1
|
Kelly LS, Munley JA, Pons EE, Kannan KB, Whitley EM, Bible LE, Efron PA, Mohr AM. A rat model of multicompartmental traumatic injury and hemorrhagic shock induces bone marrow dysfunction and profound anemia. Animal Model Exp Med 2024; 7:367-376. [PMID: 38860566 PMCID: PMC11228100 DOI: 10.1002/ame2.12447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/06/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Severe trauma is associated with systemic inflammation and organ dysfunction. Preclinical rodent trauma models are the mainstay of postinjury research but have been criticized for not fully replicating severe human trauma. The aim of this study was to create a rat model of multicompartmental injury which recreates profound traumatic injury. METHODS Male Sprague-Dawley rats were subjected to unilateral lung contusion and hemorrhagic shock (LCHS), multicompartmental polytrauma (PT) (unilateral lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofracture), or naïve controls. Weight, plasma toll-like receptor 4 (TLR4), hemoglobin, spleen to body weight ratio, bone marrow (BM) erythroid progenitor (CFU-GEMM, BFU-E, and CFU-E) growth, plasma granulocyte colony-stimulating factor (G-CSF) and right lung histologic injury were assessed on day 7, with significance defined as p values <0.05 (*). RESULTS Polytrauma resulted in markedly more profound inhibition of weight gain compared to LCHS (p = 0.0002) along with elevated plasma TLR4 (p < 0.0001), lower hemoglobin (p < 0.0001), and enlarged spleen to body weight ratios (p = 0.004). Both LCHS and PT demonstrated suppression of CFU-E and BFU-E growth compared to naïve (p < 0.03, p < 0.01). Plasma G-CSF was elevated in PT compared to both naïve and LCHS (p < 0.0001, p = 0.02). LCHS and PT demonstrated significant histologic right lung injury with poor alveolar wall integrity and interstitial edema. CONCLUSIONS Multicompartmental injury as described here establishes a reproducible model of multicompartmental injury with worsened anemia, splenic tissue enlargement, weight loss, and increased inflammatory activity compared to a less severe model. This may serve as a more effective model to recreate profound traumatic injury to replicate the human inflammatory response postinjury.
Collapse
Affiliation(s)
- Lauren S. Kelly
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Jennifer A. Munley
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Erick E. Pons
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Kolenkode B. Kannan
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | | | - Letitia E. Bible
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Alicia M. Mohr
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| |
Collapse
|
2
|
Efron PA, Brakenridge SC, Mohr AM, Barrios EL, Polcz VE, Anton S, Ozrazgat-Baslanti T, Bihorac A, Guirgis F, Loftus TJ, Rosenthal M, Leeuwenburgh C, Mankowski R, Moldawer LL, Moore FA. The persistent inflammation, immunosuppression, and catabolism syndrome 10 years later. J Trauma Acute Care Surg 2023; 95:790-799. [PMID: 37561664 PMCID: PMC10615691 DOI: 10.1097/ta.0000000000004087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
With the implementation of new intensive care unit (ICU) therapies in the 1970s, multiple organ failure (MOF) emerged as a fulminant inflammatory phenotype leading to early ICU death. Over the ensuing decades, with fundamental advances in care, this syndrome has evolved into a lingering phenotype of chronic critical illness (CCI) leading to indolent late post-hospital discharge death. In 2012, the University of Florida (UF) Sepsis Critical Illness Research Center (SCIRC) coined the term Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS) to provide a mechanistic framework to study CCI in surgical patients. This was followed by a decade of research into PICS-CCI in surgical ICU patients in order to define the epidemiology, dysregulated immunity, and long-term outcomes after sepsis. Other focused studies were performed in trauma ICU patients and emergency department sepsis patients. Early deaths were surprisingly low (4%); 63% experienced rapid recovery. Unfortunately, 33% progressed to CCI, of which 79% had a poor post-discharge disposition and 41% were dead within one year. These patients had biomarker evidence of PICS, and these biomarkers enhanced clinical prediction models for dismal one-year outcomes. Emergency myelopoiesis appears to play a central role in the observed persistent immune dysregulation that characterizes PICS-CCI. Older patients were especially vulnerable. Disturbingly, over half of the older CCI patients were dead within one year and older CCI survivors remained severely disabled. Although CCI is less frequent (20%) after major trauma, PICS appears to be a valid concept. This review will specifically detail the epidemiology of CCI, PICS biomarkers, effect of site of infection, acute kidney injury, effect on older patients, dysfunctional high-density lipoproteins, sarcopenia/cachexia, emergency myelopoiesis, dysregulated erythropoiesis, and potential therapeutic interventions. A review of UF SCIRC’s research efforts characterizing CCI, PICS biomarkers, effect of site of infection, acute kidney injury, effects on older patients, dysfunctional high-density lipoproteins, sarcopenia/cachexia, emergency myelopoiesis, and dysregulated erythropoiesis.
Collapse
Affiliation(s)
- Philip A Efron
- From the Department of Surgery and Anesthesiology (P.A.E., A.M.M., M.R.), University of Florida, Gainesville, Florida, Department of Surgery (S.C.B.), University of Washington, Seattle, Washington; Department of Surgery (E.L.B., V.E.P., T.J.L., L.L.M., F.A.M.), Department of Physiology and Aging (S.A., C.L., R.M.), Department of Medicine (T.O.-B., A.B.), University of Florida, Gainesville; and Department of Emergency Medicine (F.G.), University of Florida, Jacksonville, Florida
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Noel JG, Ramser SW, Pitstick L, Goetzman HS, Dale EL, Potter A, Adam M, Potter SS, Gardner JC. IL-1/MyD88-Dependent G-CSF and IL-6 Secretion Mediates Postburn Anemia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:972-980. [PMID: 36779805 PMCID: PMC10038902 DOI: 10.4049/jimmunol.2200785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/27/2023] [Indexed: 02/14/2023]
Abstract
The anemia of critical illness (ACI) is a nearly universal pathophysiological consequence of burn injury and a primary reason burn patients require massive quantities of transfused blood. Inflammatory processes are expected to drive postburn ACI and prevent meaningful erythropoietic stimulation through iron or erythropoietin supplementation, but to this day no specific inflammatory pathways have been identified as a critical mechanism. In this study, we examined whether secretion of G-CSF and IL-6 mediates distinct features of postburn ACI and interrogated inflammatory mechanisms that could be responsible for their secretion. Our analysis of mouse and human skin samples identified the burn wound as a primary source of G-CSF and IL-6 secretion. We show that G-CSF and IL-6 are secreted independently through an IL-1/MyD88-dependent mechanism, and we ruled out TLR2 and TLR4 as critical receptors. Our results indicate that IL-1/MyD88-dependent G-CSF secretion plays a key role in impairing medullary erythropoiesis and IL-6 secretion plays a key role in limiting the access of erythroid cells to iron. Importantly, we found that IL-1α/β neutralizing Abs broadly attenuated features of postburn ACI that could be attributed to G-CSF or IL-6 secretion and rescued deficits of circulating RBC counts, hemoglobin, and hematocrit caused by burn injury. We conclude that wound-based IL-1/MyD88 signaling mediates postburn ACI through induction of G-CSF and IL-6 secretion.
Collapse
Affiliation(s)
- John G Noel
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Seth W Ramser
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Lori Pitstick
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Holly S Goetzman
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Elizabeth L Dale
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Andrew Potter
- Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Mike Adam
- Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - S Steven Potter
- Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Jason C Gardner
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
4
|
Munley JA, Kelly LS, Mohr AM. Adrenergic Modulation of Erythropoiesis After Trauma. Front Physiol 2022; 13:859103. [PMID: 35514362 PMCID: PMC9063634 DOI: 10.3389/fphys.2022.859103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Severe traumatic injury results in a cascade of systemic changes which negatively affect normal erythropoiesis. Immediately after injury, acute blood loss leads to anemia, however, patients can remain anemic for as long as 6 months after injury. Research on the underlying mechanisms of such alterations of erythropoiesis after trauma has focused on the prolonged hypercatecholaminemia seen after trauma. Supraphysiologic elevation of catecholamines leads to an inhibitive effect on erythropoiesis. There is evidence to show that alleviation of the neuroendocrine stress response following trauma reduces these inhibitory effects. Both beta blockade and alpha-2 adrenergic receptor stimulation have demonstrated increased growth of hematopoietic progenitor cells as well as increased pro-erythropoietic cytokines after trauma. This review will describe prior research on the neuroendocrine stress response after trauma and its consequences on erythropoiesis, which offer insight into underlying mechanisms of prolonged anemia postinjury. We will then discuss the beneficial effects of adrenergic modulation to improve erythropoiesis following injury and propose future directions for the field.
Collapse
Affiliation(s)
- Jennifer A Munley
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Lauren S Kelly
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Alicia M Mohr
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Modulation of the HGF/c-Met Axis Impacts Prolonged Hematopoietic Progenitor Mobilization Following Trauma and Chronic Stress. Shock 2021; 54:482-487. [PMID: 31904616 DOI: 10.1097/shk.0000000000001506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Trauma and hemorrhagic shock trigger mobilization of hematopoietic progenitor cells (HPC) from bone marrow to peripheral blood. Hepatocyte growth factor (HGF), tyrosine-protein kinase Met (c-Met), matrix metallopeptidase 9 (MMP-9), and corticosterone regulate this mobilization process. We hypothesized that beta-blockade with propranolol and sympathetic outflow inhibition with clonidine following trauma and chronic stress would decrease hematopoietic progenitor cell mobilization. METHODS Sprague-Dawley rats were randomized to undergo three models of injury and stress: lung contusion, LC plus hemorrhagic shock (LCHS), or LCHS plus chronic restraint stress for 2 h daily (LCHS/CS). Propranolol and clonidine were administered by daily intraperitoneal injection until sacrifice on day seven. Bone marrow HGF, c-Met, and MMP-9 were measured by real-time PCR. Plasma corticosterone was measured by ELISA. Percentage HPC in peripheral blood was measured by flow cytometry. RESULTS Propranolol and clonidine significantly decreased bone marrow MMP-9 expression, plasma corticosterone levels, and HPC mobilization, and significantly increased hemoglobin levels. HPC mobilization was greatest following LCHS/CS (5.4 ± 1.8) and was significantly decreased by propranolol (2.2 ± 0.9, P < 0.001) and clonidine (1.7 ± 0.5, P < 0.001). Hemoglobin (g/dL) was lowest following LCHS/CS (12.3 ± 1.2) and was significantly increased by propranolol (13.7 ± 0.4, P = 0.022) and clonidine (14.1 ± 1.1, P < 0.001). CONCLUSIONS Severe injury was associated with increased bone marrow HGF, c-Met, and MMP-9, circulating corticosterone, HPC mobilization, and persistent anemia. Attenuating the neuroendocrine response to injury and stress with propranolol and clonidine reduced MMP-9 expression, corticosterone levels, HPC mobilization, and the degree of anemia.
Collapse
|
6
|
Kelly LS, Darden DB, Fenner BP, Efron PA, Mohr AM. The Hematopoietic Stem/Progenitor Cell Response to Hemorrhage, Injury, and Sepsis: A Review of Pathophysiology. Shock 2021; 56:30-41. [PMID: 33234838 PMCID: PMC8141062 DOI: 10.1097/shk.0000000000001699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT Hematopoietic stem/progenitor cells (HSPC) have both unique and common responses following hemorrhage, injury, and sepsis. HSPCs from different lineages have a distinctive response to these "stress" signals. Inflammation, via the production of inflammatory factors, including cytokines, hormones, and interferons, has been demonstrated to impact the differentiation and function of HSPCs. In response to injury, hemorrhagic shock, and sepsis, cellular phenotypic changes and altered function occur, demonstrating the rapid response and potential adaptability of bone marrow hematopoietic cells. In this review, we summarize the pathophysiology of emergency myelopoiesis and the role of myeloid-derived suppressor cells, impaired erythropoiesis, as well as the mobilization of HSPCs from the bone marrow. Finally, we discuss potential therapeutic options to optimize HSPC function after severe trauma or infection.
Collapse
Affiliation(s)
- Lauren S Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | | | | | | | | |
Collapse
|
7
|
Nalini R, Roshandel E, Mohammadzadeh S, Kazemi MH, Nikoonezhad M, Jalili A, Hajifathali A. The effect of beta-adrenergic stimulation in the expression of the urokinase plasminogen activator receptor in bone marrow mesenchymal stem cells. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Narcı H, Berkeşoğlu M, Üçbilek E, Ayrık C. The usefulness of the percentage of immature granulocytes in predicting in-hospital mortality in patients with upper gastrointestinal bleeding. Am J Emerg Med 2020; 46:646-650. [PMID: 33358899 DOI: 10.1016/j.ajem.2020.12.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/13/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Upper gastrointestinal bleeding (UGIB) is an important health problem with a potentially life threatening course. Measurement of immature granulocytes percentage (IG %), reflecting the fraction of circulating immature granulocyte (IG), is associated with increased mortality in patients with systemic inflammation, or distress. The aim of this study was to evaluate whether the IG% is an effective predictive marker for estimating the in-hospital mortality for patients with UGIB admitting to the emergency department (ED). METHOD This retrospective study included patients with UGIB who admitted to the ED, between 01.01.2019 and 31.12.2019. The patients were divided into two groups as discharged and dead. The IG% and other parameters were recorded. The primary end point of the study was in-hospital mortality. Logistic regression model was used to determine the factors affecting mortality. RESULTS This study included 149 patients, 94 of whom were men. The mean age of the patients was 64.5 ± 14.2. Twenty patients died during hospitalization and 129 were discharged. IG% was significantly higher in patients who died compared with patients who discharged. In the receiver operating characteristic (ROC) curves analysis to determine the in-hospital mortality, the cut-off value (>1%) for IG% level was found specificity (93.8%), sensitivity (100%), positive predictive value (PPV = 71.43%), negative predictive value (NPV = 100.00%) and area under curve (AUC = 0.98). Univariate logistic regression analysis showed that IG% was predicting in-hospital mortality (odds ratio, OR = 65.6, confidence interval, CI = 2.00-2152.6). CONCLUSıONS: High IG% levels may be used as a predictor of in-hospital mortality in patients with UGIB.
Collapse
Affiliation(s)
- Hüseyin Narcı
- Mersin University, Faculty of Medicine, Department of Emergency Medicine, Mersin, Turkey.
| | - Mustafa Berkeşoğlu
- Mersin University, Faculty of Medicine, Department of General Surgery, Mersin, Turkey
| | - Enver Üçbilek
- Associate professor, Mersin University, Faculty of Medicine, Department of Gastroenterology, Mersin, Turkey
| | - Cüneyt Ayrık
- Mersin University, Faculty of Medicine, Department of Emergency Medicine, Mersin, Turkey
| |
Collapse
|
9
|
Loftus TJ, Mira JC, Miller ES, Kannan KB, Plazas JM, Delitto D, Stortz JA, Hagen JE, Parvataneni HK, Sadasivan KK, Brakenridge SC, Moore FA, Moldawer LL, Efron PA, Mohr AM. The Postinjury Inflammatory State and the Bone Marrow Response to Anemia. Am J Respir Crit Care Med 2019; 198:629-638. [PMID: 29768025 DOI: 10.1164/rccm.201712-2536oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE The pathophysiology of persistent injury-associated anemia is incompletely understood, and human data are sparse. OBJECTIVES To characterize persistent injury-associated anemia among critically ill trauma patients with the hypothesis that severe trauma would be associated with neuroendocrine activation, erythropoietin dysfunction, iron dysregulation, and decreased erythropoiesis. METHODS A translational prospective observational cohort study comparing severely injured, blunt trauma patients who had operative fixation of a hip or femur fracture (n = 17) with elective hip repair patients (n = 22). Bone marrow and plasma obtained at the index operation were assessed for circulating catecholamines, systemic inflammation, erythropoietin, iron trafficking pathways, and erythroid progenitor growth. Bone marrow was also obtained from healthy donors from a commercial source (n = 8). MEASUREMENTS AND MAIN RESULTS During admission, trauma patients had a median of 625 ml operative blood loss and 5 units of red blood cell transfusions, and Hb decreased from 10.5 to 9.3 g/dl. Compared with hip repair, trauma patients had higher median plasma norepinephrine (21.9 vs. 8.9 ng/ml) and hepcidin (56.3 vs. 12.2 ng/ml) concentrations (both P < 0.05). Bone marrow erythropoietin and erythropoietin receptor expression were significantly increased among patients undergoing hip repair (23% and 14% increases, respectively; both P < 0.05), but not in trauma patients (3% and 5% increases, respectively), compared with healthy control subjects. Trauma patients had lower bone marrow transferrin receptor expression than did hip repair patients (57% decrease; P < 0.05). Erythroid progenitor growth was decreased in trauma patients (39.0 colonies per plate; P < 0.05) compared with those with hip repair (57.0 colonies per plate; P < 0.05 compared with healthy control subjects) and healthy control subjects (66.5 colonies per plate). CONCLUSIONS Severe blunt trauma was associated with neuroendocrine activation, erythropoietin dysfunction, iron dysregulation, erythroid progenitor growth suppression, and persistent injury-associated anemia. Clinical trial registered with www.clinicaltrials.gov (NCT 02577731).
Collapse
Affiliation(s)
- Tyler J Loftus
- 1 Department of Surgery.,2 Sepsis and Critical Illness Research Center, and
| | - Juan C Mira
- 1 Department of Surgery.,2 Sepsis and Critical Illness Research Center, and
| | - Elizabeth S Miller
- 1 Department of Surgery.,2 Sepsis and Critical Illness Research Center, and
| | | | - Jessica M Plazas
- 3 College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida
| | | | - Julie A Stortz
- 1 Department of Surgery.,2 Sepsis and Critical Illness Research Center, and
| | - Jennifer E Hagen
- 4 Department of Orthopedic Surgery, University of Florida Health, Gainesville, Florida; and
| | - Hari K Parvataneni
- 4 Department of Orthopedic Surgery, University of Florida Health, Gainesville, Florida; and
| | - Kalia K Sadasivan
- 4 Department of Orthopedic Surgery, University of Florida Health, Gainesville, Florida; and
| | | | - Frederick A Moore
- 1 Department of Surgery.,2 Sepsis and Critical Illness Research Center, and
| | - Lyle L Moldawer
- 1 Department of Surgery.,2 Sepsis and Critical Illness Research Center, and
| | - Philip A Efron
- 1 Department of Surgery.,2 Sepsis and Critical Illness Research Center, and
| | - Alicia M Mohr
- 1 Department of Surgery.,2 Sepsis and Critical Illness Research Center, and
| |
Collapse
|
10
|
Loftus TJ, Rosenthal MD, Croft CA, Smith RS, Moore FA, Brakenridge SC, Efron PA, Mohr AM. The effects of beta blockade and clonidine on persistent injury-associated anemia. J Surg Res 2018; 230:175-180. [PMID: 29960715 DOI: 10.1016/j.jss.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/29/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nonselective beta blockade (BB) and clonidine may abrogate catecholamine-mediated persistent injury-associated anemia. We hypothesized that critically ill trauma patients who received BB or clonidine would have favorable hemoglobin (Hb) trends when adjusting for operative blood loss (OBL), phlebotomy blood loss (PBL), and red blood cell (RBC) transfusion volumes, and that the effect would be greatest among the elderly, who have higher catecholamine levels. METHODS We performed a 4-y retrospective cohort analysis of 280 consecutive trauma patients with ICU stay ≥48 h and moderate/severe anemia. Patients who received BB or clonidine for ≥25% of their hospital stay were grouped as the BB/clonidine cohort (n = 84); all other patients served as controls (n = 196). Admission and discharge Hb were used to calculate ΔHb. OBL, PBL, and RBC volume were used to calculate adjusted ΔHb assuming 300 mL RBC = 1 g/dL Hb. RESULTS BB/clonidine and control patients had similar age, injury severity, comorbid illness, and admission Hb. BB/clonidine patients received fewer RBCs despite greater OBL, though neither association was statistically significant. BB/clonidine patients had higher discharge Hb (9.9 versus 9.5, P = 0.029) and adjusted ΔHb (+1.0 versus -0.8, P = 0.003). Hb curves separated after hospital day 10. The difference in adjusted ΔHb between groups increased with advanced age (all patients: 1.7, ≥50 y: 1.8, ≥60 y: 2.4, ≥70 y: 3.7). CONCLUSIONS Critically ill trauma patients receiving BB or clonidine had favorable Hb trends when accounting for OBL, PBL, and RBC transfusions. These findings support the hypothesis that BB and clonidine alleviate persistent injury-associated anemia, with strongest effects among the elderly.
Collapse
Affiliation(s)
- Tyler J Loftus
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Martin D Rosenthal
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Chasen A Croft
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - R Stephen Smith
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Frederick A Moore
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Scott C Brakenridge
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Philip A Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Alicia M Mohr
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida.
| |
Collapse
|
11
|
Thermal injury of the skin induces G-CSF-dependent attenuation of EPO-mediated STAT signaling and erythroid differentiation arrest in mice. Exp Hematol 2017; 56:16-30. [PMID: 28867537 DOI: 10.1016/j.exphem.2017.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/13/2017] [Accepted: 08/25/2017] [Indexed: 12/18/2022]
Abstract
Inflammation-mediated impairment of erythropoiesis plays a central role in the development of the anemia of critical illness (ACI). ACI develops despite elevation of endogenous erythropoietin (EPO), does not respond to exogenous erythropoietin (EPO) supplementation, and contributes significantly to transfusion requirements in burned patients. We have reported previously that the reduction of red blood cell mass in the bone marrow of a burn-injured ACI mouse model is granulocyte colony-stimulating factor (G-CSF) dependent. Given that elevated G-CSF levels also have been associated with lower hemoglobin levels and increased transfusion requirements in trauma victims, we postulated that G-CSF mediates postburn EPO resistance. In ACI mice, we found that bone marrow erythroid differentiation, viability, and proliferation are impaired after thermal injury of the skin. These changes in the marrow were associated with attenuated phosphorylation of known EPO-responsive signaling nodes, signal transducer and activator of transcription 5 (STAT5) Y694 and STAT3 S727, in bone marrow erythroid cells and developed despite highly elevated levels of endogenous EPO. Severely blunted STAT5 Y694 phosphorylation in bone marrow erythroid cells after exogenous EPO supplementation confirmed that EPO signaling was impaired in ACI mice. Importantly, parenteral administration of anti-G-CSF largely rescued postburn bone marrow erythroid differentiation arrest and EPO signaling in erythroid cells. Together, these data provide strong evidence for a role for G-CSF in the development of ACI after burn injury through suppression of EPO signaling in bone marrow erythroid cells.
Collapse
|
12
|
Ku SK, Kim H, Kim JW, Kang KS, Lee HJ. Ameliorating effects of herbal formula hemomine on experimental subacute hemorrhagic anemia in rats. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:205-213. [PMID: 28089715 DOI: 10.1016/j.jep.2017.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/23/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hemomine (HM) is an herbal mixture consisting of 5 varieties of the hematopoietic herbal extracts (Angelica gigas Nakai, Cnidium officinale Makino, Paeonia lactiflora Pall., Rehmannia glutinosa Liboschitz ex Stueudel, Glycyrrhiza uralensis Fischer). AIM OF THE STUDY Anemia has been treated with iron supplements, whereas it could cause adverse side effects such as digestive discomfort. In the present study, HM was applied to SHA rats to test for several activities so as to verify its therapeutic potentials on anemia and digestive discomfort. MATERIALS AND METHODS Sprague-Dawley rats were assigned to seven groups: (Two controls, two references (ferric hydroxide polymatose (FM) and ferritin extract glycerin hydrate (FA)), three different concentrations of HM, n=8 per groups), and induced subacute hemorrhagic anemia (SHA) through blood exsanguinations once a day for 7 days. RESULTS The SHA animal model showed changes in the markers related to classic iron-deficient and regenerative anemia in this experiment. However, the SHA related anemic signs were dose-dependently inhibited by the administration of HM 2, 1, and 0.5ml/kg for 7 days, and more favorably than the equal dosages of FM and FA. In addition, FM and FA showed the typical constipation signs, including reduction of in thickness of the colonic mucosa, in contrast, HM 2, 1, and 0.5ml/kg groups had no effects on the gastrointestinal motilities and the colonic mucous components when compared to the controls. The results suggested that the HM significantly showed to have therapeutic effects in the experimental SHA in rats, and is more potent than the commercial iron supplement through the proliferation of hematopoietic stem cells with reduced digestive discomfort. CONCLUSIONS Therefore, Hemomine may prove to be a promising hematopoietic and therapeutic agent for anemia.
Collapse
Affiliation(s)
- Sae Kwang Ku
- Department of Anatomy and histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, South Korea.
| | - Hyemee Kim
- Department of Nutrition and Food Science, Texas A&M University, College Station TX, United States of America.
| | - Joo Wan Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam-si, Gyeonggi-do, South Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, Gachon University, Seongnam-si, Gyeonggi-do, South Korea.
| |
Collapse
|
13
|
Alamo IG, Kannan KB, Ramos H, Loftus TJ, Efron PA, Mohr AM. Clonidine reduces norepinephrine and improves bone marrow function in a rodent model of lung contusion, hemorrhagic shock, and chronic stress. Surgery 2016; 161:795-802. [PMID: 27742030 DOI: 10.1016/j.surg.2016.08.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Propranolol has been shown previously to restore bone marrow function and improve anemia after lung contusion/hemorrhagic shock. We hypothesized that daily clonidine administration would inhibit central sympathetic outflow and restore bone marrow function in our rodent model of lung contusion/hemorrhagic shock with chronic stress. METHODS Male Sprague-Dawley rats underwent 6 days of restraint stress after lung contusion/hemorrhagic shock during which the animals received clonidine (75 μg/kg) after the restraint stress. On postinjury day 7, we assessed urine norepinephrine, blood hemoglobin, plasma granulocyte colony stimulating factor, and peripheral blood mobilization of hematopoietic progenitor cells, as well as bone marrow cellularity and erythroid progenitor cell growth. RESULTS The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased urine norepinephrine levels, improved bone marrow cellularity, restored erythroid progenitor colony growth, and improved hemoglobin (14.1 ± 0.6 vs 10.8 ± 0.6 g/dL). The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased hematopoietic progenitor cells mobilization and restored granulocyte colony stimulating factor levels. CONCLUSION After lung contusion/hemorrhagic shock with chronic restraint stress, daily administration of clonidine restored bone marrow function and improved anemia. Alleviating chronic stress and decreasing norepinephrine is a key therapeutic target to improve bone marrow function after severe injury.
Collapse
Affiliation(s)
- Ines G Alamo
- Department of Surgery and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, FL
| | - Kolenkode B Kannan
- Department of Surgery and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, FL
| | - Harry Ramos
- Department of Surgery and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, FL
| | - Tyler J Loftus
- Department of Surgery and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, FL
| | - Philip A Efron
- Department of Surgery and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, FL
| | - Alicia M Mohr
- Department of Surgery and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, FL.
| |
Collapse
|
14
|
Kumar M, Bhoi S, Subramanian A, Kamal VK, Mohanty S, Rao DN, Galwankar S. Evaluation of circulating haematopoietic progenitor cells in patients with Trauma Haemorrhagic shock and its correlation with outcomes. Int J Crit Illn Inj Sci 2016; 6:56-60. [PMID: 27308251 PMCID: PMC4901827 DOI: 10.4103/2229-5151.183016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background: Haemorrhagic shock accounts up to 50% of early trauma deaths. Hematopoietic failure has been observed in experimental animals and human following shock and injury. One of the facets of bone marrow failure is multiple organ dysfunction syndrome and is commonly seen in patients recovering from severe trauma and hemorrhagic shock. Bone Marrow (BM) dysfunction is associated with mobilization of hematopoietic progenitor cells (HPCs) into peripheral blood. Present study explored the association of peripheral blood hematopoietic progenitor cells (HPCs) with mortality in trauma haemorrhagic shock patients (T/HS). Materials and Methods: Prospective cohort studies of patients presenting within 8 hrs of injury with T/HS to the Department of Emergency Medicine, Jai Prakash Narayan Apex Trauma Center, All India Institute of Medical Sciences were recruited. Peripheral blood samples were collected in each patient for measurement of peripheral blood HPCs. Peripheral blood progenitor cell (PBPC) quantification was performed by measuring HPCs counts using the haematology analyzer (Sysmex XE-2100). Clinical and laboratory data were prospectively collected after consent. Ethical approval was taken and data was analysed by Stata 11.2. Results: 39 patients with trauma hemorrhagic shock and 30 normal healthy controls were recruited. HPCs were significantly higher (P < 0.001) in the T/HS as compared to control. Among study group, 14 patients died within 24 h. at the hospital admission, and found HPCs concentrations were highly significant (<0.001) in non-survivors (n = 14) when compared with survivors (n = 25) among T/HS patients. Conclusions: Our studies suggest the peripheral blood HPCs may be early prognostic marker for mortality among patients who presented with trauma hemorrhagic shock on admission. But the exact molecular mechanism and signalling pathway involved in the change of the behaviour of bone marrow microenvironment is still unclear.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Emergency Medicine, Jai Prakash Narayan Apex Trauma Centre, New Delhi, India
| | - Sanjeev Bhoi
- Department of Emergency Medicine, Jai Prakash Narayan Apex Trauma Centre, New Delhi, India
| | - Arulselvi Subramanian
- Department of Lab Medicine, Jai Prakash Narayan Apex Trauma Centre, New Delhi, India
| | - Vineet Kumar Kamal
- Department of Bio Statistics, All India Institutes of Medical Sciences, New Delhi, India
| | - Sujata Mohanty
- Department of Stem Cell Facility, All India Institutes of Medical Sciences, New Delhi, India
| | - D N Rao
- Department of Biochemistry, All India Institutes of Medical Sciences, New Delhi, India
| | - Sagar Galwankar
- Department of Emergency Medicine, University of Florida, Florida, USA
| |
Collapse
|
15
|
Impaired hematopoietic progenitor cells in trauma hemorrhagic shock. J Clin Orthop Trauma 2016; 7:282-285. [PMID: 27857504 PMCID: PMC5106469 DOI: 10.1016/j.jcot.2016.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/30/2016] [Accepted: 05/05/2016] [Indexed: 11/21/2022] Open
Abstract
Hemorrhagic shock (HS) is the major cause of death during trauma. Mortality due to HS is about 50%. Dysfunction of hematopoietic progenitor cells (HPCs) has been observed during severe trauma and HS. HS induces the elevation of cytokines, granulocyte-colony stimulating factor (G-CSF), peripheral blood HPCs, and circulating catecholamines, and decreases the expression of erythropoietin receptor connected with suppression of HPCs. Impaired HPCs may lead to persistent anemia and risk of susceptibility to infection, sepsis, and MOF. There is a need to reactivate impaired HPCs during trauma hemorrhagic shock.
Collapse
|
16
|
Mesenchymal stem cells reverse bone marrow dysfunction following injury and stress. J Trauma Acute Care Surg 2015; 79:602-8. [PMID: 26402534 DOI: 10.1097/ta.0000000000000823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Bone marrow (BM) dysfunction following experimental lung contusion (LC) resolves in 7 days; however, if followed by chronic stress (CS) following, BM dysfunction is persistent. Mesenchymal stem cells (MSCs) have protective immunomodulatory effects. We hypothesize that MSC can protect the BM against the deleterious effect of CS following LC. METHODS Male Sprague-Dawley rats (n = 6-7 per group) underwent LC or LC/CS ± MSC injection. CS consisted of a daily 2-hour period of restraint with repositioning and alarming every 30 minutes to prevent habituation. A single intravenous dose of 5 × 10 MSCs was given within 10 minutes following LC. Animals were sacrificed at Day 7, and peripheral blood (PB) and BM were collected. Flow cytometry was used to assess hematopoietic progenitor cells (HPCs) mobilized to PB. Plasma granulocyte colony-stimulating factor (G-CSF) levels were measured by enzyme-linked immunosorbent assay. BM cellularity and growth of BM HPC colonies (colony-forming unit-erythroid [CFU-E], burst-forming unit-erythroid [BFU-E], colony-forming unit-granulocyte, erythrocyte, monocyte, megakaryocyte [CFU-GEMM]) were also evaluated. RESULTS As previously reported, the addition of CS to LC resulted in a 32% decrease in BM cellularity; significant decreases in CFU-GEMM, BFU-E, and CFU-E; and marked increase in HPC in the PB as compared with the naive animals. The addition of MSC to LC/CS resulted in a 22% increase in BM cellularity and significant increases in CFU-GEMM, BFU-E, and CFU-E cultured from the BM. MSCs additionally reduced plasma G-CSF, prevented prolonged mobilization of HPC to PB, and restored colony growth to naive levels. CONCLUSION CS following LC results in persistent BM dysfunction manifested by a significant decrease in cellularity, HPC colony growth, and increased G-CSF levels and HPC mobilization to the PB at 7 days following injury. The addition of a single dose of MSCs following acute traumatic injury reverses the deleterious effects of CS on BM function. Further study is warranted to better understand the mechanisms behind MSC-mediated protection of BM function in the setting of CS.
Collapse
|
17
|
Chronic restraint stress after injury and shock is associated with persistent anemia despite prolonged elevation in erythropoietin levels. J Trauma Acute Care Surg 2015; 79:91-6; discussion 96-7. [PMID: 26091320 DOI: 10.1097/ta.0000000000000686] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Following severe traumatic injury, critically ill patients have a prolonged hypercatacholamine state that is associated with bone marrow (BM) dysfunction and persistent anemia. However, current animal models of injury and shock result in a transient anemia. Daily restraint stress (chronic stress [CS]) has been shown to increase catecholamines. We hypothesize that adding CS following injury or injury and shock in rats will prolong the hypercatecholaminemia and prolong the initial anemia, despite elevated erythropoietin (EPO) levels. METHODS Male Sprague-Dawley rats (n = 6-8 per group) underwent lung contusion (LC) or combined LC/hemorrhagic shock (LCHS) followed by 6 days of CS. CS consisted of a 2-hour restraint period interrupted with repositioning and alarms every 30 minutes. At 7 days, urine was assessed for norepinephrine (NE) levels, blood for EPO and hemoglobin (Hgb), and BM for erythroid progenitor growth. RESULTS Animals undergoing LC or combined LCHS predictably recovered by Day 7; urine NE, EPO, and Hgb levels were normal. The addition of CS to LC and LCHS models was associated with a significant elevation in NE on Day 6. The addition of CS to LC led to a persistent 20% to 25% decrease in the growth of BM hematopoietic progenitor cells. These findings were further exaggerated when CS was added following LCHS, resulting in a 20%q to 40% reduction in BM erythroid progenitor colony growth and a 20% decrease in Hgb when compared with LCHS alone. CONCLUSION Exposing injured animals to CS results in prolonged elevation of NE and EPO, which is associated with worsening BM erythroid function and persistent anemia. Chronic restraint stress following injury and shock provides a clinically relevant model to further evaluate persistent injury-associated anemia seen in critically ill trauma patients. Furthermore, alleviating CS after severe injury is a potential therapeutic target to improve BM dysfunction and anemia.
Collapse
|
18
|
Bible LE, Pasupuleti LV, Gore AV, Sifri ZC, Kannan KB, Mohr AM. Daily propranolol prevents prolonged mobilization of hematopoietic progenitor cells in a rat model of lung contusion, hemorrhagic shock, and chronic stress. Surgery 2015. [PMID: 26209570 DOI: 10.1016/j.surg.2015.06.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Propranolol has been shown previously to decrease the mobilization of hematopoietic progenitor cells (HPCs) after acute injury in rodent models; however, this acute injury model does not reflect the prolonged period of critical illness after severe trauma. Using our novel lung contusion/hemorrhagic shock/chronic restraint stress model, we hypothesize that daily administration of propranolol will decrease prolonged mobilization of HPCs without worsening lung healing. METHODS Male Sprague-Dawley rats underwent 6 days of restraint stress after undergoing lung contusion or lung contusion/hemorrhagic shock. Restraint stress consisted of a daily 2-hour period of restraint interrupted every 30 minutes by alarms and repositioning. Each day after the period of restraint stress, the rats received intraperitoneal propranolol (10 mg/kg). On day 7, peripheral blood was analyzed for granulocyte-colony stimulating factor (G-CSF) and stromal cell-derived factor 1 via enzyme-linked immunosorbent assay and for mobilization of HPCs using c-kit and CD71 flow cytometry. The lungs were examined histologically to grade injury. RESULTS Seven days after lung contusion and lung contusion/hemorrhagic shock, the addition of chronic restraint stress significantly increased the mobilization of HPC, which was associated with persistently increased levels of G-CSF and increased lung injury scores. The addition of propranolol to lung contusion/chronic restraint stress and lung contusion/hemorrhagic shock/chronic restraint stress models greatly decreased HPC mobilization and restored G-CSF levels to that of naïve animals without worsening lung injury scores. CONCLUSION The daily administration of propranolol after both lung contusion and lung contusion/hemorrhagic shock subjected to chronic restraint stress decreased the prolonged mobilization of HPC from the bone marrow and decreased plasma G-CSF levels. Despite the decrease in mobilization of HPC, lung healing did not worsen. Alleviating chronic stress with propranolol may be a future therapeutic target to improve healing after severe injury.
Collapse
Affiliation(s)
- Letitia E Bible
- Department of Surgery, Division of Trauma, Rutgers-New Jersey Medical School, Newark, NJ
| | - Latha V Pasupuleti
- Department of Surgery, Division of Trauma, Rutgers-New Jersey Medical School, Newark, NJ
| | - Amy V Gore
- Department of Surgery, Division of Trauma, Rutgers-New Jersey Medical School, Newark, NJ
| | - Ziad C Sifri
- Department of Surgery, Division of Trauma, Rutgers-New Jersey Medical School, Newark, NJ
| | - Kolenkode B Kannan
- Department of Surgery, Division of Acute Care Surgery, University of Florida, Gainesville, FL
| | - Alicia M Mohr
- Department of Surgery, Division of Acute Care Surgery, University of Florida, Gainesville, FL.
| |
Collapse
|
19
|
Gore AV, Bible LE, Livingston DH, Mohr AM, Sifri ZC. Mesenchymal stem cells reverse trauma and hemorrhagic shock-induced bone marrow dysfunction. J Surg Res 2015; 199:615-21. [PMID: 26193832 DOI: 10.1016/j.jss.2015.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/22/2015] [Accepted: 06/10/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Lung contusion (LC) followed by hemorrhagic shock (HS) causes persistent bone marrow (BM) dysfunction lasting up to 7 d after injury. Mesenchymal stem cells (MSCs) are multipotent cells that can hasten healing and exert protective immunomodulatory effects. We hypothesize that MSCs can attenuate BM dysfunction after combined LCHS. MATERIALS AND METHODS Male Sprague-Dawley rats (n = 5-6 per group) underwent LC plus 45 min of HS (mean arterial pressure of 30-35). Allogeneic MSCs (5 × 10(6) cells) were injected intravenously after resuscitation. At 7 d, BM was analyzed for cellularity and growth of hematopoietic progenitor cell (HPC) colonies (colony-forming unit-erythroid; burst-forming unit-erythroid; and colony-forming unit-granulocyte, erythrocyte, monocyte, megakaryocyte). Flow cytometry measured %HPCs in peripheral blood; plasma granulocyte colony-stimulating factor (G-CSF) levels were measured via enzyme-linked immunosorbent assay. Data were analyzed by one-way analysis of variance followed by the Tukey multiple comparison test. RESULTS As previously shown, at 7 d, LCHS resulted in 22%, 30%, and 24% decreases in colony-forming unit-granulocyte, erythrocyte, monocyte, megakaryocyte, burst-forming unit-erythroid, and colony-forming unit-erythroid colony growth, respectively, versus naive. Treatment with MSCs returned all BM parameters to naive levels. There was no difference in %HPCs in peripheral blood between groups; however, G-CSF remained increased up to 7 d after LCHS. MSCs returned G-CSF to naive levels. Plasma from animals receiving MSCs was not suppressive to the BM. CONCLUSIONS One week after injury, the persistent BM dysfunction observed in animals undergoing LCHS is reversed by treatment with MSCs with an associated return of plasma G-CSF levels to normal. Plasma from animals undergoing LCHS plus MSCs was not suppressive to BM cells in vitro. Treatment with MSCs after injury and shock reverses BM suppression and returns plasma G-CSF levels to normal.
Collapse
Affiliation(s)
- Amy V Gore
- Division of Trauma, Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Letitia E Bible
- Division of Trauma, Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - David H Livingston
- Division of Trauma, Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Alicia M Mohr
- Division of Trauma, Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Ziad C Sifri
- Division of Trauma, Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey.
| |
Collapse
|
20
|
Stelzer I, Kröpfl JM, Fuchs R, Pekovits K, Mangge H, Raggam RB, Gruber HJ, Prüller F, Hofmann P, Truschnig-Wilders M, Obermayer-Pietsch B, Haushofer AC, Kessler HH, Mächler P. Ultra-endurance exercise induces stress and inflammation and affects circulating hematopoietic progenitor cell function. Scand J Med Sci Sports 2014; 25:e442-50. [PMID: 25438993 DOI: 10.1111/sms.12347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2014] [Indexed: 01/18/2023]
Abstract
Although amateur sports have become increasingly competitive within recent decades, there are as yet few studies on the possible health risks for athletes. This study aims to determine the impact of ultra-endurance exercise-induced stress on the number and function of circulating hematopoietic progenitor cells (CPCs) and hematological, inflammatory, clinical, metabolic, and stress parameters in moderately trained amateur athletes. Following ultra-endurance exercise, there were significant increases in leukocytes, platelets, interleukin-6, fibrinogen, tissue enzymes, blood lactate, serum cortisol, and matrix metalloproteinase-9. Ultra-endurance exercise did not influence the number of CPCs but resulted in a highly significant decline of CPC functionality after the competition. Furthermore, Epstein-Barr virus was seen to be reactivated in one of seven athletes. The link between exercise-induced stress and decline of CPC functionality is supported by a negative correlation between cortisol and CPC function. We conclude that ultra-endurance exercise induces metabolic stress and an inflammatory response that affects not only mature hematopoietic cells but also the function of the immature hematopoietic stem and progenitor cell fraction, which make up the immune system and provide for regeneration.
Collapse
Affiliation(s)
- I Stelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - J M Kröpfl
- Institute of Human Movement Sciences and Sport, Exercise Physiology Lab, ETH Zurich, Zurich, Switzerland.,Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - R Fuchs
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - K Pekovits
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - H Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - R B Raggam
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - H-J Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - F Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - P Hofmann
- Institute of Sports Science, Karl-Franzens-University of Graz, Graz, Austria
| | - M Truschnig-Wilders
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - B Obermayer-Pietsch
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - A C Haushofer
- Institute of Medical and Chemical Laboratory Diagnostics Wels-Grieskirchen, Wels-Grieskirchen, Austria
| | - H H Kessler
- Research Unit Molecular Diagnostics, IHMEM, Medical University of Graz, Graz, Austria
| | - P Mächler
- Center for Cardiac Rehabilitation, SKA-PVA St. Radegund, Graz, Austria
| |
Collapse
|
21
|
Bible LE, Pasupuleti LV, Alzate WD, Gore AV, Song KJ, Sifri ZC, Livingston DH, Mohr AM. Early propranolol administration to severely injured patients can improve bone marrow dysfunction. J Trauma Acute Care Surg 2014; 77:54-60; discussion 59-60. [PMID: 24977755 DOI: 10.1097/ta.0000000000000264] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Bone marrow (BM) dysfunction is common in severely injured trauma patients, resulting from elevated catecholamines and plasma granulocyte colony-stimulating factor (G-CSF) as well as prolonged mobilization of hematopoietic progenitor cells (HPCs). We have previously shown that propranolol (β-blocker [BB]) reduces HPC mobilization in a rodent model of injury and hemorrhagic shock. We hypothesize that BB would prevent BM dysfunction in humans following severe injury. METHODS Forty-five severely injured trauma patients were studied in a prospective, randomized pilot trial. Twenty-five patients received BB, and 20 served as untreated controls. The dose of propranolol was adjusted to decrease the heart rate by 10% to 20% from baseline. Blood was analyzed for the presence of HPC (blast-forming unit erythroid cells [BFU-E] and colony-forming unit erythroid cells) and G-CSF. Demographic data, Injury Severity Score (ISS), hemoglobin, reticulocyte number, and outcome data were obtained. RESULTS The mean age of the study population was 33 years; 87% were male, with a mean ISS of 29. There is a significant increase in BFU-E in peripheral blood immediately following traumatic injury, and this mobilization persists for 30 days. The use of BB significantly decreases BFU-E and colony-forming unit erythroid cells at all time points. G-CSF is significantly elevated in both groups on admission; the use of BB decreases G-CSF levels by 51% as compared with 37% for controls. The average hemoglobin is nearly 1 g higher on the day of discharge with propranolol treatment (BB, 9.9 ± 0.4 g/dL vs. no BB, 9.1 ± 0.6 g/dL). CONCLUSION Following severe trauma, early treatment with propranolol following resuscitation is safe. The use of propranolol blunts early tachycardia, reduces HPC mobilization, and results in a faster return to baseline of the G-CSF peak seen after injury. There is also a trend toward faster recovery and resolution of anemia. Propranolol may be the first therapeutic agent to show improved BM function after severe injury. LEVEL OF EVIDENCE Therapeutic study, level III.
Collapse
Affiliation(s)
- Letitia E Bible
- From the Division of Trauma, Department of Surgery, Rutgers-New Jersey Medical School, Newark, New Jersey
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hajifathali A, Saba F, Atashi A, Soleimani M, Mortaz E, Rasekhi M. The role of catecholamines in mesenchymal stem cell fate. Cell Tissue Res 2014; 358:651-65. [PMID: 25173883 DOI: 10.1007/s00441-014-1984-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/28/2014] [Indexed: 01/22/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells found in many adult tissues, especially bone marrow (BM) and are capable of differentiation into various lineage cells such as osteoblasts, adipocytes, chondrocytes and myocytes. Moreover, MSCs can be mobilized from connective tissue into circulation and from there to damaged sites to contribute to regeneration processes. MSCs commitment and differentiation are controlled by complex activities involving signal transduction through cytokines and catecholamines. There has been an increasing interest in recent years in the neural system, functioning in the support of stem cells like MSCs. Recent efforts have indicated that the catecholamine released from neural and not neural cells could be affected characteristics of MSCs. However, there have not been review studies of most aspects involved in catecholamines-mediated functions of MSCs. Thus, in this review paper, we will try to describe the current state of catecholamines in MSCs destination and discuss strategies being used for catecholamines for migration of these cells to damaged tissues. Then, the role of the nervous system in the induction of osteogenesis, adipogenesis, chondrogenesis and myogenesis from MSCs is discussed. Recent progress in studies of signaling transduction of catecholamines in determination of the final fate of MSCs is highlighted. Hence, the knowledge of interaction between MSCs with the neural system could be applied towards the development of new diagnostic and treatment alternatives for human diseases.
Collapse
Affiliation(s)
- Abbas Hajifathali
- Bone Marrow Transplantation Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
23
|
Do all β-blockers attenuate the excess hematopoietic progenitor cell mobilization from the bone marrow following trauma/hemorrhagic shock? J Trauma Acute Care Surg 2014; 76:970-5. [PMID: 24662859 DOI: 10.1097/ta.0000000000000181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Severe injury results in increased mobilization of hematopoietic progenitor cells (HPC) from the bone marrow (BM) to sites of injury, which may contribute to persistent BM dysfunction after trauma. Norepinephrine is a known inducer of HPC mobilization, and nonselective β-blockade with propranolol has been shown to decrease mobilization after trauma and hemorrhagic shock (HS). This study will determine the role of selective β-adrenergic receptor blockade in HPC mobilization in a combined model of lung contusion (LC) and HS. METHODS Male Sprague-Dawley rats were subjected to LC, followed by 45 minutes of HS. Animals were then randomized to receive atenolol (LCHS + β1B), butoxamine (LCHS + β2B), or SR59230A (LCHS + β3B) immediately after resuscitation and daily for 6 days. Control groups were composed of naive animals. BM cellularity, %HPCs in peripheral blood, and plasma granulocyte-colony stimulating factor levels were assessed at 3 hours and 7 days. Systemic plasma-mediated effects were evaluated in vitro by assessment of BM HPC growth. Injured lung tissue was graded histologically by a blinded reader. RESULTS The use of β2B or β3B following LCHS restored BM cellularity and significantly decreased HPC mobilization. In contrast, β1B had no effect on HPC mobilization. Only β3B significantly reduced plasma G-CSF levels. When evaluating the plasma systemic effects, both β2B and β3B significantly improved BM HPC growth as compared with LCHS alone. The use of β2 and β3 blockade did not affect lung injury scores. CONCLUSION Both β2 and β3 blockade can prevent excess HPC mobilization and BM dysfunction when given after trauma and HS, and the effects seem to be mediated systemically, without adverse effects on subsequent healing. Only treatment with β3 blockade reduced plasma G-CSF levels, suggesting different mechanisms for adrenergic-induced G-CSF release and mobilization of HPCs. This study adds to the evidence that therapeutic strategies that reduce the exaggerated sympathetic stimulation after severe injury are beneficial and reduce BM dysfunction.
Collapse
|
24
|
Bellinger DL, Lorton D. Autonomic regulation of cellular immune function. Auton Neurosci 2014; 182:15-41. [PMID: 24685093 DOI: 10.1016/j.autneu.2014.01.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/17/2014] [Indexed: 12/21/2022]
Abstract
The nervous system and the immune system (IS) are two integrative systems that work together to detect threats and provide host defense, and to maintain/restore homeostasis. Cross-talk between the nervous system and the IS is vital for health and well-being. One of the major neural pathways responsible for regulating host defense against injury and foreign antigens and pathogens is the sympathetic nervous system (SNS). Stimulation of adrenergic receptors (ARs) on immune cells regulates immune cell development, survival, proliferative capacity, circulation, trafficking for immune surveillance and recruitment, and directs the cell surface expression of molecules and cytokine production important for cell-to-cell interactions necessary for a coordinated immune response. Finally, AR stimulation of effector immune cells regulates the activational state of immune cells and modulates their functional capacity. This review focuses on our current understanding of the role of the SNS in regulating host defense and immune homeostasis. SNS regulation of IS functioning is a critical link to the development and exacerbation of chronic immune-mediated diseases. However, there are many mechanisms that need to be further unraveled in order to develop sound treatment strategies that act on neural-immune interaction to resolve or prevent chronic inflammatory diseases, and to improve health and quality of life.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Pathology and Human Anatomy, Loma Linda University, School of Medicine, Loma Linda, CA, 92350, USA.
| | - Dianne Lorton
- College of Arts and Sciences, Kent State University and the Kent Summa Initiative for Clinical and Translational Research, Summa Health System, Akron, OH 44304, USA
| |
Collapse
|
25
|
Baranski GM, Pasupuleti LV, Sifri ZC, Cook KM, Alzate WD, Rameshwar P, Livingston DH, Mohr AM. Beta Blockade Protection of Bone Marrow Following Injury: A Critical Link between Heart Rate and Immunomodulation. ACTA ACUST UNITED AC 2013; 1. [PMID: 25621308 PMCID: PMC4303182 DOI: 10.4172/2329-8820.1000124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Introduction Severe trauma induces a profound elevation of catecholamines that is associated with bone marrow (BM) hematopoietic progenitor cell (HPC) colony growth suppression, excessive BM HPC mobilization, and a persistent anemia. Previously, propranolol (BB) use after injury and shock has been shown to prevent this BM dysfunction and improve hemoglobin levels. This study seeks to further investigate the optimal therapeutic dose and timing of BB administration following injury and shock. Methods Male Sprague-Dawley rats were subjected to a combined lung contusion (LC), hemorrhagic shock (HS) model ± BB. In our dose response experiments, animals received BB at 1, 2.5, 5, or 10 mg/kg immediately following resuscitation. In our therapeutic window experiments, following LCHS rats were given BB immediately, 1 hour, or 3 hours following resuscitation. BM and peripheral blood (PB) were collected in all animals to measure cellularity, BM HPC growth, circulating HPCs, and plasma G-CSF levels. Results Propranolol at 5 and 10 mg/kg significantly reduced HPC mobilization, restored BM cellularity and BM HPC growth, and decreased plasma G-CSF levels. Propranolol at 5 and 10 mg/kg also significantly decreased heart rate. When BB was administered beyond 1 hour after LCHS, its protective effects on cellularity, BM HPC growth, HPC mobilization, and plasma G-CSF levels were greatly diminished. Conclusion Early Buse following injury and shock at a dose of at least 5mg/kg is required to maintain BM cellularity and HPC growth, prevent HPC mobilization, and reduce plasma G-CSF levels. This suggests that propranolol exerts its BM protective effect in a dose and time dependent fashion in a rodent model. Finally, heart rate may be a valuable clinical marker to assess effective dosing of propranolol.
Collapse
Affiliation(s)
- Gregg M Baranski
- Department of Surgery, Division of Trauma, UMDNJ-New Jersey Medical School, Newark, NJ, USA
| | - Latha V Pasupuleti
- Department of Medicine-Hematology, UMDNJ-New Jersey Medical School, Newark, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Pasupuleti LV, Cook KM, Sifri ZC, Kotamarti S, Calderon GM, Alzate WD, Livingston DH, Mohr AM. Does selective beta-1 blockade provide bone marrow protection after trauma/hemorrhagic shock? Surgery 2012; 152:322-30. [PMID: 22938894 PMCID: PMC3432948 DOI: 10.1016/j.surg.2012.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 06/07/2012] [Indexed: 01/18/2023]
Abstract
BACKGROUND Previously, nonselective beta-blockade (BB) with propranolol demonstrated protection of the bone marrow (BM) after trauma and hemorrhagic shock (HS). Because selective beta-1 blockers are used commonly for their cardiac protection, the aim of this study was to more clearly define the role of specific beta adrenergic receptors in BM protection after trauma and HS. METHODS Male Sprague-Dawley rats underwent unilateral lung contusion (LC) followed by HS for 45 minutes. After resuscitation, animals were injected with a selective beta-blocker, atenolol (B1B), butoxamine (B2B), or SR59230A (B3B). Animals were killed at 3 hours or 7 days. Heart rate and blood pressure were measured throughout the study period. BM cellularity, growth of hematopoietic progenitor cells (HPCs) in BM, and hemoglobin levels (Hb) were assessed. RESULTS Treatment with a B2B or B3B after LCHS restored both BM cellularity and BM HPC colony growth at 3 hours and 7 days. In contrast, treatment with a B1B had no effect on BM cellularity or HPC growth but did decrease heart effectively rate throughout the study. Treatment with a B3B after LCHS increased Hb as compared with LCHS alone. CONCLUSION After trauma and HS, protection of BM for 7 days was seen with use of either a selective beta-2 or beta-3 blocker. Use of a selective beta-1 blocker was ineffective in protecting the BM despite a physiologic decrease in heart rate. Therefore, the protection of BM is via the beta-2 and beta-3 receptors and it is not via a direct cardiovascular effect.
Collapse
Affiliation(s)
- Latha V Pasupuleti
- Division of Trauma, Department of Surgery, UMDNJ-New Jersey Medical School, Newark, NJ, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Role of macrophages in mobilization of hematopoietic progenitor cells from bone marrow after hemorrhagic shock. Shock 2012; 37:518-23. [PMID: 22293600 DOI: 10.1097/shk.0b013e318249b81d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The release of hematopoietic progenitor cells (HPCs) from bone marrow (BM) is under tight homeostatic control. Under stress conditions, HPCs migrate from BM and egress into circulation to participate in immune response, wound repair, or tissue regeneration. Hemorrhagic shock with resuscitation (HS/R), resulting from severe trauma and major surgery, promotes HPC mobilization from BM, which, in turn, affects post-HS immune responses. In this study, we investigated the mechanism of HS/R regulation of HPC mobilization from BM. Using a mouse HS/R model, we demonstrate that the endogenous alarmin molecule high-mobility group box 1 mediates HS/R-induced granulocyte colony-stimulating factor secretion from macrophages (Mϕ in a RAGE [receptor for advanced glycation end products] signaling-dependent manner. Secreted granulocyte colony-stimulating factor, in turn, induces HPC egress from BM. We also show that activation of β-adrenergic receptors on Mϕ by catecholamine mediates the HS/R-induced release of high-mobility group box 1. These data indicate that HS/R, a global ischemia-reperfusion stimulus, regulates HPC mobilization through a series of interacting pathways that include neuroendocrine and innate immune systems, in which Mϕ play a central role.
Collapse
|