1
|
Raju A, Xue B, Leibler S. A theoretical perspective on Waddington's genetic assimilation experiments. Proc Natl Acad Sci U S A 2023; 120:e2309760120. [PMID: 38091287 PMCID: PMC10743363 DOI: 10.1073/pnas.2309760120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Genetic assimilation is the process by which a phenotype that is initially induced by an environmental stimulus becomes stably inherited in the absence of the stimulus after a few generations of selection. While the concept has attracted much debate after being introduced by C. H. Waddington 70 y ago, there have been few experiments to quantitatively characterize the phenomenon. Here, we revisit and organize the results of Waddington's original experiments and follow-up studies that attempted to replicate his results. We then present a theoretical model to illustrate the process of genetic assimilation and highlight several aspects that we think require further quantitative studies, including the gradual increase of penetrance, the statistics of delay in assimilation, and the frequency of unviability during selection. Our model captures Waddington's picture of developmental paths in a canalized landscape using a stochastic dynamical system with alternative trajectories that can be controlled by either external signals or internal variables. It also reconciles two descriptions of the phenomenon-Waddington's, expressed in terms of an individual organism's developmental paths, and that of Bateman in terms of the population distribution crossing a hypothetical threshold. Our results provide theoretical insight into the concepts of canalization, phenotypic plasticity, and genetic assimilation.
Collapse
Affiliation(s)
- Archishman Raju
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore560065, India
| | - BingKan Xue
- Department of Physics and Institute for Fundamental Theory, University of Florida, Gainesville, FL32611
| | - Stanislas Leibler
- The Simons Center for Systems Biology, School of Natural Sciences, Institute for Advanced Study, Princeton, NJ08540
- Laboratory of Living Matter, The Rockefeller University, New York, NY01065
| |
Collapse
|
2
|
Mahmud M, Bekele M, Behera N. A computational investigation of cis-gene regulation in evolution. Theory Biosci 2023; 142:151-165. [PMID: 37041403 DOI: 10.1007/s12064-023-00391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/27/2023] [Indexed: 04/13/2023]
Abstract
In biological processes involving gene networks, genes regulate other genes that determine the phenotypic traits. Gene regulation plays an important role in evolutionary dynamics. In a genetic algorithm, a trans-gene regulatory mechanism was shown to speed up adaptation and evolution. Here, we examine the effect of cis-gene regulation on an adaptive system. The model is haploid. A chromosome is partitioned into regulatory loci and structural loci. The regulatory genes regulate the expression and functioning of structural genes via the cis-elements in a probabilistic manner. In the simulation, the change in the allele frequency, the mean population fitness and the efficiency of phenotypic selection are monitored. Cis-gene regulation increases adaption and accelerates the evolutionary process in comparison with the case involving absence of gene regulation. Some special features of the simulation results are as follows. A low ratio of regulatory loci and structural loci gives higher adaptation for fixed total number of loci. Plasticity is advantageous beyond a threshold value. Adaptation is better for large number of total loci when the ratio of regulatory loci to structural loci is one. However, it reaches a saturation beyond which the increase in the total loci is not advantageous. Efficiency of the phenotypic selection is higher for larger value of the initial plasticity.
Collapse
Affiliation(s)
- Mohammed Mahmud
- Department of Physics, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia
| | - Mulugeta Bekele
- Department of Physics, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia
| | - Narayan Behera
- Department of Applied Physics, Adama Science and Technology University, P. O. Box 1888, Adama, Ethiopia.
- Division of Physical Science, SVYASA University, Eknath Bhavan, Kempegowda Nagar, Bengaluru, 560019, India.
| |
Collapse
|
3
|
Island Tiger Snakes (Notechis scutatus) Gain a ‘Head Start’ in Life: How Both Phenotypic Plasticity and Evolution Underlie Skull Shape Differences. Evol Biol 2023. [DOI: 10.1007/s11692-022-09591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Bellin N, Calzolari M, Magoga G, Callegari E, Bonilauri P, Lelli D, Dottori M, Montagna M, Rossi V. Unsupervised machine learning and geometric morphometrics as tools for the identification of inter and intraspecific variations in the Anopheles Maculipennis complex. Acta Trop 2022; 233:106585. [PMID: 35787418 DOI: 10.1016/j.actatropica.2022.106585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/30/2022] [Indexed: 11/01/2022]
Abstract
Geometric morphometric analysis was combined with two different unsupervised machine learning algorithms, UMAP and HDBSCAN, to visualize morphological differences in wing shape among and within four Anopheles sibling species (An. atroparvus, An. melanoon, An. maculipennis s.s. and An. daciae sp. inq.) of the Maculipennis complex in Northern Italy. Specifically, we evaluated: 1) wing shape variation among and within species; 2) the consistencies between groups of An. maculipennis s.s. and An. daciae sp. inq. identified based on COI sequences and wing shape variability; and 3) the spatial and temporal distribution of different morphotypes. UMAP detected at least 13 main patterns of variation in wing shape among the four analyzed species and mapped intraspecific morphological variations. The relationship between the most abundant COI haplotypes of An. daciae sp. inq. and shape ordination/variation was not significant. However, morphological variation within haplotypes was reported. HDBSCAN also recognized different clusters of morphotypes within An. daciae sp. inq. (12) and An. maculipennis s.s. (4). All morphotypes shared a similar pattern of variation in the subcostal vein, in the anal vein and in the radio-medial cross-vein of the wing. On the contrary, the marginal part of the wings remained unchanged in all clusters of both species. Any spatial-temporal significant difference was observed in the frequency of the identified morphotypes. Our study demonstrated that machine learning algorithms are a useful tool combined with geometric morphometrics and suggest to deepen the analysis of inter and intra specific shape variability to evaluate evolutionary constrains related to wing functionality.
Collapse
Affiliation(s)
- Nicolò Bellin
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, 11/A 43124 Parma, Italy.
| | - Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna ''B. Ubertini'' (IZSLER), Brescia, Italy
| | - Giulia Magoga
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali, Via Celoria 2, 20133 Milan, Italy
| | - Emanuele Callegari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna ''B. Ubertini'' (IZSLER), Brescia, Italy
| | - Paolo Bonilauri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna ''B. Ubertini'' (IZSLER), Brescia, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna ''B. Ubertini'' (IZSLER), Brescia, Italy
| | - Michele Dottori
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna ''B. Ubertini'' (IZSLER), Brescia, Italy
| | - Matteo Montagna
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali, Via Celoria 2, 20133 Milan, Italy
| | - Valeria Rossi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, 11/A 43124 Parma, Italy
| |
Collapse
|
5
|
|
6
|
The Boggarts of biology: how non-genetic changes influence the genotype. Curr Genet 2020; 67:65-77. [PMID: 33037901 DOI: 10.1007/s00294-020-01108-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/21/2023]
Abstract
The notion that there is a one-one mapping from genotype to phenotype was overturned a long time ago. Along with genotype and environment, 'non-genetic changes' orchestrated by altered RNA and protein molecules also guide the development of phenotype. The idea that there is a route through which changes in phenotype can lead to changes in genotype impinges on several phenomena of molecular, developmental, evolutionary and applied interest. Phenotypic changes that do not alter the underlying DNA sequence have been studied across model systems (eg: DNA and histone modifications, RNA editing, prion formation) and are known to play an important role in short-term adaptation. However, because of their transient nature and unstable inheritance, the role of such changes in long-term evolution has remained controversial. I classify and review three ways in which non-genetic changes can influence genotype and impact cellular fitness across generations, with an emphasis on the enticing idea that they may act as stepping stones for genetic adaptation. I focus on work from microbial systems and attempt to highlight recent experiments and models that bear on this idea. Overall, I review evidence which suggests that non-genetic changes can impact phenotype via their influence on the genotype, and thus play a role in evolutionary change.
Collapse
|
7
|
Resource trait specialisation in an introduced fish population with reduced genetic diversity. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02264-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Kulkarni V, Kulkarni P. Intrinsically disordered proteins and phenotypic switching: Implications in cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:63-84. [PMID: 31521237 DOI: 10.1016/bs.pmbts.2019.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is now well established that intrinsically disordered proteins (IDPs) that constitute a large part of the proteome across the three kingdoms, play critical roles in several biological processes including phenotypic switching. However, dysregulated expression of IDPs that engage in promiscuous interactions can lead to pathological states. In this chapter, using cancer as a paradigm, we discuss how IDP conformational dynamics and the resultant conformational noise can modulate phenotypic switching. Thus, contrary to the prevailing wisdom that phenotypic switching is highly deterministic (has a genetic underpinning) in cancer, emerging evidence suggests that non-genetic mechanisms, at least in part due to the conformational noise, may also be a confounding factor in phenotypic switching.
Collapse
Affiliation(s)
- Vivek Kulkarni
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States.
| |
Collapse
|
9
|
Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nat Rev Genet 2015; 16:611-22. [PMID: 26370902 DOI: 10.1038/nrg3982] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The integration of research from developmental biology and ecology into evolutionary theory has given rise to a relatively new field, ecological evolutionary developmental biology (Eco-Evo-Devo). This field integrates and organizes concepts such as developmental symbiosis, developmental plasticity, genetic accommodation, extragenic inheritance and niche construction. This Review highlights the roles that developmental symbiosis and developmental plasticity have in evolution. Developmental symbiosis can generate particular organs, can produce selectable genetic variation for the entire animal, can provide mechanisms for reproductive isolation, and may have facilitated evolutionary transitions. Developmental plasticity is crucial for generating novel phenotypes, facilitating evolutionary transitions and altered ecosystem dynamics, and promoting adaptive variation through genetic accommodation and niche construction. In emphasizing such non-genomic mechanisms of selectable and heritable variation, Eco-Evo-Devo presents a new layer of evolutionary synthesis.
Collapse
|
10
|
Nishikawa K, Kinjo AR. Cooperation between phenotypic plasticity and genetic mutations can account for the cumulative selection in evolution. Biophysics (Nagoya-shi) 2014; 10:99-108. [PMID: 27493504 PMCID: PMC4629657 DOI: 10.2142/biophysics.10.99] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 11/11/2014] [Indexed: 02/06/2023] Open
Abstract
We propose the cooperative model of phenotype-driven evolution, in which natural selection operates on a phenotype caused by both genetic and epigenetic factors. The conventional theory of evolutionary synthesis assumes that a phenotypic value (P) is the sum of genotypic value (G) and environmental deviation (E), P=G+E, where E is the fluctuations of the phenotype among individuals in the absence of environmental changes. In contrast, the cooperative model assumes that an evolution is triggered by an environmental change and individuals respond to the change by phenotypic plasticity (epigenetic changes). The phenotypic plasticity, while essentially qualitative, is denoted by a quantitative value F which is modeled as a normal random variable like E, but with a much larger variance. Thus, the fundamental equation of the cooperative model is given as P=G+F where F includes the effect of E. Computer simulations using a genetic algorithm demonstrated that the cooperative model realized much faster evolution than the evolutionary synthesis. This accelerated evolution was found to be due to the cumulative evolution made possible by a ratchet mechanism due to the epigenetic contribution to the phenotypic value. The cooperative model can well account for the phenomenon of genetic assimilation, which, in turn, suggests the mechanism of cumulative selection. The cooperative model may also serve as a theoretical basis to understand various ideas and phenomena of the phenotype-driven evolution such as genetic assimilation, the theory of facilitated phenotypic variation, and epigenetic inheritance over generations.
Collapse
Affiliation(s)
- Ken Nishikawa
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira R Kinjo
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Siegal ML, Leu JY. On the Nature and Evolutionary Impact of Phenotypic Robustness Mechanisms. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2014; 45:496-517. [PMID: 26034410 PMCID: PMC4448758 DOI: 10.1146/annurev-ecolsys-120213-091705] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biologists have long observed that physiological and developmental processes are insensitive, or robust, to many genetic and environmental perturbations. A complete understanding of the evolutionary causes and consequences of this robustness is lacking. Recent progress has been made in uncovering the regulatory mechanisms that underlie environmental robustness in particular. Less is known about robustness to the effects of mutations, and indeed the evolution of mutational robustness remains a controversial topic. The controversy has spread to related topics, in particular the evolutionary relevance of cryptic genetic variation. This review aims to synthesize current understanding of robustness mechanisms and to cut through the controversy by shedding light on what is and is not known about mutational robustness. Some studies have confused mutational robustness with non-additive interactions between mutations (epistasis). We conclude that a profitable way forward is to focus investigations (and rhetoric) less on mutational robustness and more on epistasis.
Collapse
Affiliation(s)
- Mark L Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003;
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 11529;
| |
Collapse
|
12
|
Lema SC. Hormones and Phenotypic Plasticity in an Ecological Context: Linking Physiological Mechanisms to Evolutionary Processes. Integr Comp Biol 2014; 54:850-63. [DOI: 10.1093/icb/icu019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
13
|
Abstract
Despite intense research efforts that have provided enormous insight, cancer continues to be a poorly understood disease. There has been much debate over whether the cancerous state can be said to originate in a single cell or whether it is a reflection of aberrant behaviour on the part of a 'society of cells'. This article presents, in the form of a debate conducted among the authors, three views of how the problem might be addressed. We do not claim that the views exhaust all possibilities. These views are (a) the tissue organization field theory (TOFT) that is based on a breakdown of tissue organization involving many cells from different embryological layers, (b) the cancer stem cell (CSC) hypothesis that focuses on genetic and epigenetic changes that take place within single cells, and (c) the proposition that rewiring of the cell's protein interaction networks mediated by intrinsically disordered proteins (IDPs) drives the tumorigenic process. The views are based on different philosophical approaches. In detail, they differ on some points and agree on others. It is left to the reader to decide whether one approach to understanding cancer appears more promising than the other.
Collapse
Affiliation(s)
- Carlos Sonnenschein
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
- Centre Cavaillès, École Normale Supérieure, 45 rue d’Ulm, Paris 75005, France
| | - Ana M Soto
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
- Centre Cavaillès, École Normale Supérieure, 45 rue d’Ulm, Paris 75005, France
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, India
| | - Prakash Kulkarni
- Department of Urology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
14
|
Bost B, Veitia RA. Dominance and interloci interactions in transcriptional activation cascades: models explaining compensatory mutations and inheritance patterns. Bioessays 2013; 36:84-92. [PMID: 24242332 DOI: 10.1002/bies.201300109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutations in human genes encoding transcription factors are often dominant because one active allele cannot ensure a normal phenotype (haploinsufficiency). In other instances, heterozygous mutations of two genes are required for a phenotype to appear (combined haploinsufficiency). Here, we explore with models (i) the basis of haploinsufficiency and combined haploinsufficiency owing to mutations in transcription activators, and (ii) how the effects of such mutations can be amplified or buffered by subsequent steps in a transcription cascade. We propose that the non-linear (sigmoidal) response of transcription to the concentration of activators can explain haploinsufficiency. We further show that the sigmoidal character of the output of a cascade increases with the number of steps involved, the settings of which will determine the buffering or enhancement of the effects of a decreased concentration of an upstream activator. This exploration provides insights into the bases of compensatory mutations and on interloci interactions underlying oligogenic inheritance patterns.
Collapse
Affiliation(s)
- Bruno Bost
- Université Paris-Sud, IGM, UMR8621, Orsay, France; CNRS, Orsay, France
| | | |
Collapse
|
15
|
Grether GF. Redesigning the genetic architecture of phenotypically plastic traits in a changing environment. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gregory F. Grether
- Department of Ecology and Evolutionary Biology; University of California; 621 Charles E. Young Drive South Los Angeles CA 90095-1606 USA
| |
Collapse
|
16
|
Blamires SJ, Wu CL, Blackledge TA, Tso IM. Post-secretion processing influences spider silk performance. J R Soc Interface 2012; 9:2479-87. [PMID: 22628213 DOI: 10.1098/rsif.2012.0277] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phenotypic variation facilitates adaptations to novel environments. Silk is an example of a highly variable biomaterial. The two-spidroin (MaSp) model suggests that spider major ampullate (MA) silk is composed of two proteins-MaSp1 predominately contains alanine and glycine and forms strength enhancing β-sheet crystals, while MaSp2 contains proline and forms elastic spirals. Nonetheless, mechanical properties can vary in spider silks without congruent amino acid compositional changes. We predicted that post-secretion processing causes variation in the mechanical performance of wild MA silk independent of protein composition or spinning speed across 10 species of spider. We used supercontraction to remove post-secretion effects and compared the mechanics of silk in this 'ground state' with wild native silks. Native silk mechanics varied less among species compared with 'ground state' silks. Variability in the mechanics of 'ground state' silks was associated with proline composition. However, variability in native silks did not. We attribute interspecific similarities in the mechanical properties of native silks, regardless of amino acid compositions, to glandular processes altering molecular alignment of the proteins prior to extrusion. Such post-secretion processing may enable MA silk to maintain functionality across environments, facilitating its function as a component of an insect-catching web.
Collapse
Affiliation(s)
- Sean J Blamires
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan
| | | | | | | |
Collapse
|
17
|
Hiyama A, Taira W, Otaki JM. Color-pattern evolution in response to environmental stress in butterflies. Front Genet 2012; 3:15. [PMID: 22363341 PMCID: PMC3277265 DOI: 10.3389/fgene.2012.00015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/23/2012] [Indexed: 11/13/2022] Open
Abstract
It is generally accepted that butterfly wing color-patterns have ecological and behavioral functions that evolved through natural selection. However, particular wing color-patterns may be produced physiologically in response to environmental stress, and they may lack significant function. These patterns would represent an extreme expression of phenotypic plasticity and can eventually be fixed genetically in a population. Here, three such cases in butterflies are concisely reviewed, and their possible mechanisms of genetic assimilation are discussed. First, a certain modified color-pattern of Vanessa indica induced by temperature treatments resembles the natural color-patterns of its closely related species of the genus Vanessa (sensu stricto). Second, a different type of color-pattern modification can be induced in Vanessa cardui as a result of a general stress response. This modified pattern is very similar to the natural color-pattern of its sister species Vanessa kershawi. Third, a field observation was reported, together with experimental support, to show that the color-pattern diversity of a regional population of Zizeeria maha increased at the northern range margin of this species in response to temperature stress. In these three cases, modified color-patterns are unlikely to have significant functions, and these cases suggest that phenotypic plasticity plays an important role in butterfly wing color-pattern evolution. A neutral or non-functional trait can be assimilated genetically if it is linked, like a parasitic trait, with another functional trait. In addition, it is possible that environmental stress causes epigenetic modifications of genes related to color-patterns and that their transgenerational inheritance facilitates the process of genetic assimilation of a neutral or non-functional trait.
Collapse
Affiliation(s)
- Atsuki Hiyama
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus Okinawa, Japan
| | | | | |
Collapse
|
18
|
Emera D, Romero R, Wagner G. The evolution of menstruation: a new model for genetic assimilation: explaining molecular origins of maternal responses to fetal invasiveness. Bioessays 2012; 34:26-35. [PMID: 22057551 PMCID: PMC3528014 DOI: 10.1002/bies.201100099] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Why do humans menstruate while most mammals do not? Here, we present our answer to this long-debated question, arguing that (i) menstruation occurs as a mechanistic consequence of hormone-induced differentiation of the endometrium (referred to as spontaneous decidualization, or SD); (ii) SD evolved because of maternal-fetal conflict; and (iii) SD evolved by genetic assimilation of the decidualization reaction, which is induced by the fetus in non-menstruating species. The idea that menstruation occurs as a consequence of SD has been proposed in the past, but here we present a novel hypothesis on how SD evolved. We argue that decidualization became genetically stabilized in menstruating lineages, allowing females to prepare for pregnancy without any signal from the fetus. We present three models for the evolution of SD by genetic assimilation, based on recent advances in our understanding of the mechanisms of endometrial differentiation and implantation. Testing these models will ultimately shed light on the evolutionary significance of menstruation, as well as on the etiology of human reproductive disorders like endometriosis and recurrent pregnancy loss.
Collapse
Affiliation(s)
- D. Emera
- Department of Ecology and Evolutionary Biology and Yale Systems Biology Institute, Yale University, New Haven, CT, USA
| | - R. Romero
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, Michigan and Bethesda, MD, USA
| | - G. Wagner
- Department of Ecology and Evolutionary Biology and Yale Systems Biology Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
19
|
Abstract
Can a history of phenotypic plasticity increase the rate of adaptation to a new environment? Theory suggests it can be through two different mechanisms. Phenotypically plastic organisms can adapt rapidly to new environments through genetic assimilation, or the fluctuating environments that result in phenotypic plasticity can produce evolvable genetic architectures. In this article, I studied a model of a gene regulatory network that determined a phenotypic character in one population selected for phenotypic plasticity and a second population in a constant environment. A history of phenotypic plasticity increased the rate of adaptation in a new environment, but the amount of this increase was dependent on the strength of selection in the original environment. Phenotypic variance in the original environment predicted the adaptive capacity of the trait within, but not between, plastic and nonplastic populations. These results have implications for invasive species and ecological studies of rapid adaptation.
Collapse
Affiliation(s)
- J L Fierst
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
20
|
Morphological distinctness despite large-scale phenotypic plasticity--analysis of wild and pond-bred juveniles of allopatric populations of Tropheus moorii. Naturwissenschaften 2010; 98:125-34. [PMID: 21161156 PMCID: PMC3029815 DOI: 10.1007/s00114-010-0751-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/22/2010] [Accepted: 11/24/2010] [Indexed: 10/31/2022]
Abstract
Cichlids are an excellent model to study explosive speciation and adaptive radiation. Their evolutionary success has been attributed to their ability to undergo rapid morphological changes related to diet, and their particular breeding biology. Relatively minor changes in morphology allow for exploitation of novel food resources. The importance of phenotypic plasticity and genetically based differences for diversification was long recognized, but their relationship and relative magnitude remained unclear. We compared morphology of individuals of four wild populations of the Lake Tanganyika cichlid Tropheus moorii with their pond-raised F(1) offspring. The magnitude of morphological change via phenotypic plasticity between wild and pond-bred F(1) fish exceeds pairwise population differences by a factor of 2.4 (mean Mahalanobis distances). The genetic and environmental effects responsible for among population differentiation in the wild could still be recognized in the pond-bred F(1) fish. All four pond populations showed the same trends in morphological change, mainly in mouth orientation, size and orientation of fins, and thickness of the caudal peduncle. As between population differentiation was lower in the wild than differentiation between pond-raised versus wild fish, we suggest the narrow ecological niche and intense interspecific competition in rock habitats is responsible for consistent shape similarity, even among long-term isolated populations.
Collapse
|
21
|
McCairns RJS, Bernatchez L. ADAPTIVE DIVERGENCE BETWEEN FRESHWATER AND MARINE STICKLEBACKS: INSIGHTS INTO THE ROLE OF PHENOTYPIC PLASTICITY FROM AN INTEGRATED ANALYSIS OF CANDIDATE GENE EXPRESSION. Evolution 2009; 64:1029-47. [DOI: 10.1111/j.1558-5646.2009.00886.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
AUBRET F, BONNET X, SHINE R. The role of adaptive plasticity in a major evolutionary transition: early aquatic experience affects locomotor performance of terrestrial snakes. Funct Ecol 2007. [DOI: 10.1111/j.1365-2435.2007.01310.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
GHALAMBOR CK, McKAY JK, CARROLL SP, REZNICK DN. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 2007. [DOI: 10.1111/j.1365-2435.2007.01283.x] [Citation(s) in RCA: 1979] [Impact Index Per Article: 109.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
de Margerie E, Tafforeau P, Rakotomanana L. In silico evolution of functional morphology: A test on bone tissue biomechanics. J R Soc Interface 2007; 3:679-87. [PMID: 16971336 PMCID: PMC1664658 DOI: 10.1098/rsif.2006.0128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Evolutionary algorithms (EAs) use Darwinian principles--selection among random variation and heredity--to find solutions to complex problems. Mostly used in engineering, EAs gain growing interest in ecology and genetics. Here, we assess their usefulness in functional morphology, introducing finite element modelling (FEM) as a simulated mechanical environment for evaluating the 'fitness' of randomly varying structures. We used this method to identify biomechanical adaptations in bone tissue, a long-lasting problem in skeletal morphology. The algorithm started with a bone tissue model containing randomly distributed vascular spaces. The EA randomly mutated the distribution of vascular spaces, and selected the new structure if its mechanical resistance was increased. After some thousands of generations, organized phenotypes emerged, containing vascular canals and sinuses, mimicking real bone tissue organizations. This supported the hypothesis that natural bone microstructures can result from biomechanical adaptation. Despite its limited faithfulness to reality, we discuss the ability of the EA+FEM method to assess adaptation in a dynamic evolutionary framework, which is not possible in the real world because of the generation times of macro-organisms. We also point out the interesting potential of EAs to simulate not only adaptation, but also concurrent evolutionary phenomenons such as historical contingency.
Collapse
Affiliation(s)
- Emmanuel de Margerie
- European Synchrotron Radiation Facility, BP 220, 6 rue Jules Horowitz, 38046 Grenoble Cedex, France.
| | | | | |
Collapse
|
25
|
Pigliucci M, Murren CJ, Schlichting CD. Phenotypic plasticity and evolution by genetic assimilation. ACTA ACUST UNITED AC 2006; 209:2362-7. [PMID: 16731812 DOI: 10.1242/jeb.02070] [Citation(s) in RCA: 549] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In addition to considerable debate in the recent evolutionary literature about the limits of the Modern Synthesis of the 1930s and 1940s, there has also been theoretical and empirical interest in a variety of new and not so new concepts such as phenotypic plasticity, genetic assimilation and phenotypic accommodation. Here we consider examples of the arguments and counter-arguments that have shaped this discussion. We suggest that much of the controversy hinges on several misunderstandings, including unwarranted fears of a general attempt at overthrowing the Modern Synthesis paradigm, and some fundamental conceptual confusion about the proper roles of phenotypic plasticity and natural selection within evolutionary theory.
Collapse
Affiliation(s)
- Massimo Pigliucci
- Department of Ecology and Evolution, SUNY-Stony Brook, 650 Life Science Building, Stony Brook NY 11794, USA.
| | | | | |
Collapse
|
26
|
|
27
|
Abstract
Evolutionary capacitors phenotypically reveal a stock of cryptic genetic variation in a reversible fashion. The sudden and reversible revelation of a range of variation is fundamentally different from the gradual introduction of variation by mutation. Here I study the invasion dynamics of modifiers of revelation. A modifier with the optimal rate of revelation mopt has a higher probability of invading any other population than of being counterinvaded. mopt varies with the population size N and the rate theta at which environmental change makes revelation adaptive. For small populations less than a minimum cutoff Nmin, all revelation is selected against. Nmin is typically quite small and increases only weakly, with theta-1/2. For large populations with N>1/theta, mopt is approximately 1/N. Selection for the optimum is highly effective and increases in effectiveness with larger N>>1/theta. For intermediate values of N, mopt is typically a little less than theta and is only weakly favored over less frequent revelation. The model is analogous to a two-locus model for the evolution of a mutator allele. It is a fully stochastic model and so is able to show that selection for revelation can be strong enough to overcome random drift.
Collapse
Affiliation(s)
- Joanna Masel
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
28
|
Abstract
Comparative developmental physiology spans genomics to physiological ecology and evolution. Although not a new discipline, comparative developmental physiology's position at the convergence of development, physiology and evolution gives it prominent new significance. The contributions of this discipline may be particularly influential as physiologists expand beyond genomics to a true systems synthesis, integrating molecular through organ function in multiple organ systems. This review considers how developing physiological systems are directed by genes yet respond to environment and how these characteristics both constrain and enable evolution of physiological characters. Experimental approaches and methodologies of comparative developmental physiology include studying event sequences (heterochrony and heterokairy), describing the onset and progression of physiological regulation, exploiting scaling, expanding the list of animal models, using genetic engineering, and capitalizing on new miniaturized technologies for physiological investigation down to the embryonic level. A synthesis of these approaches is likely to generate a more complete understanding of how physiological systems and, indeed, whole animals develop and how populations evolve.
Collapse
Affiliation(s)
- Warren Burggren
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA.
| | | |
Collapse
|
29
|
Newman SA. The pre-Mendelian, pre-Darwinian world: Shifting relations between genetic and epigenetic mechanisms in early multicellular evolution. J Biosci 2005; 30:75-85. [PMID: 15824443 DOI: 10.1007/bf02705152] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The reliable dependence of many features of contemporary organisms on changes in gene content and activity is tied to the processes of Mendelian inheritance and Darwinian evolution. With regard to morphological characters, however, Mendelian inheritance is the exception rather than the rule, and neo-Darwinian mechanisms in any case do not account for the origination (as opposed to the inherited variation) of such characters. It is proposed, therefore, that multicellular organisms passed through a pre-Mendelian, pre-Darwinian phase, whereby cells, genes and gene products constituted complex systems with context-dependent, self-organizing morphogenetic capabilities. An example is provided of a plausible 'core' mechanism for the development of the vertebrate limb that is both inherently pattern forming and morphogenetically plastic. It is suggested that most complex multicellular structures originated from such systems. The notion that genes are privileged determinants of biological characters can only be sustained by neglecting questions of evolutionary origination and the evolution of developmental mechanisms.
Collapse
Affiliation(s)
- Stuart A Newman
- Department of Cell Biology and Anatomy, Basic Science Building, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
30
|
Morphological Plasticity: Environmentally Driven Morphogenesis. ADVANCES IN ARTIFICIAL LIFE 2005. [DOI: 10.1007/11553090_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
True HL, Berlin I, Lindquist SL. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 2004; 431:184-7. [PMID: 15311209 DOI: 10.1038/nature02885] [Citation(s) in RCA: 275] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 07/23/2004] [Indexed: 11/08/2022]
Abstract
Phenotypic plasticity and the exposure of hidden genetic variation both affect the survival and evolution of new traits, but their contributing molecular mechanisms are largely unknown. A single factor, the yeast prion [PSI(+)], may exert a profound effect on both. [PSI(+)] is a conserved, protein-based genetic element that is formed by a change in the conformation and function of the translation termination factor Sup35p, and is transmitted from mother to progeny. Curing cells of [PSI(+)] alters their survival in different growth conditions and produces a spectrum of phenotypes in different genetic backgrounds. Here we show, by examining three plausible explanations for this phenotypic diversity, that all traits tested involved [PSI(+)]-mediated read-through of nonsense codons. Notably, the phenotypes analysed were genetically complex, and genetic re-assortment frequently converted [PSI(+)]-dependent phenotypes to stable traits that persisted in the absence of [PSI(+)]. Thus, [PSI(+)] provides a temporary survival advantage under diverse conditions, increasing the likelihood that new traits will become fixed by subsequent genetic change. As an epigenetic mechanism that globally affects the relationship between genotype and phenotype, [PSI(+)] expands the conceptual framework for phenotypic plasticity, provides a one-step mechanism for the acquisition of complex traits and affords a route to the genetic assimilation of initially transient epigenetic traits.
Collapse
Affiliation(s)
- Heather L True
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|