1
|
Ehrler M, Speckert A, Kretschmar O, Tuura O'Gorman R, Latal B, Jakab A. The cumulative impact of clinical risk on brain networks and associations with executive function impairments in adolescents with congenital heart disease. Hum Brain Mapp 2024; 45:e70028. [PMID: 39377685 PMCID: PMC11459682 DOI: 10.1002/hbm.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
Patients with congenital heart disease (CHD) demonstrate altered structural brain network connectivity. However, there is large variability between reported results and little information is available to identify those patients at highest risk for brain alterations. Thus, we aimed to investigate if network connectivity measures were associated with the individual patient's cumulative load of clinical risk factors and with family-environmental factors in a cohort of adolescents with CHD. Further, we investigated associations with executive function impairments. In 53 adolescents with CHD who underwent open-heart surgery during infancy, and 75 healthy controls, diffusion magnetic resonance imaging and neuropsychological assessment was conducted at a mean age of 13.2 ± 1.3 years. Structural connectomes were constructed using constrained spherical deconvolution tractography. Graph theory and network-based statistics were applied to investigate network connectivity measures. A cumulative clinical risk (CCR) score was built by summing up binary risk factors (neonatal, cardiac, neurologic) based on clinically relevant thresholds. The role of family-environmental factors (parental education, parental mental health, and family function) was investigated. An age-adjusted executive function summary score was built from nine neuropsychological tests. While network integration and segregation were preserved in adolescents with CHD, they showed lower edge strength in a dense subnetwork. A higher CCR score was associated with lower network segregation, edge strength, and executive function performance. Edge strength was particularly reduced in a subnetwork including inter-frontal and fronto-parietal-thalamic connections. There was no association with family-environmental factors. Poorer executive functioning was associated with lower network integration and segregation. We demonstrated evidence for alterations of network connectivity strength in adolescents with CHD - particularly in those patients who face a cumulative exposure to multiple clinical risk factors over time. Quantifying the cumulative load of risk early in life may help to better predict trajectories of brain development in order to identify and support the most vulnerable patients as early as possible.
Collapse
Affiliation(s)
- Melanie Ehrler
- Child Development CenterUniversity Children's Hospital ZurichZurichSwitzerland
- Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD)University of ZurichZurichSwitzerland
| | - Anna Speckert
- Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD)University of ZurichZurichSwitzerland
- Center for MR ResearchUniversity Children's Hospital ZurichZurichSwitzerland
| | - Oliver Kretschmar
- Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
- Pediatric Cardiology, Pediatric Heart Center, Department of SurgeryUniversity Children's Hospital ZurichZurichSwitzerland
| | - Ruth Tuura O'Gorman
- Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
- Center for MR ResearchUniversity Children's Hospital ZurichZurichSwitzerland
| | - Beatrice Latal
- Child Development CenterUniversity Children's Hospital ZurichZurichSwitzerland
- Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD)University of ZurichZurichSwitzerland
| | - Andras Jakab
- Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD)University of ZurichZurichSwitzerland
- Center for MR ResearchUniversity Children's Hospital ZurichZurichSwitzerland
| |
Collapse
|
2
|
Selvanathan T, Guo T, Ufkes S, Chau V, Branson HM, Synnes AR, Ly LG, Kelly E, Grunau RE, Miller SP. Change in Volumes and Location of Preterm White Matter Injury over a Period of 15 Years. J Pediatr 2024; 272:114090. [PMID: 38754774 DOI: 10.1016/j.jpeds.2024.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE To evaluate whether white matter injury (WMI) volumes and spatial distribution, which are important predictors of neurodevelopmental outcomes in preterm infants, have changed over a period of 15 years. STUDY DESIGN Five hundred and twenty-eight infants born <32 weeks' gestational age from 2 sequential prospective cohorts (cohort 1: 2006 through 2012; cohort 2: 2014 through 2019) underwent early-life (median 32.7 weeks postmenstrual age) and/or term-equivalent-age MRI (median 40.7 weeks postmenstrual age). WMI were manually segmented for quantification of volumes. There were 152 infants with WMI with 74 infants in cohort 1 and 78 in cohort 2. Multivariable linear regression models examined change in WMI volume across cohorts while adjusting for clinical confounders. Lesion maps assessed change in WMI location across cohorts. RESULTS There was a decrease in WMI volume in cohort 2 compared with cohort 1 (β = -0.6, 95% CI [-0.8, -0.3], P < .001) with a shift from more central to posterior location of WMI. There was a decrease in clinical illness severity of infants across cohorts. CONCLUSIONS We found a decrease in WMI volume and shift to more posterior location in very preterm infants over a period of 15 years. This may potentially reflect more advanced maturation of white matter at the time of injury which may be related to changes in clinical practice over time.
Collapse
Affiliation(s)
- Thiviya Selvanathan
- Pediatrics, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada; Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Ting Guo
- Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada; Neuroscience & Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
| | - Steven Ufkes
- Pediatrics, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
| | - Vann Chau
- Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada; Neuroscience & Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
| | - Helen M Branson
- Diagnostic Imaging, The Hospital for Sick Children and Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Anne R Synnes
- Pediatrics, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
| | - Linh G Ly
- Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Edmond Kelly
- Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada; Pediatrics, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ruth E Grunau
- Pediatrics, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven P Miller
- Pediatrics, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada; Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada; Neuroscience & Mental Health, SickKids Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Robertson CMT, Khademioureh S, Dinu IA, Sorenson JA, Joffe AR. Differences in gross motor and fine motor outcomes for toddlers after early complex cardiac surgery. Cardiol Young 2024; 34:1653-1661. [PMID: 38606603 DOI: 10.1017/s1047951124000428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
OBJECTIVES To determine whether gross motor scores of toddlers after complex cardiac surgery were different from fine motor scores and were adequately represented by motor composite scores and, whether acute care predictors and chronic childhood health markers of gross motor scores differed from those of fine motor. METHODS This prospective inception-cohort outcomes study included 171 toddlers after complex cardiac surgery with cardiopulmonary bypass at age <6 months, born in Northern Alberta from 2009 to 2019, and without known chromosomal abnormalities. At a mean (standard deviation) age of 21.7 (3.7) months, the Bayley Scales of Infant and Toddler Development-III determined motor composite and scaled scores (normative values, 100 (15), 10 (3), respectively). The same variables from surgery and assessment were analysed using multivariate regression to predict gross and fine motor scores; results expressed as effect size (95% confidence interval) with % variance. RESULTS Composite, fine, and gross motor scores were 89.7 (14.2), 9.4 (2.5), and 7.2 (2.7), respectively. Predictive variables accounted for 21.2% of the variance for fine motor, and 36.9% for gross motor. Multivariate analysis for gross motor scores included toddlers need for cardiac medication, effect size (95% confidence interval) -0.801 (-1.62, -0.02), gastrostomy, -1.35 (-2.39, -0.319), and single ventricle, -0.93 (-1.71, -0.15). These same variables did not predict fine motor scores. CONCLUSION Gross motor skills commonly were lower than fine motor skills for toddlers after complex cardiac surgery. Predictors for gross motor scores differed from fine motor scores. Separate reporting of gross motor scores could lead to improved identification of predictors of delay and to optimised early intervention.
Collapse
Affiliation(s)
- Charlene M T Robertson
- Department of Pediatrics, Division of Developmental Pediatrics, University of Alberta, Edmonton, AB, Canada
- Developmental Pediatrics, Glenrose Rehabilitation Hospital, Edmonton, AB, Canada
| | - Sara Khademioureh
- Biostatistics, School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Irina A Dinu
- Biostatistics, School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Julie A Sorenson
- Department of Physical Therapy, Glenrose Rehabilitation Hospital, Edmonton, AB, Canada
| | - Ari R Joffe
- Pediatric Intensive Care, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Cromb D, Uus A, Van Poppel MP, Steinweg JK, Bonthrone AF, Maggioni A, Cawley P, Egloff A, Kyriakopolous V, Matthew J, Price A, Pushparajah K, Simpson J, Razavi R, DePrez M, Edwards D, Hajnal J, Rutherford M, Lloyd DF, Counsell SJ. Total and Regional Brain Volumes in Fetuses With Congenital Heart Disease. J Magn Reson Imaging 2024; 60:497-509. [PMID: 37846811 PMCID: PMC7616254 DOI: 10.1002/jmri.29078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is common and is associated with impaired early brain development and neurodevelopmental outcomes, yet the exact mechanisms underlying these associations are unclear. PURPOSE To utilize MRI data from a cohort of fetuses with CHD as well as typically developing fetuses to test the hypothesis that expected cerebral substrate delivery is associated with total and regional fetal brain volumes. STUDY TYPE Retrospective case-control study. POPULATION Three hundred eighty fetuses (188 male), comprising 45 healthy controls and 335 with isolated CHD, scanned between 29 and 37 weeks gestation. Fetuses with CHD were assigned into one of four groups based on expected cerebral substrate delivery. FIELD STRENGTH/SEQUENCE T2-weighted single-shot fast-spin-echo sequences and a balanced steady-state free precession gradient echo sequence were obtained on a 1.5 T scanner. ASSESSMENT Images were motion-corrected and reconstructed using an automated slice-to-volume registration reconstruction technique, before undergoing segmentation using an automated pipeline and convolutional neural network that had undergone semi-supervised training. Differences in total, regional brain (cortical gray matter, white matter, deep gray matter, cerebellum, and brainstem) and brain:body volumes were compared between groups. STATISTICAL TESTS ANOVA was used to test for differences in brain volumes between groups, after accounting for sex and gestational age at scan. PFDR-values <0.05 were considered statistically significant. RESULTS Total and regional brain volumes were smaller in fetuses where cerebral substrate delivery is reduced. No significant differences were observed in total or regional brain volumes between control fetuses and fetuses with CHD but normal cerebral substrate delivery (all PFDR > 0.12). Severely reduced cerebral substrate delivery is associated with lower brain:body volume ratios. DATA CONCLUSION Total and regional brain volumes are smaller in fetuses with CHD where there is a reduction in cerebral substrate delivery, but not in those where cerebral substrate delivery is expected to be normal. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Alena Uus
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Milou P.M. Van Poppel
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Science, King’s College London, London, UK
- Paediatric and Fetal Cardiology Department, Evelina London Children’s Hospital, London, UK
| | - Johannes K. Steinweg
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Science, King’s College London, London, UK
- Paediatric and Fetal Cardiology Department, Evelina London Children’s Hospital, London, UK
| | - Alexandra F. Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Alessandra Maggioni
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Paul Cawley
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Alexia Egloff
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Vanessa Kyriakopolous
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Jacqueline Matthew
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Anthony Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Kuberan Pushparajah
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Science, King’s College London, London, UK
- Paediatric and Fetal Cardiology Department, Evelina London Children’s Hospital, London, UK
| | - John Simpson
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Science, King’s College London, London, UK
- Paediatric and Fetal Cardiology Department, Evelina London Children’s Hospital, London, UK
| | - Reza Razavi
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Maria DePrez
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Jo Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Mary Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - David F.A. Lloyd
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Science, King’s College London, London, UK
- Paediatric and Fetal Cardiology Department, Evelina London Children’s Hospital, London, UK
| | - Serena J. Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
5
|
Stancioi-Cismaru AF, Dinu M, Carp-Veliscu A, Capitanescu RG, Pana RC, Sirbu OC, Tanase F, Dita FG, Popa MA, Robu MR, Gheonea M, Tudorache S. Live-Birth Incidence of Isolated D-Transposition of Great Arteries-The Shift in Trends Due to Early Diagnosis. Diagnostics (Basel) 2024; 14:1185. [PMID: 38893711 PMCID: PMC11171914 DOI: 10.3390/diagnostics14111185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
This is a single tertiary population-based study conducted at a center in southwest Romania. We retrospectively compared data obtained in two periods: January 2008-December 2013 and January 2018-December 2023. The global incidence of the transposition of great arteries in terminated cases, in addition to those resulting in live-born pregnancies, remained almost constant. The live-birth incidence decreased. The median gestational age at diagnosis decreased from 29.3 gestational weeks (mean 25.4) to 13.4 weeks (mean 17.2). The second trimester and the overall detection rate in the prenatal period did not significantly change, but the increase was statistically significant in the first trimester. The proportion of terminated pregnancies in fetuses diagnosed with the transposition of great arteries significantly increased (14.28% to 75%, p = 0.019).
Collapse
Affiliation(s)
- Andreea Florentina Stancioi-Cismaru
- Obstetrics and Gynecology Department, Dragasani City Hospital, 245700 Dragasani, Romania;
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Marina Dinu
- 8th Department, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.G.C.); (O.C.S.); (M.G.)
| | - Andreea Carp-Veliscu
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Panait Sirbu Clinical Hospital of Obstetrics and Gynecology, 060251 Bucharest, Romania
| | - Razvan Grigoras Capitanescu
- 8th Department, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.G.C.); (O.C.S.); (M.G.)
- Obstetrics and Gynecology Department, Emergency University County Hospital, 200349 Craiova, Romania; (R.C.P.); (F.T.); (M.A.P.); (M.R.R.)
| | - Razvan Cosmin Pana
- Obstetrics and Gynecology Department, Emergency University County Hospital, 200349 Craiova, Romania; (R.C.P.); (F.T.); (M.A.P.); (M.R.R.)
| | - Ovidiu Costinel Sirbu
- 8th Department, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.G.C.); (O.C.S.); (M.G.)
- Obstetrics and Gynecology Department, Emergency University County Hospital, 200349 Craiova, Romania; (R.C.P.); (F.T.); (M.A.P.); (M.R.R.)
| | - Florentina Tanase
- Obstetrics and Gynecology Department, Emergency University County Hospital, 200349 Craiova, Romania; (R.C.P.); (F.T.); (M.A.P.); (M.R.R.)
| | - Florentina Gratiela Dita
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Obstetrics and Gynecology Department, Emergency University County Hospital, 200349 Craiova, Romania; (R.C.P.); (F.T.); (M.A.P.); (M.R.R.)
| | - Maria Adelina Popa
- Obstetrics and Gynecology Department, Emergency University County Hospital, 200349 Craiova, Romania; (R.C.P.); (F.T.); (M.A.P.); (M.R.R.)
| | - Mihai Robert Robu
- Obstetrics and Gynecology Department, Emergency University County Hospital, 200349 Craiova, Romania; (R.C.P.); (F.T.); (M.A.P.); (M.R.R.)
| | - Mihaela Gheonea
- 8th Department, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.G.C.); (O.C.S.); (M.G.)
- Obstetrics and Gynecology Department, Emergency University County Hospital, 200349 Craiova, Romania; (R.C.P.); (F.T.); (M.A.P.); (M.R.R.)
| | - Stefania Tudorache
- 8th Department, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.G.C.); (O.C.S.); (M.G.)
- Obstetrics and Gynecology Department, Emergency University County Hospital, 200349 Craiova, Romania; (R.C.P.); (F.T.); (M.A.P.); (M.R.R.)
| |
Collapse
|
6
|
Juergensen S, Liu J, Xu D, Zhao Y, Moon-Grady AJ, Glenn O, McQuillen P, Peyvandi S. Fetal circulatory physiology and brain development in complex congenital heart disease: A multi-modal imaging study. Prenat Diagn 2024; 44:856-864. [PMID: 37817395 PMCID: PMC11004088 DOI: 10.1002/pd.6450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE Fetuses with complex congenital heart disease have altered physiology, contributing to abnormal neurodevelopment. The effects of altered physiology on brain development have not been well studied. We used multi-modal imaging to study fetal circulatory physiology and brain development in hypoplastic left heart syndrome (HLHS) and d-transposition of the great arteries (TGA). METHODS This prospective, cross-sectional study investigated individuals with fetal congenital heart disease and controls undergoing fetal echocardiography and fetal brain MRI. MRI measured total brain volume and cerebral oxygenation by the MRI quantification method T2*. Indexed cardiac outputs (CCOi) and vascular impedances were calculated by fetal echocardiography. Descriptive statistics assessed MRI and echocardiogram measurement relationships by physiology. RESULTS Sixty-six participants enrolled (control = 20; HLHS = 25; TGA = 21), mean gestational age 33.8 weeks (95% CI: 33.3-34.2). Total brain volume and T2* were significantly lower in fetuses with cardiac disease. CCOi was lower in HLHS, correlating with total brain volume - for every 10% CCOi increase, volume increased 8 mm3 (95% CI: 1.78-14.1; p = 0.012). Echocardiography parameters and cerebral oxygenation showed no correlation. TGA showed no CCOi or aortic output correlation with MRI measures. CONCLUSIONS In HLHS, lower cardiac output is deleterious to brain development. Our findings provide insight into the role of fetal cardiovascular physiology in brain health.
Collapse
Affiliation(s)
- Stephan Juergensen
- Department of Pediatrics, Division of Pediatric Cardiology, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York, USA
- Department of Pediatrics, Division of Pediatric Cardiology, University of California San Francisco, San Francisco, California, USA
| | - Jing Liu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Yili Zhao
- Department of Pediatrics, Division of Pediatric Cardiology, University of California San Francisco, San Francisco, California, USA
| | - Anita J Moon-Grady
- Department of Pediatrics, Division of Pediatric Cardiology, University of California San Francisco, San Francisco, California, USA
| | - Orit Glenn
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Patrick McQuillen
- Department of Pediatrics, Division of Critical Care, University of California San Francisco, San Francisco, California, USA
| | - Shabnam Peyvandi
- Department of Pediatrics, Division of Pediatric Cardiology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Mercer-Rosa L, Favilla E. Neurodevelopment in patients with repaired tetralogy of Fallot. Front Pediatr 2024; 12:1137131. [PMID: 38737635 PMCID: PMC11082288 DOI: 10.3389/fped.2024.1137131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/14/2024] [Indexed: 05/14/2024] Open
Abstract
Neurodevelopmental sequelae are prevalent and debilitating for patients with congenital heart defects. Patients born with tetralogy of Fallot (TOF) are susceptible for abnormal neurodevelopment as they have several risk factors surrounding the perinatal and perioperative period. Some risk factors have been well described in other forms of congenital heart defects, including transposition of the great arteries and single ventricle heart disease, but they have been less studied in the growing population of survivors of TOF surgery, particularly in infancy and childhood. Adolescents with TOF, even without a genetic syndrome, exhibit neuro-cognitive deficits in executive function, visual-spatial skills, memory, attention, academic achievement, social cognition, and problem-solving, to mention a few. They also have greater prevalence of anxiety disorder, disruptive behavior and attention-deficit hyperactivity disorder. These deficits impact their academic performance, social adjustment, and quality of life, thus resulting in significant stress for patients and their families. Further, they can impact their social adjustment, employment and career development as an adult. Infants and younger children can also have significant deficits in gross and fine motor skills, cognitive deficits and abnormal receptive language. Many of the risk factors associated with abnormal neurodevelopment in these patients are not readily modifiable. Therefore, patients should be referred for evaluation and early intervention to help maximize their neurodevelopment and improve overall outcomes. More study is needed to identify potentially modifiable risk factors and/or mediators of neurodevelopment, such as environmental and socio-economic factors.
Collapse
Affiliation(s)
- Laura Mercer-Rosa
- Division of Cardiology, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | | |
Collapse
|
8
|
Steger C, Moatti C, Payette K, De Silvestro A, Nguyen TD, Coraj S, Yakoub N, Natalucci G, Kottke R, Tuura R, Knirsch W, Jakab A. Characterization of dynamic patterns of human fetal to neonatal brain asymmetry with deformation-based morphometry. Front Neurosci 2023; 17:1252850. [PMID: 38130698 PMCID: PMC10734644 DOI: 10.3389/fnins.2023.1252850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Despite established knowledge on the morphological and functional asymmetries in the human brain, the understanding of how brain asymmetry patterns change during late fetal to neonatal life remains incomplete. The goal of this study was to characterize the dynamic patterns of inter-hemispheric brain asymmetry over this critically important developmental stage using longitudinally acquired MRI scans. Methods Super-resolution reconstructed T2-weighted MRI of 20 neurotypically developing participants were used, and for each participant fetal and neonatal MRI was acquired. To quantify brain morphological changes, deformation-based morphometry (DBM) on the longitudinal MRI scans was utilized. Two registration frameworks were evaluated and used in our study: (A) fetal to neonatal image registration and (B) registration through a mid-time template. Developmental changes of cerebral asymmetry were characterized as (A) the inter-hemispheric differences of the Jacobian determinant (JD) of fetal to neonatal morphometry change and the (B) time-dependent change of the JD capturing left-right differences at fetal or neonatal time points. Left-right and fetal-neonatal differences were statistically tested using multivariate linear models, corrected for participants' age and sex and using threshold-free cluster enhancement. Results Fetal to neonatal morphometry changes demonstrated asymmetry in the temporal pole, and left-right asymmetry differences between fetal and neonatal timepoints revealed temporal changes in the temporal pole, likely to go from right dominant in fetal to a bilateral morphology in neonatal timepoint. Furthermore, the analysis revealed right-dominant subcortical gray matter in neonates and three clusters of increased JD values in the left hemisphere from fetal to neonatal timepoints. Discussion While these findings provide evidence that morphological asymmetry gradually emerges during development, discrepancies between registration frameworks require careful considerations when using DBM for longitudinal data of early brain development.
Collapse
Affiliation(s)
- Céline Steger
- Center for MR Research, University Children’s Hospital Zurich, University of Zurich, Zürich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Pediatric Heart Center, Division of Pediatric Cardiology, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Charles Moatti
- Center for MR Research, University Children’s Hospital Zurich, University of Zurich, Zürich, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Kelly Payette
- Center for MR Research, University Children’s Hospital Zurich, University of Zurich, Zürich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alexandra De Silvestro
- Center for MR Research, University Children’s Hospital Zurich, University of Zurich, Zürich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Pediatric Heart Center, Division of Pediatric Cardiology, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thi Dao Nguyen
- Newborn Research, Department of Neonatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Seline Coraj
- Larsson-Rosenquist Foundation Center for Neurodevelopment, Growth and Nutrition of the Newborn, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ninib Yakoub
- Larsson-Rosenquist Foundation Center for Neurodevelopment, Growth and Nutrition of the Newborn, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Giancarlo Natalucci
- Newborn Research, Department of Neonatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Larsson-Rosenquist Foundation Center for Neurodevelopment, Growth and Nutrition of the Newborn, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Raimund Kottke
- Department of Diagnostic Imaging, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ruth Tuura
- Center for MR Research, University Children’s Hospital Zurich, University of Zurich, Zürich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Walter Knirsch
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Pediatric Heart Center, Division of Pediatric Cardiology, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andras Jakab
- Center for MR Research, University Children’s Hospital Zurich, University of Zurich, Zürich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|
9
|
Liu Y, Huang Y, He Q, Dou Z, Zeng M, Wang X, Li S. From heart to gut: Exploring the gut microbiome in congenital heart disease. IMETA 2023; 2:e144. [PMID: 38868221 PMCID: PMC10989834 DOI: 10.1002/imt2.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 06/14/2024]
Abstract
Congenital heart disease (CHD) is a prevalent birth defect and a significant contributor to childhood mortality. The major characteristics of CHD include cardiovascular malformations and hemodynamical disorders. However, the impact of CHD extends beyond the circulatory system. Evidence has identified dysbiosis of the gut microbiome in patients with CHD. Chronic hypoxia and inflammation associated with CHD affect the gut microbiome, leading to alterations in its number, abundance, and composition. The gut microbiome, aside from providing essential nutrients, engages in direct interactions with the host immune system and indirect interactions via metabolites. The abnormal gut microbiome or its products can translocate into the bloodstream through an impaired gut barrier, leading to an inflammatory state. Metabolites of the gut microbiome, such as short-chain fatty acids and trimethylamine N-oxide, also play important roles in the development, treatment, and prognosis of CHD. This review discusses the role of the gut microbiome in immunity, gut barrier, neurodevelopment, and perioperative period in CHD. By fostering a better understanding of the cross-talk between CHD and the gut microbiome, this review aims to contribute to improve clinical management and outcomes for CHD patients.
Collapse
Affiliation(s)
- Yuze Liu
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Yuan Huang
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Qiyu He
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Zheng Dou
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Min Zeng
- Department of Pediatric Intensive Care Unit, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Xu Wang
- Department of Pediatric Intensive Care Unit, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Shoujun Li
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| |
Collapse
|
10
|
Panigrahy A, Blüml S, Rajagopalan V. Altered In Utero Metabolic Brain Trajectories in CHD: Going Beyond Fetal Brain Structure and Physiology. J Am Coll Cardiol 2023; 82:1624-1627. [PMID: 37821173 PMCID: PMC11136159 DOI: 10.1016/j.jacc.2023.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/13/2023]
Affiliation(s)
- Ashok Panigrahy
- Department of Radiology, Bioengineering, Bioinformatics and Developmental Biology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Stefan Blüml
- Department of Radiology, Children's Hospital of Los Angeles, Keck School of Medicine and Biomedical Engineering, USC, Los Angeles, California, USA
| | - Vidya Rajagopalan
- Department of Pediatrics and Radiology, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
11
|
Udine M, Loke YH, Goudar S, Donofrio MT, Truong U, Krishnan A. The current state and potential innovation of fetal cardiac MRI. Front Pediatr 2023; 11:1219091. [PMID: 37520049 PMCID: PMC10375913 DOI: 10.3389/fped.2023.1219091] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Fetal cardiac MRI is a rapidly evolving form of diagnostic testing with utility as a complementary imaging modality for the diagnosis of congenital heart disease and assessment of the fetal cardiovascular system. Previous technical limitations without cardiac gating for the fetal heart rate has been overcome with recent technology. There is potential utility of fetal electrocardiography for direct cardiac gating. In addition to anatomic assessment, innovative technology has allowed for assessment of blood flow, 3D datasets, and 4D flow, providing important insight into fetal cardiovascular physiology. Despite remaining technical barriers, with increased use of fCMR worldwide, it will become an important clinical tool to improve the prenatal care of fetuses with CHD.
Collapse
Affiliation(s)
- Michelle Udine
- Division of Cardiology, Children’s National Hospital, Washington, DC, United States
| | | | | | | | | | | |
Collapse
|
12
|
Ronai C, Kim A, Dukhovny S, Fisher CR, Madriago E. Prenatal Congenital Heart Disease-It Takes a Multidisciplinary Village. Pediatr Cardiol 2023; 44:1050-1056. [PMID: 37186174 DOI: 10.1007/s00246-023-03161-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
Prenatal diagnosis of congenital heart disease (CHD) allows for thoughtful multidisciplinary planning about location, timing, and need for medical interventions at birth. We sought to assess the accuracy of our prenatal cardiac diagnosis, and postnatal needs for patients with CHD utilizing a multidisciplinary approach. We performed a retrospective chart review of fetal CHD patients between 1/1/18 and 4/30/19. Maternal and infant charts were reviewed for delivery planning, subspecialty care needs, genetic evaluation, prenatal and postnatal cardiac diagnoses, need for prostaglandin (PGE) and neonatal cardiac intervention. 82 maternal-fetal dyads met inclusion criteria during the study period and delivered at a median of 38w2d gestation. 32 (39%) dyads had CHD and other anomalies or genetic abnormalities. All dyads met with a genetic counselor and neonatologist. 11 patients delivered at outside hospitals as planned (all with isolated CHD not requiring neonatal intervention), and 5 chose a palliative delivery. 30 patients were counseled to expect a neonatal cardiac intervention and 25 (83%) underwent an intervention within the expected time period. No neonates required an uncounseled cardiac intervention. 29 patients planned for PGE at birth and 31 received PGE. Of the 79 postnatal echocardiograms, 60 (76%) were entirely consistent with the fetal diagnosis. A multidisciplinary approach to the prenatal diagnosis of CHD in maternal-fetal dyads is optimal and utilizing this method we were able to accurately predict postnatal physiology and ensure that patients delivered in the correct location with an appropriate supportive structure in place.
Collapse
Affiliation(s)
- Christina Ronai
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA.
| | - Amanda Kim
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Stephanie Dukhovny
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, USA
| | - Christina R Fisher
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Erin Madriago
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
13
|
Radiographic and histologic characterisation of white matter injury in a sheep model of CHD. Cardiol Young 2023; 33:432-436. [PMID: 35438073 DOI: 10.1017/s104795112200107x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nearly one in five children with CHD is born with white matter injury that can be recognised on postnatal MRI by the presence of T1 hyperintense lesions. This pattern of white matter injury is known to portend poor neurodevelopmental outcomes, but the exact aetiology and histologic characterisation of these lesions have never been described. A fetal sheep was cannulated at gestational age 110 days onto a pumpless extracorporeal oxygenator via the umbilical vessels and supported in a fluid environment for 14.5 days. The fetus was supported under hypoxic conditions (mean oxygen delivery 16 ml/kg/day) to simulate the in utero conditions of CHD. At necropsy, the brain was fixed, imaged with MRI, and then stained to histologically identify areas of injury. Under hypoxemic in utero conditions, the fetus developed a T1 hyperintense lesion in its right frontal lobe. Histologically, this lesion was characterised by microvascular proliferation and astrocytosis without gliosis. These findings may provide valuable insight into the aetiology of white matter injury in neonates with CHD.
Collapse
|
14
|
Peyvandi S, Xu D, Barkovich AJ, Gano D, Chau V, Reddy VM, Selvanathan T, Guo T, Gaynor JW, Seed M, Miller SP, McQuillen P. Declining Incidence of Postoperative Neonatal Brain Injury in Congenital Heart Disease. J Am Coll Cardiol 2023; 81:253-266. [PMID: 36653093 PMCID: PMC10548869 DOI: 10.1016/j.jacc.2022.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Brain injury is common in neonates with complex neonatal congenital heart disease (CHD) and affects neurodevelopmental outcomes. OBJECTIVES Given advancements in perioperative care, we sought to determine if the rate of preoperative and postoperative brain injury detected by using brain magnetic resonance imaging (MRI) and associated clinical risk factors have changed over time in complex CHD. METHODS A total of 270 term newborns with complex CHD were prospectively enrolled for preoperative and postoperative brain MRIs between 2001 and 2021 with a total of 466 MRI scans. Brain injuries in the form of white matter injury (WMI) or focal stroke and clinical factors were compared across 4 epochs of 5-year intervals with logistic regression. RESULTS Rates of preoperative WMI and stroke did not change over time. After adjusting for timing of the postoperative MRI, site, and cardiac group, the odds of newly acquired postoperative WMI were significantly lower in Epoch 4 compared with Epoch 1 (OR: 0.29; 95% CI: 0.09-1.00; P = 0.05). The adjusted probability of postoperative WMI declined significantly by 18.7% from Epoch 1 (24%) to Epoch 4 (6%). Among clinical risk factors, lowest systolic, mean, and diastolic blood pressures in the first 24 hours after surgery were significantly higher in the most recent epoch. CONCLUSIONS The prevalence of postoperative WMI has declined, whereas preoperative WMI rates remain constant. More robust postoperative blood pressures may explain these findings by minimizing periods of ischemia and supporting cerebral perfusion. These results suggest potential modifiable clinical targets in the postoperative time period to minimize the burden of WMI.
Collapse
Affiliation(s)
- Shabnam Peyvandi
- Department of Pediatrics, University of California San Francisco Benioff Children's Hospital, San Francisco, California, USA.
| | - Duan Xu
- Department of Radiology, University of California San Francisco Benioff Children's Hospital, San Francisco, California, USA
| | - A James Barkovich
- Department of Radiology, University of California San Francisco Benioff Children's Hospital, San Francisco, California, USA
| | - Dawn Gano
- Department of Neurology, University of California San Francisco Benioff Children's Hospital, San Francisco, California, USA
| | - Vann Chau
- Department of Neurology, The University of Toronto Hospital for Sick Children, Toronto, Ontario, Canada
| | - V Mohan Reddy
- Department of Surgery, University of California San Francisco Benioff Children's Hospital, San Francisco, California, USA
| | - Thiviya Selvanathan
- Department of Neurology, The University of Toronto Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ting Guo
- Department of Neurology, The University of Toronto Hospital for Sick Children, Toronto, Ontario, Canada
| | - J William Gaynor
- Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mike Seed
- Department of Pediatrics, The University of Toronto Hospital for Sick Children, Toronto, Ontario, Canada
| | - Steven P Miller
- Department of Pediatrics, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Patrick McQuillen
- Department of Pediatrics, University of California San Francisco Benioff Children's Hospital, San Francisco, California, USA
| |
Collapse
|
15
|
Moerdijk AS, Claessens NH, van Ooijen IM, van Ooij P, Alderliesten T, Grotenhuis HB, Benders MJNL, Bohte AE, Breur JMPJ, Charisopoulou D, Clur SA, Cornette JMJ, Fejzic Z, Franssen MTM, Frerich S, Geerdink LM, Go ATJI, Gommers S, Helbing WA, Hirsch A, Holtackers RJ, Klein WM, Krings GJ, Lamb HJ, Nijman M, Pajkrt E, Planken RN, Schrauben EM, Steenhuis TJ, ter Heide H, Vanagt WYR, van Beynum IM, van Gaalen MD, van Iperen GG, van Schuppen J, Willems TP, Witters I. Fetal MRI of the heart and brain in congenital heart disease. THE LANCET. CHILD & ADOLESCENT HEALTH 2023; 7:59-68. [PMID: 36343660 DOI: 10.1016/s2352-4642(22)00249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
Antenatal assessment of congenital heart disease and associated anomalies by ultrasound has improved perinatal care. Fetal cardiovascular MRI and fetal brain MRI are rapidly evolving for fetal diagnostic testing of congenital heart disease. We give an overview on the use of fetal cardiovascular MRI and fetal brain MRI in congenital heart disease, focusing on the current applications and diagnostic yield of structural and functional imaging during pregnancy. Fetal cardiovascular MRI in congenital heart disease is a promising supplementary imaging method to echocardiography for the diagnosis of antenatal congenital heart disease in weeks 30-40 of pregnancy. Concomitant fetal brain MRI is superior to brain ultrasound to show the complex relationship between fetal haemodynamics in congenital heart disease and brain development.
Collapse
Affiliation(s)
- Anouk S Moerdijk
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nathalie Hp Claessens
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands; Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Inge M van Ooijen
- Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pim van Ooij
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thomas Alderliesten
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands; Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Heynric B Grotenhuis
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Vena F, Manganaro L, D’Ambrosio V, Masciullo L, Ventriglia F, Ercolani G, Bertolini C, Catalano C, Di Mascio D, D’Alberti E, Signore F, Pizzuti A, Giancotti A. Neuroimaging and Cerebrovascular Changes in Fetuses with Complex Congenital Heart Disease. J Clin Med 2022; 11:jcm11226740. [PMID: 36431217 PMCID: PMC9699105 DOI: 10.3390/jcm11226740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Congenital heart diseases (CHDs) are often associated with significant neurocognitive impairment and neurological delay. This study aims to elucidate the correlation between type of CHD and Doppler velocimetry and to investigate the possible presence of fetal brain abnormalities identified by magnetic resonance imaging (MRI). Methods: From July 2010 to July 2020, we carried out a cross-sectional study of 63 singleton pregnancies with a diagnosis of different types of complex CHD: LSOL (left-sided obstructive lesions; RSOL (right-sided obstructive lesions) and MTC (mixed type of CHD). All patients underwent fetal echocardiography, ultrasound evaluation, a magnetic resonance of the fetal brain, and genetic counseling. Results: The analysis of 63 fetuses shows statistically significant results in Doppler velocimetry among the different CHD groups. The RSOL group leads to higher umbilical artery (UA-PI) pressure indexes values, whereas the LSOL group correlates with significantly lower values of the middle cerebral artery (MCA-PI) compared to the other subgroups (p = 0.036), whereas the RSOL group shows a tendency to higher pulsatility indexes in the umbilical artery (UA-PI). A significant correlation has been found between a reduced head circumference (HC) and the presence of brain injury at MRI (p = 0.003). Conclusions: Congenital left- and right-sided cardiac obstructive lesions are responsible for fetal hemodynamic changes and brain growth impairment. The correct evaluation of the central nervous system (CNS) in fetuses affected by CHD could be essential as prenatal screening and the prediction of postnatal abnormalities.
Collapse
Affiliation(s)
- Flaminia Vena
- Department of Maternal and Child Health and Urological Sciences, Umberto I Hospital, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
- Department of Experimental Medicine, Umberto I Hospital, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
- Correspondence:
| | - Lucia Manganaro
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Valentina D’Ambrosio
- Department of Maternal and Child Health and Urological Sciences, Umberto I Hospital, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Luisa Masciullo
- Department of Maternal and Child Health and Urological Sciences, Umberto I Hospital, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Flavia Ventriglia
- Pediatric and Neonatology Unit, Maternal and Child Department, Sapienza University of Rome (Polo Pontino), 4100 Latina, Italy
| | - Giada Ercolani
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Camilla Bertolini
- Department of Radiology and Imaging Sciences, Santo Spirito Hospital, Lungotevere in Sassia 1, 00193 Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Daniele Di Mascio
- Department of Maternal and Child Health and Urological Sciences, Umberto I Hospital, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Elena D’Alberti
- Department of Maternal and Child Health and Urological Sciences, Umberto I Hospital, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Fabrizio Signore
- Obsetrics and Gynecology Department, USL Roma2, Sant’Eugenio Hospital, 00144 Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Umberto I Hospital, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Antonella Giancotti
- Department of Maternal and Child Health and Urological Sciences, Umberto I Hospital, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
17
|
Practice variations for fetal and neonatal congenital heart disease within the Children's Hospitals Neonatal Consortium. Pediatr Res 2022; 93:1728-1735. [PMID: 36167818 DOI: 10.1038/s41390-022-02314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 09/03/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Many aspects of care for fetuses and neonates with congenital heart disease (CHD) fall outside standard practice guidelines, leading to the potential for significant variation in clinical care for this vulnerable population. METHODS We conducted a cross-sectional survey of site sponsors of the Children's Hospitals Neonatal Consortium, a multicenter collaborative of 41 Level IV neonatal intensive care units to assess key areas of clinical practice variability for patients with fetal and neonatal CHD. RESULTS We received responses from 31 centers. Fetal consult services are shared by neonatology and pediatric cardiology at 70% of centers. Three centers (10%) routinely perform fetal magnetic resonance imaging (MRI) for women with pregnancies complicated by fetal CHD. Genetic testing for CHD patients is routine at 76% of centers. Preoperative brain MRI is standard practice at 5 centers (17%), while cerebral NIRS monitoring is regularly used at 14 centers (48%). Use of electroencephalogram (EEG) after major cardiac surgery is routine in 5 centers (17%). Neurodevelopmental follow-up programs are offered at 30 centers (97%). CONCLUSIONS Many aspects of fetal and neonatal CHD care are highly variable with evolving shared multidisciplinary models. IMPACT Many aspects of fetal and neonatal CHD care are highly variable. Genetic testing, placental examination, preoperative neuroimaging, and postoperative EEG monitoring carry a high yield of finding abnormalities in patients with CHD and these tests may contribute to more precise prognostication and improve care. Evidence-based standards for prenatal and postnatal CHD care may decrease inter-center variability.
Collapse
|
18
|
Surgical Strategies in Single Ventricle Management of Neonates and Infants. Can J Cardiol 2022; 38:909-920. [PMID: 35513174 DOI: 10.1016/j.cjca.2022.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022] Open
Abstract
No area of congenital heart disease has undergone greater change and innovation than Single Ventricle management over the past 20 years. Surgical and catheter lab interventions have transformed outcomes such that in some subgroups more than 80% of these patients can survive into adulthood. Driven by parallel development in diagnostic imaging and cardiac intensive care, surgical management is focused on the neonatal period as the key time to creating a balanced circulation and limiting pulmonary blood-flow. Different configurations of the circulation including new types of surgical shunts and the role of 'hybrid' circulations provide greater options and better physiology. This overview will focus on these changes in surgical management and timing but also look at the exciting areas of regenerative therapies to improve ventricular function, and the concept of ventricular rehabilitation to achieve biventricular circulations in certain groups of patients. The importance of early (neonatal) intervention and multidisciplinary approach to management is emphasised, as well as looking beyond simply survival but also improving neurodevelopmental outcomes.
Collapse
|
19
|
Brown KL, Agrawal S, Kirschen MP, Traube C, Topjian A, Pressler R, Hahn CD, Scholefield BR, Kanthimathinathan HK, Hoskote A, D'Arco F, Bembea M, Manning JC, Hunfeld M, Buysse C, Tasker RC. The brain in pediatric critical care: unique aspects of assessment, monitoring, investigations, and follow-up. Intensive Care Med 2022; 48:535-547. [PMID: 35445823 PMCID: PMC10082392 DOI: 10.1007/s00134-022-06683-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023]
Abstract
As survival after pediatric intensive care unit (PICU) admission has improved over recent years, a key focus now is the reduction of morbidities and optimization of quality of life for survivors. Neurologic disorders and direct brain injuries are the reason for 11-16% of admissions to PICU. In addition, many critically ill children are at heightened risk of brain injury and neurodevelopmental difficulties affecting later life, e.g., complex heart disease and premature birth. Hence, assessment, monitoring and protection of the brain, using fundamental principles of neurocritical care, are crucial to the practice of pediatric intensive care medicine. The assessment of brain function, necessary to direct appropriate care, is uniquely challenging amongst children admitted to the PICU. Challenges in assessment arise in children who are unstable, or pharmacologically sedated and muscle relaxed, or who have premorbid abnormality in development. Moreover, the heterogeneity of diseases and ages in PICU patients, means that high caliber evidence is harder to accrue than in adult practice, nonetheless, great progress has been made over recent years. In this 'state of the art' paper about critically ill children, we discuss (1) patient types at risk of brain injury, (2) new standardized clinical assessment tools for age-appropriate, clinical evaluation of brain function, (3) latest evidence related to cranial imaging, non-invasive and invasive monitoring of the brain, (4) the concept of childhood 'post intensive are syndrome' and approaches for neurodevelopmental follow-up. Better understanding of these concepts is vital for taking PICU survivorship to the next level.
Collapse
Affiliation(s)
- Kate L Brown
- Biomedical Research Centre, Great Ormond Street Hospital for Children, London, UK. .,Institute of Cardiovascular, Science University College London, London, UK.
| | - Shruti Agrawal
- Paediatric Intensive Care Unit Addenbrookes Hospital, Cambridge, UK
| | - Matthew P Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, USA, Philadelphia.,University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Chani Traube
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Weill Cornell Medical College, New York, USA
| | - Alexis Topjian
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, USA, Philadelphia.,University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Ronit Pressler
- Biomedical Research Centre, Great Ormond Street Hospital for Children, London, UK.,Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children, Great Ormond Street, London, UK.,University College London Institute of Child Health, London, UK
| | - Cecil D Hahn
- Division of Neurology, The Hospital for Sick Children, Toronto, Canada.,Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Barnaby R Scholefield
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,Paediatric Intensive Care Unit, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Hari Krishnan Kanthimathinathan
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,Paediatric Intensive Care Unit, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Aparna Hoskote
- Biomedical Research Centre, Great Ormond Street Hospital for Children, London, UK.,Institute of Cardiovascular, Science University College London, London, UK
| | - Felice D'Arco
- Biomedical Research Centre, Great Ormond Street Hospital for Children, London, UK.,University College London Institute of Child Health, London, UK
| | - Melania Bembea
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph C Manning
- Nottingham Children's Hospital and Neonatology, Nottingham University Hospitals NHS Trust, Nottingham, UK.,Centre for Children and Young People Health Research, School of Health Sciences, University of Nottingham, Nottingham, UK
| | - Maayke Hunfeld
- Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Pediatric Neurology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Corinne Buysse
- Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Robert C Tasker
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Selwyn College, Cambridge University, Cambridge, UK
| |
Collapse
|
20
|
Freud LR, Seed M. Prenatal Diagnosis and Management of Single Ventricle Heart Disease. Can J Cardiol 2022; 38:897-908. [DOI: 10.1016/j.cjca.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/27/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
|
21
|
Escobar-Diaz MC, Pérez-Cruz M, Arráez M, Cascant-Vilaplana MM, Albiach-Delgado A, Kuligowski J, Vento M, Masoller N, Gómez-Roig MD, Gómez O, Sanchez-de-Toledo J, Camprubí-Camprubí M. Brain Oxygen Perfusion and Oxidative Stress Biomarkers in Fetuses with Congenital Heart Disease - A Retrospective, Case-Control Pilot Study. Antioxidants (Basel) 2022; 11:antiox11020299. [PMID: 35204182 PMCID: PMC8868271 DOI: 10.3390/antiox11020299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
Fetuses with congenital heart disease (CHD) have circulatory changes that may lead to predictable blood flow disturbances that may affect normal brain development. Hypoxemia and hypoperfusion may alter the redox balance leading to oxidative stress (OS), that can be assessed measuring stable end-products. OS biomarkers (OSB) were measured in amniotic fluid in fetuses with (n = 41) and without CHD (n = 44) and analyzed according to aortic flow, expected cyanosis after birth, and a CHD classification derived from this. Birth head circumference (HC) was used as a neurodevelopment biomarker. CHD fetuses had higher levels of ortho-Tyrosine (o-Tyr) than controls (p = 0.0003). There were no differences in o-Tyr levels considering aortic flow obstruction (p = 0.617). Fetuses with expected extreme cyanosis presented the highest levels of o-Tyr (p = 0.003). Among groups of CHD, fetuses without aortic obstruction and extreme cyanosis had the highest levels of o-Tyr (p = 0.005). CHD patients had lower HC than controls (p = 0.023), without correlation with OSB. Patients with HC < 10th percentile, presented high levels of o-Tyr (p = 0.024). Fetuses with CHD showed increased OSB and lower HC when compared to controls, especially those with expected extreme cyanosis. Our results suggest that increased levels of OSB are more influenced by the effect of low oxygenation than by aortic flow obstruction. Future studies with larger sample size are needed to further investigate the role of OSB as an early predictor of neurodevelopmental problems in CHD survivors.
Collapse
Affiliation(s)
- Maria C. Escobar-Diaz
- Pediatric Cardiology Department, Sant Joan de Déu Hospital, 08950 Barcelona, Spain; (M.C.E.-D.); (J.S.-d.-T.)
- Sant Joan de Deu Research Institute, 08950 Barcelona, Spain; (M.A.); (M.D.G.-R.)
| | - Miriam Pérez-Cruz
- Sant Joan de Deu Research Institute, 08950 Barcelona, Spain; (M.A.); (M.D.G.-R.)
- BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic, Sant Joan de Déu Hospital, 08950 Barcelona, Spain; (N.M.); (O.G.)
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Sub-Directorate General for Research Assessment and Promotion and the European Regional Development Fund (ERDF), 28029 Madrid, Spain
- Correspondence: (M.P.-C.); (M.C.-C.); Tel.: +34-60-723-1455 (M.P.-C.); +34-65-904-5406 (M.C.-C.)
| | - Miguel Arráez
- Sant Joan de Deu Research Institute, 08950 Barcelona, Spain; (M.A.); (M.D.G.-R.)
- BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic, Sant Joan de Déu Hospital, 08950 Barcelona, Spain; (N.M.); (O.G.)
| | - Mari-Merce Cascant-Vilaplana
- Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (M.-M.C.-V.); (A.A.-D.); (J.K.); (M.V.)
| | - Abel Albiach-Delgado
- Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (M.-M.C.-V.); (A.A.-D.); (J.K.); (M.V.)
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (M.-M.C.-V.); (A.A.-D.); (J.K.); (M.V.)
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (M.-M.C.-V.); (A.A.-D.); (J.K.); (M.V.)
- Division of Neonatology, University & Polytechnic Hospital La Fe, 46026 Valencia, Spain
| | - Narcis Masoller
- BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic, Sant Joan de Déu Hospital, 08950 Barcelona, Spain; (N.M.); (O.G.)
- Institut d’Investigacions Biomediques August Pi i Sunyer, Universitat de Barcelona, 08036 Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), 08036 Barcelona, Spain
| | - Maria Dolores Gómez-Roig
- Sant Joan de Deu Research Institute, 08950 Barcelona, Spain; (M.A.); (M.D.G.-R.)
- BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic, Sant Joan de Déu Hospital, 08950 Barcelona, Spain; (N.M.); (O.G.)
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Sub-Directorate General for Research Assessment and Promotion and the European Regional Development Fund (ERDF), 28029 Madrid, Spain
| | - Olga Gómez
- BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic, Sant Joan de Déu Hospital, 08950 Barcelona, Spain; (N.M.); (O.G.)
- Institut d’Investigacions Biomediques August Pi i Sunyer, Universitat de Barcelona, 08036 Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), 08036 Barcelona, Spain
| | - Joan Sanchez-de-Toledo
- Pediatric Cardiology Department, Sant Joan de Déu Hospital, 08950 Barcelona, Spain; (M.C.E.-D.); (J.S.-d.-T.)
- Sant Joan de Deu Research Institute, 08950 Barcelona, Spain; (M.A.); (M.D.G.-R.)
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Marta Camprubí-Camprubí
- Sant Joan de Deu Research Institute, 08950 Barcelona, Spain; (M.A.); (M.D.G.-R.)
- BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic, Sant Joan de Déu Hospital, 08950 Barcelona, Spain; (N.M.); (O.G.)
- Correspondence: (M.P.-C.); (M.C.-C.); Tel.: +34-60-723-1455 (M.P.-C.); +34-65-904-5406 (M.C.-C.)
| |
Collapse
|
22
|
Ligsay A, Goldberg CS. An introduction to and review of cardiac neurodevelopment: the risks and recommended approaches. Curr Opin Pediatr 2021; 33:489-494. [PMID: 34433192 DOI: 10.1097/mop.0000000000001057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To introduce the reader to the current understanding of the neurocognitive profile of congenital heart disease (CHD) survivors, the risk factors that may influence outcomes, and to the recommendations for cardiac neurodevelopmental care. RECENT FINDINGS A growing body of literature has shown that survivors of CHD are at increased risk for neurodevelopmental impairments. Multiple elements influence each patient's risk, which likely begins in utero and extends to perioperative management, surgical considerations, and long-term clinical care. Additionally, sociodemographic factors may compound these risks. Serial developmental follow-up is recommended for children with critical CHD. SUMMARY Though there are some clinical factors that increase risk, based on the high rate of developmental impairments for children with CHD, serial evaluations are recommended. Multidisciplinary and multicenter collaboration is ongoing and will facilitate moving this field forward to improve neurodevelopmental outcomes for children with CHD.
Collapse
Affiliation(s)
- Andrew Ligsay
- Division of Cardiology, Department of Pediatrics, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
23
|
Commentary: Will fetal brain magnetic resonance imaging guide our timing of surgery for hypoplastic left heart syndrome and transposition of the great arteries? J Thorac Cardiovasc Surg 2021; 162:1018-1019. [DOI: 10.1016/j.jtcvs.2020.10.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 01/23/2023]
|
24
|
John MJ, Wilder TJ. Commentary: Planning ahead: Fetal magnetic resonance imaging may predict brain injury before surgery for congenital heart disease. J Thorac Cardiovasc Surg 2020; 162:1015-1016. [PMID: 33451827 DOI: 10.1016/j.jtcvs.2020.11.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Mohan J John
- Division of Congenital Heart Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Travis J Wilder
- Division of Congenital Heart Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Tex.
| |
Collapse
|
25
|
Reitz J, Yerebakan C. Commentary: Once again-the heart and the brain. J Thorac Cardiovasc Surg 2020; 162:1017-1018. [PMID: 33419541 DOI: 10.1016/j.jtcvs.2020.11.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Justus Reitz
- Division of Prenatal Medicine and Fetal Therapy, Justus-Liebig-University, Giessen, Germany
| | - Can Yerebakan
- Department of Cardiovascular Surgery, Children's National Heart Institute, Children's National Hospital, The George Washington University School of Medicine and Health Sciences, Washington, DC.
| |
Collapse
|
26
|
Haller C. Commentary: The tip of the iceberg: Physiology of congenital cardiac defects and their influence on brain injury. J Thorac Cardiovasc Surg 2020; 162:1020-1021. [PMID: 33129502 DOI: 10.1016/j.jtcvs.2020.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Christoph Haller
- Department of Cardiovascular Surgery, The Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|