1
|
Wang D, Liu M, Jia S, Tian Z, Yang J, Liu X. Hyperbaric oxygen therapy for cardiovascular surgery. Med Gas Res 2025; 15:299-308. [PMID: 39829165 PMCID: PMC11918461 DOI: 10.4103/mgr.medgasres-d-24-00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/22/2024] [Indexed: 01/22/2025] Open
Abstract
Common cardiovascular surgeries include coronary artery bypass grafting, cardiac valve replacement, radiofrequency ablation, and cardiac intervention surgery. Multiple postoperative complications, such as hypoxic encephalopathy, air embolism, retained intracardiac air, cognitive dysfunction and major adverse cardiovascular events, including heart failure, ischemic stroke, and myocardial infarction, may occur after these cardiovascular surgeries. Hyperbaric oxygen can be used in preconditioning to lower the morbidity of adverse complications. It is also effective for the treatment of numerous postoperative complications. We provide evidence from the current literature highlighting the use of hyperbaric oxygen therapy for preconditioning and managing postoperative complications.
Collapse
Affiliation(s)
| | - Mo Liu
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shaoting Jia
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | | | - Jing Yang
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xuehua Liu
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Batinac T, Batičić L, Kršek A, Knežević D, Marcucci E, Sotošek V, Ćurko-Cofek B. Endothelial Dysfunction and Cardiovascular Disease: Hyperbaric Oxygen Therapy as an Emerging Therapeutic Modality? J Cardiovasc Dev Dis 2024; 11:408. [PMID: 39728298 DOI: 10.3390/jcdd11120408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Maintaining the physiological function of the vascular endothelium and endothelial glycocalyx is crucial for the prevention of cardiovascular disease, which is one of the leading causes of morbidity and mortality worldwide. Damage to these structures can lead to atherosclerosis, hypertension, and other cardiovascular problems, especially in individuals with risk factors such as diabetes and obesity. Endothelial dysfunction is associated with ischemic disease and has a negative impact on overall cardiovascular health. The aim of this review was to comprehensively summarize the crucial role of the vascular endothelium and glycocalyx in cardiovascular health and associated thrombo-inflammatory conditions. It highlights how endothelial dysfunction, influenced by factors such as diabetes, chronic kidney disease, and obesity, leads to adverse cardiovascular outcomes, including heart failure. Recent evidence suggests that hyperbaric oxygen therapy (HBOT) may offer therapeutic benefits in the treatment of cardiovascular risk factors and disease. This review presents the current evidence on the mechanisms by which HBOT promotes angiogenesis, shows antimicrobial and immunomodulatory effects, enhances antioxidant defenses, and stimulates stem cell activity. The latest findings on important topics will be presented, including the effects of HBOT on endothelial dysfunction, cardiac function, atherosclerosis, plaque stability, and endothelial integrity. In addition, the role of HBOT in alleviating cardiovascular risk factors such as hypertension, aging, obesity, and glucose metabolism regulation is discussed, along with its impact on inflammation in cardiovascular disease and its potential benefit in ischemia-reperfusion injury. While HBOT demonstrates significant therapeutic potential, the review also addresses potential risks associated with excessive oxidative stress and oxygen toxicity. By combining information on the molecular mechanisms of HBOT and its effects on the maintenance of vascular homeostasis, this review provides valuable insights into the development of innovative therapeutic strategies aimed at protecting and restoring endothelial function to prevent and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
- Department of Underwater and Hyperbaric Medicine, Clinical Hospital Center Rijeka, Tome Strižića 3, 51000 Rijeka, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Antea Kršek
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Danijel Knežević
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Emanuela Marcucci
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
- Department of Underwater and Hyperbaric Medicine, Clinical Hospital Center Rijeka, Tome Strižića 3, 51000 Rijeka, Croatia
| | - Vlatka Sotošek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
3
|
Mrakic-Sposta S, Brizzolari A, Vezzoli A, Graci C, Cimmino A, Giacon TA, Dellanoce C, Barassi A, Sesana G, Bosco G. Decompression Illness After Technical Diving Session in Mediterranean Sea: Oxidative Stress, Inflammation, and HBO Therapy. Int J Mol Sci 2024; 25:11367. [PMID: 39518919 PMCID: PMC11546868 DOI: 10.3390/ijms252111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
SCUBA diving poses risks due to pressure changes during descent (compression) and ascent (decompression). Decompression sickness (DCS) occurs due to gas bubble formation as the pressure decreases, causing joint pain, numbness, dizziness, or even paralysis and death. Immediate treatment involves 100% oxygen to help eliminate inert gases and hyperbaric oxygen therapy (HBOT), which is essential to reduce gas emboli formation and inflammation, thus improving symptoms. We evaluated oxy-inflammation biomarkers in the saliva and urine of nine subjects pre- and post-technical dive on the Haven wreck (GE, Italy). A case of DCS occurred during the dive. The injured diver was treated immediately with O2 and transported to the hyperbaric center of "ASST Ospedale Ca Granda" in Milan. He was treated following the U.S. Navy Treatment Table 5 at 2.8 ATA and the day after with Table 15 at 2.4 ATA. Venous blood and urine samples were collected before and after each HBO treatment. Our study shows that dive increased oxy-inflammation biomarkers (ROS +126%; lipid peroxidation +23%; interleukins-6 +81%, -1β +19%, and TNFα +84%) and nitric oxide metabolites levels (+36%). HBOT after a DCS episode reduced oxidative stress, lowering the very high marker of lipid peroxidation (8-iso-PGF2α), and inhibited inflammatory interleukins. Overall, HBOT improved physiological responses in the diver affected by DCS.
Collapse
Affiliation(s)
- Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (A.V.); (C.D.)
- ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (C.G.); (A.C.); (G.S.)
| | - Andrea Brizzolari
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (T.A.G.)
- Department of Health Sciences, Università degli Studi of Milan, 20142 Milan, Italy;
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (A.V.); (C.D.)
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (T.A.G.)
| | - Carmela Graci
- ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (C.G.); (A.C.); (G.S.)
| | - Attilio Cimmino
- ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (C.G.); (A.C.); (G.S.)
| | - Tommaso Antonio Giacon
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (T.A.G.)
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (A.V.); (C.D.)
- ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (C.G.); (A.C.); (G.S.)
| | - Alessandra Barassi
- Department of Health Sciences, Università degli Studi of Milan, 20142 Milan, Italy;
| | - Giovanni Sesana
- ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (C.G.); (A.C.); (G.S.)
| | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (T.A.G.)
| |
Collapse
|
4
|
Ostrowski RP, Pucko E, Matyja E. Proteasome and Neuroprotective Effect of Hyperbaric Oxygen Preconditioning in Experimental Global Cerebral Ischemia in Rats. Front Neurol 2022; 13:812581. [PMID: 35250819 PMCID: PMC8891759 DOI: 10.3389/fneur.2022.812581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/11/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives We investigated the involvement of the proteasome in the mechanism of preconditioning with hyperbaric oxygen (HBO-PC). Methods The experiments were performed on male Wistar rats subjected to a transient global cerebral ischemia of 5 min duration (2-vessel occlusion model) and preconditioned or not with HBO for 5 preceding days (1 h HBO at 2.5 atmosphere absolute [ATA] daily). In subgroups of preconditioned rats, the proteasome inhibitor MG132 was administered 30 min prior to each preconditioning session. Twenty-four hours and 7 days post-ischemia, after neurobehavioral assessment, the brains were collected and evaluated for morphological changes and quantitative immunohistochemistry of cell markers and apoptosis-related proteins. Results We observed reduced damage of CA1 pyramidal cells in the HBO preconditioned group only at 7 days post-ischemia. However, both at early (24 h) and later (7 days) time points, HBO-PC enhanced the tissue expression of 20S core particle of the proteasome and of the nestin, diminished astroglial reactivity, and reduced p53, rabbit anti-p53 upregulated modulator of apoptosis (PUMA), and rabbit anti-B cell lymphoma-2 interacting mediator of cell death (Bim) expressions in the hippocampus and cerebral cortex. HBO-PC also improved T-maze performance at 7 days. Proteasome inhibitor abolished the beneficial effects of HBO-PC on post-ischemic neuronal injury and functional impairment and reduced the ischemic alterations in the expression of investigated proteins. Significance Preconditioning with hyperbaric oxygen-induced brain protection against severe ischemic brain insult appears to involve the proteasome, which can be linked to a depletion of apoptotic proteins and improved regenerative potential.
Collapse
|
5
|
Tessema B, Sack U, Serebrovska Z, König B, Egorov E. Effects of Hyperoxia on Aging Biomarkers: A Systematic Review. FRONTIERS IN AGING 2022; 2:783144. [PMID: 35822043 PMCID: PMC9261365 DOI: 10.3389/fragi.2021.783144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022]
Abstract
The effects of short-term hyperoxia on age-related diseases and aging biomarkers have been reported in animal and human experiments using different protocols; however, the findings of the studies remain conflicting. In this systematic review, we summarized the existing reports in the effects of short-term hyperoxia on age-related diseases, hypoxia-inducible factor 1α (HIF-1α), and other oxygen-sensitive transcription factors relevant to aging, telomere length, cellular senescence, and its side effects. This review was done as described in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. A systematic search was done in PubMed, Google Scholar, and Cochrane Library and from the references of selected articles to identify relevant studies until May 2021. Of the total 1,699 identified studies, 17 were included in this review. Most of the studies have shown significant effects of short-term hyperoxia on age-related diseases and aging biomarkers. The findings of the studies suggest the potential benefits of short-term hyperoxia in several clinical applications such as for patients undergoing stressful operations, restoration of cognitive function, and the treatment of severe traumatic brain injury. Short-term hyperoxia has significant effects in upregulation or downregulation of transcription factors relevant to aging such as HIF-1α, nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB), and nuclear factor (erythroid-derived 2)-like 2 (NRF2) among others. Short-term hyperoxia also has significant effects to increase antioxidant enzymes, and increase telomere length and clearance of senescent cells. Some of the studies have also reported adverse consequences including mitochondrial DNA damage and nuclear cataract formation depending on the dose and duration of oxygen exposure. In conclusion, short-term hyperoxia could be a feasible treatment option to treat age-related disease and to slow aging because of its ability to increase antioxidant enzymes, significantly increase telomere length and clearance of senescent cells, and improve cognitive function, among others. The reported side effects of hyperoxia vary depending on the dose and duration of exposure. Therefore, it seems that additional studies for better understanding the beneficial effects of short-term hyperoxia and for minimizing side effects are necessary for optimal clinical application.
Collapse
Affiliation(s)
- Belay Tessema
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Ulrich Sack
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Zoya Serebrovska
- Department of Hypoxic States Investigation, Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Brigitte König
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Egor Egorov
- Ipam Institute for Preventive and Anti-Aging Medicine, Berlin, Germany
| |
Collapse
|
6
|
The Effects of Hyperbaric Oxygenation on Oxidative Stress, Inflammation and Angiogenesis. Biomolecules 2021; 11:biom11081210. [PMID: 34439876 PMCID: PMC8394403 DOI: 10.3390/biom11081210] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
Hyperbaric oxygen therapy (HBOT) is commonly used as treatment in several diseases, such as non-healing chronic wounds, late radiation injuries and carbon monoxide poisoning. Ongoing research into HBOT has shown that preconditioning for surgery is a potential new treatment application, which may reduce complication rates and hospital stay. In this review, the effect of HBOT on oxidative stress, inflammation and angiogenesis is investigated to better understand the potential mechanisms underlying preconditioning for surgery using HBOT. A systematic search was conducted to retrieve studies measuring markers of oxidative stress, inflammation, or angiogenesis in humans. Analysis of the included studies showed that HBOT-induced oxidative stress reduces the concentrations of pro-inflammatory acute phase proteins, interleukins and cytokines and increases growth factors and other pro-angiogenesis cytokines. Several articles only noted this surge after the first HBOT session or for a short duration after each session. The anti-inflammatory status following HBOT may be mediated by hyperoxia interfering with NF-κB and IκBα. Further research into the effect of HBOT on inflammation and angiogenesis is needed to determine the implications of these findings for clinical practice.
Collapse
|
7
|
Can preventive hyperbaric oxygen therapy optimise surgical outcome?: A systematic review of randomised controlled trials. Eur J Anaesthesiol 2021; 37:636-648. [PMID: 32355046 DOI: 10.1097/eja.0000000000001219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND A primary underlying cause of postoperative complications is related to the surgical stress response, which may be mitigated by hyperbaric oxygen therapy (HBOT), the intermittent administration of oxygen at a pressure higher than the atmospheric pressure at sea level. Promising clinical studies have emerged suggesting HBOT's efficacy for reducing some postoperative complications. Notwithstanding, the effectiveness (if any) of HBOT across a range of procedures and postoperative outcomes has yet to be clearly quantified. OBJECTIVE This systematic review aimed to summarise the existing literature on peri-operative HBOT to investigate its potential to optimise surgical patient outcome. DESIGN A systematic review of randomised controlled trials (RCTs) with narrative summary of results. DATA SOURCES MEDLINE, EMBASE, CINAHL and the Cochrane Central Register of Controlled Trials were searched without language restrictions through to 19 June 2018. ELIGIBILITY CRITERIA Studies were included if they involved patients of any age undergoing any surgical procedure and provided with at least one HBOT session in the peri-operative period. Two independent reviewers screened the initial identified trials and determined those to be included. Risk of bias was assessed using the Cochrane Risk of Bias tool for RCTs. RESULTS The search retrieved 775 references, of which 13 RCTs were included (627 patients). Ten RCTs (546 patients) reported treatment was effective for improving at least one of the patient outcomes assessed, while two studies (55 patients) did not find any benefit and one study (26 patients) found a negative effect. A wide range of patient outcomes were reported, and several other methodological limitations were observed among the included studies, such as limited use of sham comparator and lack of blinding. CONCLUSION Peri-operative preventive HBOT may be a promising intervention to improve surgical patient outcome. However, future work should consider addressing the methodological weaknesses identified in this review. TRIAL REGISTRATION The protocol (CRD42018102737) was registered with the International ProspectiveRegister of Systematic Reviews (PROSPERO).
Collapse
|
8
|
Fujii Y, Abe T, Ikegami K. Diabetic Pathophysiology Enhances Inflammation during Extracorporeal Membrane Oxygenation in a Rat Model. MEMBRANES 2021; 11:membranes11040283. [PMID: 33920465 PMCID: PMC8068986 DOI: 10.3390/membranes11040283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Systemic inflammatory responses in patients undergoing extracorporeal membrane oxygenation (ECMO) contribute significantly to ECMO-associated morbidity and mortality. In recent years, the number of type 2 diabetes mellitus patients has increased, and the number of these patients undergoing ECMO has also increased. Type 2 diabetes mellitus is a high-risk factor for complications during ECMO. We studied the effects of ECMO on inflammatory response in a diabetic rat ECMO model. Twenty-eight rats were divided into 4 groups: normal SHAM group (normal rats: n = 7), diabetic SHAM group (diabetic rats: n = 7), normal ECMO group (normal rats: n = 7), and diabetic ECMO group (diabetic rats: n = 7). We measured the plasma levels of cytokines, tumor necrosis factor-α, and interleukin-6. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), blood urea nitrogen (BUN), creatinine (Cr), and liver-type fatty acid binding protein (L-FABP) were examined in the rat cardiopulmonary bypass model to ascertain organ damage. In addition, the lung wet-to-dry weight (W/D) ratio was measured as an index of pulmonary tissue edema. A pathologic evaluation of kidneys was conducted by hematoxylin-eosin (HE) and periodic-acid-methenamine-silver (PAM) staining. In the diabetic ECMO group, levels of cytokines, AST, ALT, LDH, and L-FABP increased significantly, reaching a maximum at the end of ECMO in comparison with other groups (p < 0.05). In addition, hematoxylin-eosin and periodic acid-methenamine-silver staining of renal tissues showed marked injury in the ECMO group (normal ECMO and diabetic ECMO groups). Furthermore, when the normal ECMO and diabetic ECMO groups were compared, severe organ injury was seen in the diabetic ECMO group. There was remarkable organ injury in the diabetic ECMO group. These data demonstrate that diabetes enhances proinflammatory cytokine release, renal damage, and pulmonary edema during ECMO in an animal model.
Collapse
Affiliation(s)
- Yutaka Fujii
- Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Niigata 950-3198, Japan;
- Correspondence:
| | - Takuya Abe
- Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Niigata 950-3198, Japan;
| | - Kikuo Ikegami
- Department of Health and Medical Sciences, Chiba Institute of Science, Choshi 288-0025, Japan;
| |
Collapse
|
9
|
Gautier A, Graff EC, Bacek L, Fish EJ, White A, Palmer L, Kuo K. Effects of Ovariohysterectomy and Hyperbaric Oxygen Therapy on Systemic Inflammation and Oxidation in Dogs. Front Vet Sci 2020; 6:506. [PMID: 32010716 PMCID: PMC6974478 DOI: 10.3389/fvets.2019.00506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
Introduction: Hyperbaric oxygen therapy (HBOT) involves breathing 100% oxygen in a specialized compression chamber leading to hyperoxia. This treatment modality is associated with anti-inflammatory, antioxidant, and healing properties in people and laboratory animals. However, there are relatively few reports that evaluate the effects of HBOT in companion animals. The goal of this study was to investigate the physiological effects of HBOT on surgically induced systemic inflammation and oxidation in dogs. Material and Methods: Twelve healthy female beagle dogs were spayed and randomized into control and HBOT groups (n = 6). Both groups received conventional post-ovariohysterectomy therapy, and the HBOT group received two hyperbaric treatments at 2.0 atmosphere of absolute pressure and 100% oxygen for 35 min, 6 and 18 h after surgery. Blood samples were collected 3 h prior to ovariohysterectomy, 6, 18, and 30 h after surgery, prior to HBOT when applicable. Inflammatory biomarkers, including C-reactive protein, circulating cytokines, and changes in iron homeostasis were evaluated at each time point to determine the effects of surgery and HBOT on inflammation. Similarly, serum total oxidant status and total antioxidant status were measured to assess the oxidative stress. Pain and incision scores were recorded and compared between groups. Results: Following ovariohysterectomy, all dogs had significantly increased serum concentrations of C-reactive protein, KC-like, IL-6, and increased unsaturated iron-binding capacity compared to their pre-surgical values (p < 0.02), while serum iron, total iron-binding capacity and transferrin saturation were significantly decreased after surgery (p < 0.02). There was no significant difference between the control group and the HBOT group for any of the variables. There were no overt adverse effects in the HBOT group. Conclusion: This is the first prospective randomized controlled study to investigate the effects of HBOT on surgically induced systemic inflammation in dogs. While elective ovariohysterectomy resulted in mild inflammation, the described HBOT protocol portrayed no outward adverse effect and did not induce any detectable pro-inflammatory, anti-inflammatory, or antioxidant effects. Additional investigation is required to identify objective markers to quantify the response to HBOT and determine its role as an adjunctive therapy in dogs with more severe, complicated or chronic diseases.
Collapse
Affiliation(s)
- Anais Gautier
- Department of Emergency and Critical Care, Auburn University Veterinary Teaching Hospital, Auburn, AL, United States
| | - Emily C Graff
- Department of Pathobiology, Auburn University Veterinary Teaching Hospital, Auburn, AL, United States
| | - Lenore Bacek
- Department of Emergency and Critical Care, Auburn University Veterinary Teaching Hospital, Auburn, AL, United States
| | - Eric J Fish
- Department of Pathobiology, Auburn University Veterinary Teaching Hospital, Auburn, AL, United States
| | - Amelia White
- Department of Dermatology, Auburn University Veterinary Teaching Hospital, Auburn, AL, United States
| | - Lee Palmer
- Department of Emergency and Critical Care, Auburn University Veterinary Teaching Hospital, Auburn, AL, United States
| | - Kendon Kuo
- Department of Emergency and Critical Care, Auburn University Veterinary Teaching Hospital, Auburn, AL, United States
| |
Collapse
|
10
|
Ottolenghi S, Sabbatini G, Brizzolari A, Samaja M, Chiumello D. Hyperoxia and oxidative stress in anesthesia and critical care medicine. Minerva Anestesiol 2020; 86:64-75. [DOI: 10.23736/s0375-9393.19.13906-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Buckey JC. Use of Gases to Treat Cochlear Conditions. Front Cell Neurosci 2019; 13:155. [PMID: 31068792 PMCID: PMC6491859 DOI: 10.3389/fncel.2019.00155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/08/2019] [Indexed: 12/03/2022] Open
Abstract
Although the cochlear vascular supply (stria vascularis) is designed to block to certain compounds and molecules, it must enable gas exchange to survive. The inner ear capillaries must deliver oxygen and remove carbon dioxide for the cochlea to function. These gases diffuse through tissues across a concentration gradient to reach the desired target. Tight junctions or the endothelial basement membrane do not impede them. Therefore, gases that can diffuse into the inner ear are attractive as therapeutic agents. The two gases most often used in this way are oxygen and hydrogen, although carbon dioxide, ozone, and argon have also been investigated. Typically, oxygen is delivered as hyperbaric oxygen (HBO) (oxygen at pressure higher than atmospheric) to provide increased oxygen levels to the inner ear. This not only relieves hypoxia, but also has anti-inflammatory and other biochemical effects. HBO is used clinically to treat idiopathic sudden sensorineural hearing loss, and both animal and human studies suggest it may also assist recovery after acute acoustic trauma. Laboratory studies suggest hydrogen works as a free radical scavenger and reduces the strong oxidants hydroxyl radicals and peroxynitrite. It also has anti-apoptotic effects. Because of its anti-oxidant and anti-inflammatory effects, it has been studied as a treatment for ototoxicity and shows benefit in an animal model of cisplatinum toxicity. Gas diffusion offers an effective way to provide therapy to the inner ear, particularly since some gases (oxygen, hydrogen, carbon dioxide, ozone, argon) have important therapeutic effects for minimizing cochlear damage.
Collapse
Affiliation(s)
- Jay C Buckey
- Space Medicine Innovations Laboratory, Center for Hyperbaric Medicine, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
12
|
Recalcitrant Vulval and Perineal Crohn Disease Responding to Hyperbaric Oxygen Therapy. J Low Genit Tract Dis 2018; 22:409-411. [PMID: 30036200 DOI: 10.1097/lgt.0000000000000417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Lansdorp CA, van Hulst RA. Double-blind trials in hyperbaric medicine: A narrative review on past experiences and considerations in designing sham hyperbaric treatment. Clin Trials 2018; 15:462-476. [PMID: 29865904 PMCID: PMC6136075 DOI: 10.1177/1740774518776952] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background Hyperbaric oxygen therapy, which consists of breathing 100% oxygen under a
higher atmospheric pressure than normal, is utilized worldwide in the
treatment of several diseases. With the growing demand for evidence-based
research, hyperbaric oxygen therapy has been criticized for delivering too
little high-quality research, mainly in the form of randomized controlled
trials. While not always indispensable, the addition of a sham-controlled
group to such a trial can contribute to the quality of the research.
However, the design of a sham (hyperbaric) treatment is associated with
several considerations regarding adequate blinding and the use of pressure
and oxygen. This narrative review discusses information on the sham profile
and the blinding and safety of double-blind trials in hyperbaric medicine,
irrespective of the indication for treatment. Methods MEDLINE, Embase and CENTRAL were searched for sham-controlled trials on
hyperbaric oxygen therapy. The control treatment was considered sham if
patients were blinded to their allocation and treatment took place in a
hyperbaric chamber, with no restrictions regarding pressurization, oxygen
levels or indication. Studies involving children or only one session of
hyperbaric oxygen were excluded. Information on (the choice of) treatment
profile, blinding measures, patient’s perception regarding allocation and
safety issues was extracted from eligible studies. Results A total of 42 eligible trials were included. The main strategies for sham
treatment were (1) use of a lower pressure than that of the hyperbaric
oxygen group, while breathing 21% oxygen; (2) use of the same pressure as
the hyperbaric oxygen group, while breathing an adjusted percentage of
oxygen; and (3) use of the same pressure as the hyperbaric oxygen group,
while breathing 21% oxygen. The advantages and disadvantages of each
strategy are discussed using the information provided by the trials. Conclusion Based on this review, using a lower pressure than the hyperbaric oxygen group
while breathing 21% oxygen best matches the inertness of the placebo.
Although studies show that use of a lower pressure does allow adequate
blinding, this is associated with more practical issues than with the other
strategies. The choice of which sham profile to use requires careful
consideration; moreover, to ensure proper performance, a clear and detailed
protocol is also required.
Collapse
Affiliation(s)
- C A Lansdorp
- Department of Anesthesiology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Rob A van Hulst
- Department of Anesthesiology, Academic Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Hentia C, Rizzato A, Camporesi E, Yang Z, Muntean DM, Săndesc D, Bosco G. An overview of protective strategies against ischemia/reperfusion injury: The role of hyperbaric oxygen preconditioning. Brain Behav 2018; 8:e00959. [PMID: 29761012 PMCID: PMC5943756 DOI: 10.1002/brb3.959] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 02/12/2018] [Accepted: 02/18/2018] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Ischemia/reperfusion (I/R) injury, such as myocardial infarction, stroke, and peripheral vascular disease, has been recognized as the most frequent causes of devastating disorders and death currently. Protective effect of various preconditioning stimuli, including hyperbaric oxygen (HBO), has been proposed in the management of I/R. METHODS In this study, we searched and reviewed up-to-date published papers to explore the pathophysiology of I/R injury and to understand the mechanisms underlying the protective effect of HBO as conditioning strategy. RESULTS Animal study and clinic observation support the notion that HBO therapy and conditioning provide beneficial effect against the deleterious effects of postischemic reperfusion. Several explanations have been proposed. The first likely mechanism may be that HBO counteracts hypoxia and reduces I/R injury by improving oxygen delivery to an area with diminished blood flow. Secondly, by reducing hypoxia-ischemia, HBO reduces all the pathological events as a consequence of hypoxia, including tissue edema, increased affective area permeability, postischemia derangement of tissue metabolism, and inflammation. Thirdly, HBO may directly affect cell apoptosis, signal transduction, and gene expression in those that are sensitive to oxygen or hypoxia. HBO provides a reservoir of oxygen at cellular level not only carried by blood, but also by diffusion from the interstitial tissue where it reaches high concentration that may last for several hours, improves endothelial function and rheology, and decreases local inflammation and edema. CONCLUSION Evidence suggests the benefits of HBO when used as a preconditioning stimulus in the setting of I/R injury. Translating the beneficial effects of HBO into current practice requires, as for the "conditioning strategies", a thorough consideration of risk factors, comorbidities, and comedications that could interfere with HBO-related protection.
Collapse
Affiliation(s)
- Ciprian Hentia
- Master II level in Hyperbaric Medicine Department of Biomedical Sciences University of Padova Padova Italy.,Faculty of Medicine "Victor Babeș" University of Medicine and Pharmacy Timișoara Romania
| | - Alex Rizzato
- Master II level in Hyperbaric Medicine Department of Biomedical Sciences University of Padova Padova Italy
| | | | - Zhongjin Yang
- The Institute for Human Performance SUNY Upstate Medical University Syracuse NY USA
| | - Danina M Muntean
- Faculty of Medicine "Victor Babeș" University of Medicine and Pharmacy Timișoara Romania.,Center for Translational Research and Systems Medicine "Victor Babeș" University of Medicine and Pharmacy Timișoara Romania
| | - Dorel Săndesc
- Faculty of Medicine "Victor Babeș" University of Medicine and Pharmacy Timișoara Romania
| | - Gerardo Bosco
- Master II level in Hyperbaric Medicine Department of Biomedical Sciences University of Padova Padova Italy
| |
Collapse
|
15
|
Heinrichs J, Grocott HP. Pro: Hyperoxia Should Be Used During Cardiac Surgery. J Cardiothorac Vasc Anesth 2018; 33:2070-2074. [PMID: 29567040 DOI: 10.1053/j.jvca.2018.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Jeffrey Heinrichs
- Department of Anesthesia, Pain, and Perioperative Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hilary P Grocott
- Department of Anesthesia, Pain, and Perioperative Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
16
|
Abstract
Stroke that is caused by poor blood flow into the brain results in cell death, including ischemia stroke due to lack of blood into brain tissue, and hemorrhage due to bleeding. Both of them will give rise to the dysfunction of brain. In general, the signs and symptoms of stroke are the inability of feeling or moving on one side of body, sometimes loss of vision to one side. Above symptoms will appear soon after the stroke has happened. If the symptoms and signs happen in 1 or 2 hours, we often call them as transient ischemic attack. Moreover, hemorrhagic stroke often leads to severe headache. It is known that neuronal death can happen after stroke, and it depends upon the activation of N-methyl-D-aspartate (NMDA) excitatory glutamate receptor which is the goal for a lot of neuroprotective agents. Nitrous oxide was discovered by Joseph Priestley in 1772, and then he and his friends, including the poet Coleridge and Robert Sauce, experimented with the gas. They found this gas could make patients loss the sense of pain and still maintain consciousness after inhalation. Shortly the gas was used as an anesthetic, especially in the field of dentists. Now, accroding to theme of Helene N. David and other scientists, both of nitrous oxide at 75 vol% and xenon at 50 vol% could reduce ischemic neuronal death in the cortex by 70% and decrease NMDA-induced Ca2+ influx by 30%. Therefore, more clinical and experimental studies are important to illuminate the mechanisms of how nitrous oxide protects brain tissue and to explore the best protocol of this gas in stroke treatment.
Collapse
Affiliation(s)
- Zhu-Wei Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dong-Ping Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hai-Ying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
17
|
Ostrowski RP, Stępień K, Pucko E, Matyja E. The efficacy of hyperbaric oxygen in hemorrhagic stroke: experimental and clinical implications. Arch Med Sci 2017; 13:1217-1223. [PMID: 28883864 PMCID: PMC5575217 DOI: 10.5114/aoms.2017.65081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/10/2016] [Indexed: 02/07/2023] Open
Abstract
Hemorrhagic stroke, accounting for 10-30% of stroke cases, carries high rates of morbidity and mortality. This review presents the current knowledge on the efficacy of hyperbaric oxygen (HBO)-based modalities in the preclinical research on hemorrhagic stroke. Both preconditioning and post-treatment with HBO are considered as prospective therapeutic options. High efficacy of HBO therapy (HBOT) for brain hemorrhage has been noted. We found that moderate hyperbaric pressures appear optimal for therapeutic effect, while the therapeutic window of opportunity is short. HBO preconditioning offers more modest neuroprotective benefit as compared to HBO post-treatment for experimental intracerebral hemorrhage. We advocate for mandatory calculations of percent changes in the experimentally investigated indexes of HBO effectiveness and stress the need to design new clinical trials on HBO for hemorrhagic stroke.
Collapse
Affiliation(s)
- Robert P Ostrowski
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Stępień
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Emanuela Pucko
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Matyja
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
18
|
Gao ZX, Rao J, Li YH. Hyperbaric oxygen preconditioning improves postoperative cognitive dysfunction by reducing oxidant stress and inflammation. Neural Regen Res 2017; 12:329-336. [PMID: 28400818 PMCID: PMC5361520 DOI: 10.4103/1673-5374.200816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Postoperative cognitive dysfunction is a crucial public health issue that has been increasingly studied in efforts to reduce symptoms or prevent its occurrence. However, effective advances remain lacking. Hyperbaric oxygen preconditioning has proved to protect vital organs, such as the heart, liver, and brain. Recently, it has been introduced and widely studied in the prevention of postoperative cognitive dysfunction, with promising results. However, the neuroprotective mechanisms underlying this phenomenon remain controversial. This review summarizes and highlights the definition and application of hyperbaric oxygen preconditioning, the perniciousness and pathogenetic mechanism underlying postoperative cognitive dysfunction, and the effects that hyperbaric oxygen preconditioning has on postoperative cognitive dysfunction. Finally, we conclude that hyperbaric oxygen preconditioning is an effective and feasible method to prevent, alleviate, and improve postoperative cognitive dysfunction, and that its mechanism of action is very complex, involving the stimulation of endogenous antioxidant and anti-inflammation defense systems.
Collapse
Affiliation(s)
- Zhi-Xin Gao
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jin Rao
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yuan-Hai Li
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
19
|
Hu SL, Feng H, Xi GH. Hyperbaric oxygen therapy and preconditioning for ischemic and hemorrhagic stroke. Med Gas Res 2016; 6:232-236. [PMID: 28217297 PMCID: PMC5223316 DOI: 10.4103/2045-9912.196907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To date, the therapeutic methods for ischemic and hemorrhagic stroke are still limited. The lack of oxygen supply is critical for brain injury following stroke. Hyperbaric oxygen (HBO), an approach through a process in which patients breathe in 100% pure oxygen at over 101 kPa, has been shown to facilitate oxygen delivery and increase oxygen supply. Hence, HBO possesses the potentials to produce beneficial effects on stroke. Actually, accumulated basic and clinical evidences have demonstrated that HBO therapy and preconditioning could induce neuroprotective functions via different mechanisms. Nevertheless, the lack of clinical translational study limits the application of HBO. More translational studies and clinical trials are needed in the future to develop effective HBO protocols.
Collapse
Affiliation(s)
- Sheng-Li Hu
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA; Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Collaborative Innovation Center for Brain Science, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Collaborative Innovation Center for Brain Science, Chongqing, China
| | - Guo-Hua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Ostrowski RP, Stępień K, Pucko E, Matyja E. Hyperbaric oxygen modalities are differentially effective in distinct brain ischemia models. Med Gas Res 2016; 6:39-47. [PMID: 27826422 PMCID: PMC5075682 DOI: 10.4103/2045-9912.179344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The effectiveness and efficacy of hyperbaric oxygen (HBO) preconditioning and post-treatment modalities have been demonstrated in experimental models of ischemic cerebrovascular diseases, including global brain ischemia, transient focal and permanent focal cerebral ischemia, and experimental neonatal hypoxia-ischemia encephalopathy. In general, early and repetitive post-treatment of HBO appears to create enhanced protection against brain ischemia whereas delayed HBO treatment after transient focal ischemia may even aggravate brain injury. This review advocates the level of injury reduction upon HBO as an important component for translational evaluation of HBO based treatment modalities. The combined preconditioning and HBO post-treatment that would provide synergistic effects is also worth considering.
Collapse
Affiliation(s)
- Robert P Ostrowski
- Department of Experimental and Clinical Neuropathology, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Stępień
- Department of Experimental and Clinical Neuropathology, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Emanuela Pucko
- Department of Experimental and Clinical Neuropathology, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Matyja
- Department of Experimental and Clinical Neuropathology, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
21
|
Hu Q, Manaenko A, Matei N, Guo Z, Xu T, Tang J, Zhang JH. Hyperbaric oxygen preconditioning: a reliable option for neuroprotection. Med Gas Res 2016; 6:20-32. [PMID: 27826420 PMCID: PMC5075679 DOI: 10.4103/2045-9912.179337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brain injury is the leading cause of death and disability worldwide and clinically there is no effective therapy for neuroprotection. Hyperbaric oxygen preconditioning (HBO-PC) has been experimentally demonstrated to be neuroprotective in several models and has shown efficiency in patients undergoing on-pump coronary artery bypass graft (CABG) surgery. Compared with other preconditioning stimuli, HBO is benign and has clinically translational potential. In this review, we will summarize the results in experimental brain injury and clinical studies, elaborate the mechanisms of HBO-PC, and discuss regimes and opinions for future interventions in acute brain injury.
Collapse
Affiliation(s)
- Qin Hu
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Anatol Manaenko
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nathanael Matei
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Zhenni Guo
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Ting Xu
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
22
|
Hyperbaric oxygen preconditioning attenuates neuroinflammation after intracerebral hemorrhage in rats by regulating microglia characteristics. Brain Res 2015; 1627:21-30. [PMID: 26301824 DOI: 10.1016/j.brainres.2015.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 05/20/2015] [Accepted: 08/13/2015] [Indexed: 11/21/2022]
Abstract
Intracerebral Hemorrhage (ICH) results in a detrimental neurologic disorder with complicated secondary brain injury. Hyperbaric oxygen preconditioning (HBOP) may be a safe and effective therapeutic method for ICH victims. Our previous studies have demonstrated that HBOP induces neuroprotection in cerebral ischemia and traumatic brain injury. This study aimed to investigate whether HBOP could alleviate neuroinflammation by regulating changes in microglia characteristics in a rat model of ICH. ICH was induced by autologous arterial blood injection, and animals were sacrificed at 12, 24, and 72 h post injury. We measured motor function and brain water content to evaluate the extent of inflammation. Fluoro-Jade C and TNF-α staining was used to characterize neuronal degeneration and neuroinflammatory cytokines, and immunofluorescence staining was performed for CD11b to show activated microglia and Iba-1 to show microglia. Our results indicate that motor dysfunction and brain water content are alleviated by HBOP, and Fluoro-Jade C staining demonstrates that neuron degeneration decreased in the HBOP group. The growth of Iba-1-positive microglia decreased in the HBOP group. Moreover, TNF-α was dynamically reduced in the HBOP group compared with the ICH group. CD11b-Iba-1 double staining demonstrated that the ratio of CD11b and Iba-1 was significantly decreased in the HBOP group. Overall, the data demonstrated that HBOP could significantly alleviate the ICH-induced neuroinflammation by regulating microglia characteristics changing. The phenomenon may propel the progress of the relation between microglia and HBOP and represent a novel target for ICH treatment.
Collapse
|
23
|
Fink HA, Hemmy LS, MacDonald R, Carlyle MH, Olson CM, Dysken MW, McCarten JR, Kane RL, Garcia SA, Rutks IR, Ouellette J, Wilt TJ. Intermediate- and Long-Term Cognitive Outcomes After Cardiovascular Procedures in Older Adults: A Systematic Review. Ann Intern Med 2015; 163:107-17. [PMID: 26192563 DOI: 10.7326/m14-2793] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Risks for intermediate- and long-term cognitive impairment after cardiovascular procedures in older adults are poorly understood. PURPOSE To summarize evidence about cognitive outcomes in adults aged 65 years or older at least 3 months after coronary or carotid revascularization, cardiac valve procedures, or ablation for atrial fibrillation. DATA SOURCES MEDLINE, Cochrane, and Scopus databases from 1990 to January 2015; ClinicalTrials.gov; and bibliographies of reviews and eligible studies. STUDY SELECTION English-language trials and prospective cohort studies. DATA EXTRACTION One reviewer extracted data, a second checked accuracy, and 2 independently rated quality and strength of evidence (SOE). DATA SYNTHESIS 17 trials and 4 cohort studies were included; 80% of patients were men, and mean age was 68 years. Cognitive function did not differ after the procedure between on- and off-pump coronary artery bypass grafting (CABG) (n = 6; low SOE), hypothermic and normothermic CABG (n = 3; moderate to low SOE), or CABG and medical management (n = 1; insufficient SOE). One trial reported lower risk for incident cognitive impairment with minimal versus conventional extracorporeal CABG (risk ratio, 0.34 [95% CI, 0.16 to 0.73]; low SOE). Two trials found no difference between surgical carotid revascularization and carotid stenting or angioplasty (low and insufficient SOE, respectively). One cohort study reported increased cognitive decline after transcatheter versus surgical aortic valve replacement but had large selection and outcome measurement biases (insufficient SOE). LIMITATIONS Mostly low to insufficient SOE; no pertinent data for ablation; limited generalizability to the most elderly patients, women, and persons with substantial baseline cognitive impairment; and possible selective reporting and publication bias. CONCLUSION Intermediate- and long-term cognitive impairment in older adults attributable to the studied cardiovascular procedures may be uncommon. Nevertheless, clinicians counseling patients before these procedures should discuss the uncertainty in their risk for adverse cognitive outcomes. PRIMARY FUNDING SOURCE Agency for Healthcare Research and Quality.
Collapse
Affiliation(s)
- Howard A. Fink
- From Minnesota Evidence-based Practice Center, University of Minnesota, and Geriatric Research Education and Clinical Center and Center for Chronic Disease Outcomes Research, Veterans Affairs Health Care System, Minneapolis, Minnesota
| | - Laura S. Hemmy
- From Minnesota Evidence-based Practice Center, University of Minnesota, and Geriatric Research Education and Clinical Center and Center for Chronic Disease Outcomes Research, Veterans Affairs Health Care System, Minneapolis, Minnesota
| | - Roderick MacDonald
- From Minnesota Evidence-based Practice Center, University of Minnesota, and Geriatric Research Education and Clinical Center and Center for Chronic Disease Outcomes Research, Veterans Affairs Health Care System, Minneapolis, Minnesota
| | - Maureen H. Carlyle
- From Minnesota Evidence-based Practice Center, University of Minnesota, and Geriatric Research Education and Clinical Center and Center for Chronic Disease Outcomes Research, Veterans Affairs Health Care System, Minneapolis, Minnesota
| | - Carin M. Olson
- From Minnesota Evidence-based Practice Center, University of Minnesota, and Geriatric Research Education and Clinical Center and Center for Chronic Disease Outcomes Research, Veterans Affairs Health Care System, Minneapolis, Minnesota
| | - Maurice W. Dysken
- From Minnesota Evidence-based Practice Center, University of Minnesota, and Geriatric Research Education and Clinical Center and Center for Chronic Disease Outcomes Research, Veterans Affairs Health Care System, Minneapolis, Minnesota
| | - J. Riley McCarten
- From Minnesota Evidence-based Practice Center, University of Minnesota, and Geriatric Research Education and Clinical Center and Center for Chronic Disease Outcomes Research, Veterans Affairs Health Care System, Minneapolis, Minnesota
| | - Robert L. Kane
- From Minnesota Evidence-based Practice Center, University of Minnesota, and Geriatric Research Education and Clinical Center and Center for Chronic Disease Outcomes Research, Veterans Affairs Health Care System, Minneapolis, Minnesota
| | - Santiago A. Garcia
- From Minnesota Evidence-based Practice Center, University of Minnesota, and Geriatric Research Education and Clinical Center and Center for Chronic Disease Outcomes Research, Veterans Affairs Health Care System, Minneapolis, Minnesota
| | - Indulis R. Rutks
- From Minnesota Evidence-based Practice Center, University of Minnesota, and Geriatric Research Education and Clinical Center and Center for Chronic Disease Outcomes Research, Veterans Affairs Health Care System, Minneapolis, Minnesota
| | - Jeannine Ouellette
- From Minnesota Evidence-based Practice Center, University of Minnesota, and Geriatric Research Education and Clinical Center and Center for Chronic Disease Outcomes Research, Veterans Affairs Health Care System, Minneapolis, Minnesota
| | - Timothy J. Wilt
- From Minnesota Evidence-based Practice Center, University of Minnesota, and Geriatric Research Education and Clinical Center and Center for Chronic Disease Outcomes Research, Veterans Affairs Health Care System, Minneapolis, Minnesota
| |
Collapse
|
24
|
Verma R, Chopra A, Giardina C, Sabbisetti V, Smyth JA, Hightower LE, Perdrizet GA. Hyperbaric oxygen therapy (HBOT) suppresses biomarkers of cell stress and kidney injury in diabetic mice. Cell Stress Chaperones 2015; 20:495-505. [PMID: 25648080 PMCID: PMC4406928 DOI: 10.1007/s12192-015-0574-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 12/17/2022] Open
Abstract
The disease burden from diabetic kidney disease is large and growing. Effective therapies are lacking, despite an urgent need. Hyperbaric oxygen therapy (HBOT) activates Nrf2 and cellular antioxidant defenses; therefore, it may be generally useful for treating conditions that feature chronic oxidative tissue damage. Herein, we determined how periodic exposure to oxygen at elevated pressure affected type 2 diabetes mellitus-related changes in the kidneys of db/db mice. Two groups of db/db mice, designated 2.4 ATA and 1.5 ATA, were treated four times per week with 100 % oxygen at either 1.5 or 2.4 ATA (atmospheres absolute) followed by tests to assess kidney damage and function. The sham group of db/db mice and the Hets group of db/+ mice were handled but did not receive HBOT. Several markers of kidney damage were reduced significantly in the HBOT groups including urinary biomarkers neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C (CyC) along with significantly lower levels of caspase-3 activity in kidney tissue extracts. Other stress biomarkers also showed trends to improvement in the HBOT groups, including urinary albumin levels. Expressions of the stress response genes NRF2, HMOX1, MT1, and HSPA1A were reduced in the HBOT groups at the end of the experiment, consistent with reduced kidney damage in treated mice. Urinary albumin/creatinine ratio (ACR), a measure of albuminuria, was significantly reduced in the db/db mice receiving HBOT. All of the db/db mouse groups had qualitatively similar changes in renal histopathology. Glycogenated nuclei, not previously reported in db/db mice, were observed in these three experimental groups but not in the control group of nondiabetic mice. Overall, our findings are consistent with therapeutic HBOT alleviating stress and damage in the diabetic kidney through cytoprotective responses. These findings support an emerging paradigm in which tissue oxygenation and cellular defenses effectively limit damage from chronic oxidative stress more effectively than chemical antioxidants.
Collapse
Affiliation(s)
- Rajeev Verma
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA,
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Diverse preconditioning (PC) stimuli protect against a wide variety of neuronal insults in animal models, engendering enthusiasm that PC could be used to protect the brain clinically. Candidate clinical applications include cardiac and vascular surgery, after subarachnoid hemorrhage, and prior to conditions in which acute neuronal injury is anticipated. However, disappointments in clinical validation of multiple neuroprotectants suggest potential problems translating animal data into successful human therapies. Thus, despite strong promise of preclinical PC studies, caution should be maintained in translating these findings into clinical applications. The Stroke Therapy Academic Industry Roundtable (STAIR) working group and the National institute of Neurological Diseases and Stroke (NINDS) proposed working guidelines to improve the utility of preclinical studies that form the foundation of therapies for neurological disease. Here, we review the applicability of these consensus criteria to preconditioning studies and discuss additional considerations for PC studies. We propose that special attention should be paid to several areas, including 1) safety and dosage of PC treatments; 2) meticulously matching preclinical modeling to the human condition to be tested; and 3) timing of both the initiation and discontinuation of the PC stimulus relative to injury ictus.
Collapse
Affiliation(s)
- Michael M Wang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA ; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA ; Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan USA
| | | | | |
Collapse
|
26
|
Hu SL, Huang YX, Hu R, Li F, Feng H. Osteopontin Mediates Hyperbaric Oxygen Preconditioning-Induced Neuroprotection Against Ischemic Stroke. Mol Neurobiol 2014; 52:236-43. [DOI: 10.1007/s12035-014-8859-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/07/2014] [Indexed: 11/29/2022]
|
27
|
Dulai PS, Gleeson MW, Taylor D, Holubar SD, Buckey JC, Siegel CA. Systematic review: The safety and efficacy of hyperbaric oxygen therapy for inflammatory bowel disease. Aliment Pharmacol Ther 2014; 39:1266-75. [PMID: 24738651 DOI: 10.1111/apt.12753] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/02/2013] [Accepted: 03/25/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hyperbaric oxygen therapy (HBOT) provides 100% oxygen under pressure, which increases tissue oxygen levels, relieves hypoxia and alters inflammatory pathways. Although there is experience using HBOT in Crohn's disease and ulcerative colitis, the safety and overall efficacy of HBOT in inflammatory bowel disease (IBD) is unknown. AIM To quantify the safety and efficacy of HBOT for Crohn's disease (CD) and ulcerative colitis (UC). The rate of adverse events with HBOT for IBD was compared to the expected rate of adverse events with HBOT. METHODS MEDLINE, EMBASE, Cochrane Collaboration and Web of Knowledge were systematically searched using the PRISMA standards for systematic reviews. Seventeen studies involving 613 patients (286 CD, 327 UC) were included. RESULTS The overall response rate was 86% (85% CD, 88% UC). The overall response rate for perineal CD was 88% (18/40 complete healing, 17/40 partial healing). Of the 40 UC patients with endoscopic follow-up reported, the overall response rate to HBOT was 100%. During the 8924 treatments, there were a total of nine adverse events, six of which were serious. The rate of adverse events with HBOT in IBD is lower than that seen when utilising HBOT for other indications (P < 0.01). The risk of bias across studies was high. CONCLUSIONS Hyperbaric oxygen therapy is a relatively safe and potentially efficacious treatment option for IBD patients. To understand the true benefit of HBOT in IBD, well-controlled, blinded, randomised trials are needed for both Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- P S Dulai
- Inflammatory Bowel Disease Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA; Center for Hyperbaric Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | | | | | | | | | | |
Collapse
|
28
|
Deng J, Lei C, Chen Y, Fang Z, Yang Q, Zhang H, Cai M, Shi L, Dong H, Xiong L. Neuroprotective gases – Fantasy or reality for clinical use? Prog Neurobiol 2014; 115:210-45. [DOI: 10.1016/j.pneurobio.2014.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 12/17/2022]
|
29
|
Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, Jing Z, Chen J, Zigmond MJ, Gao Y. Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol 2014; 114:58-83. [PMID: 24389580 PMCID: PMC3937258 DOI: 10.1016/j.pneurobio.2013.11.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022]
Abstract
Preconditioning is a phenomenon in which brief episodes of a sublethal insult induce robust protection against subsequent lethal injuries. Preconditioning has been observed in multiple organisms and can occur in the brain as well as other tissues. Extensive animal studies suggest that the brain can be preconditioned to resist acute injuries, such as ischemic stroke, neonatal hypoxia/ischemia, surgical brain injury, trauma, and agents that are used in models of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Effective preconditioning stimuli are numerous and diverse, ranging from transient ischemia, hypoxia, hyperbaric oxygen, hypothermia and hyperthermia, to exposure to neurotoxins and pharmacological agents. The phenomenon of "cross-tolerance," in which a sublethal stress protects against a different type of injury, suggests that different preconditioning stimuli may confer protection against a wide range of injuries. Research conducted over the past few decades indicates that brain preconditioning is complex, involving multiple effectors such as metabolic inhibition, activation of extra- and intracellular defense mechanisms, a shift in the neuronal excitatory/inhibitory balance, and reduction in inflammatory sequelae. An improved understanding of brain preconditioning should help us identify innovative therapeutic strategies that prevent or at least reduce neuronal damage in susceptible patients. In this review, we focus on the experimental evidence of preconditioning in the brain and systematically survey the models used to develop paradigms for neuroprotection, and then discuss the clinical potential of brain preconditioning.
Collapse
Affiliation(s)
- R Anne Stetler
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Yu Gan
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Peiying Li
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Feng Zhang
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Xiaoming Hu
- Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Zheng Jing
- Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Michael J Zigmond
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China.
| |
Collapse
|
30
|
Celik O, Bay HH, Arslanhan A, Oroğlu B, Bozkurt SU, Sehirli US, Ziyal Mİ. Effect of hyperbaric oxygen therapy on cerebral vasospasm: a vascular morphometric study in an experimental subarachnoid hemorrhage model. Int J Neurosci 2013; 124:593-600. [PMID: 24228831 DOI: 10.3109/00207454.2013.865619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study was undertaken to investigate the preventive or therapeutic effect of hyperbaric oxygen therapy (HBOT) on cerebral vasospasm following experimental subarachnoid hemorrhage (SAH). Twenty rabbits were assigned randomly to one of four groups. Animals in Group I were not subjected to SAH or sham operation (control group, n = 5). Animals in Group II were subjected to sham operation and received no treatment after the procedure (sham group, n = 5). Animals in Group III were subjected to SAH and received no treatment after SAH induction (SAH group, n = 5). Animals in Group IV were subjected to SAH and received five sessions of HBOT at 2.4 atmospheres absolute (ATA) for 2 h (treatment group, n = 5). Animals were euthanized by perfusion and fixation 72 h after procedures. Basilar artery vasospasm indices, arterial wall thicknesses, and cross-sectional luminal areas were evaluated. Statistical comparisons were performed using Kruskal-Wallis and Mann-Whitney U tests. Mean basilar artery vasospasm index in the treatment group was significantly smaller than in the SAH group. Mean basilar artery wall thickness in the treatment group was significantly smaller than in the SAH group. Mean basilar artery cross-sectional luminal area in the treatment group showed an increase relative to the SAH group, but this difference remained statistically insignificant. Our results demonstrated that repeated application of HBOT at 2.4 ATA for 2 h attenuated vasospastic changes such as increased vasospasm index and arterial wall thickness. HBOT is thus a promising candidate for SAH-induced vasospasm. Further studies are needed to evaluate maximal effect and optimal application regimen.
Collapse
Affiliation(s)
- Ozgür Celik
- 1Department of Neurosurgery, Marmara University Pendik Education and Research Hospital, İstanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
31
|
Ostrowski RP, Zhang JH. Hyperbaric oxygen for cerebral vasospasm and brain injury following subarachnoid hemorrhage. Transl Stroke Res 2013; 2:316-27. [PMID: 23060945 DOI: 10.1007/s12975-011-0069-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The impact of acute brain injury and delayed neurological deficits due to cerebral vasospasm (CVS) are major determinants of outcomes after subarachnoid hemorrhage (SAH). Although hyperbaric oxygen (HBO) had been used to treat patients with SAH, the supporting evidence and underlying mechanisms have not been systematically reviewed. In the present paper, the overview of studies of HBO for cerebral vasospasm is followed by a discussion of HBO molecular mechanisms involved in the protection against SAH-induced brain injury and even, as hypothesized, in attenuating vascular spasm alone. Faced with the paucity of information as to what degree HBO is capable of antagonizing vasospasm after SAH, the authors postulate that the major beneficial effects of HBO in SAH include a reduction of acute brain injury and combating brain damage caused by CVS. Consequently, authors reviewed the effects of HBO on SAH-induced hypoxic signaling and other mechanisms of neurovascular injury. Moreover, authors hypothesize that HBO administered after SAH may "precondition" the brain against the detrimental sequelae of vasospasm. In conclusion, the existing evidence speaks in favor of administering HBO in both acute and delayed phase after SAH; however, further studies are needed to understand the underlying mechanisms and to establish the optimal regimen of treatment.
Collapse
Affiliation(s)
- Robert P Ostrowski
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus Street, Loma Linda, CA 92350, USA
| | | |
Collapse
|
32
|
Abstract
Preconditioning (PC) describes a phenomenon whereby a sub-injury inducing stress can protect against a later injurious stress. Great strides have been made in identifying the mechanisms of PC-induced protection in animal models of brain injury. While these may help elucidate potential therapeutic targets, there are questions over the clinical utility of cerebral PC, primarily because of questions over the need to give the PC stimulus prior to the injury, narrow therapeutic windows and safety. The object of this review is to address the question of whether there may indeed be a clinical use for cerebral PC and to discuss the deficiencies in our knowledge of PC that may hamper such clinical translation.
Collapse
|
33
|
Lu PG, Hu SL, Hu R, Wu N, Chen Z, Meng H, Lin JK, Feng H. Functional recovery in rat spinal cord injury induced by hyperbaric oxygen preconditioning. Neurol Res 2013; 34:944-51. [PMID: 23006818 DOI: 10.1179/1743132812y.0000000096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Pei-Gang Lu
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University, Chongqing, China
- Department of NeurosurgeryJinan Military General Hospital, Jinan, Shan-Dong Province, China
| | - Sheng-Li Hu
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University, Chongqing, China
| | - Rong Hu
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University, Chongqing, China
| | - Nan Wu
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhi Chen
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University, Chongqing, China
| | - Hui Meng
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiang-Kai Lin
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University, Chongqing, China
| | - Hua Feng
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
34
|
Hall R. Identification of Inflammatory Mediators and Their Modulation by Strategies for the Management of the Systemic Inflammatory Response During Cardiac Surgery. J Cardiothorac Vasc Anesth 2013; 27:983-1033. [DOI: 10.1053/j.jvca.2012.09.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Indexed: 12/21/2022]
|
35
|
Thom SR, Bhopale VM, Milovanova TN, Yang M, Bogush M, Buerk DG. Nitric-oxide synthase-2 linkage to focal adhesion kinase in neutrophils influences enzyme activity and β2 integrin function. J Biol Chem 2013; 288:4810-8. [PMID: 23297409 DOI: 10.1074/jbc.m112.426353] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This investigation was to elucidate the basis for augmentation of nitric-oxide synthesis in neutrophils exposed to hyperbaric oxygen. Hyperoxia increases synthesis of reactive species leading to S-nitrosylation of β-actin, which causes temporary inhibition of β(2) integrin adherence. Impaired β(2) integrin function and actin S-nitrosylation do not occur in neutrophils from mice lacking type-2 nitric-oxide synthase (iNOS) or when incubated with 1400W, an iNOS inhibitor. Similarly, effects of hyperoxia were abrogated in cells depleted of focal adhesion kinase (FAK) by treatment with small inhibitory RNA and those exposed to a specific FAK inhibitor concurrent with hyperoxia. Nitric oxide production doubles within 10 min exposure to hyperoxia but declines to approximately half-maximum production over an additional 10 min. Elevated nitric oxide production did not occur after FAK depletion or inhibition, or when filamentous actin formation was inhibited by cytochalasin D. Intracellular content of iNOS triples over the course of a 45-min exposure to hyperoxia and iNOS dimers increase in a commensurate fashion. Confocal microscopy and immunoprecipitation demonstrated that co-localization/linkage of FAK, iNOS, and filamentous actin increased within 15 min exposure to hyperoxia but then decreased below the control level. Using isolated enzymes in ex vivo preparations an association between iNOS and filamentous actin mediated by FAK could be demonstrated and complex formation was impeded when actin was S-nitrosylated. We conclude that iNOS activity is increased by an FAK-mediated association with actin filaments but peak nitric oxide production is transient due to actin S-nitrosylation during exposure to hyperoxia.
Collapse
Affiliation(s)
- Stephen R Thom
- Department of Emergency Medicine, University of Pennsylvania Medical Center and School of Biomedical Engineering, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Fuller AM, Giardina C, Hightower LE, Perdrizet GA, Tierney CA. Hyperbaric oxygen preconditioning protects skin from UV-A damage. Cell Stress Chaperones 2013; 18:97-107. [PMID: 22855227 PMCID: PMC3508122 DOI: 10.1007/s12192-012-0362-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 12/11/2022] Open
Abstract
Hyperbaric oxygen therapy (HBOT) is used for a number of applications, including the treatment of diabetic foot ulcers and CO poisoning. However, we and others have shown that HBOT can mobilize cellular antioxidant defenses, suggesting that it may also be useful under circumstances in which tissue protection from oxidative damage is desired. To test the protective properties of hyperbaric oxygen (HBO) on a tissue level, we evaluated the ability of a preconditioning treatment regimen to protect cutaneous tissue from UV-A-induced oxidative damage. Three groups of hairless SKH1-E mice were exposed to UV-A 3 days per week for 22 weeks, with two of these groups receiving an HBO pretreatment either two or four times per week. UV-A exposure increased apoptosis and proliferation of the skin tissue, indicating elevated levels of epithelial damage and repair. Pretreatment with HBO significantly reduced UV-A-induced apoptosis and proliferation. A morphometric analysis of microscopic tissue folds also showed a significant increase in skin creasing following UV-A exposure, which was prevented by HBO pretreatment. Likewise, skin elasticity was found to be greatest in the group treated with HBO four times per week. The effects of HBO were also apparent systemically as reductions in caspase-3 activity and expression were observed in the liver. Our findings support a protective function of HBO pretreatment from a direct oxidative challenge of UV-A to skin tissue. Similar protection of other tissues may likewise be achievable.
Collapse
Affiliation(s)
- Ashley M. Fuller
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, U3125, Storrs, CT 06269 USA
| | - Charles Giardina
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, U3125, Storrs, CT 06269 USA
| | - Lawrence E. Hightower
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, U3125, Storrs, CT 06269 USA
| | - George A. Perdrizet
- Wound Recovery and Hyperbaric Medicine Center, Kent Hospital, Warwick, RI 02886 USA
| | - Cassandra A. Tierney
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, U3125, Storrs, CT 06269 USA
| |
Collapse
|
37
|
Griessenauer CJ, Shoja MM, Loukas M, Tubbs RS. The value of hyperbaric oxygen therapy in postoperative care of subarachnoid hemorrhage. Med Gas Res 2012; 2:29. [PMID: 23241440 PMCID: PMC3531260 DOI: 10.1186/2045-9912-2-29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/13/2012] [Indexed: 11/23/2022] Open
Abstract
In this editorial, the issues related to the hyperbaric oxygen therapy and its utility in managing cerebral vasospasm in patients with subarachnoid hemorrhage is discussed.
Collapse
Affiliation(s)
- Christoph J Griessenauer
- Division of Neurosurgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | | | | |
Collapse
|
38
|
Le Guillou V, Tamion F, Jouet I, Richard V, Mulder P, Bessou JP, Doguet F. Mesenteric endothelial dysfunction in a cardiopulmonary bypass rat model: the effect of diabetes. Diab Vasc Dis Res 2012; 9:270-9. [PMID: 22278737 DOI: 10.1177/1479164111434432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Diabetes is a risk factor for perioperative complications after cardiac surgery. We studied its effects on mesenteric endothelial function in a cardiopulmonary bypass (CPB) model. METHODS Forty Wistar rats were divided into four groups: sham (D-CPB-), cardiopulmonary bypass (D-CPB+), diabetic (D+CPB-) and diabetic that have undergone CPB (D+CPB+). Two samples of mesenteric artery were used for nitric oxide synthase (NOS) Western blot analysis, and two others for assessing contractile response and endothelium relaxations. Nitrite products and tumour necrosis factor-alpha (TNF-α) were assessed as markers of inflammatory response. RESULTS We observed an enhanced contractile response to the α-adrenergic agonist associated with impairment of mesenteric vasorelaxation in D+CPB+ rats. Western immunoblot analysis of D+CPB+ highlighted an additive effect of hyper-expression of inducible NOS. A significantly increased inflammatory response was observed after CPB in diabetic animals. CONCLUSIONS This work confirms the potential deleterious impact of diabetes on the mesenteric endothelium during CPB in cardiac surgery.
Collapse
Affiliation(s)
- Vincent Le Guillou
- Department of Thoracic and Cardiovascular Surgery, Rouen University Hospital, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Taylor L, Midgley AW, Sandstrom ME, Chrismas B, McNaughton LR. The effect of the hyperbaric environment on heat shock protein 72 expression in vivo. Res Sports Med 2012; 20:142-53. [PMID: 22458830 DOI: 10.1080/15438627.2012.660830] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Heat shock protein 72 (HSP72) is expressed in response to stress and has been demonstrated to follow a diurnal expression pattern within monocytes and is sensitive to changes in core temperature. Numerous studies have shown changes in HSP72 expression within cell lines exposed to hyperbaric conditions. No studies have investigated changes in HSP72 expression in vivo. Six males participated in the study and were exposed to hyperbaric air and hyperbaric oxygen a week apart. Monocyte HSP72 was analyzed by flow cytometry at 09:00, 13:00, 17:00, 21:00 with hyperbaric oxygen or hyperbaric air breathing commencing at 15:00 for 78 min at a pressure of 2.8 ATA. HSP72 under normoxia followed the established trend; however, following the hyperbaric air or oxygen exposure a reduction in detectable HSP72 was observed at 17:00 and 21:00. No changes in core temperature were observed between 13:00 and 21:00 for any condition. The data show that HSP72 expression is impaired following hyperbaric air (HA) exposure, when compared with control or hyperbaric oxygen (HO) exposure.
Collapse
Affiliation(s)
- Lee Taylor
- Muscle Cellular and Molecular Physiology-MCMP & Applied Sport and Exercise Science-ASEP Research Groups, Institute of Sport and Physical Activity Research-ISPAR, Department of Sport and Exercise Sciences, University of Bedfordshire, Bedford, United Kingdom.
| | | | | | | | | |
Collapse
|
40
|
Thom SR, Bhopale VM, Milovanova TN, Yang M, Bogush M. Thioredoxin reductase linked to cytoskeleton by focal adhesion kinase reverses actin S-nitrosylation and restores neutrophil β(2) integrin function. J Biol Chem 2012; 287:30346-57. [PMID: 22778269 DOI: 10.1074/jbc.m112.355875] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The investigation goal was to identify mechanisms for reversal of actin S-nitrosylation in neutrophils after exposure to high oxygen partial pressures. Prior work has shown that hyperoxia causes S-nitrosylated actin (SNO-actin) formation, which mediates β(2) integrin dysfunction, and these changes can be reversed by formylmethionylleucylphenylalanine or 8-bromo-cyclic GMP. Herein we show that thioredoxin reductase (TrxR) is responsible for actin denitrosylation. Approximately 80% of cellular TrxR is localized to the cytosol, divided between the G-actin and short filamentous actin (sF-actin) fractions based on Triton solubility of cell lysates. TrxR linkage to sF-actin requires focal adhesion kinase (FAK) based on immunoprecipitation studies. S-Nitrosylation accelerates actin filament turnover (by mechanisms described previously (Thom, S. R., Bhopale, V. M., Yang, M., Bogush, M., Huang, S., and Milovanova, T. (2011) Neutrophil β(2) integrin inhibition by enhanced interactions of vasodilator stimulated phosphoprotein with S-nitrosylated actin. J. Biol. Chem. 286, 32854-32865), which causes FAK to disassociate from sF-actin. TrxR subsequently dissociates from FAK, and the physical separation from actin impedes denitrosylation. If SNO-actin is photochemically reduced with UV light or if actin filament turnover is impeded by incubations with cytochalasin D, latrunculin B, 8-bromo-cGMP, or formylmethionylleucylphenylalanine, FAK and TrxR reassociate with sF-actin and cause SNO-actin removal. FAK-TrxR association can also be demonstrated using isolated enzymes in ex vivo preparations. Uniquely, the FAK kinase domain is the site of TrxR linkage. We conclude that through its scaffold function, FAK influences TrxR activity and actin S-nitrosylation.
Collapse
Affiliation(s)
- Stephen R Thom
- Institute for Environmental Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
41
|
Kuffler DP. Hyperbaric oxygen therapy: can it prevent irradiation-induced necrosis? Exp Neurol 2012; 235:517-27. [PMID: 22465460 DOI: 10.1016/j.expneurol.2012.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/27/2012] [Accepted: 03/17/2012] [Indexed: 10/28/2022]
Abstract
Radiosurgery is an important non-invasive procedure for the treatment of tumors and vascular malformations. However, in addition to killing target tissues, cranial irradiation induces damage to adjacent healthy tissues leading to neurological deterioration in both pediatric and adult patients, which is poorly understood and insufficiently treatable. To minimize irradiation damage to healthy tissue, not the optimal therapeutic irradiation dose required to eliminate the target lesion is used but lower doses. Although the success rate of irradiation surgery is about 95%, 5% of patients suffer problems, most commonly neurological, that are thought to be a direct consequence of irradiation-induced inflammation. Although no direct correlation has been demonstrated, the appearance and disappearance of inflammation that develops following irradiation commonly parallel the appearance and disappearance of neurological side effects that are associated with the neurological function of the irradiated brain regions. These observations have led to the hypothesis that brain inflammation is causally related to the observed neurological side effects. Studies indicate that hyperbaric oxygen therapy (HBOT) applied after the appearance of irradiation-induced neurological side effects reduces the incidence and severity of those side effects. This may result from HBOT reducing inflammation, promoting angiogenesis, and influencing other cellular functions thereby suppressing events that cause the neurological side effects. However, it would be significantly better for the patient if rather than waiting for neurological side effects to become manifest they could be avoided. This review examines irradiation-induced neurological side effects, methods that minimize or resolve those side effects, and concludes with a discussion of whether HBOT applied following irradiation, but before manifestation of neurological side effects may prevent or reduce the appearance of irradiation-induced neurological side effects.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, Puerto Rico.
| |
Collapse
|
42
|
Li Y, Dong H, Chen M, Liu J, Yang L, Chen S, Xiong L. Preconditioning with repeated hyperbaric oxygen induces myocardial and cerebral protection in patients undergoing coronary artery bypass graft surgery: a prospective, randomized, controlled clinical trial. J Cardiothorac Vasc Anesth 2011; 25:908-16. [PMID: 21868252 DOI: 10.1053/j.jvca.2011.06.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Indexed: 11/11/2022]
Abstract
OBJECTIVES To evaluate the cerebral and myocardial protective effects of hyperbaric oxygen preconditioning in both on-pump and off-pump coronary artery bypass graft surgery. DESIGN A prospective, randomized, single-blinded study including patients scheduled for elective on-pump or off-pump surgery between December 2007 and February 2009. SETTING A tertiary care university teaching hospital. PARTICIPANTS Forty-nine elective on-pump or off-pump coronary artery bypass graft surgery patients. INTERVENTIONS Patients were randomized to either the control (15 patients with on-pump procedure and 10 patients with off-pump procedure, respectively) or hyperbaric oxygen (HBO; 14 patients with on-pump procedure and 10 patients with off-pump procedure, respectively) groups. Patients in the HBO groups underwent preconditioning for 5 days before surgery. MEASUREMENTS AND MAIN RESULTS On-pump coronary artery bypass graft surgery patients preconditioned with HBO had significant decreases in S100B protein, neuron-specific enolase, and troponin I perioperative serum levels compared with the on-pump control group. Postsurgically, patients in the on-pump HBO group had a reduced length of stay in the intensive care unit and a decreased use of inotropic drugs. Serum catalase activity 24 hours postoperatively was significantly increased compared with the on-pump control group. In the off-pump groups, there was no difference in any of the same parameters. CONCLUSIONS Preconditioning with HBO resulted in both cerebral and cardiac protective effects as determined by biochemical markers of neuronal and myocardial injury and clinical outcomes in patients undergoing on-pump coronary artery bypass graft surgery. No protective effects were noted in off-pump coronary artery bypass graft surgery.
Collapse
Affiliation(s)
- Yang Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Ostrowski RP, Lo T, Zhang JH. The pacific chapter annual meeting of the undersea & hyperbaric medical society. Med Gas Res 2011; 1:19. [PMID: 22146426 PMCID: PMC3231977 DOI: 10.1186/2045-9912-1-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 08/04/2011] [Indexed: 12/02/2022] Open
Abstract
The following is the summary report on the UHMS Pacific Chapter Annual Meeting held in Long Beach in October 2010. The conference provided the latest updates on scientific, technical and organizational aspects of Hyperbaric and Diving Medicine. Invited speakers gave series of lectures dealing with current standards of clinical practice and presenting the results of laboratory investigations with particular emphasis on mechanisms of hyperbaric oxygen therapy. Scientific sessions were accompanied by vendor exhibits and social events.
Collapse
Affiliation(s)
- Robert P Ostrowski
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | | | | |
Collapse
|
44
|
Thom SR, Bhopale VM, Yang M, Bogush M, Huang S, Milovanova TN. Neutrophil beta2 integrin inhibition by enhanced interactions of vasodilator-stimulated phosphoprotein with S-nitrosylated actin. J Biol Chem 2011; 286:32854-65. [PMID: 21795685 DOI: 10.1074/jbc.m111.255778] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Production of reactive species in neutrophils exposed to hyperoxia causes S-nitrosylation of β-actin, which increases formation of short actin filaments, leading to alterations in the cytoskeletal network that inhibit β(2) integrin-dependent adherence (Thom, S. R., Bhopale, V. M., Mancini, D. J., and Milovanova, T. N. (2008) J. Biol. Chem. 283, 10822-10834). In this study, we found that vasodilator-stimulated protein (VASP) exhibits high affinity for S-nitrosylated short filamentous actin, which increases actin polymerization. VASP bundles Rac1, Rac2, cyclic AMP-dependent, and cyclic GMP-dependent protein kinases in close proximity to short actin filaments, and subsequent Rac activation increases actin free barbed end formation. Using specific chemical inhibitors or reducing cell concentrations of any of these proteins with small inhibitory RNA abrogates enhanced free barbed end formation, increased actin polymerization, and β(2) integrin inhibition by hyperoxia. Alternatively, incubating neutrophils with formylmethionylleucylphenylalanine or 8-bromo-cyclic GMP activates either cyclic AMP-dependent or cyclic GMP-dependent protein kinase, respectively, outside of the short F-actin pool and phosphorylates VASP on serine 153. Phosphorylated VASP abrogates the augmented polymerization normally observed with S-nitrosylated actin, VASP binding to actin, elevated Rac activity, and elevated formation of actin free barbed ends, thus restoring normal β(2) integrin function.
Collapse
Affiliation(s)
- Stephen R Thom
- Institute for Environmental Medicine, Department of Emergency Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Vince RV, Midgley AW, Laden G, Madden LA. The effect of hyperbaric oxygen preconditioning on heat shock protein 72 expression following in vitro stress in human monocytes. Cell Stress Chaperones 2011; 16:339-43. [PMID: 21132545 PMCID: PMC3077228 DOI: 10.1007/s12192-010-0246-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022] Open
Abstract
Hyperbaric oxygen (HBO) is thought to confer protection to cells via a cellular response to free radicals. This process may involve increased expression of heat shock proteins, in particular the highly inducible heat shock protein 72 (Hsp72). Healthy male volunteers (n = 16) were subjected to HBO for 1 h at 2.8 ATA. Inducible Hsp72 expression was measured by flow cytometry pre-, post- and 4 h-post HBO. Peripheral blood mononuclear cells (PBMC) were isolated from whole blood via density centrifugation pre-, post- and 4 h post-HBO. PBMC were then subjected to an in vitro heat shock at 40°C or hypoxia at 37°C (5% O(2)) with a control at 37°C. Cells were then analysed for Hsp72 expression by flow cytometry. Monocytes showed no significant changes in Hsp72 expression following HBO. No detectable Hsp72 was seen in lymphocytes or neutrophils. Following in vitro hypoxic exposure, a significant increase in Hsp72 expression was observed in monocytes isolated immediately post- (p = 0.006) and 4 h post-HBO (p = 0.010) in comparison to control values. HBO does not induce Hsp72 expression in PBMC. The reported benefits of HBO in terms of pre-conditioning are not due to inducement of Hsp72 expression in circulating blood cells, but may involve an enhancement of the stress response.
Collapse
Affiliation(s)
- Rebecca V. Vince
- Department of Sport, Health and Exercise Science, University of Hull, Hull, HU6 7RX UK
| | - Adrian W. Midgley
- Department of Sport, Health and Exercise Science, University of Hull, Hull, HU6 7RX UK
| | - Gerard Laden
- Hull Hyperbaric Unit, Hull and East Riding Hospital, Anlaby, HU10 7AZ UK
| | - Leigh A. Madden
- Postgraduate Medical Institute, University of Hull, Room 003, Hardy Building, Hull, HU6 7RX UK
| |
Collapse
|
46
|
Abstract
BACKGROUND This article outlines therapeutic mechanisms of hyperbaric oxygen therapy and reviews data on its efficacy for clinical problems seen by plastic and reconstructive surgeons. METHODS The information in this review was obtained from the peer-reviewed medical literature. RESULTS Principal mechanisms of hyperbaric oxygen are based on intracellular generation of reactive species of oxygen and nitrogen. Reactive species are recognized to play a central role in cell signal transduction cascades, and the discussion will focus on these pathways. Systematic reviews and randomized clinical trials support clinical use of hyperbaric oxygen for refractory diabetic wound-healing and radiation injuries; treatment of compromised flaps and grafts and ischemia-reperfusion disorders is supported by animal studies and a small number of clinical trials, but further studies are warranted. CONCLUSIONS Clinical and mechanistic data support use of hyperbaric oxygen for a variety of disorders. Further work is needed to clarify clinical utility for some disorders and to hone patient selection criteria to improve cost efficacy.
Collapse
Affiliation(s)
- Stephen R Thom
- Philadelphia, Pa. From the Institute for Environmental Medicine and Department of Emergency Medicine, University of Pennsylvania Medical Center
| |
Collapse
|
47
|
Madden LA, Vince RV, Laden G. The effect of acute hyperoxia in vivo on NF kappa B expression in human PBMC. Cell Biochem Funct 2010; 29:71-3. [PMID: 21264893 DOI: 10.1002/cbf.1712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/23/2010] [Accepted: 10/28/2010] [Indexed: 01/24/2023]
Abstract
The mechanisms of hyperbaric oxygen (HBO) therapy have not been fully elucidated. It is presumed that breathing 100% oxygen at pressure generates free radicals and the cellular response to these may confer protection. A crucial signalling molecule, nuclear transcription factor kappa B (NFκB), translocates from the cytoplasm to the nucleus and activates a raft of pathways in response to various stimuli, and plays a role in inflammatory processes. This study focussed upon the expression of NFκB in isolated human peripheral blood mononuclear cells (PBMC) following HBO. Ten healthy male volunteers underwent a single HBO treatment, breathing 100% oxygen at a pressure of 2.8 ATA for 1 h. EDTA blood samples were taken pre-, post- and 4-h post-HBO. PBMC were isolated, nuclear extracts prepared and assayed using a NFkBp50 transcription factor ELISA. Mean NFκB expression of 0.27 (0.20-0.34, 95%CI) absorbance units (mg protein)(-1) was observed pre-HBO and this increased to 0.29 (0.20-0.38, 95%CI) immediately post-HBO. A significant increase in NFκB expression within PBMC was observed 4-h post-HBO, in comparison to pre-HBO (mean 0.38, 0.30-0.47, 95%CI, p = 0.027). This study demonstrates that HBO induces NFκB activation in human PBMC, which could be a crucial step in the mechanism of HBO treatment.
Collapse
Affiliation(s)
- Leigh A Madden
- Postgraduate Medical Institute, The University of Hull, Hull, UK.
| | | | | |
Collapse
|
48
|
Eovaldi B, Zanetti C. Hyperbaric oxygen ameliorates worsening signs and symptoms of post-traumatic stress disorder. Neuropsychiatr Dis Treat 2010; 6:785-9. [PMID: 21212826 PMCID: PMC3012456 DOI: 10.2147/ndt.s16071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Hyperbaric oxygen therapy at 2.4 atmospheric pressure absolutes for 90 minutes per day ameliorated the signs and symptoms of agitation, confusion, and emotional distress in a 27-year-old male seven days following a traumatic accident. Hyperbaric oxygen was used to treat the patient's crush injury and underlying nondisplaced pelvic fractures which were sustained in a bicycle versus automobile traffic accident. Its effect on the patient's neuropsychiatric symptoms was surprising and obvious immediately following the initial hyperbaric oxygen treatment. Complete cognitive and psychiatric recovery was achieved by the seventh and final hyperbaric oxygen treatment. We propose that hyperbaric oxygen was effective in improving the patient's neuropsychiatric symptoms by reducing cerebral oxidative stress, inflammation, vasogenic edema, and hippocampal neuronal apoptosis. Further investigation into the use of hyperbaric oxygen as a novel therapy for the secondary prevention of post-traumatic stress disorder that often accompanies post-concussive syndrome may be warranted. We acknowledge that hyperbaric oxygen therapy has been shown to have a strong placebo effect on neurologic and psychiatric diseases.
Collapse
Affiliation(s)
- Benjamin Eovaldi
- Department of Medicine, Chicago College of Osteopathic Medicine, Chicago, IL, USA.
| | | |
Collapse
|
49
|
Godman CA, Chheda KP, Hightower LE, Perdrizet G, Shin DG, Giardina C. Hyperbaric oxygen induces a cytoprotective and angiogenic response in human microvascular endothelial cells. Cell Stress Chaperones 2010; 15:431-42. [PMID: 19949909 PMCID: PMC3082642 DOI: 10.1007/s12192-009-0159-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/02/2009] [Accepted: 11/04/2009] [Indexed: 11/29/2022] Open
Abstract
A genome-wide microarray analysis of gene expression was carried out on human microvascular endothelial cells (HMEC-1) exposed to hyperbaric oxygen treatment (HBOT) under conditions that approximated clinical settings. Highly up-regulated genes included immediate early transcription factors (FOS, FOSB, and JUNB) and metallothioneins. Six molecular chaperones were also up-regulated immediately following HBOT, and all of these have been implicated in protein damage control. Pathway analysis programs identified the Nrf-2-mediated oxidative stress response as one of the primary responders to HBOT. Several of the microarray changes in the Nrf2 pathway and a molecular chaperone were validated using quantitative PCR. For all of the genes tested (Nrf2, HMOX1, HSPA1A, M1A, ACTC1, and FOS), HBOT elicited large responses, whereas changes were minimal following treatment with 100% O(2) in the absence of elevated pressure. The increased expression of immediate early and cytoprotective genes corresponded with an HBOT-induced increase in cell proliferation and oxidative stress resistance. In addition, HBOT treatment enhanced endothelial tube formation on Matrigel plates, with particularly dramatic effects observed following two daily HBO treatments. Understanding how HBOT influences gene expression changes in endothelial cells may be beneficial for improving current HBOT-based wound-healing protocols. These data also point to other potential HBOT applications where stimulating protection and repair of the endothelium would be beneficial, such as patient preconditioning prior to major surgery.
Collapse
Affiliation(s)
- Cassandra A Godman
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Godman CA, Joshi R, Giardina C, Perdrizet G, Hightower LE. Hyperbaric oxygen treatment induces antioxidant gene expression. Ann N Y Acad Sci 2010; 1197:178-83. [PMID: 20536847 DOI: 10.1111/j.1749-6632.2009.05393.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although the underlying molecular causes of aging are not entirely clear, hormetic agents like exercise, heat, and calorie restriction may generate a mild pro-oxidant stress that induces cell protective responses to promote healthy aging. As an individual ages, many cellular and physiological processes decline, including wound healing and reparative angiogenesis. This is particularly critical in patients with chronic non-healing wounds who tend to be older. We are interested in the potential beneficial effects of hyperbaric oxygen as a mild hormetic stress on human microvascular endothelial cells. We analyzed global gene expression changes in human endothelial cells following a hyperbaric exposure comparable to a clinical treatment. Our analysis revealed an upregulation of antioxidant, cytoprotective, and immediate early genes. This increase coincided with an increased resistance to a lethal oxidative stress. Our data indicate that hyperbaric oxygen can induce protection against oxidative insults in endothelial cells and may provide an easily administered hormetic treatment to help promote healthy aging.
Collapse
Affiliation(s)
- Cassandra A Godman
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | | | | | | | | |
Collapse
|