1
|
Ahmed R, Bhattacharya K, Nandan Dutta K, Das D, Sahariah BJ, Deka S, Bora NS. Harnessing the anti-inflammatory potential of Cuscuta reflexa Roxb.: a comprehensive study on a leafless parasitic weed using chromatographic, in silico, and in vitro methods. Nat Prod Res 2025:1-7. [PMID: 40078005 DOI: 10.1080/14786419.2025.2477800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/29/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Cuscuta reflexa Roxb., a parasitic weed of the Convolvulaceae family, relies entirely on host plants for nutrients but possesses notable medicinal properties. This study explored the biologically active compounds in Cuscuta reflexa using traditional pharmacognostic methods combined with modern chromatographic, in vitro, and in silico techniques. After collection, authentication, and extraction, preliminary screenings identified the ethyl acetate extract as the most promising. Chromatographic analyses (HPTLC and HRLC-MS) revealed 14 potential phytochemicals, including quercetin and bopindolol. In silico studies showed these compounds to have strong anti-inflammatory activity, targeting COX-II and Interleukin-6. In vitro assays, such as protein denaturation and HRBC membrane stabilisation, validated these findings, demonstrating significant anti-inflammatory effects. The results highlight Cuscuta reflexa's potential as a source of anti-inflammatory agents, particularly quercetin and bopindolol, offering natural alternatives to synthetic drugs and contributing to the development of novel therapeutic approaches. The plant's pharmacological potential opens avenues for future medicinal research.
Collapse
Affiliation(s)
- Rosy Ahmed
- NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Kamrup, Assam, India
- Rahman Institute of Pharmaceutical Sciences and Research, Tepesia, Kamrup, Assam, India
| | - Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, India
- Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam, India
| | - Koushik Nandan Dutta
- NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Kamrup, Assam, India
| | - Dibyajyoti Das
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Bhargab Jyoti Sahariah
- NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Kamrup, Assam, India
| | - Satyendra Deka
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, India
| | - Nilutpal Sharma Bora
- NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Kamrup, Assam, India
| |
Collapse
|
2
|
Poyil MM, Alsharif MHK, El-Bidawy MH, Bin Dayel S, Khan MS, Omar ZMM, Mohamed AA, Fayyad RM, Alarabi TGM, Khairy HA, Bahakim NO, Samhan MA, El-Lateef AELSA. Anti-Inflammatory Potential and Synergic Activities of Eclipta prostrata (L.) L. Leaf-Derived Ointment Formulation in Combination with the Non-Steroidal Anti-Inflammatory Drug Diclofenac in Suppressing Atopic Dermatitis (AD). Life (Basel) 2024; 15:35. [PMID: 39859974 PMCID: PMC11766900 DOI: 10.3390/life15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Atopic dermatitis (AD) or eczema is an important inflammatory chronic skin disease that brings many complications in its management and treatment. Although several chemical agents are used for treatment, the search for better anti-inflammatory and antibacterial agents of plant origin has been ongoing, since natural compounds, it is commonly believed, are less dangerous than synthetic ones. Therefore, the present study explored a medicinal plant-Eclipta prostrata (L.) L.-for its anti-inflammatory activity alone and in combination with a non-steroidal anti-inflammatory drug (NSAID), diclofenac. The plant extract was used to make a cream formulation for treating atopic dermatitis and as an antibacterial agent against Staphylococcus aures, the major infectious agent associated with AD. The phytochemical analysis of the E. prostrata extract showed the presence of various phytochemicals, including flavonoids, Tannin, saponin, terpenoids, glycosides, phenol, alkaloids, quinone, and protein. The GC-MS profiling of methanolic E. prostrata extract was performed predicted the presence of twenty important phytochemicals, including 2-[5-(2-Hydroxypropyl) oxolan-2-yl]propanoic acid, dl-Menthol, dodecane, undecane, 4,7-dimethyl-, dodecane, 2,6,10-trimethyl-, decane, 2,3,5,8-tetramethyl-, cholest-5-en-3-ol, (3.alpha.)-, TMS derivative, cyclopropane carboxylic acid, 1-hydroxy-, (2,6-di-t-butyl-4-methylphenyl) ester, alpha.-farnesene, propanoic acid, 2-methyl-, 2-ethyl-1-propyl-1,3-propanediyl ester, diethyl phthalate, corticosterone, 2-methylpropionate, hentriacontan-13-ol, O-TMS, phthalic acid, 2,4-dimethylpent-3-yl dodecyl ester, hexasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11-dodecamethyl-, acetic acid, 4-t-butyl-4-hydroxy-1,5-dimethyl-hex-2-ynyl ester, octadecane, 2-methyl- octacosane, 1-iodo-, nonacosane, and eicosyl isopropyl ether. Using an egg albumin denaturation inhibition assay, the anti-inflammatory activities of E. prostrata alone and in combination with diclofenac were investigated, and they showed 93% and 99% denaturation inhibition at 5 mg concentration of E. prostrata in alone and combination with diclofenac, respectively. Heat-induced haemolysis showed 2.5% and 2.4% of haemolysis at 5 mg of E. prostrata alone and in combination with diclofenac, respectively. An MTT assay performed using L929 cells proved that the extract has no cytotoxic effect. The plant extract displayed potential antibacterial activity against Staphylococcus aureus; the growth was inhibited at 1 mg/mL of E. prostrata extract. Thus, based on this evidence, the authors suggest that E. prostrata extract should be studied further for its anti-inflammatory and antibacterial activities and topical application in the treatment of atopic dermatitis.
Collapse
Affiliation(s)
- Muhammad M. Poyil
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.H.E.-B.); (M.S.K.); (Z.M.M.O.); (N.O.B.); (A.E.-L.S.A.E.-L.)
| | - Mohammed H. Karrar Alsharif
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.H.E.-B.); (M.S.K.); (Z.M.M.O.); (N.O.B.); (A.E.-L.S.A.E.-L.)
| | - Mahmoud H. El-Bidawy
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.H.E.-B.); (M.S.K.); (Z.M.M.O.); (N.O.B.); (A.E.-L.S.A.E.-L.)
- Department of Physiology, Faculty of Medicine, Cairo University, Kasr Al-Aini, Cairo 11956, Egypt
| | - Salman Bin Dayel
- Department of Internal Medicine, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohammed Sarosh Khan
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.H.E.-B.); (M.S.K.); (Z.M.M.O.); (N.O.B.); (A.E.-L.S.A.E.-L.)
| | - Zainab Mohammed M. Omar
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.H.E.-B.); (M.S.K.); (Z.M.M.O.); (N.O.B.); (A.E.-L.S.A.E.-L.)
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | | | - Reda M. Fayyad
- Department Pharmacology, General Medicine Practice Program, Batterjee Medical College, Asser 61961, Saudi Arabia;
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cairo 11511, Egypt
| | | | - Hesham A. Khairy
- Department of Basic Medical Science, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Nasraddin Othman Bahakim
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.H.E.-B.); (M.S.K.); (Z.M.M.O.); (N.O.B.); (A.E.-L.S.A.E.-L.)
| | - Mohamed A. Samhan
- Department of Basic Medical Science, Dar Al-Uloom University, Riyadh 11512, Saudi Arabia;
| | - Abd El-Lateef Saeed Abd El-Lateef
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.H.E.-B.); (M.S.K.); (Z.M.M.O.); (N.O.B.); (A.E.-L.S.A.E.-L.)
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cairo 11511, Egypt
| |
Collapse
|
3
|
Srivastava V, Navabharath M, Khan M, Samal M, Parveen R, Singh SV, Ahmad S. A comprehensive review on Phyto-MAP: A novel approach of drug discovery against Mycobacterium avium subspecies paratuberculosis using AYUSH heritage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118482. [PMID: 38908495 DOI: 10.1016/j.jep.2024.118482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Indian system of Traditional medicine, AYUSH (Ayurveda, Yoga, Unani, Siddha, and Homeopathy) has great potential with a History of Safe Use (HOSU) of thousands of medicinal plants included in pharmacopoeias. The multi-targeted approach of phytoconstituents present in different traditionally used medicinal plants makes them suitable candidates for research against various infective pathogens. MAP which is a dairy-borne pathogen is associated with the development of Johne's disease in ruminants and Crohn's disease like autoimmune disorders in human beings. There are no reliable treatment alternatives available against MAP, leaving surgical removal of intestines as the sole option. Hence, there exists an urgent need to search for leads against such infection. AIM OF THE STUDY The present review has been conducted to find out the ethnopharmacological evidence about the potential of phytoconstituents against Mycobacterium avium subspecies paratuberculosis (MAP), along with the proposal of a potential phyto-MAP mechanism for the very first time taking anti-inflammatory, immunomodulatory, and anti-microbial traditional claims into consideration. MATERIALS AND METHODS We have analyzed and reviewed different volumes of the two main traditional scriptures of India i.e. Ayurvedic Pharmacopoeia of India (API) and Unani Pharmacopoeia of India (UPI), respectively-for identification of potential anti-MAP plants based on their claims for related disorders. These plants were further investigated systematically for their scientific publications of the last 20 years (2002-2022) available through electronic databases including Google Scholar, Pubmed, and Scopus. The studies conducted in vitro, cell lines, and in vivo levels were taken into consideration along with the associated mechanisms of phytoconstituents. RESULTS A total of 70 potential medicinal plants have been identified. Based on the ethnopharmacology, a potential phyto-paratuberculosis (Phyto-paraTB) mechanism has been proposed and out of 70, seven potential anti-MAP plants have been identified to have a great future as anti-MAP. CONCLUSION A novel and scientifically viable plan has been proposed for addressing anti-MAP plants for stimulating research against MAP and related disorders using mass-trusted AYUSH medicine, which can be used as an alternative remedy in resistance cases otherwise can be advocated as an adjuvant with modern treatments for better management of the disease.
Collapse
Affiliation(s)
- Varsha Srivastava
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi, India.
| | - Manthena Navabharath
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Muzayyana Khan
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi, India.
| | - Monalisha Samal
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi, India.
| | - Rabea Parveen
- Department of Pharmaceutics, Jamia Hamdard, New Delhi, Delhi, India.
| | - Shoor Vir Singh
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi, India.
| |
Collapse
|
4
|
Dhiman M, Ghosh S, Singh TG, Chauhan S, Roy P, Lahiri D. Exploring the potential of an Aloe vera and honey extract loaded bi-layered nanofibrous scaffold of PCL-Col and PCL-SBMA mimicking the skin architecture for the treatment of diabetic wounds. J Mater Chem B 2024; 12:10383-10408. [PMID: 39290135 DOI: 10.1039/d4tb01469c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Diabetic wounds are often chronic in nature, and issues like elevated blood sugar, bacterial infections, oxidative stress and persistent inflammation impede the healing process. To ensure the appropriate healing of wounds, scaffolds should promote complete tissue regeneration in wounds, both functionally and structurally. However, the available scaffolds lack the explicit architecture and functionality that could match those of native skin, thus failing to carry out the scar-free skin regeneration in diabetic wounds. This study deals with the synthesis of a bi-layered nanofibrous scaffold mimicking the native skin architecture in terms of porosity and hydrophobic-hydrophilic gradients. In addition, herbal extracts of Aloe vera and litchi honey were added in consecutive layers to manage the high blood glucose level, inflammation, and increased ROS level associated with diabetic wounds. In vitro studies confirmed that the prepared scaffold with herbal extracts showed enhanced proliferation of skin cells with good mechanical strength, degradability, anti-bacterial and anti-diabetic properties. The scaffold also demonstrated superior wound healing in vivo with quicker scar-free wound recovery and appropriate skin regeneration, compared to conventional treatment. Altogether, the synthesized herbal extract loaded bi-layered nanofibrous scaffold can be used as a regenerative template for hard-to-heal diabetic wounds, offering a new strategy for the management of chronic wounds.
Collapse
Affiliation(s)
- Megha Dhiman
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Souvik Ghosh
- Molecular Endocrinology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | | | - Samrat Chauhan
- Chitkara College of Pharmacy, Chikara University Rajpura, Punjab 140401, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Debrupa Lahiri
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
5
|
Anwar F, Mahrye, Khan R, Qadir R, Saadi S, Gruczynska-Sekowska E, Saari N, Hossain Brishti F. Exploring the Biochemical and Nutra-Pharmaceutical Prospects of Some Thymus Species - A Review. Chem Biodivers 2024; 21:e202400500. [PMID: 38719739 DOI: 10.1002/cbdv.202400500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/08/2024] [Indexed: 06/27/2024]
Abstract
The Thymus genus includes various medicinal and aromatic species, cultivated worldwide for their unique medicinal and economic value. Besides, their conventional use as a culinary flavoring agent, Thymus species are well-known for their diverse biological effects, such as antioxidant, anti-fungal, anti-bacterial, anti-viral, anti-tumor, anti-inflammatory, anti-cancer, and anti-hypertensive properties. Hence, they are used in the treatment of fever, colds, and digestive and cardiovascular diseases. The pharmaceutical significance of Thymus plants is due to their high levels of bioactive components such as natural terpenoid phenol derivatives (p-cymene, carvacrol, thymol, geraniol), flavonoids, alkaloids, and phenolic acids. This review examines the phytochemicals, biological properties, functional food, and nutraceutical attributes of some important Thymus species, with a specific focus on their potential uses in the nutra-pharmaceutical industries. Furthermore, the review provides an insight into the mechanisms of biological activities of key phytochemicals of Thymus species exploring their potential for the development of novel natural drugs.
Collapse
Affiliation(s)
- Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Mahrye
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Rahman Qadir
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Sami Saadi
- Institute de la Nutrition, de l'Alimentation et des Technologies Agroalimetaires INATAA, Universitédes Frères Mentouri Constantine 1, Route de Ain El Bey-Constantine, Algeria
- Laboratoire de Génie Agro-Alimentaire (GeniAAl), INATAA, Université Frères Mentouri Constantine 1 UFC1, Route de Ain, El Bey-Constantine, Algeria
| | - Eliza Gruczynska-Sekowska
- Institute of Food Sciences, Department of Chemistry, Warsaw University of Life Sciences, Nowoursynowska 159 C, PL-02-776, Warsaw, Poland
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Fatema Hossain Brishti
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Hilal B, Khan MM, Fariduddin Q. Recent advancements in deciphering the therapeutic properties of plant secondary metabolites: phenolics, terpenes, and alkaloids. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108674. [PMID: 38705044 DOI: 10.1016/j.plaphy.2024.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
Plants produce a diverse range of secondary metabolites that serve as defense compounds against a wide range of biotic and abiotic stresses. In addition, their potential curative attributes in addressing various human diseases render them valuable in the development of pharmaceutical drugs. Different secondary metabolites including phenolics, terpenes, and alkaloids have been investigated for their antioxidant and therapeutic potential. A vast number of studies evaluated the specific compounds that possess crucial medicinal properties (such as antioxidative, anti-inflammatory, anticancerous, and antibacterial), their mechanisms of action, and potential applications in pharmacology and medicine. Therefore, an attempt has been made to characterize the secondary metabolites studied in medicinal plants, a brief overview of their biosynthetic pathways and mechanisms of action along with their signaling pathways by which they regulate various oxidative stress-related diseases in humans. Additionally, the biotechnological approaches employed to enhance their production have also been discussed. The outcome of the present review will lead to the development of novel and effective phytomedicines in the treatment of various ailments.
Collapse
Affiliation(s)
- Bisma Hilal
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | | | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
7
|
Mir RH, Mohi-Ud-Din R, Al-Keridis LA, Ahmad B, Alshammari N, Patel M, Adnan M, Masoodi MH. Phytochemical profiling, antioxidant, cytotoxic, and anti-inflammatory activities of Plectranthus rugosus extract and fractions: in vitro, in vivo, and in silico approaches. Inflammopharmacology 2024; 32:1593-1606. [PMID: 38308794 DOI: 10.1007/s10787-023-01419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/22/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Inflammation is a key biological reaction that comprises a complex network of signals that both initiate and stop the inflammation process. PURPOSE This study targets to evaluate the anti-inflammatory potential of the leaves of the Plectranthus rugosus (P. rugosus) plant involving both in vitro and in vivo measures. The current available drugs exhibit serious side effects. Traditional medicines impart an essential role in drug development. P. rugosus is a plant used in traditional medicine of Tropical Africa, China, and Australia to treat various diseases. METHODS Lipopolysaccharide (LPS), an endotoxin, kindles macrophages to discharge huge quantities of pro-inflammatory cytokines like TNF-α and IL-6. So, clampdown of macrophage stimulation may have a beneficial potential to treat various inflammatory disorders. The leaves of the P. rugosus are used for swelling purpose by local population; however, its use as an anti-inflammatory agent and associated disorders has no scientific evidence. RESULTS The extracts of the plant Plectranthus rugosus ethanolic extract (PREE), Plectranthus rugosus ethyl acetate extract (PREAF), and the compound isolated (oleanolic acid) suppress the pro-inflammatory cytokines (IL-6 and TNF-α) and nitric oxide (NO), confirming its importance in traditional medicine. CONCLUSION The pro-inflammatory cytokines are inhibited by P. rugosus extracts, as well as an isolated compound oleanolic acid without compromising cell viability.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Srinagar-190006, Hazratbal, Kashmir, India.
| | - Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Jammu and Kashmir, Srinagar, 190001, India
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Bilal Ahmad
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Srinagar-190006, Hazratbal, Kashmir, India.
| |
Collapse
|
8
|
Sultan MT, Anwar MJ, Imran M, Khalil I, Saeed F, Neelum S, Alsagaby SA, Al Abdulmonem W, Abdelgawad MA, Hussain M, El-Ghorab AH, Umar M, Al Jbawi E. Phytochemical profile and pro-healthy properties of Terminalia chebula: A comprehensive review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2166951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | | | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Narowal, Pakistan
| | - Ijaz Khalil
- Institute of Food and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shahzadi Neelum
- Department of Biochemistry, Hamdard University, Karachi, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Maryam Umar
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
9
|
Ratheesh M, Jose SP, Sheethal S, Sindhu A, Sandya S, Asish A. Ameliorating effect of polyherbal formulation (Febrojith) on acute and chronic inflammatory model via inhibiting inflammation and oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116824. [PMID: 37348795 DOI: 10.1016/j.jep.2023.116824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammation is a complex biological response of the tissue to noxious stimuli, which causes several debilitating inflammatory disorders. Currently, various conventional medicines are available, but their consumption causes adverse effects, hence researchers focused on alternatives like medical herbs from natural sources, as one of the most promising sources of therapeutic agents for inflammation. Febrojith is a well-known traditional Ayurvedic formulation obtained from the treasures of Ayurveda with a unique blend of herbs that are used effectively in preventing and combating a broad spectrum of infections, fevers, and also enhancing immunity for many years. However, its anti-inflammatory, efficacy and underlying mechanism remained unexplored. AIM OF THE STUDY In the present study, we investigated the chemical characterization and in vivo anti-inflammatory efficacy of Febrojith (FB) on acute and chronic inflammatory models via inhibiting inflammation and oxidative stress. MATERIALS AND METHODS FB was analyzed for chemical characterization & its phytoconstituents by UV-Vis spectrum, FT-IR, and GC-MS analysis. The anti-inflammatory activity of FB was studied on carrageenan-induced acute and adjuvant-induced chronic experimental models. The inflammatory cytokines and mediators were measured using the ELISA & Colorimetry techniques. Histopathology and cytology of paw tissue and synovium were analyzed by H&E and Papanicolau's (PAP)-staining methods. RESULTS 100 mg/kg bwt was found to be a potent dose from the carrageenan model and evaluated its effect in the adjuvant-induced chronic arthritic model. In the chronic model, 84% of edema inhibition was observed at the dose of 100 mg/kg bwt. Moreover, the supplementation of FB was shown to significantly (p ≤ 0.05) decrease the TBARS level and activity of myeloperoxidase in the paw tissue. In addition, adjuvant-induced production of various pro-inflammatory cytokines like TNF-α, IL-1β, IL-6, PGE2, NO and COX-2 were suppressed in inflamed rats subjected to FB supplementation. It also revealed that FB supplementation significantly (p ≤ 0.05) reduced the haematological markers. From the histopathology and cytological analysis, we found a reduction in the edema formation, and infiltration of inflammatory cells after the supplementation of FB. CONCLUSION In conclusion, FB might be used as an effective and potent drug against inflammation.
Collapse
Affiliation(s)
- M Ratheesh
- Department of Biochemistry, St. Thomas College, Palai, Kottayam, Kerala, India.
| | - Svenia P Jose
- Department of Biochemistry, St. Thomas College, Palai, Kottayam, Kerala, India
| | - S Sheethal
- Department of Biochemistry, St. Thomas College, Palai, Kottayam, Kerala, India
| | - A Sindhu
- Research and Development, The Arya Vaidya Pharmacy (Coimbatore) Limited, India
| | - S Sandya
- Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Aditya Asish
- Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
10
|
Akbar S, Ishtiaq S, Youssef FS, Elhady SS, Belaid AK, Ashour ML. HPLC and GC Characterization of Dicliptera bupleuroides Aerial Parts and Evaluation of Its Anti-Inflammatory Potential in Vitro, in silico and in Vivo Using Carrageenan and Formalin Induced Inflammation in Rat Models. Chem Biodivers 2023; 20:e202300349. [PMID: 37574856 DOI: 10.1002/cbdv.202300349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
The current study aimed to evaluate the anti-inflammatory activity of Dicliptera bupleuroides Nees aerial parts methanol extract and its different fractions namely hexane, chloroform, ethyl acetate and butanol in vitro using cyclooxygenase inhibitory assay (COX-2). In vivo anti-inflammatory evaluation was performed using carrageenan and formalin induced inflammation in rat models followed by molecular docking. High performance liquid chromatography (HPLC) and gas chromatography coupled with mass chromatography (GC/MS) analyses were used for chemical analyses of the tested samples. The tested samples showed significant inhibition in COX-2 inhibitory assay where methanol extract (DBM) showed the highest inhibitory potential at 100 μg/mL estimated by 67.86 %. At a dose of 400 mg/kg, all of the examined samples showed pronounced results in carrageenan induced acute inflammation in rat model at 4th h interval with DBM showed the highest efficiency displaying 65.32 % inhibition as compared to the untreated rats. Formalin model was employed for seven days and DBM exhibited 65.33 % and 69.39 % inhibition at 200 and 400 mg/kg, respectively approaching that of the standard on the 7th day. HPLC revealed the presence of caffeic acid, gallic acid and sinapic acid, quercetin and myricetin in DBM. GC/MS analysis of its hexane fraction revealed the presence of 16 compounds belonging mainly to fatty acids and sterols that account for 85.26 % of the total detected compounds. Molecular docking showed that hexadecanoic acid followed by decanedioic acid and isopropyl myristate showed the best fitting within cyclooxygenase-II (COX-II) while nonacosane followed by hexatriacontane and isopropyl myristate revealed the most pronounced fitting within the 5-lipoxygenase (5-LOX) active sites. Absorption, metabolism, distribution and excretion and toxicity prediction (ADMET/ TOPKAT) concluded that most of the detected compounds showed reasonable pharmacokinetic, pharmacodynamic and toxicity properties that could be further modified to be more suitable for incorporation in pharmaceutical dosage forms combating inflammation and its undesirable consequences.
Collapse
Affiliation(s)
- Shehla Akbar
- Deparadtment of Pharmacognosy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
- Department of Pharmacy, College of Pharmacy, University of the Punjab, Lahore, 05422, Pakistan
| | - Saiqa Ishtiaq
- Department of Pharmacy, College of Pharmacy, University of the Punjab, Lahore, 05422, Pakistan
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo, 11566, Egypt
| | - Sameh S Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amal K Belaid
- Department of Medicinal and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| | - Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo, 11566, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah, 21442, Saudi Arabia
| |
Collapse
|
11
|
Sabry MM, Abdel-Rahman RF, Fayed HM, Taher AT, Ogaly HA, Albohy A, El-Gayed SH, Ibrahim RM. Impact of Eucalyptus maculata Hook resin exudate constituents on reducing COX-2 gene expression: In-vivo anti-inflammatory, molecular docking and dynamics studies. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116631. [PMID: 37172920 DOI: 10.1016/j.jep.2023.116631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eucalyptus maculata Hook from the Myrtaceae family is a native Australian plant that is frequently cultivated in Egypt. Many Eucalyptus species, including E. maculata, were widely used by the Dharawal, the indigenous Australian people, for their anti-inflammatory properties. AIM OF THE STUDY The purpose of this study was to determine the anti-inflammatory activity of the ethanol extract of E. maculata resin exudate, its methylene chloride and n-butanol fractions, as well as the isolated compounds. MATERIALS AND METHODS the ethanol extract was partitioned by methylene chloride, and n-butanol saturated with water. The fractions were chromatographed to isolate pure compounds. In-vivo anti-inflammatory activity of the ethanol extract, the fractions at a dose of 200 mg/Kg, and the isolated compounds (20 mg/Kg) was estimated using carrageenan-induced rat paws edema method against indomethacin (20 mg/Kg). The activity was supported by histopathological and biochemical parameters. RESULTS Three isolated compounds were identified as aromadendrin (C1), 7-O-methyl aromadendrin (C2), and naringenin (C3). Our findings demonstrated that the tested fractions significantly reduced the paw edema starting from the 3rd to the 5th hour as compared to the positive control, compounds C2 and C3 showed the greatest significant reduction in paw edema. The ethanol extract, fractions, C2, and C3 demonstrated an anti-inflammatory potential through reducing the levels of TNF-α, IL-6, and PGE2, as well as COX-2 protein expression compared to the negative control. These results were supported by molecular docking, which revealed that the isolated compounds had high affinity to target COX-1 and COX-2 active sites with docking scores ranging from -7.3 to -9.6 kcal mol-1 when compared to ibubrofen (-7.8 and -7.4 kcal mol-1, respectively). Molecular dynamics simulations were also performed and confirmed the docking results. CONCLUSION The results supported the traditional anti-inflammatory potency of E. maculata Hook, and the biochemical mechanisms underlying this activity were highlighted, opening up new paths for the development of potent herbal anti-inflammatory medicine. Finally, our findings revealed that E. maculata resin constituents could be considered as promising anti-inflammatory drug candidates.
Collapse
Affiliation(s)
- Manal M Sabry
- Department of Pharmacognosy, Faculty of Pharmacy Cairo University, Cairo, 11562, Egypt.
| | - Rehab F Abdel-Rahman
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, 12622, Egypt.
| | - Hany M Fayed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, 12622, Egypt.
| | - Azza T Taher
- Department of Organic Chemistry, Faculty of Pharmacy Cairo University, Cairo, 11562, Egypt; Department of Organic Chemistry, Faculty of Pharmacy, 6 October University, 6th October, Giza, 12585, Egypt.
| | - Hanan A Ogaly
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt; Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt.
| | - Sabah H El-Gayed
- Department of Pharmacognosy, Faculty of Pharmacy Cairo University, Cairo, 11562, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, 6 October University, 6th October, Giza, 12585, Egypt.
| | - Rana M Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
12
|
Effects of the Ethanol and Ethyl Acetate Extracts of Terminalia chebula Retz. on Proliferation, Migration, and HIF-1α and CXCR-4 Expression in MCF-7 Cells: an In Vitro Study. Appl Biochem Biotechnol 2022; 195:3327-3344. [PMID: 36585552 DOI: 10.1007/s12010-022-04301-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/01/2023]
Abstract
Over recent years, much attention has been devoted to the field of screening natural products and/or their novel structures because of reversing cancer progression. The current research work was intended to explore the cytotoxic activity of ethanol and ethyl acetate extracts of dried fruit of Terminalia chebula Retz. (T. chebula) in MCF-7 cell line. High-performance thin-layer chromatographic (HPTLC) method and Folin-Ciocalteu colorimetric techniques were performed. Anti-proliferative activities of T. chebula fruit extracts on the MCF-7 cell line were evaluated using MTT assay. Effects of both extracts on the migration of MCF-7 cells and the size of MCF-7-derived spheroids were also evaluated. Moreover, antioxidant properties were measured by DPPH and FRAP methods. Western blotting was used to measure the HIF-1α and CXCR-4 protein levels. Chebulagic acid, gallic acid, chebulinic acid, and ellagic acid were found as major compounds in both extracts. The total phenolic contents based on gallic acid equivalent (GAE) in the ethanol and ethyl acetate extracts of T. chebula were found to be 453.68 ± 0.31 and 495.12 ± 0.43 mg GAE/g dry weight of the extract, respectively. Both extracts exerted a significant dose- and time-dependent cytotoxicity effect on MCF-7 cells. They also had a marked negative effect on the average size of MCF-7-derived spheroids and their migration rate. None of the extracts exhibited stronger antioxidant activities than vitamin C. Furthermore, both extracts at a concentration of 125 µg/ml could meaningfully decrease the expression levels of HIF-1α and CXCR-4 in MCF-7 cells. These data represent that T. chebula may be a valuable medicinal resource in the regulation of breast cancer proliferation, growth, and metastasis.
Collapse
|
13
|
Antiviral perspectives of economically important Indian medicinal plants and spices. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC9422945 DOI: 10.1007/s43538-022-00099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human respiratory diseases caused by viral infections leads to morbidity. Among infectious diseases, viral infections associated with the respiratory tract remain the primary reason for global deaths due to their transmissibility. Since immemorial, traditional Indian medicinal plants, their extracts, and several phytochemicals can treat various diseases. Sources for this review paper are data derived from a peer-reviewed journal that emphasizes the economic importance of medicinal plants. Several plant-based medicines have been reported to be effective against multiple viral infections, including the Human Adenovirus, Enterovirus, Influenza virus, Hepatitis virus, etc. This review emphasizes use of the Indian medicinal plants like as Withania somnifera (Ashwagandha, Winter Cherry), Moringa oleifera (Drumstick), Ocimum tenuiflorum (Tulsi), Azadirachta indica (Neem), Curcuma longa (Turmeric), Terminalia chebula (Chebulic Myrobalan), Punica granatum (Pomegranate) and the Indian household spices (ginger, garlic and black pepper). It further describes their secondary phytoconstituents extraction procedure, mode of action and the potential application to improve clinical outcomes of neutraceuticals against various viral infections.
Collapse
|
14
|
Ahmed IA, Mikail MA, Zamakshshari NH, Mustafa MR, Hashim NM, Othman R. Trends and challenges in phytotherapy and phytocosmetics for skin aging. Saudi J Biol Sci 2022; 29:103363. [PMID: 35813113 PMCID: PMC9260296 DOI: 10.1016/j.sjbs.2022.103363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Free radicals, oxidative stress, and inflammation contribute to the etiology of most chronic diseases. Natural products can be incorporated into cosmetics, cosmeceuticals, and nutricosmetics to tackle inflammation-related diseases. The use of alternative green extraction solvents such as natural deep eutectic solvents and electrochemically reduced water is trending. Delivery systems are important for the enhancement of the bioavailability, stability, solubility, and controlled release profile of the bioactives.
Oxidative stress and inflammation mostly contribute to aging and age-related conditions including skin aging. The potential of natural products in the form of naturally-derived cosmetics, cosmeceuticals, and nutricosmetics have, however, not been fully harnessed. This review, thus, critically analyzes the potential roles of natural products in inflammation-related skin aging diseases due to the increasing consumers’ concerns and demands for efficacious, safe, natural, sustainable, and religiously permitted alternatives to synthetic products. The information and data were collated from various resources and literature databases such as PubMed, Science Direct, Wiley, Springer, Taylor and Francis, Scopus, Inflibnet, Google, and Google Scholar using relevant keywords and Medical Subject Headings (MeSH). The role of green extraction solvents as promising alternatives is also elucidated. The potential enhancements of the bioavailability, stability, solubility and controlled release profile of the bioactives using different delivery systems are also presented. The current potential global market value, motivators, drivers, trends, challenges, halal, and other regulatory certifications for cosmeceuticals and nutricosmetics are equally discussed. The adoption of the suggested extractions and delivery systems would enhance the stability, bioavailability, and target delivery of the bioactives.
Collapse
|
15
|
Chel-Guerrero LD, Castañeda-Corral G, López-Castillo M, Scampicchio M, Morozova K, Oney-Montalvo JE, Ferrentino G, Acevedo-Fernández JJ, Rodríguez-Buenfil IM. In Vivo Anti-Inflammatory Effect, Antioxidant Activity, and Polyphenolic Content of Extracts from Capsicum chinense By-Products. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041323. [PMID: 35209112 PMCID: PMC8880488 DOI: 10.3390/molecules27041323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/04/2022] [Accepted: 02/12/2022] [Indexed: 01/25/2023]
Abstract
By-products of Capsicum chinense Jacq., var Jaguar could be a source of bioactive compounds. Therefore, we evaluated the anti-inflammatory effect, antioxidant activity, and their relationship with the polyphenol content of extracts of habanero pepper by-products obtained from plants grown on black or red soils of Yucatán, Mexico. Moreover, the impact of the type of extraction on their activities was evaluated. The dry by-product extracts were obtained by maceration (ME), Soxhlet (SOX), and supercritical fluid extraction (SFE). Afterward, the in vivo anti-inflammatory effect (TPA-induced ear inflammation) and the in vitro antioxidant activity (ABTS) were evaluated. Finally, the polyphenolic content was quantified by Ultra-Performance Liquid Chromatography (UPLC), and its correlation with both bioactivities was analyzed. The results showed that the SFE extract of stems of plants grown on red soil yielded the highest anti-inflammatory effect (66.1 ± 3.1%), while the extracts obtained by ME and SOX had the highest antioxidant activity (2.80 ± 0.0052 mM Trolox equivalent) and polyphenol content (3280 ± 15.59 mg·100 g−1 dry basis), respectively. A negative correlation between the anti-inflammatory effect, the antioxidant activity, and the polyphenolic content was found. Overall, the present study proposed C. chinense by-products as a valuable source of compounds with anti-inflammatory effect and antioxidant activity.
Collapse
Affiliation(s)
- Lilian Dolores Chel-Guerrero
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C. Subsede Sureste, Tablaje 31264 km, 5.5 Carretera Sierra Papacal-Chuburna Puerto, Parque Científico Tecnológico de Yucatán, Mérida C.P. 97302, Mexico; (L.D.C.-G.); (J.E.O.-M.)
| | - Gabriela Castañeda-Corral
- Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca C.P. 62209, Mexico; (G.C.-C.); (M.L.-C.)
| | - Misael López-Castillo
- Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca C.P. 62209, Mexico; (G.C.-C.); (M.L.-C.)
| | - Matteo Scampicchio
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; (M.S.); (K.M.)
| | - Ksenia Morozova
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; (M.S.); (K.M.)
| | - Julio Enrique Oney-Montalvo
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C. Subsede Sureste, Tablaje 31264 km, 5.5 Carretera Sierra Papacal-Chuburna Puerto, Parque Científico Tecnológico de Yucatán, Mérida C.P. 97302, Mexico; (L.D.C.-G.); (J.E.O.-M.)
| | - Giovanna Ferrentino
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; (M.S.); (K.M.)
- Correspondence: (G.F.); (J.J.A.-F.); (I.M.R.-B.)
| | - Juan José Acevedo-Fernández
- Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca C.P. 62209, Mexico; (G.C.-C.); (M.L.-C.)
- Correspondence: (G.F.); (J.J.A.-F.); (I.M.R.-B.)
| | - Ingrid Mayanín Rodríguez-Buenfil
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C. Subsede Sureste, Tablaje 31264 km, 5.5 Carretera Sierra Papacal-Chuburna Puerto, Parque Científico Tecnológico de Yucatán, Mérida C.P. 97302, Mexico; (L.D.C.-G.); (J.E.O.-M.)
- Correspondence: (G.F.); (J.J.A.-F.); (I.M.R.-B.)
| |
Collapse
|
16
|
Abekura F, Park J, Lim H, Kim H, Choi H, Lee M, Kim C. Mycobacterium tuberculosis
glycolipoprotein LprG inhibits inflammation through NF‐κB signaling of ERK1/2 and JNK in LPS‐induced murine macrophage cells. J Cell Biochem 2022; 123:772-781. [DOI: 10.1002/jcb.30220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Fukushi Abekura
- Department of Biological Sciences SungKyunKwan University Suwon Kyunggi‐Do Republic of Korea
| | - Junyoung Park
- Department of Biological Sciences SungKyunKwan University Suwon Kyunggi‐Do Republic of Korea
| | - Hakseong Lim
- Department of Biological Sciences SungKyunKwan University Suwon Kyunggi‐Do Republic of Korea
| | - Hee‐Do Kim
- Department of Biological Sciences SungKyunKwan University Suwon Kyunggi‐Do Republic of Korea
| | - Hyunju Choi
- Department of Biological Sciences SungKyunKwan University Suwon Kyunggi‐Do Republic of Korea
| | - Moon‐Jo Lee
- Department of Herb Science Dong‐Eui Institute of Technology Busan Republic of Korea
| | - Cheorl‐Ho Kim
- Department of Biological Sciences SungKyunKwan University Suwon Kyunggi‐Do Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center Seoul South Korea
| |
Collapse
|
17
|
Om P, Gopinath MS, Madan Kumar P, Muthu Kumar SP, Kudachikar VB. Ethanolic extract of Pyrus pashia buch ham ex. D. Don (Kainth): A bioaccessible source of polyphenols with anti-inflammatory activity in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114628. [PMID: 34517063 DOI: 10.1016/j.jep.2021.114628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/22/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pyrus pashia Buch ham ex. D. Don (Kainth) fruit from the Himalayan region is traditionally consumed by native people in the form of decoctions for various clinical conditions including inflammatory diseases. However, scientific studies on the biofunctional properties of Kainth fruits are still scarce. AIM OF THE STUDY The study is aimed to investigate the anti-inflammatory effects of Kainth fruit extracts using in vitro and in vivo inflammation models. MATERIAL AND METHODS Free, esterified and bound fractions from the Kainth ethanolic extracts were prepared for determining the anti-inflammatory effect. The levels of 5-LOX and COX-2 were determined in vitro. The protein levels of cytokines (IL-6, TNF-α & IL-10) were quantitated by ELISA method in lipopolysaccharide-stimulated RAW macrophages. Also, the anti-inflammatory potential of the Kainth fruit extracts was determined using the carrageenan-induced mice paw edema model. The bioaccessibility of Kainth fruit extracts was measured using a simulated in vitro digestion system (salivary, gastric and intestinal). RESULTS The Kainth fruit extracts were partially purified to yield free, esterified and bound phenolics. Free and bound phenolics of Kainth fruits inhibited 5-Lipoxygenase, Cyclooxygenase-2 activities and pro-inflammatory cytokines (Interleukin-6 and tumour necrosis factor-α) expression in vitro. Also, oral administration of these extracts to the carrageenan-injected mice showed an anti-inflammatory effect by decreasing the pro-inflammatory cytokines and reducing the cellular infiltration in paw tissues. Also, both the extracts showed better bioavailability and bioaccessibility in in vitro and in vivo studies. CONCLUSIONS The results indicated that free and bound phenolics from Kainth fruits that are rich in catechin, epicatechin, arbutin and chlorogenic acid exhibited anti-inflammatory effects and could potentially be used to treat inflammatory diseases.
Collapse
Affiliation(s)
- Prakash Om
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - M S Gopinath
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - P Madan Kumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - S P Muthu Kumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - V B Kudachikar
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
18
|
Urumbil SK, Anilkumar MN. Anti-inflammatory activity of endophytic bacterial isolates from Emilia sonchifolia (Linn.) DC. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114517. [PMID: 34389445 DOI: 10.1016/j.jep.2021.114517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the traditional medicine system, plants have been utilized as a rich source of anti-microbial, anti-inflammatory, anti-cancer, anti-viral and anti-oxidant compounds. The biological properties of plant-based drugs depend on their interaction with endophytes which persist as an important provider of bioactive secondary metabolites. Bacterial endophytes secrete anti-inflammatory molecules whose activity can be the base for the anti-inflammatory property of the plant. AIM OF THE STUDY During the screening of endophytes from Emilia sonchifolia, we isolated six different bacteria whose potential as the sources of anti-inflamamtory compounds have been aimed at in this study. MATERIALS AND METHODS Anti-inflammatory activity of the ethyl acetate extract of endophytes was studied by both in vitro and in vivo analyses. In vitro study was done using protein denaturation, COX, LOX, iNOS, myeloperoxidase and nitric oxide assays and in vivo analysis was carried out by carrageenan-induced and formalin-induced paw oedema tests. The expression level of anti-inflammatory genes such as COX-2 and NfKb was confirmed by real time PCR. RESULTS We confirmed anti-inflammatory activity of the ethyl acetate extract of bacterial endophytes of E sonchifolia by both in vitro and in vivo experiments. Carrageenan- and formalin-induced inflammations in mice were effectively reduced by the administration of the bacterial extract. Among the isolates, strain ES1effectively reduced inflammation. Gene expression studies confirmed reduction in the expression of COX-2 and NfKb genes in the presence of ES1 extract. CONCLUSION The present investigation demonstrated the anti-inflammatory property of the isolated bacterial endophyte ES1 (Bacillus subtilis strain-MG 692780) and thus justifies the possible role of endophytes in contributing anti-inflammatory property to E sonchifolia which is ethno-botanically important as a source of anti-inflammatory drug.
Collapse
Affiliation(s)
| | - Madhavan Nair Anilkumar
- Cell Culture Lab, Department of Botany, Union Christian College, Aluva, Ernakulam, Pin-683 102, Kerala, India.
| |
Collapse
|
19
|
Anti-inflammatory and Antioxidant Properties of Finger Millet ( Eleusine coracana (L.) Gaertn.) Varieties Cultivated in Sri Lanka. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7744961. [PMID: 34631888 PMCID: PMC8500749 DOI: 10.1155/2021/7744961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022]
Abstract
The prevalence of inflammatory-mediated and oxidative stress-associated diseases is increasing worldwide, creating an increasing demand for novel sources of anti-inflammatory agents and antioxidants. This study was focused on determining the in vitro arachidonate 5-lipoxygenase (A5-LOX), xanthine oxidase (XO), hyaluronidase and oxidative burst inhibitory activities, and antioxidant properties of Ravi, Rawana, and Oshadha finger millet varieties using ethanolic and methanolic extracts. Among all extracts, the methanolic extract of Oshadha exhibited the highest A5-LOX (IC50 value: 484.42 μg/ml) and XO (IC50 value: 764.34 μg/ml) inhibitory activities. All extracts showed less than 50% hyaluronidase inhibitory activity at 1 mg/ml concentration. Methanolic extracts showed moderate inhibitory potential on reactive oxygen species (ROS) generated from whole blood phagocytes, with IC50 values ranging between 26.9 and 27.7 μg/ml, when compared to ibuprofen (IC50 value: 11.18 μg/ml). All extracts showed potent inhibition of ROS produced from polymorphonuclear neutrophils isolated from human blood when compared to ibuprofen (IC50 value: 2.47 μg/ml) and IC50 values of methanolic and ethanolic extracts ranged from 0.29 to 0.47 μg/ml and 1.35 to 1.70 μg/ml, respectively. All extracts had significantly high amounts of phenolic compounds including flavonoids and the potential to scavenge 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic) acid (ABTS) cation, 2,2-diphenyl-1-picryl-hydrazyl (DPPH), and oxygen radicals. Besides, they were able to reduce metal ions and chelate metal ions terminating radical generating reactions. This is the first report of A5-LOX, XO, hyaluronidase, and oxidative burst inhibitory properties of any extract of any finger millet variety cultivated in Sri Lanka. The findings revealed the potential of using these finger millet extracts as natural sources of anti-inflammatory drug candidates. Additionally, the findings indicated that Ravi, Rawana, and Oshadha varieties are good sources of antioxidants. Therefore, consumption of these finger millet varieties on a regular basis may play an important role in the prevention and dietary management of oxidative stress-associated diseases.
Collapse
|
20
|
Raju SV, Mukherjee A, Sarkar P, Issac PK, Lite C, Paray BA, Al-Sadoon MK, Al-Mfarij AR, Arockiaraj J. RM12 similar to substance P from tachykinin of freshwater murrel Channa striatus influence intracellular ROS in vitro fish erythrocytes and developmental toxicity and antioxidant enzymes in vivo zebrafish embryo. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1073-1085. [PMID: 34021418 PMCID: PMC8139370 DOI: 10.1007/s10695-021-00950-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 05/18/2023]
Abstract
In this study, substance P, an antioxidant peptide of tachykinin, was identified using bioinformatics tools from the earlier established muscle transcriptome of a freshwater murrel Channa striatus and the peptide was named RM12. The antioxidant properties of RM12 were screened using various colorimetric assays. The toxicity of RM12 was experimented using fish erythrocytes, and it is observed that the maximum concentration (320 μM) of RM12 was found to have 15 or 20% of hemolytic activity; however, it was not significant with other tested concentrations (10, 20, 40, 80, and 160 μM). Further, the in vivo antioxidant properties of RM12 were experimented on zebrafish embryo, the intracellular ROS level was estimated by 5 mM H2O2 stress in the zebrafish embryo, and inhibition of apoptosis was evaluated. The antioxidant enzymes were extracted from the H2O2-stressed zebrafish embryo, and the intracellular ROS was eliminated due to RM12. Collectively, the experiment showed that the substance P from the freshwater murrel C. striatus possessed potent antioxidant properties; thus, it can further be focused to develop it as antioxidant molecule in aquaculture organisms.
Collapse
Affiliation(s)
- Stefi V Raju
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Arnab Mukherjee
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Purabi Sarkar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Christy Lite
- Endocrine and Exposome Laboratory, Department of Zoology, Madras Christian College, Tambaram, Chennai, 600 059, Tamil Nadu, India
| | - Bilal Ahmad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad K Al-Sadoon
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdul Rahman Al-Mfarij
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
21
|
Sukhikh S, Noskova S, Pungin A, Ivanova S, Skrypnik L, Chupakhin E, Babich O. Study of the Biologically Active Properties of Medicinal Plant Cotinus coggygria. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10061224. [PMID: 34208532 PMCID: PMC8235186 DOI: 10.3390/plants10061224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 05/02/2023]
Abstract
The results of the studies have shown that to obtain an extract of a complex of biologically active substances of Cotinus coggygria, ethyl alcohol (mass fraction of alcohol 70%) with a hydromodule of 1:5 should be used, and the extraction should be carried out for 60 min at a temperature of 60 °C. The investigated plant extracts with the complex of bioactive substances from the Cotinus coggygria leaves and flowers are safe from the point of view of the content of heavy metals, pesticides, aflatoxin B1, radionuclides, as well as pathogenic and opportunistic microorganisms. It has been established that the Cotinus coggygria extract contains rutin, hyperoside, ferulic acid, quercetin, kaempferol, disulphuretin, sulphurein, sulphurein, gallic acid, methyl gallate, pentagalloyl glucose, 3,3',4',5,6,7-hexahydroxyflavonone, 3,3',4',5,5',7-hexahydroxyflavonone, 3-O-α-L-rhamnofuranoside, 3,3',4',5,5',7-hexahydroxyflavulium(1+), 7-O-β-D glucopyranoside, and 3,3',4',7-tetrahydroxyflavonone. The tested extracts have anticancer, antigenotoxic, and antimicrobial (against E. coli, S. aureus, P. vulgaris, C. albicans, L. mesenteroides) properties. The high antioxidant status of the tested extracts was established; the antioxidant activity of the samples was 145.09 mg AA/g (AA-ascorbic acid).
Collapse
Affiliation(s)
- Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (S.S.); (S.N.); (A.P.); (L.S.); (E.C.); (O.B.)
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Svetlana Noskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (S.S.); (S.N.); (A.P.); (L.S.); (E.C.); (O.B.)
| | - Artem Pungin
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (S.S.); (S.N.); (A.P.); (L.S.); (E.C.); (O.B.)
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street, 6, 650043 Kemerovo, Russia
- Correspondence: ; Tel.: +7-384-239-6832
| | - Liubov Skrypnik
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (S.S.); (S.N.); (A.P.); (L.S.); (E.C.); (O.B.)
| | - Evgeny Chupakhin
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (S.S.); (S.N.); (A.P.); (L.S.); (E.C.); (O.B.)
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (S.S.); (S.N.); (A.P.); (L.S.); (E.C.); (O.B.)
| |
Collapse
|
22
|
Zayapor MN, Abdullah A, Wan Mustapha WA. The antioxidant analysis and α-glucosidase inhibition activities of spices and herbs (22 species) in Asian traditional beverages. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00766-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Truong D, Ta NTA, Pham TV, Huynh TD, Do QTG, Dinh NCG, Dang CD, Nguyen TKC, Bui AV. Effects of solvent-solvent fractionation on the total terpenoid content and in vitro anti-inflammatory activity of Serevenia buxifolia bark extract. Food Sci Nutr 2021; 9:1720-1735. [PMID: 33747483 PMCID: PMC7958534 DOI: 10.1002/fsn3.2149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/23/2022] Open
Abstract
Severinia buxifolia (Rutaceae) is often used as a traditional medical plant. The present study was carried out to estimate the effects of solvents (petroleum ether and hexane: ethyl acetate) used in liquid-liquid extraction to total terpenoid content (TTC) and in vitro anti-inflammatory activity of the extracts obtained from S. buxifolia bark. The results showed that solvent fractionation increased the TTC compared with crude extracts. The hexane: ethyl acetate bark extract fraction (HEF) had the highest TTC (731.48 µg/ml) in comparison with the petroleum ether bark extract fraction (PEF) (564.81 µg/ml) and the crude extract (CE) (184.26 µg/ml). In addition, one of composition of terpenoid of S. buxifolia, namely ursolic acid, was determined by HPLC method from the crude CE and the fractions PEF and HEF: 2.44 μg/g DW, 3.56 μg/g DW and 5.04 μg/g DW, respectively. The samples had an in vitro anti-inflammatory activity comparable with that of two reference standards (aspirin and indomethacin). Particularly, the HEF fraction had the highest in vitro anti-inflammatory activity (i.e., albumin denaturation: IC50 = 147.91 μg/mL, heat-induced hemolysis: IC50 = 159.91 μg/mL, proteinase inhibition: IC50 = 117.72 μg/mL, and lipoxygenase activity: IC50 = 90.45 μg/mL). Besides, the preliminary experiments of this study were conducted to determine the influences of maceration factors (solvent type, temperature, and time) for S. buxifolia bark extract. The TTC ranged from 453.70 to 842.59 mg linalool/g DW, and the extraction yield from 2.40% to 5.120% in all extracts. Based on TTC and EY, the hexane: acetone mixture is recommended as the optimal solvent to obtain the crude bark extract (CE) at 46°C for 24 hr of maceration. Extracts of S. buxifolia bark are a promising source for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Dieu‐Hien Truong
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Nhat Thuy Anh Ta
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Thanh Vy Pham
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Tan Dat Huynh
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | | | | | - Cong Danh Dang
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Thi Kim Chi Nguyen
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Anh Vo Bui
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| |
Collapse
|
24
|
Schultz F, Osuji OF, Wack B, Anywar G, Garbe LA. Antiinflammatory Medicinal Plants from the Ugandan Greater Mpigi Region Act as Potent Inhibitors in the COX-2/PGH 2 Pathway. PLANTS 2021; 10:plants10020351. [PMID: 33673238 PMCID: PMC7918315 DOI: 10.3390/plants10020351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
Our study investigates 16 medicinal plants via assessment of inhibition of proinflammatory enzymes such as cyclooxygenases (COX). The plants are used by traditional healers in the Greater Mpigi region in Uganda to treat inflammation and related disorders. We present results of diverse in vitro experiments performed with 76 different plant extracts, namely, (1) selective COX-2 and COX-1 inhibitor screening; (2) 15-LOX inhibition screening; (3) antibacterial resazurin assay against multidrug-resistant Staphylococcus aureus, Listeria innocua, Listeria monocytogenes, and Escherichia coli K12; (4) DPPH assay for antioxidant activity; and (5) determination of the total phenolic content (TPC). Results showed a high correlation between traditional use and pharmacological activity, e.g., extracts of 15 out of the 16 plant species displayed significant selective COX-2 inhibition activity in the PGH2 pathway. The most active COX-2 inhibitors (IC50 < 20 µg/mL) were nine extracts from Leucas calostachys, Solanum aculeastrum, Sesamum calycinum subsp. angustifolium, Plectranthus hadiensis, Morella kandtiana, Zanthoxylum chalybeum, and Warburgia ugandensis. There was no counteractivity between COX-2 and 15-LOX inhibition in these nine extracts. The ethyl acetate extract of Leucas calostachys showed the lowest IC50 value with 0.66 µg/mL (COX-2), as well as the most promising selectivity ratio with 0.1 (COX-2/COX-1). The TPCs and the EC50 values for DPPH radical scavenging activity showed no correlation with COX-2 inhibitory activity. This led to the assumption that the mechanisms of action are most likely not based on scavenging of reactive oxygen species and antioxidant activities. The diethyl ether extract of Harungana madagascariensis stem bark displayed the highest growth inhibition activity against S. aureus (MIC value: 13 µg/mL), L. innocua (MIC value: 40 µg/mL), and L. monocytogenes (MIC value: 150 µg/mL). This study provides further evidence for the therapeutic use of the previously identified plants used medicinally in the Greater Mpigi region.
Collapse
Affiliation(s)
- Fabien Schultz
- Institute of Biotechnology, Faculty III—Process Sciences, Technical University of Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany; (O.F.O.); (B.W.); (L.-A.G.)
- Correspondence: ; Tel.: +49-395-5693-2704
| | - Ogechi Favour Osuji
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany; (O.F.O.); (B.W.); (L.-A.G.)
| | - Barbara Wack
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany; (O.F.O.); (B.W.); (L.-A.G.)
| | - Godwin Anywar
- Department of Plant Sciences, Microbiology and Biotechnology, Makerere University, P.O. Box 7062 Kampala, Uganda;
| | - Leif-Alexander Garbe
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany; (O.F.O.); (B.W.); (L.-A.G.)
- ZELT—Neubrandenburg Center for Nutrition and Food Technology gGmbH, Seestraße 7A, 17033 Neubrandenburg, Germany
| |
Collapse
|
25
|
Marmouzi I, Bouyahya A, Ezzat SM, El Jemli M, Kharbach M. The food plant Silybum marianum (L.) Gaertn.: Phytochemistry, Ethnopharmacology and clinical evidence. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113303. [PMID: 32877720 DOI: 10.1016/j.jep.2020.113303] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Silybum marianum (L.) Gaertn. or Milk thistle is a medicinal plant native to Northern Africa, Southern Europe, Southern Russia and Anatolia. It also grows in South Australia, North and South America. In traditional knowledge, people have used S. marianum for liver disorders such as hepatitis, liver cirrhosis and gallbladder diseases. The main active compound of the plant seeds is silymarin, which is the most commonly used herbal supplement in the United States for liver problems. Nowadays, S. marianum products are available as capsules, powders, and extracts. AIM OF STUDY The aim of our study is to draw a more comprehensive overview of the traditional heritage, pharmacological benefits and chemical fingerprint of S. marianum extracts and metabolites; as well as their metabolism and bioavailability. MATERIALS AND METHODS An extensive literature search has been conducted using relavant keywords and papers with rationale methodology and robust data were selected and discussed. Studies involving S. marianum or its main active ingredients with regards to hepatoprotective, antidiabetic, cardiovascular protection, anticancer and antimicrobial activities as well as the clinical trials performed on the plant, were discussed here. RESULTS S. marianum was subjected to thousands of ethnopharmacological, experimental and clinical investigations. Although, the plant is available for use as a dietary supplement, the FDA did not yet approve its use for cancer therapy. Nowadays, clinical investigations are in progress where a global evidence of its real efficiency is needed. CONCLUSION S. marianum is a worldwide used herb with unlimited number of investigations focusing on its benefits and properties, however, little is known about its clinical efficiency. Moreover, few studies have discussed its metabolism, pharmacokinetics and bioavailability, so that all future studies on S. marianum should focus on such areas.
Collapse
Affiliation(s)
- Ilias Marmouzi
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathology Biology, Faculty of Sciences, Department of Biology, Genomic Center of Human Pathology, Mohammed V University in Rabat, Morocco
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Science and Arts (MSA), Giza, 12451, Egypt.
| | - Meryem El Jemli
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
| | - Mourad Kharbach
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco; Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, CePhaR, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090, Brussels, Belgium
| |
Collapse
|
26
|
El-Shiekh RA, Salem MA, Mouneir SM, Hassan A, Abdel-Sattar E. A mechanistic study of Solenostemma argel as anti-rheumatic agent in relation to its metabolite profile using UPLC/HRMS. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113341. [PMID: 32891814 DOI: 10.1016/j.jep.2020.113341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solenostemma argel (Argel) is a traditional perennial edible herb that is commonly used in folkloric medicine for the treatment of rheumatic pain, inflammation, bronchitis, cold, diabetes, gastrointestinal cramps, and urinary tract infections. No previous reports traced the mechanistic activity of this plant for treatment of rheumatoid arthritis in relation to its chemical constituents. AIM OF THE STUDY The present study was designed to substantiate the anti-arthritic potential of S. argel and identification of its secondary metabolites responsible for the action using ultra-performance liquid chromatography coupled to high resolution mass spectrometry (UPLC/HRMS). MATERIALS AND METHODS The air-dried powder of S. argel was subjected to liquid-liquid fractionation method to yield polar metabolites fraction (PMF) and nonpolar metabolites fraction (NPMF) where the metabolites that represent each fraction were identified using UPLC/HRMS. The in-vitro anti-arthritic effects of both fractions were tested using protein denaturation, membrane stabilization and proteinase inhibition assays, in addition to in-vitro enzyme inhibition assays of COXs, LOX and collagenases. Adjuvant-induced arthritis (AIA) model was also established to evaluate their anti-arthritic effects in-vivo at two doses (200 and 400 mg/kg) in compared to the standard ibuprofen (5 mg/kg). Physical changes with hind paw edema and body weight gain as well as the assessment of serum rheumatoid biomarkers, inflammatory cytokines, oxidative stress markers, and the activity of hyaluronidase and β-glucouronidase enzymes were studied. The histopathological study of ankle and knee joints and immunohistochemistry of caspase-3 and TNF-α in joint synovium were also examined. RESULTS The PMF significantly (P < 0.05) reduced paw edema, serum rheumatoid markers, pro-inflammatory mediators, degeneration enzymes of cartilage and bone, and oxidative stress biomarkers. Interestingly, flavonoid glycosides and phenolic acids dominated the polar fraction, which showed the promising anti-arthritic activity of Argel compared to the NPMF which was dominated by pregnane glycosides. CONCLUSIONS Since arthritis is a chronic disease and there are imperative needs for a lifelong treatment with desirable pharmacological action and lower cost than the currently approved synthetic drugs having severe side effects, the PMF of Argel could be used as a potent anti-rheumatic agent.
Collapse
Affiliation(s)
- Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini St., Cairo, 11562, Egypt.
| | - Mohamed A Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin Elkom, 32511, Menoufia, Egypt.
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt.
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt.
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini St., Cairo, 11562, Egypt.
| |
Collapse
|
27
|
Shamilov AA, Bubenchikova VN, Chernikov MV, Pozdnyakov DI, Garsiya ER. Vaccinium vitis-idaea L.: Chemical Contents, Pharmacological Activities. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.54] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One of the most known species of the genus Vaccinium (Ericaceae) is Vaccinium vitis-idaea L. or lingonberry. Leaves are included in the State Pharmacopoeia of the Russian Federation (XIV-th edition) and the State Pharmacopoeia of the Republic of Belarus (II-nd edition). The aim of this review is an analysis of data about a chemical content and types of pharmacological activities of Vaccinium vitis-idaea L. to discuss the tendency of future investigations on this plant. The main parts of works describe researches of chemical contents of fruits as medicinal and edible plant material. The majority of researches describe results of in vitro experiments. A significant interest is the study of the neuroprotective activity of the Vaccinium vitis-idaea extracts as well as their anti-cytokine and antiapoptotic properties and metabolic effects. The main biologically active compounds are phenologlycosides, tannins, proanthocyanes, saponins etc. These results will be of great significance for the development of new drugs from this plant and use along with the fruits of other parts of the plant.
Collapse
Affiliation(s)
- Arnold Alexeevich Shamilov
- Department of Pharmacognosy, Botany and Technology of Phytopreparations, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, 11, Kalinina Prospect, Pyatigorsk, Russian Federation, 357532
| | - Valentina Nikolaevna Bubenchikova
- Department of Pharmacognosy and Botany, Kursk State Medical University (KSMU), Ministry of Health of Russia, 3, K. Marx Street, Kursk, Russian Federation, 305041
| | - Maxim Valentinovich Chernikov
- Department of Biology and Physiology, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, 11, Kalinina prospect, Pyatigorsk, Russian Federation, 357532
| | - Dmitryi Igorevich Pozdnyakov
- Department of Pharmacology with course of clinical Pharmacology, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, 11, Kalinina prospect, Pyatigorsk, Russian Federation, 357532
| | - Ekaterina Robertovna Garsiya
- Department of Pharmacognosy, Botany and Technology of Phytopreparations, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, 11, Kalinina Prospect, Pyatigorsk, Russian Federation, 357532
| |
Collapse
|
28
|
Ganapathy R, Ramachandran A, Shivalingaiah SB, Bishir M, Bhojaraj S, Sridhar S, Mohan SK, Veeraraghavan VP, Chidambaram SB, Essa MM, Qoronfleh MW. Cardioprotective potential of polyphenols rich Thraatchathi Chooranam against isoproterenol induced myocardial necrosis in experimental rats. BMC Complement Med Ther 2020; 20:356. [PMID: 33225920 PMCID: PMC7681955 DOI: 10.1186/s12906-020-03124-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/19/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The present study establishes the cardioprotective role of Thraatchathi Chooranam (TC), a polyherbal traditional Siddha medicine, in terms of membrane stabilizing and antioxidant properties in isoproterenol (ISO) induced myocardial necrosis model in rats. METHODS Animals were divided into six groups (n = 6), normal (received vehicle 0.5% CMC, p.o.), ISO control (received 0.5% CMC + ISO 120 mg/kg, b.w. s.c. twice at an interval of 48 h), standard control (received Vit-E 100 mg/kg, p.o.) + ISO, TC low and high dose (50 and 100 mg/kg p.o., respectively) + ISO, and drug control (received TC at 100 mg/kg, p.o.). At the end of experimental period, blood samples collected and plasma cardiac troponin-I (CTn-I) was measured by ELISA. Cardiac tissues were isolated, levels of membrane stabilizing enzymes, antioxidants and inflammatory markers were estimated. Gene expression of Bax, Bcl2, Caspase 3, HIF-α, TNF-α, iNOS, TRX1 and TrxR were performed by RT-PCR. Histopathological studies on cardiac tissues were conducted using hematoxylin and eosin (H&E) stain. Statistical analyses were performed by one-way ANOVA followed by Tukey's multiple comparison as post-hoc test. RESULTS Administration of ISO resulted in a significant increase in plasma CTn-I, decrease in superoxide dismutase, glutathione and glutathione peroxidase; it also significantly altered membrane stabilizing enzymes like Na+/K+-ATPase, Mg2+-ATPase Ca2+-ATPase and Cathepsin D. Pretreatment with TC (50 mg/kg and 100 mg/kg) decreased CTn-I, and improved membrane stabilizing and endogenous antioxidant enzymes and decreased cathespin D level in a dose dependent manner. Histopathological examination revealed that TC improves cellular membrane integrity and decreases inflammatory cell infiltration and necrotic death. CONCLUSION The present study provided a strong evidence on the protective effects of TC against ISO-induced myocardial necrosis in rats.
Collapse
Affiliation(s)
- Ramakrishnan Ganapathy
- Center for Animal Research, Training and Services (CAReTS), Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth (Deemed to be university), Puducherry, 607402, India
| | - Anita Ramachandran
- International Institute of Biotechnology and Toxicology, Padappai, India
| | | | - Muhammed Bishir
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | - Saravanan Bhojaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | - Shivashree Sridhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, 600123, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India. .,Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, and Ageing and Dementia Research Group, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman.
| | - M Walid Qoronfleh
- Research and Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, P.O. Box 5825, Doha, Qatar.
| |
Collapse
|
29
|
Mechanism of protection of rat hepatocytes from acetaminophen-induced cellular damage by ethanol extract of Aerva lanata. Interdiscip Toxicol 2020; 12:169-179. [PMID: 32461720 PMCID: PMC7247370 DOI: 10.2478/intox-2019-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/29/2019] [Indexed: 12/01/2022] Open
Abstract
The aim of this study is to evaluate the protective effect of ethanol extract of Aerva lanata (EEAL) in preventing acetaminophen induced liver toxicity. EEAL was prepared and its hepatoprotective effect was studied in both isolated primary hepatocytes in vitro and in Sprague Dawley rats in vivo. For in vivo studies, the animals were grouped as Group I – Control; Group II – ACN (2 g/kg b.w.); Group III – EEAL (50 mg/kg b.w.) + ACN (2 g/kg b.w.), Group IV – EEAL (100 mg/kg b.w.) + ACN (2 g/kg b.w.). Extracellular activities of the enzymes liver aminotransferease (GOT, GPT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in isolated hepatocytes and rat plasma were studied colorimetrically. Expression of GST, Nrf2, COX 1 & COX2 genes in rat liver were evaluated by RT-PCR. The results showed that ACN induced down-regulation of Nrf2 and upregulation of GST gene expression, which were modulated by EEAL treatment. GOT, GPT, ALP and LDH levels were found to be lowered in both hepatocyte culture media and plasma following EEAL treatment. In addition, the medium GOT and GPT levels were diminished following EEAL treatment only. Moreover, only ALP and LDH in serum appeared to be at normal level following EEAL treatment, whereas GOT and GPT showed levels lower than control. ACN treatment increased the expression of pro-inflammatory COX 1 and COX 2 genes and the levels of these genes were reduced by EEAL treatment. EEAL pre-treated rats exposed to ACN were found to retain normal hepatic structure compared to ACN alone treated rats. From these results it can be concluded that ethanol extract of A. lanata possesses both anti-inflammatory and hepatoprotective activity.
Collapse
|
30
|
Pandya PN, Kumar SP, Bhadresha K, Patel CN, Patel SK, Rawal RM, Mankad AU. Identification of promising compounds from curry tree with cyclooxygenase inhibitory potential using a combination of machine learning, molecular docking, dynamics simulations and binding free energy calculations. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1764552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Pujan N. Pandya
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Sivakumar Prasanth Kumar
- Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Kinjal Bhadresha
- Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Chirag N. Patel
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Saumya K. Patel
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Rakesh M. Rawal
- Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Archana U. Mankad
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
31
|
Mongalo N, Mashele S, Makhafola T. Ziziphus mucronata Willd. (Rhamnaceae): it's botany, toxicity, phytochemistry and pharmacological activities. Heliyon 2020; 6:e03708. [PMID: 32322712 PMCID: PMC7170964 DOI: 10.1016/j.heliyon.2020.e03708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/02/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Ziziphus mucronata is an important multi-purpose plant species that has been used in African traditional medicine for ages in the treatment of various devastating human and animal infections. The current paper is aimed at providing an overview of uses, toxicology, pharmacological properties and phytochemistry of Z. mucronata. The information used in the current work was retrieved using various search engines, including Pubmed, Science Direct, Google Scholar, Scielo, SciFinder and Scopus. The key words used included Ziziphus mucronata, secondary metabolites, chemistry, biological activity and pharmacology, anti-inflammatory, antimicrobial, antifungal, antiviral, ethnobotanical survey, medicinal uses, safety, toxicology and other related words. Out of the 46 infections which the plant species is used to treat, the most common uses includes sexually transmitted infections, skin infections, diarrhoea and dysentery, respiratory and chest complaints and gynaecological complaints (citations ≥6). Pharmacologically, the plant species exhibited a potential antimicrobial activity yielding a minimum inhibitory concentration of <1 mg/ml against important pathogens which includes Mycobacterium tuberculosis, Moraxella catarrhalis, Staphylococcus aureus, Escherichia coli, Propionibacterium acnes, Candida albicans, Cryptoccoos neoformans amongst other microorganisms. Furthermore, the extracts and compounds from Z mucronata revealed potent antiviral, antioxidant, anti-inflammatory and other activities in vitro. Phytochemically, cyclo-peptide alkaloids (commonly called mucronines) dominates and in conjunction with triterpenes, flavonoids, phenolic acids and anthocyanins. Besides these compounds, the plant species exhibited the presence of important in minerals. These phytoconstituents may well explain the reported biological activities. Although the extracts revealed no cytotoxic effect to Vero cells, further toxicological characteristics of the plant species still needs to be explored. There is also a need to carry out the comprehensive safety profiles of the plant species, including heavy metal detection. Although the plant species revealed important biological activities, which includes antimicrobial, antiviral, anti-diabetic, anti-inflammatory, anti-oxidant, anti-plasmodial, anthelmintic, and anti-anaemic activity in vitro, further research is needed to explore the in vivo studies, other compounds responsible for such activities and the mechanisms of action thereof. Such activities validates the use of the plant species in traditional medicine. The data on the possible use of the plant species in the treatment of diarrhoea, sexually transmitted infections, skin related and gynaecological complaints are scant and still needs to be explored and validated both in vitro and in vivo. Furthermore, the anticancer and anthelmintic activity of the plant species also needs to be explored.
Collapse
Affiliation(s)
- N.I. Mongalo
- University of South Africa, College of Agriculture and Environmental Sciences Laboratories, Private Bag X06, Florida, 0610, South Africa
| | - S.S. Mashele
- Central University of Technology, Faculty of Health and Environmental Sciences, Centre for Quality of Health and Living, Bloemfontein, 9300, South Africa
| | - T.J. Makhafola
- Central University of Technology, Faculty of Health and Environmental Sciences, Centre for Quality of Health and Living, Bloemfontein, 9300, South Africa
| |
Collapse
|
32
|
Mannan A, Ahamed Basheer M, Latif M, Umar M, Rahim A, Khan S, Fatima N, Hussain I. Isolation and biological evaluation of some secondary metabolites from seeds of Silybum marianum. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_315_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
33
|
Hmidani A, Bouhlali EDT, Khouya T, Ramchoun M, Filali-Zegzouti Y, Alem C, Benlyas M. Antioxidant, anti-inflammatory and anticoagulant activities of three Thymus species grown in southeastern Morocco. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2019. [DOI: 10.1186/s43094-019-0005-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Thyme has been used for centuries in southeastern Morocco to treat a wide range of diseases such as inflammation disorders. The aim of the current study is to examine and to compare in vitro the anti-inflammatory, antioxidant, and anticoagulant activities of three thyme species grown in southeastern Morocco.
Results
Data showed that all studied species possess an important antioxidant activity: Thymus atlanticus (IC50 = 16.59 μg/mL), Thymus zygis (IC50 = 15.43 μg/mL), and Thymus satureioides (IC50 = 14.65 μg/mL). Concerning the anti-inflammatory activity, the highest effect was depicted in Thymus atlanticus followed by Thymus zygis and Thymus satureioides. With regard to the anticoagulant activity, the aqueous extract of these species prolongs activated partial thromboplastin time, prothrombin time, and thrombin time significantly (p < 0.05) in a dose-dependent manner.
Conclusion
Our results provide evidence that thymus extract exhibits marked antioxidant, anticoagulant, and anti-inflammatory effects, thus justifying the popular uses of these plants to treat some inflammatory and cardiovascular illnesses.
Collapse
|
34
|
Human disorders associated with inflammation and the evolving role of natural products to overcome. Eur J Med Chem 2019; 179:272-309. [PMID: 31255927 DOI: 10.1016/j.ejmech.2019.06.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
Inflammation is a biological function which triggered after the mechanical tissue disruption or from the responses by the incidence of physical, chemical or biological negotiator in body. These responses are essential act provided by the immune system during infection and tissue injury to maintain normal tissue homeostasis. Inflammation is a quite complicated process at molecular level with the involvement of several proinflammatory expressions. Several health problems are associated with prolonged inflammation, which effects nearly all major to minor diseases. The molecular and epidemiological studies jagged that the inflammation is closely associated with several disorders with their specific targets. It would be great achievement for human health around the world to overcome on inflammation. Mostly used anti-inflammatory drugs are at high risk of side effects and also expensive. Hence, the plant-based formulations gained a wide acceptance by the public and medical experts to treat it. Due to extensive dispersal, chemical diversity and systematically established biological potentials of natural products have induced renewed awareness as a gifted source for medications. However, today's urgent need to search for cheaper, more potent and safe anti-inflammatory medications to overcome on current situation. The goal of this review to compile an update on inflammation, associated diseases, molecular targets, inflammatory mediators and role of natural products. The entire text concise the involvement of various cytokines in pathogenesis of various human disorders. This assignment discussed about 321 natural products with their promising anti-inflammatory potential discovered during January 2009 to December 2018 with 262 citations.
Collapse
|
35
|
Nogueira KM, de Souza LKM, de Oliveira AP, Pacheco G, Iles B, Alencar MS, Nicolau LAD, Silva RO, da Nóbrega FR, Sousa DP, de Souza MHLP, Medeiros JVR. Efficacy of a phenol derivative, isopropyl vanillate, as an anti-inflammatory agent: A new small molecule inhibitor of COX and neutrophil migration. Drug Dev Res 2019; 80:666-679. [PMID: 31112325 DOI: 10.1002/ddr.21546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/22/2019] [Accepted: 05/12/2019] [Indexed: 11/08/2022]
Abstract
Inflammation is the response of the body to noxious stimuli such as infections, trauma, or injury. Experimental studies have shown that vanillic acid has anti-inflammatory effects. The objective of this study was to investigate the anti-inflammatory and antipyretic properties of the derivative of vanillic acid, isopropyl vanillate (ISP-VT), in mice. The results of this study indicated that ISP-VT reduced paw edema induced by carrageenan, dextran sulfate (DEX), compound 48/80, serotonin, bradykinin (BK), histamine (HIST), and prostaglandin E2 (PGE2). Furthermore, ISP-VT reduced recruitment of leukocytes and neutrophils and reduced its adhesion and rolling, and decreased myeloperoxidase enzyme activity (MPO), cytokine levels (tumor necrosis factor-α and interleukin-6), and vascular permeability. ISP-VT also significantly reduced the expression of cyclooxygenase-2 (COX-2) in subplantar tissue of mice. ISP-VT inhibited COX-2 selectively compared to the standard drug. Our results showed that although ISP-VT binds to COX-1, it is less toxic than indomethacin, as evidenced by MPO analysis of gastric tissue. Treatment with the ISP-VT significantly reduced rectal temperature in yeast-induced hyperthermia in mice. Our results showed that the main mechanism ISP-VT-induced anti-inflammatory activity is by inhibition of COX-2. In conclusion, our results indicate that ISP-VT has potential as an anti-inflammatory and antipyretic therapeutic compound.
Collapse
Affiliation(s)
- Kerolayne M Nogueira
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders-LAFIDG, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Luan K M de Souza
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders-LAFIDG, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Ana P de Oliveira
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders-LAFIDG, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Gabriella Pacheco
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders-LAFIDG, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Bruno Iles
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders-LAFIDG, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Matheus S Alencar
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders-LAFIDG, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Lucas A D Nicolau
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Renan O Silva
- Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Flávio R da Nóbrega
- Department of Pharmaceutics Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Damião P Sousa
- Department of Pharmaceutics Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Marcellus H L P de Souza
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Jand V R Medeiros
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders-LAFIDG, Federal University of Piauí, Parnaíba, Piauí, Brazil
| |
Collapse
|
36
|
Aware C, Patil R, Vyavahare G, Gurav R, Bapat V, Jadhav J. Processing Effect on L-DOPA, In Vitro Protein and Starch Digestibility, Proximate Composition, and Biological Activities of Promising Legume: Mucuna macrocarpa. J Am Coll Nutr 2019; 38:447-456. [PMID: 30676876 DOI: 10.1080/07315724.2018.1547230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: In the present investigation, the effect of different cooking processes on L-DOPA level, phenolics contents, in vitro protein (IVPD) and starch digestibility (IVSD), and proximate composition with in vitro anti-inflammatory and antioxidant potential of Mucuna macrocarpa (MM) has been evaluated. Methods: The L-DOPA and major phenolics acids quantification of processed samples were done by a reverse-phase high-performance liquid chromatography (RP-HPLC) technique. Proximate composition, elemental quantification, and in vitro protein and starch digestibility of the samples were carried out by using spectrophotometric analysis. The anti-inflammatory activities of samples were evaluated by a human red blood cells (HRBCs) membrane stabilization test and bovine serum albumin (BSA) anti-denaturation assay. Antioxidant potential of processed beans was carried out by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and N,N-dimethyl-p-phenylendiamine (DMPD) assays and ferric reducing/antioxidant power (FRAP) assay. Results: The processed MM beans showed a significant reduction of L-DOPA (6.30%), phytic acid (25.78%), tannin (19.79%), and saponin (25.59%) in the boiling, autoclaving, and roasting processes. RP-HPLC quantification of major phenolics acids was also affected by the differential process as compare to the raw seed sample. The processed seeds also showed considerable improvement of in vitro protein (26.93%) and starch (20.30%) digestibility, whereas the anti-inflammatory potential and antioxidant potential of MM beans were decreased in the processed samples, indicating a reduction of antioxidant molecules. Conclusion: The differential process showed considerable changes in the proximate composition, in vitro digestibility, and biological potential. The present study recommends the utilization of MM beans after autoclaving and boiling for maximum nutritional potential with health benefits.
Collapse
Affiliation(s)
- Chetan Aware
- a Department of Biotechnology , Shivaji University , Vidyanagar, Kolhapur , Maharashtra , India
| | - Ravishankar Patil
- b Amity Institute of Biotechnology , Amity University , Mumbai , Maharashtra , India
| | - Govind Vyavahare
- a Department of Biotechnology , Shivaji University , Vidyanagar, Kolhapur , Maharashtra , India
| | - Ranjit Gurav
- c Department of Biological Engineering , College of Engineering, Konkuk University , Seoul , Republic of Korea
| | - Vishwas Bapat
- a Department of Biotechnology , Shivaji University , Vidyanagar, Kolhapur , Maharashtra , India
| | - Jyoti Jadhav
- a Department of Biotechnology , Shivaji University , Vidyanagar, Kolhapur , Maharashtra , India.,d Department of Biochemistry , Shivaji University , Vidyanagar, Kolhapur , Maharashtra , India
| |
Collapse
|
37
|
Thabet AA, Youssef FS, Korinek M, Chang FR, Wu YC, Chen BH, El-Shazly M, Singab ANB, Hwang TL. Study of the anti-allergic and anti-inflammatory activity of Brachychiton rupestris and Brachychiton discolor leaves (Malvaceae) using in vitro models. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:299. [PMID: 30413192 PMCID: PMC6230296 DOI: 10.1186/s12906-018-2359-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/24/2018] [Indexed: 12/23/2022]
Abstract
Background Brachychiton rupestris and Brachychiton discolor (Malvaceae) are ornamental trees native to Australia. Some members of Brachychiton and its highly related genus, Sterculia, are employed in traditional medicine for itching, dermatitis and other skin diseases. However, scientific studies on these two genera are scarce. Aiming to reveal the scientific basis of the folk medicinal use of these plants, the cytotoxicity, anti-inflammatory and anti-allergic activities of Brachychiton rupestris and Brachychiton discolor leaves extracts and fractions were evaluated. Also, phytochemical investigation of B. rupestris was performed to identify the compounds exerting the biological effect. Methods Extracts as well as fractions of Brachychiton rupestris and Brachychiton discolor were tested for their cytotoxicity versus hepatoma HepG2, lung A549, and breast MDA-MB-231 cancer cell lines. Assessment of the anti-allergic activity was done using degranulation assay in RBL-2H3 mast cells. Anti-inflammatory effect was tested by measuring the suppression of superoxide anion production as well as elastase release in fMLF/CB-induced human neutrophils. Phytochemical investigation of the n-hexane, dichloromethane and ethyl acetate fractions of B. rupestris was done using different chromatographic and spectroscopic techniques. Results The tested samples showed no cytotoxicity towards the tested cell lines. The nonpolar fractions of both B. rupestris and B. discolor showed potent anti-allergic potency by inhibiting the release of β-hexosaminidase. The dichloromethane fraction of both species exhibited the highest anti-inflammatory activity by suppressing superoxide anion generation and elastase release with IC50 values of 2.99 and 1.98 μg/mL, respectively for B. rupestris, and 0.78 and 1.57 μg/mL, respectively for B. discolor. Phytochemical investigation of various fractions of B. rupestris resulted in the isolation of β-amyrin acetate (1), β-sitosterol (2) and stigmasterol (3) from the n-hexane fraction. Scopoletin (4) and β-sitosterol-3-O-β-D-glucoside (5) were obtained from the dichloromethane fraction. Dihydrodehydrodiconiferyl alcohol 4-O-β-D-glucoside (6) and dihydrodehydrodiconiferyl alcohol 9-O-β-D-glucoside (7) were separated from the ethyl acetate fraction. Scopoletin (4) showed anti-allergic and anti-inflammatory activity. Conclusions It was concluded that the nonpolar fractions of both Brachychiton species exhibited anti-allergic and anti-inflammatory activities. Electronic supplementary material The online version of this article (10.1186/s12906-018-2359-6) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Analgesic and Anti-Inflammatory Activities of Diethyl Ether and n-Hexane Extract of Polyalthia suberosa Leaves. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5617234. [PMID: 29599807 PMCID: PMC5827878 DOI: 10.1155/2018/5617234] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/25/2017] [Indexed: 01/09/2023]
Abstract
In folk medicine, Polyalthia suberosa is used as abortifacient, laxative, febrifuge analgesic, filler of tooth cavities, and anti-HIV drug and for rheumatism and various skin infections. The present study was directed to evaluate the analgesic and anti-inflammatory activities of diethyl ether and n-hexane extracts of Polyalthia suberosa leaves (PSDE and PSNH). A variety of tests including formalin-induced paw licking test, acetic acid induced writhing test, and tail immersion test were used to assess the analgesic activity. In addition, xylene-induced ear edema test was used to evaluate anti-inflammatory activity of PSDE and PSNH. PSDE and PSNH at 200 and 400 mg/kg doses expressed analgesic as well as anti-inflammatory activities in mice. In formalin-induced paw licking test, acetic acid induced writhing test, and xylene-induced ear edema test, the extracts exhibited significant inhibition (⁎P < 0.05 versus control) of pain and inflammation. Alternatively, in tail immersion test, PSDE 400 mg/kg showed significant (⁎P < 0.05 versus control) latency at 30 min but another tested sample had no significant latency. From this study, it could be shown that Polyalthia suberosa leaves may contain analgesic and anti-inflammatory agents which support its use in traditional medicine.
Collapse
|
39
|
Prasad GS, Govardhan P, Deepika G, Vakdevi V, Sashidhar RB. Anti-inflammatory activity of anti-hyperlipidemic drug, fenofibrate, and its phase-I metabolite fenofibric acid: in silico, in vitro, and in vivo studies. Inflammopharmacology 2017; 26:973-981. [DOI: 10.1007/s10787-017-0428-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
|
40
|
Dube N, Nimgulkar C, Bharatraj DK. Validation of therapeutic anti-inflammatory potential of Arjuna Ksheera Paka - A traditional Ayurvedic formulation of Terminalia arjuna. J Tradit Complement Med 2017; 7:414-420. [PMID: 29034188 PMCID: PMC5634724 DOI: 10.1016/j.jtcme.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/25/2016] [Accepted: 11/03/2016] [Indexed: 01/13/2023] Open
Abstract
Arjuna Ksheera Paka (AKP), a traditional Ayurvedic formulation of Terminalia arjuna (T. arjuna) bark powder is used for its cardioprotective effects. However, its anti-inflammatory efficacy remained unexplored. In the present study, AKP was prepared in cow milk (as per standard Ayurvedic procedure) and compared with standard hydroalcoholic extract (HA) of T. arjuna. The extracts were analyzed for gross phytoconstituents levels, and their antioxidant activity was assayed by DPPH free radical scavenging activity and inhibition of lipid peroxidation. The in vivo anti-inflammatory activity of AKP and HA was studied in carrageenan-induced hind paw biphasic edema in C57BL/6 mice (at 200, 400 and 800 mg/kg BW). The percentage extraction yield of AKP was two folds higher than HA implying that the phytoconstituents in AKP were diluted by a factor of 0.5. The total polyphenol content of HA was (3.8 times) higher than AKP and the antioxidant activity of HA was also higher compared to AKP. Both the extracts, however, showed significant (p < 0.05) anti-inflammatory activity in reducing paw edema in mice. The efficacy of HA was more than AKP at early phase of inflammation, whereas, in the late phase of inflammation AKP was more efficacious and equipotent to HA. Thus, regardless of low in vitro antioxidant activity, AKP exhibited potential in vivo anti-inflammatory activity. The higher efficacy of AKP could be due to the presence of milk solids. These milk solids may act as adjuvants to T. arjuna's phytoconstituents, contributing to their sustained bioavailability, leading to higher in vivo anti-inflammatory efficacy at lower drug concentrations.
Collapse
Affiliation(s)
| | | | - Dinesh Kumar Bharatraj
- Food and Drug Toxicology Research Centre, National Institute of Nutrition (NIN), Indian Council of Medical Research (ICMR), Hyderabad-500 007, Telangana, India
| |
Collapse
|
41
|
Madikizela B, McGaw LJ. Pittosporum viridiflorum Sims (Pittosporaceae): A review on a useful medicinal plant native to South Africa and tropical Africa. JOURNAL OF ETHNOPHARMACOLOGY 2017; 205:217-230. [PMID: 28487118 DOI: 10.1016/j.jep.2017.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pittosporum viridiflorum Sims, a Pittosporaceae species, is used extensively in African traditional medicine (ATM) by various tribes. This review is an appraisal of the information concerning the description, distribution, conservation status, traditional uses, phytochemistry, pharmacology and toxicology of this species with the aim of reconciling it with its traditional use. MATERIALS AND METHODS A wide-ranging literature search was conducted using database platforms such as Scopus, Google Scholar, Web of Science, ScienceDirect, PubMed and books including local reports and thesis submissions. RESULTS Ten categories to which P. viridiflorum finds use in traditional medicine (TM) were found, and they include well-being, wounds, treatment of veterinary ailments, gastrointestinal and sexually transmitted diseases, kidney, circulatory and inflammatory disorders, as well as diseases such as cancer, tuberculosis, and malaria. Pharmacological tests conducted include those investigating antimicrobial, antidiarrhoeal, antimalarial, anticancer, anti-inflammatory, antioxidant and acaricidal properties. Promising activity was shown in a number of assays. Toxicological effects have also been reported from this species. However, it is recommended to conduct a detailed toxicological study, including genotoxicity, as this has not yet been evaluated. Compound(s) with antimalarial, anticancer and acaricidal properties have been isolated from P. viridiflorum. CONCLUSIONS The collective pharmacological and phytochemical properties of P. viridiflorum gives credence to the use of this plant species against various diseases in ATM, thus steering significant interest towards in vivo studies and further research.
Collapse
Affiliation(s)
- B Madikizela
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort, 0110 Pretoria, South Africa
| | - L J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort, 0110 Pretoria, South Africa.
| |
Collapse
|