1
|
Cao TND, Wang T, Peng Y, Hsu HY, Mukhtar H, Yu CP. Photo-assisted microbial fuel cell systems: critical review of scientific rationale and recent advances in system development. Crit Rev Biotechnol 2024; 44:31-46. [PMID: 36424845 DOI: 10.1080/07388551.2022.2115874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
Bioelectrochemical systems such as microbial fuel cells (MFCs) have gained extensive attention due to their abilities to simultaneously treat wastewater and generate renewable energy resources. Recently, to boost the system performance, the photoelectrode has been incorporated into MFCs for effectively exploiting the synergistic interaction between light and microorganisms, and the resultant device is known as photo-assisted microbial fuel cells (photo-MFCs). Combined with the metabolic reaction of organic compounds by microorganisms, photo-MFCs are capable of simultaneously converting both chemical energy and light energy into electricity. This article aims to systematically review the recent advances in photo-MFCs, including the introduction of specific photosynthetic microorganisms used in photo-MFCs followed by the discussion of the fundamentals and configurations of photo-MFCs. Moreover, the materials used for photoelectrodes and their fabrication approaches are also explored. This review has shown that the innovative strategy of utilizing photoelectrodes in photo-MFCs is promising and further studies are warranted to strengthen the system stability under long-term operation for advancing practical application.
Collapse
Affiliation(s)
- Thanh Ngoc Dan Cao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - TsingHai Wang
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chongli, Taiwan
| | - Yong Peng
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Chang-Ping Yu
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Tang L, Dang Q, Tang Y, Xu Q, Zhu M, Han X, Liu P, Chen W. Synthesis of Fluoride-Substituted Layered Perovskites ZnMoO 4 with an Enhanced Photocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43251-43258. [PMID: 34967214 DOI: 10.1021/acsami.1c23290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oxyfluorides possess considerable attention for their multiple excellent properties, but the conventional high-temperature solid-state syntheses have seen bottlenecks in the synthesis of new compounds. Herein, we report a novel layered oxyfluoride ZnMoO4:F, which is prepared by a facile hydrothermal method using ZnF2 as the fluoride source. The fluoride anions are successfully introduced into the oxygen sublattice, which is confirmed by a combined analysis using XRD, STEM, and TGA techniques. The as-synthesized ZnMoO4:F has an absorption edge at around 550 nm, indicating a red shift of Eg to the visible region compared to the oxide counterpart. The layered oxyfluoride exhibits an enhanced photocatalytic active for hydrogen evolution under simulated sunlight (λ > 350 nm), and the activity of ZnMoO4:F (651.9 μmol g-1) was 2 times higher than that of ZnMoO4 (309.7 μmol g-1). Further electrochemical analysis has shown that the conduction band position plays a critical role in the high performances of ZnMoO4:F. This work sheds new light on the future design and synthesis of novel fluoride-doped materials for photocatalysis applications.
Collapse
Affiliation(s)
- Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qi Dang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ya Tang
- Department of Chemistry, School of Science, Shanghai University, Shanghai 200444, China
| | - Qinshang Xu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Min Zhu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaocang Han
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 China
| | - Pan Liu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 China
| | - Wenqian Chen
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Zhang M, Li Y, Zhou X, Wang L, Xie Y, Hou C. Preparation of ZIF-67/C 3N 4 composite material and adsorption of tetracycline hydrochloride. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94112-94125. [PMID: 37526822 DOI: 10.1007/s11356-023-28919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023]
Abstract
In recent years, wastewater treatment to remove tetracycline hydrochloride (TCH) has received much attention in water treatment problems. ZIF-67/C3N4 composite adsorbent, a nanosheet structured material stacked with MOFs, was prepared by in situ growth method, which has high adsorption activity for tetracycline hydrochloride in wastewater. Comparing the effect of monomeric and composite adsorbents, Z6C2 had the best adsorption effect (206 mg·g-1), which was 77.6% higher than that of ZIF-67 (116 mg·g-1) and 10.8 times higher than that of C3N4 (19 mg·g-1). The structure of ZIF-67 stacked on C3N4 nanosheets has an excellent specific surface area and number of active sites, as well as π-π interactions, electrostatic interactions, and hydrogen bonding interactions between the adsorbent and TCH, which combine to enhance the adsorption performance. The adsorption process is accompanied by a combination of chemisorption, mass transport, and internal diffusion rate-limiting. It was shown that the adsorption process is favorable for monolayer adsorption as well as a heat absorption reaction that proceeds spontaneously. The adsorbent exhibits good stability and adsorption capacity, which may be suitable for efficient and low-cost water purification.
Collapse
Affiliation(s)
- Mingyuan Zhang
- School of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Yueyao Li
- School of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Xiaoying Zhou
- School of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Liping Wang
- School of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Yuke Xie
- School of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Chentao Hou
- School of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China.
| |
Collapse
|
4
|
Bi R, Liu J, Zhou C, Shen Y, Liu Z, Wang Z. In situ synthesis of g-C 3N 4/TiO 2 heterojunction by a concentrated absorption process for efficient photocatalytic degradation of tetracycline hydrochloride. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55044-55056. [PMID: 36882657 DOI: 10.1007/s11356-023-26265-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The construction of heterojunctions between semiconductors is a preferred route to improve overall photocatalytic activity. In this work, a facile and feasible method was innovatively developed to one-step prepare g-C3N4/TiO2 heterojunctions via an absorption-calcination process using nitrogen and titanium precursors directly. This method can effectively avoid interfacial defects and establish a tight interfacial connection between g-C3N4 and TiO2. The resultant g-C3N4/TiO2 composites exhibited prominent photodegradation efficiency for tetracycline hydrochloride (TC-HCl) under visible light and simulated-sunlight irradiation. The optimal g-C3N4/TiO2 composite (urea content of 4 g) showed the highest photocatalytic efficiency, which can degrade 90.1% TC-HCl under simulated-sunlight irradiation within 30 min, achieving 3.9 and 2 times increases compared to pure g-C3N4 and TiO2, respectively. Besides, photodegradation pathways based on the role of active species ·O2- and ·OH were identified, indicating that a direct Z-scheme heterojunction was formed over the g-C3N4/TiO2 photocatalyst. The enhanced photocatalytic performance can be attributed to the close-knit interface contact and the formation of Z-scheme heterojunction between g-C3N4 and TiO2, which can accelerate the photo-induced charge carrier separation, broaden the spectra absorption range, and retain a higher redox potential. This one-step synthesis method may provide a new strategy for the construction of Z-scheme heterojunction photocatalysts consisting of g-C3N4 and TiO2 for environmental remediation and solar energy utilization.
Collapse
Affiliation(s)
- Renke Bi
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jialong Liu
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chutong Zhou
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yijie Shen
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhe Liu
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiyu Wang
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
5
|
Wang L, Liu Y, Hao J, Ma Z, Lu Y, Zhang M, Hou C. Construction of an S-scheme TiOF 2/HTiOF 3 heterostructures with abundant OVs and OH groups: Performance, kinetics and mechanism insight. J Colloid Interface Sci 2023; 640:15-30. [PMID: 36827845 DOI: 10.1016/j.jcis.2023.02.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Developing efficient photocatalysts is of crucial significance for the development of photocatalysis techniques. In this work, an S-scheme alkaline-washed TiOF2/HTiOF3(OHTOF) heterostructures with abundant Oxygen vacancies (Ovs) and OH groups was successfully constructed and used to remedy antibiotic wastewater under simulated sunlight. The generation of HTiOF3 was induced by g-C3N4 regulation. The results displayed that OHTOF15 composite possessed the best photocatalytic performance, which could degrade 94.2% tetracyclinehydrochloride (TCH) at a rate speed constant of 1.077 min-1 in 2.5 h. The after-alkali-washing process increased the concentration of OH groups and Ovs defects, and greatly enlarged the surface area. The abundant Ovs and OH groups were conducive to the formation of free radicals' and the transport of charge carriers. Compared with the pristine TiOF2, the absorption sidebands of OHTOF series were greatly red-shifted, which indicated that the increase of OH groups and the etching of the morphology of OHTOF further enhanced its visible-light harvesting ability. Furthermore, the metal cycle of the variable state of Ti4+/Ti3+ in OHTOF15 compensated for the charge balance and promoted the efficient separation of the carriers. Additionally, the apparent quantum efficiency (AQE) of the TCH photodegradation system based on Chemical Oxygen Demand (COD) removal efficiency was calculated to be 0.32%. It was confirmed that the electron transport path in TiOF2/HTiOF3 nanocomposites system followed the S-scheme type, which increased the charge carriers' separation rate and maintained a strong redox capacity. This work could provide some enlightenment for the construction of the semiconducting heterojunction and controllable surface defects engineering.
Collapse
Affiliation(s)
- Liping Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yi Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jing Hao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zhichao Ma
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yizhuo Lu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Mingyuan Zhang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Chentao Hou
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China.
| |
Collapse
|
6
|
Li Y, Chen L, Zhang J, Zhu C, Liu L. Synergistic photocatalytic degradation of TC-HCl by Mn3+/Co2+/Bi2O3 and PMS. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
S-Scheme BaTiO3/TiO2 heterojunctions: Piezophotocatalytic degradation of norfloxacin. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Novel tablet-like Bi3TaO7/BiOCl 2D-2D heterostructure with heightened charge segregation for Visible-light-driven photocatalytic pollutants degradation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
He Y, Jian Y, Huang Q, Tao Y, Peng L, Huang C, Xu W. Treatment of high-concentration phosphorus wastewater based on foamed concrete. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:479-486. [PMID: 35603735 DOI: 10.1080/10934529.2022.2078622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus is a nonrenewable resource, and the recovery of phosphorus from wastewater containing high concentrations of phosphorus is of great importance. In this work, a novel method for highly efficient treatment of high-concentration phosphorus-containing wastewater (50 mg/L, 100 mg/L and 150 mg/L) with low energy consumption was developed by using the block waste foam concrete (FC) as a potential phosphorus recovery material. The results showed that acid leaching significantly improved the accumulation efficiency of phosphorus in calcium hydroxyphosphate (HAP) via accelerating the release of calcium in wastewater. The recovery rate of phosphorus could reach 99.0% under the pH value of 9.0 at 25 °C, using 2.0 g FC. It was also found that the microporous structure of the surface of FC provided the adsorption sites for phosphorus, resulting in the adsorption rate in different concentrations of phosphorus-containing wastewater up to 14.5%. It indicated that FC achieved the recovery of phosphorus from high-concentration phosphorus-containing wastewater by coupling HAP crystallization and physical adsorption to polyphosphorus.
Collapse
Affiliation(s)
- Yuecheng He
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, People's Republic of China
- ChongQing Academy of Animal Sciences, ChongQing Municipality, People's Republic of China
| | - Yue Jian
- ChongQing Academy of Animal Sciences, ChongQing Municipality, People's Republic of China
| | - Qian Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, People's Republic of China
| | - Youqi Tao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, People's Republic of China
| | - Liurui Peng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, People's Republic of China
| | - Chuan Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, People's Republic of China
| | - Wenlai Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, People's Republic of China
| |
Collapse
|
10
|
Yang Y, Bian Z, Zhang L, Wang H. Bi@BiOx(OH)y modified oxidized g-C 3N 4 photocatalytic removal of tetracycline hydrochloride with highly effective oxygen activation. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127866. [PMID: 34857401 DOI: 10.1016/j.jhazmat.2021.127866] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
A novel Bi@BiOx(OH)y-modified oxidized g-C3N4 photocatalyst was successfully prepared via wet chemical reduction under alkaline conditions for the tetracycline hydrochloride removal. The prepared materials were characterized comprehensively and fully. Sufficient structural representation analyses confirmed the successful loading of Bi in the form of Bi@BiOx(OH)y complex beads. Based on basic photocatalytic studies, 10% (mass percentage) was found to be the best metal Bi loading. DRS, PL, transient photocurrent and EIS have explored the improvement of the photochemical properties of materials by loading Bi@BiOx(OH)y groups, particularly the improvement of photocatalytic properties by the SPR effect and electron traps. 10%Bi-OxCN exhibited the most suitable particle size of nonagglomerated Bi-metal groups, the largest specific surface area (43.53 m2 g-1), the most adsorption sites and the most significant photocurrent (8.694 × 10-2 mA cm-2) (7.78 times that of OxCN). This indicated that 10%Bi-OxCN had good adsorption capacity and excellent light response capability. In addition, 10%Bi-OxCN showed the best tetracycline hydrochloride removal efficiency (96.0%), with ∙O2- as the main active substance and 1O2 as the second most important substance made of ∙O2- and h+. The excellent photocatalytic effect and good reusability were fundamentally dependent on the modification of OxCN by Bi@BiOx(OH)y groups to produce a large number of active substances (including the separation efficiency of electron-hole pairs and the generation efficiency of ∙O2- and 1O2). These advantages are all related to the high specific surface area, a large number of active sites, narrow bandgap width, Bi-SPR effect, and BiOx(OH)y electron trap caused by successful loading of Bi groups.
Collapse
Affiliation(s)
- Yajing Yang
- College of Water Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, People's Republic of China.
| | - Lu Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China.
| |
Collapse
|
11
|
Zhang C, Zhao X, Wang C, Hakizimana I, Crittenden JC, Laghari AA. Electrochemical flow-through disinfection reduces antibiotic resistance genes and horizontal transfer risk across bacterial species. WATER RESEARCH 2022; 212:118090. [PMID: 35085844 DOI: 10.1016/j.watres.2022.118090] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), as emerging pollutants, are released into environment, increasing the risk of horizontal gene transfer (HGT). However, a limited number of studies quantified the effects of ARB disinfection on the HGT risk. This study investigated the inactivation of E. coli 10667 (sul) and the release and removal of ARGs using an electrochemical flow-through reactor (EFTR). Furthermore, the transfer frequencies and potential mechanisms of HGT after disinfection were explored using non-resistant E. coli GMCC 13373 as the recipient and E. coli DH5α carrying plasmid RP4 as the donor. A threshold of current density (0.25 mA/cm2) was observed to destroy cells and release intracellular ARGs (iARGs) to increase extracellular ARGs (eARGs) concentration. The further increase in the current density to 1 mA/cm2 resulted in the decline of eARGs concentration due to the higher degradation rate of eARGs than the release rate of iARGs. The performance of ARGs degradation and HGT frequency by EFTR were compared with those of conventional disinfection processes, including chlorination and ultraviolet radiation (UV). A higher ARGs degradation (83.46%) was observed by EFTR compared with that under chlorination (10.23%) and UV (27.07%). Accordingly, EFTR reduced the HGT frequency (0.69) of released ARGs into the recipient (Forward transfer), and the value was lower than that by chlorination (2.69) and UV (1.73). Meanwhile, the surviving injured E. coli 10667 (sul) with increased cell permeability was transferred by plasmid RP4 from the donor (Reverse transfer) with a higher frequency of 0.33 by EFTR compared with that under chlorination (0.26) and UV (0.16). In addition, the sul3 gene was the least resistant to EFTR than sul1 and sul2 gene. These findings provide important insights into the mechanism of HGT between the injured E. coli 10667 (sul) and environmental bacteria. EFTR is a promising disinfection technology for preventing the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Cong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Israel Hakizimana
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - John C Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Azhar Ali Laghari
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
12
|
Tayyab M, Liu Y, Min S, Muhammad Irfan R, Zhu Q, Zhou L, Lei J, Zhang J. Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63997-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
He P, Deng D, Ren T, Dang Y, Li M, Chen J, Xiao Y. Constructing Ternary Photocatalyst Ag/Ni(OH)
2
/g‐C
3
N
4
for Efficient Photocatalytic Hydrogen Production. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ping He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province College of Chemistry and Chemical Engineering China West Normal University Nanchong 637002 PR China
| | - Dashuang Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province College of Chemistry and Chemical Engineering China West Normal University Nanchong 637002 PR China
| | - Tongyan Ren
- School of Basic Medical Sciences North Sichuan Medical College Nanchong 637100 PR China
| | - Yinping Dang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province College of Chemistry and Chemical Engineering China West Normal University Nanchong 637002 PR China
| | - Ming Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province College of Chemistry and Chemical Engineering China West Normal University Nanchong 637002 PR China
| | - Jiufu Chen
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan College of Chemistry and Environmental Engineering Sichuan University of Science and Engineering Zigong 643000 PR China
| | - Yao Xiao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province College of Chemistry and Chemical Engineering China West Normal University Nanchong 637002 PR China
| |
Collapse
|
14
|
Liu R, Cheng SC, Xiao Y, Chan KC, Tong KM, Ko CC. Recyclable Polymer-Supported Iridium-Based Photocatalysts for Photoredox Organic Transformations. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Gu Y, Luo S, Wang Y, Zhu X, Yang S. A smart enzyme reactor based on a photo-responsive hydrogel for purifying water from phenol contaminated sources. SOFT MATTER 2022; 18:826-831. [PMID: 34950937 DOI: 10.1039/d1sm01536b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this paper, a smart enzyme reactor (SER) was synthesized using immobilized tyrosinase (Tyr) in a photo-responsive hydrogel via a polydopamine-assisted self-assembly strategy for purifying water from phenol contaminated water. PDA was not only utilized as a binder between Tyr and the hydrogel to prevent the leakage of Tyr with relatively high enzymatic activity from the SER, but also acted as a light absorber to trigger the hydrophilic/hydrophobic switching of PNIPAm hydrogels to realize the efficient reclamation of clean water. Experimental results showed that the SER maintained a well-defined porous structure with excellent elasticity, which was beneficial for water transport and enzyme accessibility. And the stability and reusability of Tyr in the degradation of phenol were all improved. Furthermore, clean water could be reclaimed completely and facilely by light irradiation after enzymatic remediation in the SER.
Collapse
Affiliation(s)
- Yuqi Gu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Siyuan Luo
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yaya Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Xuhui Zhu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Shun Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
- National local joint engineering laboratory to functional adsorption material technology for the environmental protection, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
16
|
Wang T, Bai Z, Wei W, Hou F, Guo W, Wei A. β-Cyclodextrin-Derivative-Functionalized Graphene Oxide/Graphitic Carbon Nitride Composites with a Synergistic Effect for Rapid and Efficient Sterilization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:474-483. [PMID: 34978185 DOI: 10.1021/acsami.1c24047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The nonselectivity of phototherapy and the hydrophobicity of phototherapy agents limit their application in the treatment of antibiotic-resistant bacteria. In this work, β-cyclodextrin-derivative-functionalized graphene oxide (GO)/graphitic carbon nitride (g-C3N4) antibacterial materials (CDM/GO/CN) were designed and synthesized. CN is used as a photosensitizer for photodynamic therapy (PDT) and GO as a photothermal agent for photothermal therapy (PTT). In addition, the supramolecular host-guest complex on the substrate can not only increase the inherent water solubility of the substrate and reduce the aggregation of the photosensitizer/photothermal agent but also manipulate the interaction between the photosensitizer/photothermal agent and bacteria to capture specific bacteria. The hyperthermia caused by PTT denatures proteins on the cell membrane, allowing reactive oxygen species (ROS) to enter the cell better and kill bacteria. The specific capture of Escherichia coli CICC 20091 by mannose significantly improves the sterilization efficiency and reduces side effects. The synergistic antibacterial agent shows excellent antibacterial efficacy of over 99.25% against E. coli CICC 20091 after 10 min of 635 + 808 nm dual-light irradiation. Moreover, cell proliferation experiments show that the composite material has good biocompatibility, expected to have applications in bacterial infections.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Zhenlong Bai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Wei Wei
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Fengming Hou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
- Nantong Institute of Nanjing University of Posts and Telecommunications Co.,Ltd., Nantong 226001, China
| | - Wei Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
- Kunshan Innovation Institute of Xidian University, Suzhou 215316, China
| | - Ang Wei
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
17
|
Porphyrin covalent organic framework for photocatalytic synthesis of tetrahydroquinolines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Hao J, Cheng L, Zhao H, Fu Q, Tao H, Wang H, Man W, Weng J, Xiong L, Li T, Ma Z, Ding J. Photocatalytic and Optoelectronic Properties of Polycrystalline Diamond. CRYSTAL RESEARCH AND TECHNOLOGY 2021. [DOI: 10.1002/crat.202100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jianxin Hao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials Wuhan Institute of Technology No. 206 Guanggu 1st Road Wuhan 430205 China
| | - Lin Cheng
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials Wuhan Institute of Technology No. 206 Guanggu 1st Road Wuhan 430205 China
| | - Hongyang Zhao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials Wuhan Institute of Technology No. 206 Guanggu 1st Road Wuhan 430205 China
| | - Qiuming Fu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials Wuhan Institute of Technology No. 206 Guanggu 1st Road Wuhan 430205 China
| | - Hong Tao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials Wuhan Institute of Technology No. 206 Guanggu 1st Road Wuhan 430205 China
| | - Huan Wang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials Wuhan Institute of Technology No. 206 Guanggu 1st Road Wuhan 430205 China
| | - Weidong Man
- Shanghai Zhengshi New Material Research Co., Ltd Shanghai 201700 China
| | - Jun Weng
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials Wuhan Institute of Technology No. 206 Guanggu 1st Road Wuhan 430205 China
| | - Liwei Xiong
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials Wuhan Institute of Technology No. 206 Guanggu 1st Road Wuhan 430205 China
| | - Tianwei Li
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials Wuhan Institute of Technology No. 206 Guanggu 1st Road Wuhan 430205 China
| | - Zhibin Ma
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials Wuhan Institute of Technology No. 206 Guanggu 1st Road Wuhan 430205 China
| | - Jianxu Ding
- College of Materials Science and Engineering Shandong University of Science and Technology Qingdao 266590 China
| |
Collapse
|
19
|
Jiang L, Guo Y, Qi S, Zhang K, Chen J, Lou Y, Zhao Y. Amorphous NiCoB-coupled MAPbI 3 for efficient photocatalytic hydrogen evolution. Dalton Trans 2021; 50:17960-17966. [PMID: 34854449 DOI: 10.1039/d1dt03633e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It was thought that the organic-inorganic hybrid perovskite MAPbI3 could be used to collect visible light for the photocatalytic hydrogen evolution reaction (HER). However, its ability to generate H2 is limited. Herein, we synthesized amorphous NiCoB through a redox method and coupled it with MAPbI3 to form the NiCoB/MAPbI3 composite photocatalyst by electrostatic self-assembly. 30% NiCoB/MAPbI3 exhibited the maximum H2 generation yield of 2625.57 μmol g-1 h-1, which was approximately 114 fold that of pristine MAPbI3 and much better than that of Pt/MAPbI3. In addition to the excellent photocatalytic HER capability, NiCoB/MAPbI3 maintained good stability in the 24 h cycling hydrogen evolution experiment. The photoelectric analysis showed that NiCoB as a cocatalyst could realize rapid charge separation. This work can offer a reference for the construction of efficient photocatalysts based on lead halide perovskites.
Collapse
Affiliation(s)
- Lanxuan Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China.
| | - Yanmei Guo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China.
| | - Shaopeng Qi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China.
| | - Ke Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China.
| | - Jinxi Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China.
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China.
| | - Yixin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
20
|
Wang B, Wang X, Yong J, Song Z, Chen J, Wang X, Gao J. Hofmann‐type Metal‐Organic Framework Based Bimetal/Carbon Nanosheets for Efficient Electrocatalytic Oxygen Evolution. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bo Wang
- Institute of Functional Porous Materials School of Materials Science and Engineering Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Xue Wang
- Institute of Functional Porous Materials School of Materials Science and Engineering Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Jiayi Yong
- Institute of Functional Porous Materials School of Materials Science and Engineering Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Zhirong Song
- Institute of Functional Porous Materials School of Materials Science and Engineering Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Jiazhen Chen
- Institute of Functional Porous Materials School of Materials Science and Engineering Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Xusheng Wang
- Institute of Functional Porous Materials School of Materials Science and Engineering Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Junkuo Gao
- Institute of Functional Porous Materials School of Materials Science and Engineering Zhejiang Sci-Tech University 310018 Hangzhou China
| |
Collapse
|
21
|
Liu C, Wei H, Gao Y, Wang N, Yuan X, Chi Z, Zhao G, Song S, Song J, Jin X. Application of CoMn/CoFe layered double hydroxide based on metal-organic frameworks template to activate peroxymonosulfate for 2,4-dichlorophenol degradation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3871-3890. [PMID: 34928849 DOI: 10.2166/wst.2021.482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) have unique properties and stable structures, which have been widely used as templates/precursors to prepare well developed pore structure and high specific surface area materials. In this article, an innovative and facile method of crystal reorganization was designed by using MOFs as sacrificial templates to prepare a layered double hydroxide (LDH) nano-layer sheet structure through a pseudomorphic conversion process under alkaline conditions. The obtained CoMn-LDH and CoFe-LDH catalysts broke the ligand of MOFs and reorganized the structure on the basis of retaining a high specific surface area and a large number of pores, which had higher specific surface area and well developed pore structure compared with LDH catalysts prepared by traditional methods, and thus provide more active sites to activate peroxymonosulfate (PMS). Due to the unique framework structure of MOFs, the MOF-derived CoMn-LDH and CoFe-LDH catalysts could provide more active sites to activate PMS, and achieve a 2,4-dichlorophenol degradation of 99.3% and 99.2% within 20 minutes, respectively. In addition the two LDH catalysts displayed excellent degradation performance for bisphenol A, ciprofloxacin and 2,4-dichlorophenoxyacetic acid (2,4-D). X-ray photoelectron spectroscopy indicated that the valence state transformation of metal elements participated in PMS activation. Electron paramagnetic resonance manifested that sulfate radical (SO4•-) and singlet oxygen (1O2) were the main species for degrading pollutants. In addition, after the three-cycle experiment, the CoMn-LDH and CoFe-LDH catalysts also showed long-term stability with a slight activity decrease in the third cycle. The phytotoxicity assessment determined by the germination of mung beans proved that PMS activation by MOF-derived LDH catalysts can basically eliminate the phytotoxicity of a 2,4-D solution. This research not only developed high-activity LDH catalysts for PMS activation, but also expanded the environmental applications of MOF derivants.
Collapse
Affiliation(s)
- Chenyu Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Haitong Wei
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Yanhui Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Ning Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Xiaoying Yuan
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Zhilong Chi
- Kyiv College at Qilu University of Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Kyiv National University of Technologies and Design, Kyiv 01011, Ukraine
| | - Guangli Zhao
- Kyiv College at Qilu University of Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Kyiv National University of Technologies and Design, Kyiv 01011, Ukraine
| | - Shuguang Song
- School of Transportation Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jianjun Song
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Xinghui Jin
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| |
Collapse
|
22
|
Liu Y, Ma X, Jin Z. Engineering a NiAl-LDH/CoS x S-Scheme heterojunction for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci 2021; 609:686-697. [PMID: 34836652 DOI: 10.1016/j.jcis.2021.11.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
The use of semiconductors to construct heterojunctions to suppress the rapid recombination of photogenerated charges and holes is considered to be an effective way to improve the efficiency of photocatalytic hydrogen evolution. Herein, cobalt sulfide (CoSx) nanoparticles are cultivated in situ in the folds of three-dimensional flower-like nickel-aluminium layered double hydroxides (NiAl-LDHs) using a facile solvothermal method. The hydrogen production rate of the binary CoSx/NiAl-LDH heterojunction reaches 3678.59 μmol/g/h, which is 83.74 and 22 times the rates of CoSx and NiAl-LDH, respectively. The unique three-dimensional structure of NiAl-LDH facilitates the growth of CoSx and shortens the transfer pathway of photogenerated electrons. More importantly, the built-in electric field formed at the interface and the S-type charge transport mechanism caused by the bending of the energy band enhance not only charge separation but also maintain the strong oxidation ability of the holes. In this study, the newly designed S-scheme heterojunction offers a new strategy for enhancing photocatalytic water splitting.
Collapse
Affiliation(s)
- Yanan Liu
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| | - Xiaohua Ma
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| |
Collapse
|
23
|
Lai ZI, Lee LQ, Li H. Electroreforming of Biomass for Value-Added Products. MICROMACHINES 2021; 12:1405. [PMID: 34832816 PMCID: PMC8619709 DOI: 10.3390/mi12111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022]
Abstract
Humanity's overreliance on fossil fuels for chemical and energy production has resulted in uncontrollable carbon emissions that have warranted widespread concern regarding global warming. To address this issue, there is a growing body of research on renewable resources such as biomass, of which cellulose is the most abundant type. In particular, the electrochemical reforming of biomass is especially promising, as it allows greater control over valorization processes and requires milder conditions. Driven by renewable electricity, electroreforming of biomass can be green and sustainable. Moreover, green hydrogen generation can be coupled to anodic biomass electroforming, which has attracted ever-increasing attention. The following review is a summary of recent developments related to electroreforming cellulose and its derivatives (glucose, hydroxymethylfurfural, levulinic acid). The electroreforming of biomass can be achieved on the anode of an electrochemical cell through electrooxidation, as well as on the cathode through electroreduction. Recent advances in the anodic electroreforming of cellulose and cellulose-derived glucose and 5-hydrooxylmethoylfurural (5-HMF) are first summarized. Then, the key achievements in the cathodic electroreforming of cellulose and cellulose-derived 5-HMF and levulinic acid are discussed. Afterward, the emerging research focusing on coupling hydrogen evolution with anodic biomass reforming for the cogeneration of green hydrogen fuel and value-added chemicals is reviewed. The final chapter of this paper provides our perspective on the challenges and future research directions of biomass electroreforming.
Collapse
Affiliation(s)
- Zi Iun Lai
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; (Z.I.L.); (L.Q.L.)
| | - Li Quan Lee
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; (Z.I.L.); (L.Q.L.)
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Hong Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; (Z.I.L.); (L.Q.L.)
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Singapore 637553, Singapore
| |
Collapse
|
24
|
Jian Y, Liu H, Zhu J, Zeng Y, Liu Z, Hou C, Pu S. Preparation of F-doped H 2Ti 3O 7-{104} nanorods with oxygen vacancies using TiOF 2 as precursor and its photocatalytic degradation activity. RSC Adv 2021; 11:35215-35227. [PMID: 35493161 PMCID: PMC9043010 DOI: 10.1039/d1ra07329j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/22/2021] [Indexed: 11/21/2022] Open
Abstract
Photocatalytic degradation is an eco-friendly and sustainable method for the treatment of water pollutants especially tetracycline hydrochloride (TCH). Herein, we developed F-doped H2Ti3O7-{104} nanorods with oxygen vacancies using TiOF2 as a precursor by simple alkali hydrothermal and ion-exchange methods. The phase structure, surface composition, optical properties, specific surface areas and charge separation were analysed by a series of measurements. The effects of KOH concentration on the structure and properties of H2Ti3O7 were investigated. It is confirmed that the TiOF2/H2Ti3O7 composite can be formed in low concentration KOH solution (1 mol L-1), while the H2Ti3O7 single phase can be formed in high concentration KOH solution (>3 mol L-1). The prepared F-doped H2Ti3O7-{104} nanorods provide a high specific surface area of 457 m2 g-1 and a macroporous volume of 0.69 cm3 g-1. The appropriate mesoporous structure of the photocatalyst makes TCH have a stronger affinity on its surface, which is more conducive to the subsequent photodegradation. Moreover, a synergistic mechanism of photosensitization and ligand-metal charge transfer (LMCT) in the photocatalytic degradation of TCH was proposed. In addition, the prepared F-doped H2Ti3O7-{104} nanorods showed excellent cycle stability and resistance to light corrosion. After five cycles of photodegradation, the degradation rate of TCH was only reduced from 92% to 83%. This low-cost strategy could be used for the mass production of efficient photocatalysts, which can be used for TCH clean-up in wastewater treatment.
Collapse
Affiliation(s)
- Yue Jian
- Chongqing Academy of Animal Sciences Chongqing 402460 China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs Chongqing 402460 China
| | - Huayang Liu
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Jiaming Zhu
- Chongqing Academy of Animal Sciences Chongqing 402460 China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs Chongqing 402460 China
| | - Yaqiong Zeng
- Chongqing Academy of Animal Sciences Chongqing 402460 China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs Chongqing 402460 China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences Chongqing 402460 China
| | - Chentao Hou
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Shihua Pu
- Chongqing Academy of Animal Sciences Chongqing 402460 China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs Chongqing 402460 China
| |
Collapse
|
25
|
Hou C, Hao J. A three-dimensional nano-network WO 3/F-TiO 2-{001} heterojunction constructed with OH-TiOF 2 as the precursor and its efficient degradation of methylene blue. RSC Adv 2021; 11:26063-26072. [PMID: 35479479 PMCID: PMC9037076 DOI: 10.1039/d1ra04809k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022] Open
Abstract
In this study, three-dimensional nested WO3/F-TiO2-{001} photocatalysts with different WO3 loadings were prepared by a hydrothermal process and used to degrade methylene blue (MB). The photocatalysts with various ratios of WO3 to OH-TiOF2 can be transformed into a three-dimensional network WO3/F-TiO2 hetero-structure with {001} surface exposure. The results showed that the composite catalyst with 5% WO3, denoted as FWT5, had the best comprehensive degradation effect. FWT5 has a limited band gap of 2.9 eV, which can be used as an advanced photocatalyst to respond to sunlight and degrade MB. The average pore diameter of the composite catalyst is 10.3 nm, and the multi-point specific surface area is 56 m2 g-1. Compared with pure TiOF2, the average pore size of the composite catalyst decreased by 8.44 nm and the specific surface area increased by 51.2 m2 g-1, which provides a larger contact space for the catalytic components and pollutants. Moreover, TiO2 on the {001} surface has higher photocatalytic activity and methylene blue can be better degraded. Under the irradiation of 0.03 g FWT5 composite catalyst with a simulated solar light source for 2 h, the degradation rate of 10 mg L-1 methylene blue can reach 82.9%. The trapping experiment showed that photo-generated holes were the principal functional component of WO3/F-TiO2-{001} photo-catalysis, which could capture OH- and form hydroxyl radical (˙OH) and improved the photocatalytic degradation performance. Kinetic studies show that the photocatalytic degradation of MB fits with the quasi-first order kinetic model.
Collapse
Affiliation(s)
- Chentao Hou
- Department of Environmental Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Jing Hao
- Department of Environmental Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| |
Collapse
|