1
|
Liu KC, Chen YC, Hsieh CF, Wang MH, Zhong MX, Cheng NC. Scaffold-free 3D culture systems for stem cell-based tissue regeneration. APL Bioeng 2024; 8:041501. [PMID: 39364211 PMCID: PMC11446583 DOI: 10.1063/5.0225807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
Recent advances in scaffold-free three-dimensional (3D) culture methods have significantly enhanced the potential of stem cell-based therapies in regenerative medicine. This cutting-edge technology circumvents the use of exogenous biomaterial and prevents its associated complications. The 3D culture system preserves crucial intercellular interactions and extracellular matrix support, closely mimicking natural biological niches. Therefore, stem cells cultured in 3D formats exhibit distinct characteristics, showcasing their capabilities in promoting angiogenesis and immunomodulation. This review aims to elucidate foundational technologies and recent breakthroughs in 3D scaffold-free stem cell engineering, offering comprehensive guidance for researchers to advance this technology across various clinical applications. We first introduce the various sources of stem cells and provide a comparative analysis of two-dimensional (2D) and 3D culture systems. Given the advantages of 3D culture systems, we delve into the specific fabrication and harvesting techniques for cell sheets and spheroids. Furthermore, we explore their applications in pre-clinical studies, particularly in large animal models and clinical trials. We also discuss multidisciplinary strategies to overcome existing limitations such as insufficient efficacy, hostile microenvironments, and the need for scalability and standardization of stem cell-based products.
Collapse
Affiliation(s)
- Ke-Chun Liu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Yueh-Chen Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Chi-Fen Hsieh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Mu-Hui Wang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Meng-Xun Zhong
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Nai-Chen Cheng
- Author to whom correspondence should be addressed:. Tel.: 886 2 23123456 ext 265919. Fax: 886 2 23934358
| |
Collapse
|
2
|
Rayat Pisheh H, Nojabaei FS, Darvishi A, Rayat Pisheh A, Sani M. Cardiac tissue engineering: an emerging approach to the treatment of heart failure. Front Bioeng Biotechnol 2024; 12:1441933. [PMID: 39211011 PMCID: PMC11357970 DOI: 10.3389/fbioe.2024.1441933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Heart failure is a major health problem in which the heart is unable to pump enough blood to meet the body's needs. It is a progressive disease that becomes more severe over time and can be caused by a variety of factors, including heart attack, cardiomyopathy and heart valve disease. There are various methods to cure this disease, which has many complications and risks. The advancement of knowledge and technology has proposed new methods for many diseases. One of the promising new treatments for heart failure is tissue engineering. Tissue engineering is a field of research that aims to create living tissues and organs to replace damaged or diseased tissue. The goal of tissue engineering in heart failure is to improve cardiac function and reduce the need for heart transplantation. This can be done using the three important principles of cells, biomaterials and signals to improve function or replace heart tissue. The techniques for using cells and biomaterials such as electrospinning, hydrogel synthesis, decellularization, etc. are diverse. Treating heart failure through tissue engineering is still under development and research, but it is hoped that there will be no transplants or invasive surgeries in the near future. In this study, based on the most important research in recent years, we will examine the power of tissue engineering in the treatment of heart failure.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sadat Nojabaei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ahmad Darvishi
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rayat Pisheh
- Department of Biology, Payam Noor University (PUN), Shiraz, Iran
| | - Mahsa Sani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Liu T, Hao Y, Zhang Z, Zhou H, Peng S, Zhang D, Li K, Chen Y, Chen M. Advanced Cardiac Patches for the Treatment of Myocardial Infarction. Circulation 2024; 149:2002-2020. [PMID: 38885303 PMCID: PMC11191561 DOI: 10.1161/circulationaha.123.067097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Myocardial infarction is a cardiovascular disease characterized by a high incidence rate and mortality. It leads to various cardiac pathophysiological changes, including ischemia/reperfusion injury, inflammation, fibrosis, and ventricular remodeling, which ultimately result in heart failure and pose a significant threat to global health. Although clinical reperfusion therapies and conventional pharmacological interventions improve emergency survival rates and short-term prognoses, they are still limited in providing long-lasting improvements in cardiac function or reversing pathological progression. Recently, cardiac patches have gained considerable attention as a promising therapy for myocardial infarction. These patches consist of scaffolds or loaded therapeutic agents that provide mechanical reinforcement, synchronous electrical conduction, and localized delivery within the infarct zone to promote cardiac restoration. This review elucidates the pathophysiological progression from myocardial infarction to heart failure, highlighting therapeutic targets and various cardiac patches. The review considers the primary scaffold materials, including synthetic, natural, and conductive materials, and the prevalent fabrication techniques and optimal properties of the patch, as well as advanced delivery strategies. Last, the current limitations and prospects of cardiac patch research are considered, with the goal of shedding light on innovative products poised for clinical application.
Collapse
Affiliation(s)
- Tailuo Liu
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Ying Hao
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Zixuan Zhang
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, PR China (Z.Z.)
| | - Hao Zhou
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Shiqin Peng
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Dingyi Zhang
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Yuwen Chen
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Mao Chen
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
4
|
Taylor A, Xu J, Rogozinski N, Fu H, Molina Cortez L, McMahan S, Perez K, Chang Y, Pan Z, Yang H, Liao J, Hong Y. Reduced Graphene-Oxide-Doped Elastic Biodegradable Polyurethane Fibers for Cardiomyocyte Maturation. ACS Biomater Sci Eng 2024; 10:3759-3774. [PMID: 38800901 DOI: 10.1021/acsbiomaterials.3c01908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Conductive biomaterials offer promising solutions to enhance the maturity of cultured cardiomyocytes. While the conventional culture of cardiomyocytes on nonconductive materials leads to more immature characteristics, conductive microenvironments have the potential to support sarcomere development, gap junction formation, and beating of cardiomyocytes in vitro. In this study, we systematically investigated the behaviors of cardiomyocytes on aligned electrospun fibrous membranes composed of elastic and biodegradable polyurethane (PU) doped with varying concentrations of reduced graphene oxide (rGO). Compared to PU and PU-4%rGO membranes, the PU-10%rGO membrane exhibited the highest conductivity, approaching levels close to those of native heart tissue. The PU-rGO membranes retained anisotropic viscoelastic behavior similar to that of the porcine left ventricle and a superior tensile strength. Neonatal rat cardiomyocytes (NRCMs) and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on the PU-rGO membranes displayed enhanced maturation with cell alignment and enhanced sarcomere structure and gap junction formation with PU-10%rGO having the most improved sarcomere structure and CX-43 presence. hiPSC-CMs on the PU-rGO membranes exhibited a uniform and synchronous beating pattern compared with that on PU membranes. Overall, PU-10%rGO exhibited the best performance for cardiomyocyte maturation. The conductive PU-rGO membranes provide a promising matrix for in vitro cardiomyocyte culture with promoted cell maturation/functionality and the potential for cardiac disease treatment.
Collapse
Affiliation(s)
- Alan Taylor
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Jiazhu Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Nicholas Rogozinski
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Huikang Fu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Lia Molina Cortez
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Sara McMahan
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Karla Perez
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yan Chang
- Department of Graduate Nursing, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Zui Pan
- Department of Graduate Nursing, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
5
|
Navarro-Perez J, Carobbio S. Adipose tissue-derived stem cells, in vivo and in vitro models for metabolic diseases. Biochem Pharmacol 2024; 222:116108. [PMID: 38438053 DOI: 10.1016/j.bcp.2024.116108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The primary role of adipose tissue stem cells (ADSCs) is to support the function and homeostasis of adipose tissue in physiological and pathophysiological conditions. However, when ADSCs become dysfunctional in diseases such as obesity and cancer, they become impaired, undergo signalling changes, and their epigenome is altered, which can have a dramatic effect on human health. In more recent years, the therapeutic potential of ADSCs in regenerative medicine, wound healing, and for treating conditions such as cancer and metabolic diseases has been extensively investigated with very promising results. ADSCs have also been used to generate two-dimensional (2D) and three-dimensional (3D) cellular and in vivo models to study adipose tissue biology and function as well as intracellular communication. Characterising the biology and function of ADSCs, how it is altered in health and disease, and its therapeutic potential and uses in cellular models is key for designing intervention strategies for complex metabolic diseases and cancer.
Collapse
|
6
|
Zheng H, Haroon K, Liu M, Hu X, Xu Q, Tang Y, Wang Y, Yang GY, Zhang Z. Monomeric CXCL12-Engineered Adipose-Derived Stem Cells Transplantation for the Treatment of Ischemic Stroke. Int J Mol Sci 2024; 25:792. [PMID: 38255866 PMCID: PMC10815250 DOI: 10.3390/ijms25020792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/06/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Adipose-derived stem cells (ASCs) possess therapeutic potential for ischemic brain injury, and the chemokine CXCL12 has been shown to enhance their functional properties. However, the cumulative effects of ASCs when combined with various structures of CXCL12 on ischemic stroke and its underlying molecular mechanisms remain unclear. In this study, we genetically engineered mouse adipose-derived ASCs with CXCL12 variants and transplanted them to the infarct region in a mice transient middle cerebral artery occlusion (tMCAO) model of stroke. We subsequently compared the post-ischemic stroke efficacy of ASC-mCXCL12 with ASC-dCXCL12, ASC-wtCXCL12, and unmodified ASCs. Neurobehavior recovery was assessed using modified neurological severity scores, the hanging wire test, and the elevated body swing test. Changes at the tissue level were evaluated through cresyl violet and immunofluorescent staining, while molecular level alterations were examined via Western blot and real-time PCR. The results of the modified neurological severity score and cresyl violet staining indicated that both ASC-mCXCL12 and ASC-dCXCL12 treatment enhanced neurobehavioral recovery and mitigated brain atrophy at the third and fifth weeks post-tMCAO. Additionally, we observed that ASC-mCXCL12 and ASC-dCXCL12 promoted angiogenesis and neurogenesis, accompanied by an increased expression of bFGF and VEGF in the peri-infarct area of the brain. Notably, in the third week after tMCAO, the ASC-mCXCL12 exhibited superior outcomes compared to ASC-dCXCL12. However, when treated with the CXCR4 antagonist AMD3100, the beneficial effects of ASC-mCXCL12 were reversed. The AMD3100-treated group demonstrated worsened neurological function, aggravated edema volume, and brain atrophy. This outcome is likely attributed to the interaction of monomeric CXCL12 with CXCR4, which regulates the recruitment of bFGF and VEGF. This study introduces an innovative approach to enhance the therapeutic potential of ASCs in treating ischemic stroke by genetically engineering them with the monomeric structure of CXCL12.
Collapse
Affiliation(s)
- Haoran Zheng
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (H.Z.); (K.H.); (M.L.); (X.H.); (Y.T.); (Y.W.)
| | - Khan Haroon
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (H.Z.); (K.H.); (M.L.); (X.H.); (Y.T.); (Y.W.)
| | - Mengdi Liu
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (H.Z.); (K.H.); (M.L.); (X.H.); (Y.T.); (Y.W.)
| | - Xiaowen Hu
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (H.Z.); (K.H.); (M.L.); (X.H.); (Y.T.); (Y.W.)
| | - Qun Xu
- Health Management Center, Department of Neurology, Renji Hospital of Medical School of Shanghai Jiao Tong University, Shanghai 200127, China;
| | - Yaohui Tang
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (H.Z.); (K.H.); (M.L.); (X.H.); (Y.T.); (Y.W.)
| | - Yongting Wang
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (H.Z.); (K.H.); (M.L.); (X.H.); (Y.T.); (Y.W.)
| | - Guo-Yuan Yang
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (H.Z.); (K.H.); (M.L.); (X.H.); (Y.T.); (Y.W.)
| | - Zhijun Zhang
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (H.Z.); (K.H.); (M.L.); (X.H.); (Y.T.); (Y.W.)
| |
Collapse
|
7
|
Zhang J, Li J, Qu X, Liu Y, Harada A, Hua Y, Yoshida N, Ishida M, Tabata A, Sun L, Liu L, Miyagawa S. Development of a thick and functional human adipose-derived stem cell tissue sheet for myocardial infarction repair in rat hearts. Stem Cell Res Ther 2023; 14:380. [PMID: 38124195 PMCID: PMC10734106 DOI: 10.1186/s13287-023-03560-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Heart failure (HF) is a major cause of death worldwide. The most effective treatment for HF is heart transplantation, but its use is limited by the scarcity of donor hearts. Recently, stem cell-based therapy has emerged as a promising approach for treating myocardial infarction. Our research group has been investigating the use of human induced pluripotent stem cell-derived cardiomyocyte patches as a potential therapeutic candidate. We have successfully conducted eight cases of clinical trials and demonstrated the safety and effectiveness of this approach. However, further advancements are necessary to overcome immune rejection and enhance therapeutic efficacy. In this study, we propose a novel and efficient technique for constructing mesenchymal stem cell (MSC) tissue sheets, which can be transplanted effectively for treating myocardial infarction repair. METHODS We applied a one-step method to construct the human adipose-derived mesenchymal stem cell (hADSC) tissue sheet on a poly(lactic-co-glycolic acid) fiber scaffold. Histology, immunofluorescence, and paracrine profile assessment were used to determine the organization and function of the hADSC tissue sheet. Echocardiography and pathological analyses of heart sections were performed to evaluate cardiac function, fibrosis area, angiogenesis, and left ventricular remodeling. RESULTS In vitro, the hADSC tissue sheet showed great organization, abundant ECM expression, and increased paracrine secretion than single cells. In vivo, the hADSC tissue sheet group demonstrated improved cardiac functional recovery, less ventricular remodeling, decreased fibrosis, and enhanced angiogenesis than the MI group. CONCLUSIONS We developed thick and functional hADSC tissue sheets via the one-step strategy. The hADSC tissue sheet showed excellent performance in treating myocardial infarction in the rat model.
Collapse
Affiliation(s)
- Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Frontier of Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Xiang Qu
- Frontier of Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yuting Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Ying Hua
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Noriko Yoshida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Masako Ishida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Akiko Tabata
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Lifu Sun
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Frontier of Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Vetter VC, Bouten CVC, van der Pol A. Hydrogels for Cardiac Restorative Support: Relevance of Gelation Mechanisms for Prospective Clinical Use. Curr Heart Fail Rep 2023; 20:519-529. [PMID: 37812347 PMCID: PMC10746579 DOI: 10.1007/s11897-023-00630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE OF REVIEW Cardiac tissue regenerative strategies have gained much traction over the years, in particular those utilizing hydrogels. With our review, and with special focus on supporting post-myocardial infarcted tissue, we aim to provide insights in determining crucial design considerations of a hydrogel and the implications these could have for future clinical use. RECENT FINDINGS To date, two hydrogel delivery strategies are being explored, cardiac injection or patch, to treat myocardial infarction. Recent advances have demonstrated that the mechanism by which a hydrogel is gelated (i.e., physically or chemically cross-linked) not only impacts the biocompatibility, mechanical properties, and chemical structure, but also the route of delivery of the hydrogel and thus its effect on cardiac repair. With regard to cardiac regeneration, various hydrogels have been developed with the ability to function as a delivery system for therapeutic strategies (e.g., drug and stem cells treatments), as well as a scaffold to guide cardiac tissue regeneration following myocardial infarction. However, these developments remain within the experimental and pre-clinical realm and have yet to transition towards the clinical setting.
Collapse
Affiliation(s)
- Valentine C Vetter
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Atze van der Pol
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
9
|
Hu D, Li X, Li J, Tong P, Li Z, Lin G, Sun Y, Wang J. The preclinical and clinical progress of cell sheet engineering in regenerative medicine. Stem Cell Res Ther 2023; 14:112. [PMID: 37106373 PMCID: PMC10136407 DOI: 10.1186/s13287-023-03340-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Cell therapy is an accessible method for curing damaged organs or tissues. Yet, this approach is limited by the delivery efficiency of cell suspension injection. Over recent years, biological scaffolds have emerged as carriers of delivering therapeutic cells to the target sites. Although they can be regarded as revolutionary research output and promote the development of tissue engineering, the defect of biological scaffolds in repairing cell-dense tissues is apparent. Cell sheet engineering (CSE) is a novel technique that supports enzyme-free cell detachment in the shape of a sheet-like structure. Compared with the traditional method of enzymatic digestion, products harvested by this technique retain extracellular matrix (ECM) secreted by cells as well as cell-matrix and intercellular junctions established during in vitro culture. Herein, we discussed the current status and recent progress of CSE in basic research and clinical application by reviewing relevant articles that have been published, hoping to provide a reference for the development of CSE in the field of stem cells and regenerative medicine.
Collapse
Affiliation(s)
- Danping Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- HANGZHOU CHEXMED TECHNOLOGY CO., LTD, Hangzhou, 310000, China
| | - Xinyu Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Jie Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Pei Tong
- Hospital of Hunan Guangxiu, Medical College of Hunan Normal University, Hunan Normal University, Changsha, 410008, China
| | - Zhe Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China.
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China.
| | - Juan Wang
- Shanghai Biomass Pharmaceutical Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 200437, China.
| |
Collapse
|
10
|
Gil-Cabrerizo P, Scaccheti I, Garbayo E, Blanco-Prieto MJ. Cardiac tissue engineering for myocardial infarction treatment. Eur J Pharm Sci 2023; 185:106439. [PMID: 37003408 DOI: 10.1016/j.ejps.2023.106439] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Myocardial infarction is one of the major causes of morbidity and mortality worldwide. Current treatments can relieve the symptoms of myocardial ischemia but cannot repair the necrotic myocardial tissue. Novel therapeutic strategies based on cellular therapy, extracellular vesicles, non-coding RNAs and growth factors have been designed to restore cardiac function while inducing cardiomyocyte cycle re-entry, ensuring angiogenesis and cardioprotection, and preventing ventricular remodeling. However, they face low stability, cell engraftment issues or enzymatic degradation in vivo, and it is thus essential to combine them with biomaterial-based delivery systems. Microcarriers, nanocarriers, cardiac patches and injectable hydrogels have yielded promising results in preclinical studies, some of which are currently being tested in clinical trials. In this review, we cover the recent advances made in cellular and acellular therapies used for cardiac repair after MI. We present current trends in cardiac tissue engineering related to the use of microcarriers, nanocarriers, cardiac patches and injectable hydrogels as biomaterial-based delivery systems for biologics. Finally, we discuss some of the most crucial aspects that should be addressed in order to advance towards the clinical translation of cardiac tissue engineering approaches.
Collapse
Affiliation(s)
- Paula Gil-Cabrerizo
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, C/Irunlarrea 1, E-31080, Spain.; Navarra Institute for Health Research, IdiSNA, Pamplona, C/Irunlarrea 3, E-31008 Pamplona, Spain
| | - Ilaria Scaccheti
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, C/Irunlarrea 1, E-31080, Spain
| | - Elisa Garbayo
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, C/Irunlarrea 1, E-31080, Spain.; Navarra Institute for Health Research, IdiSNA, Pamplona, C/Irunlarrea 3, E-31008 Pamplona, Spain..
| | - María J Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, C/Irunlarrea 1, E-31080, Spain.; Navarra Institute for Health Research, IdiSNA, Pamplona, C/Irunlarrea 3, E-31008 Pamplona, Spain..
| |
Collapse
|
11
|
Scafa Udriște A, Niculescu AG, Iliuță L, Bajeu T, Georgescu A, Grumezescu AM, Bădilă E. Progress in Biomaterials for Cardiac Tissue Engineering and Regeneration. Polymers (Basel) 2023; 15:polym15051177. [PMID: 36904419 PMCID: PMC10007484 DOI: 10.3390/polym15051177] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cardiovascular diseases are one of the leading global causes of morbidity and mortality, posing considerable health and economic burden on patients and medical systems worldwide. This phenomenon is attributed to two main motives: poor regeneration capacity of adult cardiac tissues and insufficient therapeutic options. Thus, the context calls for upgrading treatments to deliver better outcomes. In this respect, recent research has approached the topic from an interdisciplinary perspective. Combining the advances encountered in chemistry, biology, material science, medicine, and nanotechnology, performant biomaterial-based structures have been created to carry different cells and bioactive molecules for repairing and restoring heart tissues. In this regard, this paper aims to present the advantages of biomaterial-based approaches for cardiac tissue engineering and regeneration, focusing on four main strategies: cardiac patches, injectable hydrogels, extracellular vesicles, and scaffolds and reviewing the most recent developments in these fields.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Luminița Iliuță
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Teodor Bajeu
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Adriana Georgescu
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Correspondence:
| | - Elisabeta Bădilă
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cardiology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
12
|
Kimura M, Nakase J, Takata Y, Shimozaki K, Asai K, Yoshimizu R, Kanayama T, Yanatori Y, Tsuchiya H. Regeneration Using Adipose-Derived Stem Cell Sheets in a Rabbit Meniscal Defect Model Improves Tensile Strength and Load Distribution Function of the Meniscus at 12 Weeks. Arthroscopy 2023; 39:360-370. [PMID: 35995333 DOI: 10.1016/j.arthro.2022.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the mechanical properties, such as the tensile strength and load distribution function, of the meniscus tissue regenerated using adipose-derived stem cell (ADSC) sheets in a rabbit meniscal defect model. METHODS ADSC sheets were prepared from adipose tissue of rabbits. The anterior half of the medial meniscus was removed from both knees. One knee was transplanted with an ADSC sheet; the contralateral knee was closed without transplantation. Mechanical tests were performed at 4 and 12 weeks posttransplantation. In the tensile test, tensile force was applied to the entire medial meniscus, including the normal area (n = 10/group). Compression tests were performed on the entire knee, with soft tissues other than the ligament removed. A pressure-sensitive film was inserted under the medial meniscus and a 40-N load was applied (n = 5/group). RESULTS In the tensile test, the elastic modulus in ADSC-treated knees was higher at 12 weeks (ADSC: 70.30 ± 18.50 MPa, control: 43.71 ± 7.11 MPa, P = .009). The ultimate tensile strength (UTS) in ADSC-treated knees at 12 weeks was also higher (ADSC: 22.69 ± 5.87 N, control: 15.45 ± 4.08 N, P = .038). In the compression test, the contact area was larger in the ADSC group at 4 weeks (ADSC: 31.60 ± 8.17 mm2, control: 20.33 ± 2.86 mm2, P = .024) and 12 weeks (ADSC: 41.07 ± 6.09 mm2, control: 30.53 ± 5.47 mm2, P = .04). Peak pressure was significantly lower in ADSC-treated knees at 12 weeks (ADSC: 11.91 ± 1.03 MPa, control: 15.53 ± 2.3 MPa, P = .002). CONCLUSIONS The regenerated meniscus tissue, 12 weeks after transplantation of the ADSC sheets into the meniscal defect area, had high elastic modulus and UTS. In the meniscus-tibia compartment, the contact area was large and the peak pressure was low. CLINICAL RELEVANCE ADSC sheets promoted regeneration of meniscus. ADSC sheet transplantation for meniscal defects could be an effective regenerative therapy.
Collapse
Affiliation(s)
- Mitsuhiro Kimura
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Junsuke Nakase
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Yasushi Takata
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kengo Shimozaki
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kazuki Asai
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Rikuto Yoshimizu
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tomoyuki Kanayama
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yusuke Yanatori
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
13
|
Zhang D, Wang Y, Liu L, Li Z, Yang S, Zhao W, Wang X, Liao H, Zhou S. Establishment and evaluation of ectopic and orthotopic prostate cancer models using cell sheet technology. Lab Invest 2022; 20:381. [PMID: 36038939 PMCID: PMC9422158 DOI: 10.1186/s12967-022-03575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/04/2022] [Indexed: 08/30/2023]
Abstract
Background The traditional prostate cancer (PCa) model is established by injecting cell suspension and is associated with a low tumor formation rate. Cell sheet technology is one of the advancements in tissue engineering for 3D cell-based therapy. In this study, we established ectopic and orthotopic PCa models by cell sheet technology, and then compared the efficiency of tumor formation with cell suspension injection. Methods DU145 cells were seeded on 35 mm temperature-sensitive dishes to form PCa cell sheets, while the cell suspension with the same cell density was prepared. After transplanting into the nude mice, the tumor volumes were measured every 3 days and the tumor growth curves were conducted. At the time points of 2 weeks and 4 weeks after the transplantation, magnetic resonance imaging (MRI) was used to evaluate the transplanting site and distant metastasis. Finally, the mice were sacrificed, and the related tissues were harvested for the further histological evaluation. Results The orthotopic tumor formation rate of the cell sheet injection group was obviously better than that in cell suspension injection group (100% vs 67%). Compared with cell suspension injection, the tumors of DU145 cell sheet fragments injection had the higher density of micro-vessels, more collagen deposition, and lower apoptosis rate. There was no evidence of metastasis in forelimb, lung and liver was found by MRI and histological tests. Conclusion We successfully cultured the DU145 cell sheet and can be used to establish ectopic and orthotopic PCa tumor-bearing models, which provide an application potential for preclinical drug development, drug-resistance mechanisms and patient individualized therapy.
Collapse
Affiliation(s)
- Dongliang Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Lei Liu
- Department of Urology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Zeng Li
- Department of Urology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Shengke Yang
- Department of Urology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Liao
- Department of Urology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Shukui Zhou
- Department of Urology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
14
|
Dwyer KD, Coulombe KL. Cardiac mechanostructure: Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction. Bioact Mater 2021; 6:2198-2220. [PMID: 33553810 PMCID: PMC7822956 DOI: 10.1016/j.bioactmat.2020.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
The mechanical environment and anisotropic structure of the heart modulate cardiac function at the cellular, tissue and organ levels. During myocardial infarction (MI) and subsequent healing, however, this landscape changes significantly. In order to engineer cardiac biomaterials with the appropriate properties to enhance function after MI, the changes in the myocardium induced by MI must be clearly identified. In this review, we focus on the mechanical and structural properties of the healthy and infarcted myocardium in order to gain insight about the environment in which biomaterial-based cardiac therapies are expected to perform and the functional deficiencies caused by MI that the therapy must address. From this understanding, we discuss epicardial therapies for MI inspired by the mechanics and anisotropy of the heart focusing on passive devices, which feature a biomaterials approach, and active devices, which feature robotic and cellular components. Through this review, a detailed analysis is provided in order to inspire further development and translation of epicardial therapies for MI.
Collapse
Affiliation(s)
- Kiera D. Dwyer
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kareen L.K. Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
15
|
Hassanpour M, Fathi Karkan S, Rahbarghazi R, Nouri M, Amini H, Saghati S, Baradar Khoshfetrat A. Culture of rabbit bone marrow mesenchymal stem cells on polyurethane/pyrrole surface promoted differentiation into endothelial lineage. Artif Organs 2021; 45:E324-E334. [PMID: 33908072 DOI: 10.1111/aor.13971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/22/2022]
Abstract
Due to the electrical conductivity, pyrrole-based scaffolds are one of the attractive biomaterials in the regeneration of electrically active tissues like the heart and brain. Here, we investigated the impact of polyurethane/pyrrole scaffold on the angiogenesis differentiation of rabbit mesenchymal stem cells toward endothelial lineage in vitro. Nanoelectrospun polyurethane/pyrrole fibers were synthesized and characterized using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectrum analysis, scanning electron microscope (SEM) imaging. Mechanical properties, electroconductivity, and hydrophobicity were also measured. The viability of cells was monitored 72 hours after being plated on the polyurethane/pyrrole surface. The endothelial differentiation of stem cells was explored using western blotting. ATR-FTIR revealed that the pyrrole was successfully polymerized to polypyrrole and blend with polyurethane fibers. The addition of pyrrole to polyurethane increased the tensile strength compared to the polyurethane group. These features coincided with the reduction of the hydrophilic properties of polyurethane. Based on our data, the electro-conductivity of polyurethane/pyrrole was superior compared to the polyurethane group. SEM imaging showed an appropriate cell attachment to the surface of polyurethane/pyrrole and polyurethane groups synthesized membranes. MTT assay revealed a significantly increased survival rate in the polyurethane/pyrrole group compared to the polyurethane group (P < .05). We noted a statistically significant increase of endothelial-associated proteins, CD31, von Willebrand factor, and CD34, in cells expanded on polyurethane/pyrrole compared to the polyurethane group (P < .05). As a more general note, it could be hypothesized that the polyurethane/pyrrole blend could improve the angiogenesis potency of rabbit bone marrow mesenchymal stem cells for regenerative purposes.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi Karkan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
16
|
Ghodrat S, Hoseini SJ, Asadpour S, Nazarnezhad S, Alizadeh Eghtedar F, Kargozar S. Stem cell-based therapies for cardiac diseases: The critical role of angiogenic exosomes. Biofactors 2021; 47:270-291. [PMID: 33606893 DOI: 10.1002/biof.1717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022]
Abstract
Finding effective treatments for cardiac diseases is among the hottest subjects in medicine; cell-based therapies have brought great promises for managing a broad range of life-threatening heart complications such as myocardial infarction. After clarifying the critical role of angiogenesis in tissue repair and regeneration, various stem/progenitor cell were utilized to accelerate the healing of injured cardiac tissue. Embryonic, fetal, adult, and induced pluripotent stem cells have shown the appropriate proangiogenic potential for tissue repair strategies. The capability of stem cells for differentiating into endothelial lineages was initially introduced as the primary mechanism involved in improving angiogenesis and accelerated heart tissue repair. However, recent studies have demonstrated the leading role of paracrine factors secreted by stem cells in advancing neo-vessel formation. Genetically modified stem cells are also being applied for promoting angiogenesis regarding their ability to considerably overexpress and secrete angiogenic bioactive molecules. Yet, conducting further research seems necessary to precisely identify molecular mechanisms behind the proangiogenic potential of stem cells, including the signaling pathways and regulatory molecules such as microRNAs. In conclusion, stem cells' pivotal roles in promoting angiogenesis and consequent improved cardiac healing and remodeling processes should not be ignored, especially in the case of stem cell-derived extracellular vesicles.
Collapse
Affiliation(s)
- Sara Ghodrat
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Alizadeh Eghtedar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Nosrati H, Alizadeh Z, Nosrati A, Ashrafi-Dehkordi K, Banitalebi-Dehkordi M, Sanami S, Khodaei M. Stem cell-based therapeutic strategies for corneal epithelium regeneration. Tissue Cell 2020; 68:101470. [PMID: 33248403 DOI: 10.1016/j.tice.2020.101470] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Any significant loss of vision or blindness caused by corneal damages is referred to as corneal blindness. Corneal blindness is the fourth most common cause of blindness worldwide, representing more than 5% of the total blind population. Currently, corneal transplantation is used to treat many corneal diseases. In some cases, implantation of artificial cornea (keratoprosthesis) is suggested after a patient has had a donor corneal transplant failure. The shortage of donors and the side effects of keratoprosthesis are limiting these approaches. Recently, researchers have been actively pursuing new approaches for corneal regeneration because of these limitations. Nowadays, tissue engineering of different corneal layers (epithelium, stroma, endothelium, or full thickness tissue) is a promising approach that has attracted a great deal of interest from researchers and focuses on regenerative strategies using different cell sources and biomaterials. Various sources of corneal and non-corneal stem cells have shown significant advantages for corneal epithelium regeneration applications. Pluripotent stem cells (embryonic stem cells and iPS cells), epithelial stem cells (derived from oral mucus, amniotic membrane, epidermis and hair follicle), mesenchymal stem cells (bone marrow, adipose-derived, amniotic membrane, placenta, umbilical cord), and neural crest origin stem cells (dental pulp stem cells) are the most promising sources in this regard. These cells could also be used in combination with natural or synthetic scaffolds to improve the efficacy of the therapeutic approach. As the ocular surface is exposed to external damage, the number of studies on regeneration of the corneal epithelium is rising. In this paper, we reviewed the stem cell-based strategies for corneal epithelium regeneration.
Collapse
Affiliation(s)
- Hamed Nosrati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Zohreh Alizadeh
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Nosrati
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Korosh Ashrafi-Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehdi Banitalebi-Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Sanami
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Khodaei
- Department of Materials Science and Engineering, Golpayegan University of Technology, Golpayegan, Iran
| |
Collapse
|
18
|
Nguyen-Truong M, Li YV, Wang Z. Mechanical Considerations of Electrospun Scaffolds for Myocardial Tissue and Regenerative Engineering. Bioengineering (Basel) 2020; 7:E122. [PMID: 33022929 PMCID: PMC7711753 DOI: 10.3390/bioengineering7040122] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Biomaterials to facilitate the restoration of cardiac tissue is of emerging importance. While there are many aspects to consider in the design of biomaterials, mechanical properties can be of particular importance in this dynamically remodeling tissue. This review focuses on one specific processing method, electrospinning, that is employed to generate materials with a fibrous microstructure that can be combined with material properties to achieve the desired mechanical behavior. Current methods used to fabricate mechanically relevant micro-/nanofibrous scaffolds, in vivo studies using these scaffolds as therapeutics, and common techniques to characterize the mechanical properties of the scaffolds are covered. We also discuss the discrepancies in the reported elastic modulus for physiological and pathological myocardium in the literature, as well as the emerging area of in vitro mechanobiology studies to investigate the mechanical regulation in cardiac tissue engineering. Lastly, future perspectives and recommendations are offered in order to enhance the understanding of cardiac mechanobiology and foster therapeutic development in myocardial regenerative medicine.
Collapse
Affiliation(s)
- Michael Nguyen-Truong
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; (M.N.-T.); (Y.V.L.)
| | - Yan Vivian Li
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; (M.N.-T.); (Y.V.L.)
- Department of Design and Merchandising, Colorado State University, Fort Collins, CO 80523, USA
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA
| | - Zhijie Wang
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; (M.N.-T.); (Y.V.L.)
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
19
|
Commentary: Cardinal virtues of multifarious hydrogel implant in cardiac resurrection. J Thorac Cardiovasc Surg 2020; 163:e274-e276. [PMID: 32711977 DOI: 10.1016/j.jtcvs.2020.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 11/23/2022]
|
20
|
Commentary: A multilayered stem cell sandwich? J Thorac Cardiovasc Surg 2020; 163:e273-e274. [PMID: 32534756 DOI: 10.1016/j.jtcvs.2020.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 11/21/2022]
|