1
|
Marahrens H, von Dörnberg K, Molnár V, Gregor KM, Leitzen E, von Altrock A, Polifka A, Ganter M, Wagener MG. Copper Intoxication in South American Camelids-Review of the Literature and First Report of a Case in a Vicuña (Vicugna vicugna). Biol Trace Elem Res 2024; 202:5453-5464. [PMID: 38421580 PMCID: PMC11502550 DOI: 10.1007/s12011-024-04102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Copper (Cu), an essential trace element in the metabolism of mammals, plays a central role in various metabolic processes. However, overdosing can lead to severe symptoms and even fatalities. Chronic Cu intoxication continues to be a problem in grazing and domestic animals, with sheep being particularly sensitive. There are few comparative studies on its impact on South American camelids (SACs). Therefore, this work presents the results of literature research combined with a case report on a 3-year-old female vicuña (Vicugna vicugna) presented to the clinic from a zoological garden in northern Germany. The animal showed reduced food intake, recumbency, bruxism, icteric mucous membranes and sclera. Auscultation revealed atony of the third compartment and the digestive tract. Similar to cases described in the literature, the animal showed rapid deterioration of its condition with unspecific symptoms of liver failure and rapid death. However, in contrast to descriptions in sheep, clinical icterus has not been previously reported in cases of other SACs. Laboratory findings from EDTA and serum samples revealed neutrophilia with a left shift, hypoproteinaemia, lymphopaenia, azotaemia, elevated levels of creatine kinase (CK), aspartate aminotransferase (AST) and glutamate dehydrogenase (GLDH) in the serum. Hyperbilirubinaemia and significantly elevated serum and liver Cu levels were observed. Subsequent blood samples from the remaining vicuñas and alpacas in the same enclosure showed no remarkable abnormalities. To the best of the authors' knowledge, this case report represents the first documented case of Cu intoxication specifically in vicuñas.
Collapse
Affiliation(s)
- H Marahrens
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine, Foundation, Hannover, Germany.
| | | | - V Molnár
- Hannover Adventure Zoo, Hannover, Germany
| | - K M Gregor
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - E Leitzen
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - A von Altrock
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - A Polifka
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - M Ganter
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - M G Wagener
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine, Foundation, Hannover, Germany
| |
Collapse
|
2
|
Gabriel V, Zdyrski C, Sahoo DK, Ralston A, Wickham H, Bourgois-Mochel A, Ahmed B, Merodio MM, Paukner K, Piñeyro P, Kopper J, Rowe EW, Smith JD, Meyerholz D, Kol A, Viall A, Elbadawy M, Mochel JP, Allenspach K. Adult Animal Stem Cell-Derived Organoids in Biomedical Research and the One Health Paradigm. Int J Mol Sci 2024; 25:701. [PMID: 38255775 PMCID: PMC10815683 DOI: 10.3390/ijms25020701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Preclinical biomedical research is limited by the predictiveness of in vivo and in vitro models. While in vivo models offer the most complex system for experimentation, they are also limited by ethical, financial, and experimental constraints. In vitro models are simplified models that do not offer the same complexity as living animals but do offer financial affordability and more experimental freedom; therefore, they are commonly used. Traditional 2D cell lines cannot fully simulate the complexity of the epithelium of healthy organs and limit scientific progress. The One Health Initiative was established to consolidate human, animal, and environmental health while also tackling complex and multifactorial medical problems. Reverse translational research allows for the sharing of knowledge between clinical research in veterinary and human medicine. Recently, organoid technology has been developed to mimic the original organ's epithelial microstructure and function more reliably. While human and murine organoids are available, numerous other organoids have been derived from traditional veterinary animals and exotic species in the last decade. With these additional organoid models, species previously excluded from in vitro research are becoming accessible, therefore unlocking potential translational and reverse translational applications of animals with unique adaptations that overcome common problems in veterinary and human medicine.
Collapse
Affiliation(s)
- Vojtech Gabriel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | | | - Dipak K. Sahoo
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Abigail Ralston
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
| | - Hannah Wickham
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Agnes Bourgois-Mochel
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Basant Ahmed
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Maria M. Merodio
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
| | - Karel Paukner
- Atherosclerosis Research Laboratory, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic;
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (P.P.); (J.D.S.)
| | - Jamie Kopper
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Eric W. Rowe
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Jodi D. Smith
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (P.P.); (J.D.S.)
| | - David Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA;
| | - Amir Kol
- Department of Pathology, University of California, Davis, CA 94143, USA; (A.K.); (A.V.)
| | - Austin Viall
- Department of Pathology, University of California, Davis, CA 94143, USA; (A.K.); (A.V.)
| | - Mohamed Elbadawy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Jonathan P. Mochel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
| | - Karin Allenspach
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
| |
Collapse
|
3
|
He Y, Yu J, Yu N, Chen R, Wang S, Wang Q, Tao F, Sheng J. Association Between the Ratios of Selenium to Several Elements and Mild Cognitive Impairment in the Elderly. Biol Trace Elem Res 2022:10.1007/s12011-022-03527-6. [PMID: 36580211 DOI: 10.1007/s12011-022-03527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/10/2022] [Indexed: 12/30/2022]
Abstract
To investigate the relationship between the correlation ratios of selenium (Se) and other elements and mild cognitive impairment (MCI) among older adults. A total of 1000 individuals participated in our research analysis. The concentrations of elements in whole blood were determined using inductively coupled plasma mass spectrometry to reflect their exposure levels. Participants' cognitive function was assessed using the Mini-Mental State Examination. Logistic regression analysis was used to evaluate the relationship between elemental ratios and MCI. Se concentration was positively correlated with red blood cell count (r = 0.219, p < 0.001), haemoglobin level (r = 0.355, p < 0.001), haematocrit (r = 0.215, p < 0.001), mean corpuscular haemoglobin (r = 0.294, p < 0.001) and mean corpuscular haemoglobin concentration (r = 0.428, p < 0.001) and negatively correlated with red cell volume distribution width-standard deviation (r = -0.232, p < 0.001) and platelet distribution width (r = -0.382, p < 0.001). Compared with the normal group, the ratios of Se/vanadium (V), Se/lead (Pb) and Se/cadmium (Cd) in the whole blood of the MCI group were significantly lower (all p < 0.001), while the ratios of manganese (Mn)/Se and iron (Fe)/Se were higher (all p < 0.001). The increase in the ratios of Se/V, Se/Pb and Se/Cd is related to a decreased risk of MCI among older adults; contrarily, an increase in the ratios of Mn/Se and Fe/Se may be a risk factor for MCI.
Collapse
Affiliation(s)
- Yu He
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jinhui Yu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Nannan Yu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Rongrong Chen
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Sufang Wang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qunan Wang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle/Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jie Sheng
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle/Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
4
|
Protective Effects of Selenium Nanoparticle-Enriched Lactococcus lactis NZ9000 against Enterotoxigenic Escherichia coli K88-Induced Intestinal Barrier Damage in Mice. Appl Environ Microbiol 2021; 87:e0163621. [PMID: 34524898 DOI: 10.1128/aem.01636-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Composite microecological agents have received widespread attention due to their advantageous properties, including safety, multiple effects, and low cost. This study was conducted to evaluate the protective effects of selenium (Se) nanoparticle (SeNP)-enriched Lactococcus lactis NZ9000 (L. lactis NZ9000-SeNPs) against enterotoxigenic Escherichia coli (ETEC) K88-induced intestinal barrier damage in C57BL/6 mice. The oral administration of L. lactis NZ9000-SeNPs significantly increased the villus height and the number of goblet cells in the ileum; reduced the levels of serum and ileal interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ); and increased the activities of thioredoxin reductase (TrxR) and glutathione peroxidase (GSH-Px) compared with the ETEC K88-infected group not treated with L. lactis NZ9000-SeNPs. In addition, L. lactis NZ9000-SeNPs significantly attenuated the reduction of the expression levels of occludin and claudin-1, dysbiosis of the gut microbiome, and activation of the Toll-like receptor (TLR)/nuclear factor kappa B (NF-κB)-mediated signaling pathway induced by ETEC K88. These findings suggested that L. lactis NZ9000-SeNPs may be a promising and safe Se supplement for food or feed additives. IMPORTANCE The beneficial effects of microecological agents have been widely proven. Se, which is a nutritionally essential trace element for humans and animals, is incorporated into selenoproteins that have a wide range of pleiotropic effects, ranging from antioxidant to anti-inflammatory effects. However, sodium selenite, a common addition form of Se in feed and food, has disadvantages such as strong toxicity and low bioavailability. We investigated the protective effects of L. lactis NZ9000-SeNPs against ETEC K88-induced intestinal barrier injury in C57BL/6 mice. Our results show that L. lactis NZ9000-SeNPs effectively alleviate ETEC K88-induced intestinal barrier dysfunction. This study highlights the importance of developing a promising and safe Se supplement for the substitution of sodium selenite applied in food, feed, and biomedicine.
Collapse
|
5
|
Mandour AS, Samir H, El-Beltagy MA, Abdel-Daim MM, Izumi W, Ma D, Matsuura K, Tanaka R, Watanabe G. Effect of supra-nutritional selenium-enriched probiotics on hematobiochemical, hormonal, and Doppler hemodynamic changes in male goats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19447-19460. [PMID: 32215792 DOI: 10.1007/s11356-020-08294-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
In this study, the influence of supra-nutritional organic selenium (Se) supplement on hematology and plasma biochemicals, including antioxidant parameters and plasma reproductive hormones, as well as blood flow characteristics in the supratesticular and common carotid arteries (STA and CCA, respectively) were investigated. For this purpose, 15 male goats were used and classified into three equal groups according to the supplementation of the basal diet (BD): negative control (NC), probiotic (Pro), and Se-probiotic (Se-Pro) groups. Blood perfusion in the STA and CCA was assessed by Doppler ultrasonography at three different time intervals: at the experimental onset (T0), 3 weeks of dietary supplement (T3), and after 6 weeks of observation (T6). Concomitantly, blood samples were withdrawn for hematobiochemical and hormonal changes. Results revealed no evidence of clinical abnormality, with some enhanced hematological parameters and antioxidant (SOD and GPX) levels in goats of the Se-Pro and Pro groups. High concentrations of FSH were found in the Se-Pro at T6 compared to its values in other groups. Similarly, testosterone levels were elevated in the Pro and Se-Pro groups at T3 compared to other time points. There were significant increases in levels of IGF-1 in the Pro and Se-Pro groups compared to the NC group. Significant (P < 0.05) increases in the values of the blood volume within the CCA and the STA were noted in the Se-Pro group, and the highest values were observed at T6 (CCA, 427.4 ± 33 ml/min; STA, 49.9 ± 5.0 ml/min). In conclusion, supra-nutritional organic selenium improves some hematobiochemical parameters, reproductive hormones, and the blood perfusion within the CCA and STA in goats.
Collapse
Affiliation(s)
- Ahmed S Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan.
| | - Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Marwa A El-Beltagy
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Watanabe Izumi
- Laboratory of Environmental Toxicology, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Danfu Ma
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Katsuhiro Matsuura
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| |
Collapse
|
6
|
Liu M, Yu W, Jin J, Ma M, An T, Nie Y, Teng CB. Copper promotes sheep pancreatic duct organoid growth by activation of an antioxidant protein 1-dependent MEK-ERK pathway. Am J Physiol Cell Physiol 2020; 318:C806-C816. [PMID: 32130071 DOI: 10.1152/ajpcell.00509.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proper amounts of copper supplemented in livestock feed improve the physical growth and traits of farm animals. The pancreas is an important organ with both exocrine and endocrine portions. To investigate the role and mechanism of copper in the sheep pancreas, we first established sheep pancreatic duct organoids (sPDOs). We found that an appropriate amount of copper benefited the formation and growth of sPDOs, whereas excess or deficient copper damaged sPDOs. We found that the proliferation-stimulating effect of copper was related to the copper chaperone antioxidant protein 1 (ATOX1)-dependent activation of MEK-ERK1/2 signaling. Atox1 knockdown suppressed the cell proliferation of sPDOs, even in the presence of the MEK activator. These results indicate that moderate concentrations of copper promote sPDO growth through ATOX1-regulated cell proliferation by activation of MEK-ERK. Moreover, our study indicates that organoids may be a useful model to study organ growth mechanisms in livestock.
Collapse
Affiliation(s)
- Miao Liu
- Animal Development Biology Laboratory, College of Life Science, Northeast Forestry University, Harbin, China
| | - Wen Yu
- Animal Development Biology Laboratory, College of Life Science, Northeast Forestry University, Harbin, China
| | - Jing Jin
- Animal Development Biology Laboratory, College of Life Science, Northeast Forestry University, Harbin, China
| | - Mingjun Ma
- Animal Development Biology Laboratory, College of Life Science, Northeast Forestry University, Harbin, China
| | - Tiezhu An
- Animal Development Biology Laboratory, College of Life Science, Northeast Forestry University, Harbin, China
| | - Yuzhe Nie
- Animal Development Biology Laboratory, College of Life Science, Northeast Forestry University, Harbin, China.,Key Laboratory of Saline-alkali Vegetation Ecology Restoration, College of Life Science, Northeast Forestry University, Harbin, China
| | - Chun-Bo Teng
- Animal Development Biology Laboratory, College of Life Science, Northeast Forestry University, Harbin, China.,Key Laboratory of Saline-alkali Vegetation Ecology Restoration, College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
7
|
Xu C, Qiao L, Ma L, Yan S, Guo Y, Dou X, Zhang B, Roman A. Biosynthesis of Polysaccharides-Capped Selenium Nanoparticles Using Lactococcus lactis NZ9000 and Their Antioxidant and Anti-inflammatory Activities. Front Microbiol 2019; 10:1632. [PMID: 31402902 PMCID: PMC6676592 DOI: 10.3389/fmicb.2019.01632] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/02/2019] [Indexed: 11/18/2022] Open
Abstract
Lactococcus lactis (L. lactis) NZ9000, which has been genetically modified, is the most commonly used host strain for nisin regulated gene expression. Selenium (Se) is an essential trace element in the diet of humans and animals important for the maintenance of health and growth. Biosynthesized Se nanoparticles (SeNPs) that use microorganisms as a vehicle are uniquely advantages in terms of low costs, low toxicity and high bioavailability. This study was aimed at preparing novel functionalized SeNPs by L. lactis NZ9000 through eco-friendly and economic biotechnology methods. Moreover, its physicochemical characteristics, antioxidant and anti-inflammatory activities were investigated. L. lactis NZ9000 synthesized elemental red SeNPs when co-cultivated with sodium selenite under anaerobic conditions. Biosynthesized SeNPs by L. lactis NZ9000 were mainly capped with polysaccharides and significantly alleviated the increase of malondialdehyde (MDA) concentration, the decrease of glutathione peroxidase (GPx) and total superoxide dismutase (T-SOD) activity in porcine intestinal epithelial cells (IPEC-J2) challenged by hydrogen peroxide (H2O2). SeNPs also prevented the H2O2-caused reduction of transepithelial electrical resistance (TEER) and the increase of FITC-Dextran fluxes across IPEC-J2. Moreover, SeNPs attenuated the increase of reactive oxygen species (ROS), the reduction of adenosine triphosphate (ATP) and the mitochondrial membrane potential (MMP) and maintained intestinal epithelial permeability in IPEC-J2 cells exposed to H2O2. In addition, SeNPs pretreatment alleviated the cytotoxicity of Enterotoxigenic Escherichia coli (ETEC) K88 on IPEC-J2 cells and maintained the intestinal epithelial barrier integrity by up-regulating the expression of Occludin and Claudin-1 and modulating inflammatory cytokines. Biosynthesized SeNPs by L. lactis NZ9000 are a promising selenium supplement with antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Li Ma
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Shuqi Yan
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yu Guo
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Baohua Zhang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Alexandra Roman
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
8
|
Dolgova NV, Nehzati S, Choudhury S, MacDonald TC, Regnier NR, Crawford AM, Ponomarenko O, George GN, Pickering IJ. X-ray spectroscopy and imaging of selenium in living systems. Biochim Biophys Acta Gen Subj 2018; 1862:2383-2392. [PMID: 29729308 DOI: 10.1016/j.bbagen.2018.04.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Selenium is an essential element with a rich and varied chemistry in living organisms. It plays a variety of important roles ranging from being essential in enzymes that are critical for redox homeostasis to acting as a deterrent for herbivory in hyperaccumulating plants. Despite its importance there are many open questions, especially related to its chemistry in situ within living organisms. SCOPE OF REVIEW This review discusses X-ray spectroscopy and imaging of selenium in biological samples, with an emphasis on the methods, and in particular the techniques of X-ray absorption spectroscopy (XAS) and X-ray fluorescence imaging (XFI). We discuss the experimental methods and capabilities of XAS and XFI, and review their advantages and their limitations. A perspective on future possibilities and next-generation of experiments is also provided. MAJOR CONCLUSIONS XAS and XFI provide powerful probes of selenium chemistry, together with unique in situ capabilities. The opportunities and capabilities of the next generation of advanced X-ray spectroscopy experiments are particularly exciting. GENERAL SIGNIFICANCE XAS and XFI provide versatile tools that are generally applicable to any element with a convenient X-ray absorption edge, suitable for investigating complex systems essentially without pre-treatment.
Collapse
Affiliation(s)
- Natalia V Dolgova
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N5E2, Canada
| | - Susan Nehzati
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N5E2, Canada
| | - Sanjukta Choudhury
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N5E2, Canada
| | - Tracy C MacDonald
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N5E2, Canada
| | - Nathan R Regnier
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N0X2, Canada
| | - Andrew M Crawford
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N5E2, Canada
| | - Olena Ponomarenko
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N5E2, Canada
| | - Graham N George
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N5E2, Canada; Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N0X2, Canada.
| | - Ingrid J Pickering
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N5E2, Canada; Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N0X2, Canada.
| |
Collapse
|
9
|
Antibacterial Activity of 7-Epiclusianone and Its Novel Copper Metal Complex on Streptococcus spp. Isolated from Bovine Mastitis and Their Cytotoxicity in MAC-T Cells. Molecules 2017; 22:molecules22050823. [PMID: 28513553 PMCID: PMC6154111 DOI: 10.3390/molecules22050823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022] Open
Abstract
Mastitis is an inflammation of mammary gland parenchyma that adversely affects bovine health and dairy production worldwide despite significant efforts to eradicate it. The aim of this work was to characterize the antimicrobial activity of 7-epiclusianone (7-epi), a compound extracted from the Rheedia brasiliensis fruit, its complex with copper against Streptococcus spp. isolated from bovine mastitis, and to assess their cytotoxicity to bovine mammary alveolar cells (MAC-T). The complex 7-epiclusianone-Cu (7-epi-Cu) was an amorphous green solid with optical activity. Its vibrational spectrum in the infrared region showed absorption bands in the high-frequency region, as well as bands that can be attributed to the unconjugated and conjugated stretching of the free ligand. The complex was anhydrous. One of the tested bacterial strains was not sensitive to the compounds, while the other three had MIC values of 7.8 µg mL-1 and minimum bactericidal concentration (MBC) values between 15.6 and 31.3 µg mL-1. These two compounds are bacteriostatic, did not cause damage to the cell wall and, at sub-inhibitory concentrations, did not induce bacterial adhesion. The compounds were not cytotoxic. Based on these results, 7-epi and 7-epi-Cu exhibited desirable antimicrobial properties and could potentially be used in bovine mastitis treatment.
Collapse
|