2, and VEGFR-3) and neuropilins (NRPs, including NRP-1 and NRP-2) are high-affinity receptors for VEGF and are typically considered to be specific for endothelial cells. Here we showed expression of VEGFRs and NRPs on cultured epidermal keratinocytes at both mRNA and protein levels. We further localized these receptors by immunofluorescence (IF) staining in the epidermis of surgical skin specimens. We found positive staining for VEGFRs and NRPs in all layers of the epidermis except for the stratum corneum. VEGFR-1 and VEGFR-2 are primarily expressed on the cytoplasmic membrane of basal cells and the adjacent spinosum keratinocytes. All layers of the epidermis except for the horny cell layer demonstrated a uniform pattern of VEGFR-3, NRP-1, and NRP-2. Sections staining for NRP-1 and NRP-2 also showed diffuse intense fluorescence and were localized to the cell membrane and cytoplasm of keratinocytes. In another panel of experiments, keratinocytes were treated with different concentrations of VEGF, with or without VEGFR-2 neutralizing antibody in culture. VEGF enhanced the proliferation and migration of keratinocytes, and these effects were partially inhibited by pretreatment with VEGFR-2 neutralizing antibody. Adhesion of keratinocytes to type IV collagen-coated culture plates was decreased by VEGF treatment, but this reduction could be completely reversed by pretreatment with VEGFR-2 neutralizing antibody. Taken together, our results suggest that the expression of VEGFRs and NRPs on keratinocytes may constitute important regulators for its activity and may possibly be responsible for the autocrine signaling in the epidermis.
Collapse
Affiliation(s)
- Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009 P.R. China
| | - Xiao-Hong Yang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009 P.R. China
| | - Sui-Qing Cai
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009 P.R. China
| | - Yong-Gang Yao
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Min Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009 P.R. China
- Address correspondence and reprint requests to Min Zheng, Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009 P.R. China. Phone: (86) 571-87784558; fax: (86) 571-87215882; e-mail:
| |
Collapse
|
19
|
Staton CA, Kumar I, Reed MWR, Brown NJ. Neuropilins in physiological and pathological angiogenesis. J Pathol 2007; 212:237-48. [PMID: 17503412 DOI: 10.1002/path.2182] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuropilin-1 (Np1) and neuropilin-2 (Np2) are transmembrane glycoproteins with large extracellular domains that interact with both class 3 semaphorins and vascular endothelial growth factor (VEGF), and are involved in the regulation of many physiological pathways, including angiogenesis. The neuropilins also interact directly with the classical receptors for VEGF, VEGF-R1 and -R2, mediating signal transduction. The heart, glomeruli and osteoblasts express both Np1 and Np2, but there is differential expression in the adult vasculature, with Np1 expressed mainly by arterial endothelium, whereas Np2 is only expressed by venous and lymphatic endothelium. Both neuropilins are commonly over-expressed in regions of physiological (wound-healing) and pathological (tumour) angiogenesis, but the signal transduction pathways, neuropilin-mediated gene expression and the definitive role of neuropilins in angiogenic processes are not fully characterized. This review details the current evidence for the role of neuropilins in angiogenesis, and suggests future research directions that may enhance our understanding of the mechanisms of action of this unique family of proteins.
Collapse
Affiliation(s)
- C A Staton
- Microcirculation Research Group, Academic Unit of Surgical Oncology, University of Sheffield, Sheffield S10 2JF, UK
| | | | | | | |
Collapse
|
20
|
Abstract
Neuropilins are multifunctional non-tyrosine kinase receptors that bind to class 3 semaphorins and vascular endothelial growth factor. NRP-1 and NRP-2 were first identified for their key role in mediating axonal guidance in the developing nervous system through their interactions with class 3 semaphorins. Growing evidence supports a critical role for these receptors in tumor progression. Neuropilin expression is up-regulated in multiple tumor types, and correlates with tumor progression and prognosis in specific tumors. Neuropilins may indirectly mediate effects on tumor progression by affecting angiogenesis or directly through effects on tumor cells. This article reviews emerging evidence for the role of neuropilins in tumor biology. The therapeutic implications of these data are far-reaching and suggest that neuropilin-targeted interventions may be useful as a component of antineoplastic therapy.
Collapse
Affiliation(s)
- Lee M Ellis
- University of Texas M.D. Anderson Cancer Center, Unit 444, P.O. Box 301402, Houston, TX 77230-1402, USA.
| |
Collapse
|
21
|
Yang H, Nan B, Yan S, Li M, Yao Q, Chen C. C-reactive protein decreases expression of VEGF receptors and neuropilins and inhibits VEGF165-induced cell proliferation in human endothelial cells. Biochem Biophys Res Commun 2005; 333:1003-10. [PMID: 15975559 DOI: 10.1016/j.bbrc.2005.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 06/01/2005] [Indexed: 01/13/2023]
Abstract
C-reactive protein (CRP) is associated with cardiovascular disease. However, its biological functions for the vascular system are largely unknown. The objective of this study was to determine whether CRP could affect endothelial cell proliferation and expression of VEGF receptors (VEGFRs) and/or neuropilins. Human coronary artery endothelial cells (HCAECs) treated with CRP showed a significant reduction of mRNA levels of VEGFR-2, VEGFR-3, NRP-1, and NRP-2 by 34%, 63%, 41%, and 43%, respectively, as compared to untreated control cells (p < 0.05) by real-time PCR analysis. In addition, VEGF165-induced cell proliferation was determined by [3H]thymidine incorporation and MTS assay as well as capillary-like tube formation on Matrigel. HCAECs pretreated with CRP significantly decreased VEGF165-induced [3H]thymidine incorporation by 73%, MTS absorbance by 44%, and capillary-like tube formation by 54% as compared to CRP-untreated cells (p < 0.05). These data demonstrate that CRP significantly attenuates VEGF165-induced HCAEC proliferation and capillary-like tube formation through downregulation of expression of VEGFRs and NRPs. This study suggests a new molecular mechanism underlying the adverse effect of CRP on the vascular system.
Collapse
Affiliation(s)
- Hui Yang
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
22
|
Wang H, Riha GM, Yan S, Li M, Chai H, Yang H, Yao Q, Chen C. Shear Stress Induces Endothelial Differentiation From a Murine Embryonic Mesenchymal Progenitor Cell Line. Arterioscler Thromb Vasc Biol 2005; 25:1817-23. [PMID: 15994439 DOI: 10.1161/01.atv.0000175840.90510.a8] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Recent studies have illustrated that mesenchymal stem cells possess the potential to differentiate along an endothelial lineage, but the effect of shear on mesenchymal differentiation is unknown. Thus, we developed an in vitro shear stress system to examine the relationship between shear stress and the endothelial differentiation of a murine embryonic mesenchymal progenitor cell line, C3H/10T1/2. METHODS AND RESULTS The parallel plate system of fluid shear stress was used. Shear stress significantly induced expression of mature endothelial cell-specific markers in CH3H/10T1/2 cells such as CD31, von Willebrand factor, and vascular endothelial-cadherin at both the mRNA and protein levels with real-time polymerase chain reaction and immunofluorescence analyses, respectively. In addition, shear-induced augmentation of functional markers of the mature endothelial phenotype such as uptake of acetylated low-density lipoproteins and formation of capillary-like structures on Matrigel. Furthermore, shear stress significantly upregulated angiogenic growth factors while downregulating growth factors associated with smooth muscle cell differentiation. CONCLUSIONS This study demonstrates, for the fist time, endothelial differentiation in a mesenchymal progenitor CH3H/10T1/2 cell line resulting from shear exposure. Thus, this analysis may serve as a basis for further understanding the effect of shear on mesenchymal and vascular cell differentiation.
Collapse
Affiliation(s)
- Hao Wang
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bridenbaugh E. Literature watch. Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody. Lymphat Res Biol 2005; 3:87-8. [PMID: 16000057 DOI: 10.1089/lrb.2005.3.87] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Eric Bridenbaugh
- Department of Medical Physiology, Texas A&M University System HSC, College Station, TX, USA
| |
Collapse
|
24
|
Souba WW, McFadden DW. Re: "A not so modest proposal for sustaining the American clinical research enterprise". J Surg Res 2005; 125:1-2. [PMID: 15836842 DOI: 10.1016/j.jss.2005.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 02/24/2005] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
|
25
|
Kougias P, Chai H, Lin PH, Lumsden AB, Yao Q, Chen C. Adipocyte-derived cytokine resistin causes endothelial dysfunction of porcine coronary arteries. J Vasc Surg 2005; 41:691-8. [PMID: 15874935 DOI: 10.1016/j.jvs.2004.12.046] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Resistin, a novel adipocyte-derived cytokine, is involved in the development of insulin resistance and diabetes mellitus. In this study, we determined whether resistin could affect vasomotor function, oxidative stress, and endothelial nitric oxide synthase (eNOS) expression in porcine coronary arteries. METHODS Porcine coronary arteries were treated with resistin or antioxidant seleno-L-methionine (SeMet). Vasomotor function was studied by using a myograph system. Levels of superoxide anion (O 2 - ) were detected by the lucigenin-enhanced chemiluminescence method. The eNOS mRNA and protein levels were determined by real-time polymerase chain reaction and immunohistochemistry, respectively. Culture of isolated porcine coronary artery endothelial cells (PCAECs) was also included. RESULTS Endothelium-dependent relaxation in response to bradykinin was reduced by 15% and 30% for the rings treated with 10 and 40 ng/mL of resistin, respectively, as compared with controls ( P < .05). Endothelium-independent relaxation in response to sodium nitroprusside (SNP) was also reduced by 11% after treatment with 40 ng/mL of resistin ( P < .05). The O 2 - level was increased in the 40 ng/mL resistin-treated vessels by 88% as compared with controls ( P < .05). SeMet reversed these effects. The eNOS mRNA levels in PCAEC cultures treated with resistin (10 and 40 ng/mL) were decreased by 27% and 55%, respectively ( P < .05) and by 39% in the endothelial cells purified from porcine coronary artery rings after treatment with 40 ng/mL of resistin ( P < .05). Immunoreactivity of eNOS in the resistin-treated vessel rings was also substantially reduced. CONCLUSIONS Resistin reduces the endothelium-dependent and endothelium-independent vasorelaxation. This effect is associated with increased superoxide radical production, decreased eNOS expression, and is effectively reversed by the antioxidant SeMet. CLINICAL RELEVANCE Obesity has been considered to be an independent risk factor for coronary artery disease and other vascular lesions. Resistin is a newly discovered adipocyte-derived cytokine, and its plasma levels are increased in obese individuals. However, it is not clear whether resistin could directly contribute to vascular disease formation. This study showed that resistin can cause endothelial dysfunction in porcine coronary arteries through oxidative stress and down-regulation of eNOS. Thus, this study may suggest a new mechanism of obesity-associated vascular disease and that antioxidants may effectively prevent vascular disease in obese individuals.
Collapse
Affiliation(s)
- Panagiotis Kougias
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, USA
| | | | | | | | | | | |
Collapse
|
26
|
Chai H, Zhou W, Lin P, Lumsden A, Yao Q, Chen C. Ginsenosides block HIV protease inhibitor ritonavir-induced vascular dysfunction of porcine coronary arteries. Am J Physiol Heart Circ Physiol 2005; 288:H2965-71. [PMID: 15681703 DOI: 10.1152/ajpheart.01271.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus (HIV) protease inhibitor ritonavir (RTV) may induce vascular dysfunction through oxidative stress. Ginsenosides have been shown to have potential benefits on the cardiovascular system through diverse mechanisms, including antioxidative property. The objective of this study was to determine whether ginsenosides could prevent coronary arteries from RTV-induced dysfunction. Porcine coronary artery rings were incubated with RTV and ginsenosides Rb1, Rc, and Re for 24 h. Vasomotor function was recorded by a myograph tension system. In response to the thromboxane A(2) analog U-46619, the contraction of the vessel rings was significantly reduced. When cocultured with Rb1, Rc, and Re, the contractility significantly increased. In response to bradykinin at 10(-5) M, the endothelium-dependent relaxation of vessel rings was significantly reduced by 59% for RTV compared with controls (P < 0.05). When cocultured with Rb1, Rc, and Re, the relaxation significantly increased 100%, 90%, and 134%, respectively, compared with the RTV-alone groups (P > 0.05). In response to sodium nitroprusside, RTV significantly reduced vasorelaxation. In addition, the endothelial nitric oxide synthase (eNOS) mRNA levels were significantly reduced by 78% for RTV group (P < 0.05) by real-time PCR analysis. The eNOS protein levels measured by Western blot analysis and nitrite concentrations measured by Griess assay were also decreased, whereas O(2)(-) production by lucigenin-enhanced chemiluminescence was significantly increased in the RTV-treated group. These effects of RTV were effectively blocked by ginsenosides. Thus HIV protease inhibitor RTV significantly impaired the vasomotor function of porcine coronary arteries. This effect may be mediated by the downregulation of eNOS and overproduction of O(2)(-). These results suggest that ginsenosides can effectively block RTV-induced vascular dysfunction.
Collapse
Affiliation(s)
- Hong Chai
- Michael E. DeBakey Dept. of Surgery, One Baylor Plaza, NAB-2010, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|