1
|
Russell SJ, Parker K, Lehoczki A, Lieberman D, Partha IS, Scott SJ, Phillips LR, Fain MJ, Nikolich JŽ. Post-acute sequelae of SARS-CoV-2 infection (Long COVID) in older adults. GeroScience 2024; 46:6563-6581. [PMID: 38874693 PMCID: PMC11493926 DOI: 10.1007/s11357-024-01227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
Long COVID, also known as PASC (post-acute sequelae of SARS-CoV-2), is a complex infection-associated chronic condition affecting tens of millions of people worldwide. Many aspects of this condition are incompletely understood. Among them is how this condition may manifest itself in older adults and how it might impact the older population. Here, we briefly review the current understanding of PASC in the adult population and examine what is known on its features with aging. Finally, we outline the major gaps and areas for research most germane to older adults.
Collapse
Affiliation(s)
- Samantha J Russell
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Karen Parker
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Haematology and Stem Cell Transplantation, National Institute for Haematology and Infectious Diseases, South Pest Central Hospital, 1097, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - David Lieberman
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Indu S Partha
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Serena J Scott
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Linda R Phillips
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- College of Nursing, University of Arizona, Tucson, AZ, USA
| | - Mindy J Fain
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- Banner University Medicine-Tucson, Tucson, AZ, USA.
- College of Nursing, University of Arizona, Tucson, AZ, USA.
| | - Janko Ž Nikolich
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- The Aegis Consortium for Pandemic-Free Future, University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
2
|
van Dijk WJ, Haaksma ML, Mook-Kanamori DO, Visser LG, Numans ME, van Hylckama Vlieg A, Rosendaal FR, Kiefte-de Jong JC. Incidence, symptom clusters and determinants of post-acute COVID symptoms: a population-based surveillance in community-dwelling users of the COVID RADAR app. BMJ Open 2024; 14:e087235. [PMID: 39260850 PMCID: PMC11409358 DOI: 10.1136/bmjopen-2024-087235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
OBJECTIVES This study aims to describe the incidence, symptom clusters and determinants of post-acute COVID symptoms using data from the COVID RADAR app in the Netherlands. DESIGN Prospective cohort. SETTING General population in the Netherlands from April 2020 to February 2022. PARTICIPANTS A total of 1478 COVID RADAR app users, with data spanning 40 days before to 100 days after positive SARS-CoV-2 test. OUTCOME MEASURES Incidence and duration of 10 new symptoms that developed during acute infection, defined as 10 days prior and 10 days after positive test. Clustering of these post-acute COVID symptoms and associations between factors known in the acute phase and 100-day symptom persistence. RESULTS The most frequent post-acute symptoms were cough, loss of smell or taste and fatigue. At 100 days postinfection, 86 (8%) participants still experienced symptoms. Three post-acute COVID symptom clusters were identified: non-respiratory (headache and fatigue; 49% of participants with post-acute COVID symptoms); olfactory (15%) and respiratory (8%). Vaccination was associated with a lower risk of post-acute COVID symptoms 100 days after infection, although CIs were wide (OR: 0.5; 95% CI: 0.2 to 1.5), but not with non-respiratory symptoms (OR: 1.0; 95% CI: 0.3 to 4.4). Severe acute disease increased the risk of post-acute COVID symptoms (OR: 1.4; 95% CI: 1.2 to 1.5; per additional acute symptom). CONCLUSIONS In this cohort of infected community-dwelling app users, 5%-10% experienced post-acute COVID symptoms. The symptoms cluster in several distinct entities, which differ in incidence, patient characteristics and vaccination effects. This suggests multiple mechanisms underlying the development of post-acute COVID symptoms.
Collapse
Affiliation(s)
- Willian J van Dijk
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Miriam L Haaksma
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis O Mook-Kanamori
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Leo G Visser
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Mattijs E Numans
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - A van Hylckama Vlieg
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica C Kiefte-de Jong
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Haunhorst S, Dudziak D, Scheibenbogen C, Seifert M, Sotzny F, Finke C, Behrends U, Aden K, Schreiber S, Brockmann D, Burggraf P, Bloch W, Ellert C, Ramoji A, Popp J, Reuken P, Walter M, Stallmach A, Puta C. Towards an understanding of physical activity-induced post-exertional malaise: Insights into microvascular alterations and immunometabolic interactions in post-COVID condition and myalgic encephalomyelitis/chronic fatigue syndrome. Infection 2024:10.1007/s15010-024-02386-8. [PMID: 39240417 DOI: 10.1007/s15010-024-02386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND A considerable number of patients who contracted SARS-CoV-2 are affected by persistent multi-systemic symptoms, referred to as Post-COVID Condition (PCC). Post-exertional malaise (PEM) has been recognized as one of the most frequent manifestations of PCC and is a diagnostic criterion of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Yet, its underlying pathomechanisms remain poorly elucidated. PURPOSE AND METHODS In this review, we describe current evidence indicating that key pathophysiological features of PCC and ME/CFS are involved in physical activity-induced PEM. RESULTS Upon physical activity, affected patients exhibit a reduced systemic oxygen extraction and oxidative phosphorylation capacity. Accumulating evidence suggests that these are mediated by dysfunctions in mitochondrial capacities and microcirculation that are maintained by latent immune activation, conjointly impairing peripheral bioenergetics. Aggravating deficits in tissue perfusion and oxygen utilization during activities cause exertional intolerance that are frequently accompanied by tachycardia, dyspnea, early cessation of activity and elicit downstream metabolic effects. The accumulation of molecules such as lactate, reactive oxygen species or prostaglandins might trigger local and systemic immune activation. Subsequent intensification of bioenergetic inflexibilities, muscular ionic disturbances and modulation of central nervous system functions can lead to an exacerbation of existing pathologies and symptoms.
Collapse
Affiliation(s)
- Simon Haunhorst
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Wöllnitzer Straße 42, 07749, Jena, Germany
- Center for Interdisciplinary Prevention of Diseases Related to Professional Activities, Jena, Germany
| | - Diana Dudziak
- Institute of Immunology, Jena University Hospital/ Friedrich-Schiller-University Jena, Jena, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Martina Seifert
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Franziska Sotzny
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Carsten Finke
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Uta Behrends
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
- AGV Research Unit Gene Vectors, Helmholtz Munich (HMGU), Munich, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dirk Brockmann
- Center Synergy of Systems, TU Dresden University of Technology, Dresden, Germany
| | - Paul Burggraf
- mHealth Pioneers GmbH, Körtestraße 10, 10967, Berlin, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Claudia Ellert
- , Landarztnetz Lahn-Dill, Wetzlar, Germany
- Initiative Long COVID Deutschland, Lemgo, Germany
| | - Anuradha Ramoji
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Juergen Popp
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Philipp Reuken
- Department for Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena Center for Mental Health, Jena University Hospital, Jena, Germany
- German Center for Mental Health (DZPG), Partner Site Jena, Jena, Germany
| | - Andreas Stallmach
- Department for Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Christian Puta
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Wöllnitzer Straße 42, 07749, Jena, Germany.
- Department for Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany.
- Center for Sepsis Control and Care (CSCC), Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany.
| |
Collapse
|
4
|
Gáspár Z, Szabó BG, Ceglédi A, Lakatos B. Human herpesvirus reactivation and its potential role in the pathogenesis of post-acute sequelae of SARS-CoV-2 infection. GeroScience 2024:10.1007/s11357-024-01323-9. [PMID: 39207648 DOI: 10.1007/s11357-024-01323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The emergence of SARS-CoV-2 has precipitated a global pandemic with substantial long-term health implications, including the condition known as post-acute sequelae of SARS-CoV-2 infection (PASC), commonly referred to as Long COVID. PASC is marked by persistent symptoms such as fatigue, neurological issues, and autonomic dysfunction that persist for months beyond the acute phase of COVID-19. This review examines the potential role of herpesvirus reactivation, specifically Epstein-Barr virus (EBV) and cytomegalovirus (CMV), in the pathogenesis of PASC. Elevated antibody titers and specific T cell responses suggest recent herpesvirus reactivation in some PASC patients, although viremia is not consistently detected. SARS-CoV-2 exhibits endothelial trophism, directly affecting the vascular endothelium and contributing to microvascular pathologies. These pathologies are significant in PASC, where microvascular dysfunction may underlie various chronic symptoms. Similarly, herpesviruses like CMV also exhibit endothelial trophism, which may exacerbate endothelial damage when reactivated. Evidence suggests that EBV and CMV reactivation could indirectly contribute to the immune dysregulation, immunosenescence, and autoimmune responses observed in PASC. Additionally, EBV may play a role in the genesis of neurological symptoms through creating mitochondrial dysfunction, though direct confirmation remains elusive. The reviewed evidence suggests that while herpesviruses may not play a direct role in the pathogenesis of PASC, their potential indirect effects, especially in the context of endothelial involvement, warrant further investigation.
Collapse
Affiliation(s)
- Zsófia Gáspár
- School of PhD Studies, Semmelweis University, Üllői Street 26, 1085, Budapest, Hungary
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Flórián Street 5-7, 1097, Budapest, Hungary
| | - Bálint Gergely Szabó
- School of PhD Studies, Semmelweis University, Üllői Street 26, 1085, Budapest, Hungary.
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Flórián Street 5-7, 1097, Budapest, Hungary.
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Haematology, Semmelweis University, Albert Flórián Street 5-7, 1097, Budapest, Hungary.
| | - Andrea Ceglédi
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Flórián Street 5-7, 1097, Budapest, Hungary
| | - Botond Lakatos
- School of PhD Studies, Semmelweis University, Üllői Street 26, 1085, Budapest, Hungary
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Flórián Street 5-7, 1097, Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Haematology, Semmelweis University, Albert Flórián Street 5-7, 1097, Budapest, Hungary
| |
Collapse
|
5
|
Kow CS, Ramachandram DS, Hasan SS, Thiruchelvam K. The potential role of factor XI inhibitors in managing long COVID. J Thromb Thrombolysis 2024:10.1007/s11239-024-03031-9. [PMID: 39187623 DOI: 10.1007/s11239-024-03031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Affiliation(s)
- Chia Siang Kow
- School of Pharmacy, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Dinesh Sangarran Ramachandram
- School of Pharmacy, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia
| | - Syed Shahzad Hasan
- School of Pharmacy, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | | |
Collapse
|
6
|
Suski M, Olszanecka A, Stachowicz A, Kiepura A, Terlecki M, Madej J, Rajzer M, Olszanecki R. Alterations in plasma proteome during acute COVID-19 and recovery. Mol Med 2024; 30:131. [PMID: 39183264 PMCID: PMC11346252 DOI: 10.1186/s10020-024-00898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The severe course of COVID-19 causes cardiovascular injuries, although the mechanisms involved are still not fully recognized, linked, and understood. Their characterization is of great importance with the establishment of the conception of post-acute sequelae of COVID-19, referred to as long COVID, where blood clotting and endothelial abnormalities are believed to be the key pathomechanisms driving circulatory system impairment. METHODS The presented study investigates temporal changes in plasma proteins in COVID-19 patients during hospitalization due to SARS-CoV-2 infection and six months after recovery by targeted SureQuant acquisition using PQ500 panel. RESULTS In total, we identified 167 proteins that were differentially regulated between follow-up and hospitalization, which functionally aggregated into immune system activation, complement and coagulation cascades, interleukins signalling, platelet activation, and extracellular matrix organization. Furthermore, we found that temporal quantitative changes in acute phase proteins correlate with selected clinical characteristics of COVID-19 patients. CONCLUSIONS In-depth targeted proteome investigation evidenced substantial changes in plasma protein composition of patients during and recovering from COVID-19, evidencing a wide range of functional pathways induced by SARS-CoV-2 infection. In addition, we show that a subset of acute phase proteins, clotting cascade regulators and lipoproteins could have clinical value as potential predictors of long-term cardiovascular events in COVID-19 convalescents.
Collapse
Affiliation(s)
- Maciej Suski
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str, Kraków, 31 531, Poland.
| | - Agnieszka Olszanecka
- Department of Cardiology, Interventional Electrocardiology and Arterial Hypertension, Jagiellonian University Medical College, 2 Jakubowskiego str, Kraków, 30-688, Poland
- University Hospital in Kraków, 2 Jakubowskiego str, Kraków, 30-688, Poland
| | - Aneta Stachowicz
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str, Kraków, 31 531, Poland
| | - Anna Kiepura
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str, Kraków, 31 531, Poland
| | - Michał Terlecki
- Department of Cardiology, Interventional Electrocardiology and Arterial Hypertension, Jagiellonian University Medical College, 2 Jakubowskiego str, Kraków, 30-688, Poland
- University Hospital in Kraków, 2 Jakubowskiego str, Kraków, 30-688, Poland
| | - Józef Madej
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str, Kraków, 31 531, Poland
| | - Marek Rajzer
- Department of Cardiology, Interventional Electrocardiology and Arterial Hypertension, Jagiellonian University Medical College, 2 Jakubowskiego str, Kraków, 30-688, Poland
- University Hospital in Kraków, 2 Jakubowskiego str, Kraków, 30-688, Poland
| | - Rafał Olszanecki
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str, Kraków, 31 531, Poland
| |
Collapse
|
7
|
Wang Y, Yang Z, Zheng X, Liang X, Wu L, Wu C, Dai J, Cao Y, Li M, Zhou F. Cerebral blood flow alterations and host genetic association in individuals with long COVID: A transcriptomic-neuroimaging study. J Cereb Blood Flow Metab 2024:271678X241277621. [PMID: 39177056 DOI: 10.1177/0271678x241277621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Neuroimaging studies have indicated that altered cerebral blood flow (CBF) was associated with the long-term symptoms of postacute sequelae of SARS-CoV-2 infection (PASC), also known as "long COVID". COVID-19 and long COVID were found to be strongly associated with host gene expression. Nevertheless, the relationships between altered CBF, clinical symptoms, and gene expression in the central nervous system (CNS) remain unclear in individuals with long COVID. This study aimed to explore the genetic mechanisms of CBF abnormalities in individuals with long COVID by transcriptomic-neuroimaging spatial association. Lower CBF in the left frontal-temporal gyrus was associated with higher fatigue and worse cognition in individuals with long COVID. This CBF pattern was spatially associated with the expression of 2,178 genes, which were enriched in the molecular functions and biological pathways of COVID-19. Our study suggested that lower CBF is associated with persistent clinical symptoms in long COVID individuals, possibly as a consequence of the complex interactions among multiple COVID-19-related genes, which contributes to our understanding of the impact of adverse CNS outcomes and the trajectory of development to long COVID.
Collapse
Affiliation(s)
- Yao Wang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Ziwei Yang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Xiumei Zheng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Xiao Liang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Lin Wu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Chengsi Wu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | | | - Yuan Cao
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| |
Collapse
|
8
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H, Sako A. The Significance of Endothelial Dysfunction in Long COVID-19 for the Possible Future Pandemic of Chronic Kidney Disease and Cardiovascular Disease. Biomolecules 2024; 14:965. [PMID: 39199353 PMCID: PMC11352301 DOI: 10.3390/biom14080965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Various symptoms have been reported to persist beyond the acute phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which is referred to as long coronavirus disease 19 (long COVID-19). Over 65 million individuals suffer from long COVID-19. However, the causes of long COVID-19 are largely unknown. Since long COVID-19 symptoms are observed throughout the body, vascular endothelial dysfunction is a strong candidate explaining the induction of long COVID-19. The angiotensin-converting enzyme 2 (ACE2), the entry receptor for SARS-CoV-2, is ubiquitously expressed in endothelial cells. We previously found that the risk factors for atherosclerotic cardiovascular disease (ASCVD) and a history of ASCVD raise the risk of severe COVID-19, suggesting a contribution of pre-existing endothelial dysfunction to severe COVID-19. Here, we show a significant association of endothelial dysfunction with the development of long COVID-19 and show that biomarkers for endothelial dysfunction in patients with long COVID-19 are also crucial players in the development of ASCVD. We consider the influence of long COVID-19 on the development of chronic kidney disease (CKD) and ASCVD. Future assessments of the outcomes of long COVID-19 in patients resulting from therapeutic interventions that improve endothelial function may imply the significance of endothelial dysfunction in the development of long COVID-19.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | - Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | - Akahito Sako
- Department of General Medicine, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan;
| |
Collapse
|
9
|
da Silva R, Vallinoto ACR, dos Santos EJM. The Silent Syndrome of Long COVID and Gaps in Scientific Knowledge: A Narrative Review. Viruses 2024; 16:1256. [PMID: 39205230 PMCID: PMC11359800 DOI: 10.3390/v16081256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
COVID-19 is still a major public health concern, mainly due to the persistence of symptoms or the appearance of new symptoms. To date, more than 200 symptoms of long COVID (LC) have been described. The present review describes and maps its relevant clinical characteristics, pathophysiology, epidemiology, and genetic and nongenetic risk factors. Given the currently available evidence on LC, we demonstrate that there are still gaps and controversies in the diagnosis, pathophysiology, epidemiology, and detection of prognostic and predictive factors, as well as the role of the viral strain and vaccination.
Collapse
Affiliation(s)
- Rosilene da Silva
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil;
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Brazil;
| | - Antonio Carlos Rosário Vallinoto
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Brazil;
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Eduardo José Melo dos Santos
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil;
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Brazil;
| |
Collapse
|
10
|
Thierry AR, Salmon D. Inflammation-, immunothrombosis,- and autoimmune-feedback loops may lead to persistent neutrophil self-stimulation in long COVID. J Med Virol 2024; 96:e29887. [PMID: 39189651 DOI: 10.1002/jmv.29887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Understanding the pathophysiology of long COVID is one of the most intriguing challenges confronting contemporary medicine. Despite observations recently made in the relevant molecular, cellular, and physiological domains, it is still difficult to say whether the post-acute sequelae of COVID-19 directly correspond to the consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This work hypothesizes that neutrophils and neutrophil extracellular traps (NETs) production are at the interconnection of three positive feedback loops which are initiated in the acute phase of SARS-CoV-2 infection, and which involve inflammation, immunothrombosis, and autoimmunity. This phenomenon could be favored by the fact that SARS-CoV-2 may directly bind and penetrate neutrophils. The ensuing strong neutrophil stimulation leads to a progressive amplification of an exacerbated and uncontrolled NETs production, potentially persisting for months beyond the acute phase of infection. This continuous self-stimulation of neutrophils leads, in turn, to systemic inflammation, micro-thromboses, and the production of autoantibodies, whose significant consequences include the persistence of endothelial and multiorgan damage, and vascular complications.
Collapse
Affiliation(s)
- Alain R Thierry
- IRCM, Institute of Research on Cancerology of Montpellier, INSERM U1194, University of Montpellier, Montpellier, France
- Montpellier Cancer Institute (ICM), Montpellier, France
| | | |
Collapse
|
11
|
Lippi G, Favaloro EJ. COVID-19 vaccination prevents venous thrombosis in patients with SARS-CoV-2 infection and thereafter. Blood Coagul Fibrinolysis 2024; 35:225-226. [PMID: 38973515 DOI: 10.1097/mbc.0000000000001310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Emmanuel J Favaloro
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Sydney Centres for Thrombosis and Haemostasis, NSW Health Pathology, Westmead Hospital, Westmead
- Faculty of Science and Health, Charles Sturt University, Wagga Wagga
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
12
|
Wallen WJ, Backer CL. Atrial Septal Defect Closure: Not Always Straightforward. World J Pediatr Congenit Heart Surg 2024; 15:534-535. [PMID: 38706197 DOI: 10.1177/21501351241240753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
A nine-year old boy presented following a chest x-ray for COVID-19 infection that showed cardiomegaly. Transthoracic echocardiogram revealed a large atrial septal defect, dilated right heart, and normal function. Surgical repair was performed eight weeks after his COVID diagnosis. After weaning from cardiopulmonary bypass, pulmonary artery pressures were 2/3 systemic and ectopy was seen, requiring inotropes, nitric oxide, lidocaine, and amiodarone. He was discharged on postoperative day (POD) 5. On POD 6, he presented with acute right foot ischemia. Computed tomography showed a large aortic thrombus, requiring emergent thrombectomy. Coagulopathy workup was negative. Cardiac magnetic resonance imaging (CMR) and catheterization showed reduced biventricular function and diastolic dysfunction. Diuretics and β blockers were started, with gradual improvement in left ventricular systolic function.
Collapse
Affiliation(s)
- W Jack Wallen
- Congenital Cardiac Surgery, Joint Pediatric Heart Care Program, UK Healthcare/Kentucky Children's Hospital, Lexington, KY, USA
| | - Carl L Backer
- Congenital Cardiac Surgery, Joint Pediatric Heart Care Program, UK Healthcare/Kentucky Children's Hospital, Lexington, KY, USA
| |
Collapse
|
13
|
Jia L, Navare S, Hoyler M. Lingering effects of COVID-19 in the care of perioperative patients. Curr Opin Anaesthesiol 2024; 37:308-315. [PMID: 38573196 DOI: 10.1097/aco.0000000000001364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can lead to organ dysfunction and clinical symptoms beyond the acute infection phase. These effects may have significant implications for the management of perioperative patients. The purpose of this article is to provide a systems-based approach to the subacute and chronic effects of SARS-CoV-2 that are most relevant to anesthesiology practice. RECENT FINDINGS In 2024, COVID-19 remains a concern for anesthesiologists due ongoing new infections, evolving viral strains, and relatively low rates of booster vaccination in the general population. A growing body of literature describes the post-COVID-19 syndrome in which patients experience symptoms more than 12 weeks after acute infection. Recent literature describes the lingering effects of SARS-CoV-2 infection on all major organ systems, including neurologic, pulmonary, cardiovascular, renal, hematologic, and musculoskeletal, and suggests an increased perioperative mortality risk in some populations. SUMMARY This review offers anesthesiologists an organ system-based approach to patients with a history of COVID-19. Recognizing the long-term sequelae of SARS-CoV-2 infection can help anesthesiologists to better evaluate perioperative risk, anticipate clinical challenges, and thereby optimize patient care.
Collapse
Affiliation(s)
- Linjia Jia
- NewYork-Presbyterian Hospital - Weill Cornell, Department of Anesthesiology
| | - Sagar Navare
- Weill Cornell Medicine, Department of Anesthesiology, New York, New York, USA
| | - Marguerite Hoyler
- Weill Cornell Medicine, Department of Anesthesiology, New York, New York, USA
| |
Collapse
|
14
|
Fan BE, Mucheli SS, Tang YL, Yong E, Dalan R, Cheung C, Young BE, Lye DCB, Wang L, Tan CW, Lim KHT, Sum CLL, Gallardo CA, Christopher D, Leung BP, Lim XR, Wong SW, Chia YW, Chong VCL. Post COVID-19 Large Vessel Vasculopathy in a Previously Healthy Young Male. Semin Thromb Hemost 2024; 50:660-663. [PMID: 37748516 DOI: 10.1055/s-0043-1774793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Affiliation(s)
- Bingwen Eugene Fan
- Department of Haematology, Tan Tock Seng Hospital, Singapore, Singapore
- Department of Laboratory Medicine, Khoo Teck Puat Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shravan Sadasiv Mucheli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Yee Lin Tang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pathology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Enming Yong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Rinkoo Dalan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Barnaby Edward Young
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
| | - David Chien Boon Lye
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Linfa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Singhealth Duke-NUS Global Health Institute, Singapore, Singapore
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Kiat Hon Tony Lim
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | | | - Christian Aledia Gallardo
- Department of Haematology, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Dheepa Christopher
- Department of Haematology, Tan Tock Seng Hospital, Singapore, Singapore
- Department of Laboratory Medicine, Khoo Teck Puat Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bernard PuiLam Leung
- Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Xin Rong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Shiun Woei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Cardiology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Yew Woon Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Cardiology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Vanessa Cui Lian Chong
- Department of Haematology, Tan Tock Seng Hospital, Singapore, Singapore
- Department of Laboratory Medicine, Khoo Teck Puat Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
15
|
Frontera JA, Betensky RA, Pirofski LA, Wisniewski T, Yoon H, Ortigoza MB. Trajectories of Inflammatory Markers and Post-COVID-19 Cognitive Symptoms: A Secondary Analysis of the CONTAIN COVID-19 Randomized Trial. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200227. [PMID: 38626359 PMCID: PMC11087048 DOI: 10.1212/nxi.0000000000200227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND AND OBJECTIVES Chronic systemic inflammation has been hypothesized to be a mechanistic factor leading to post-acute cognitive dysfunction after COVID-19. However, little data exist evaluating longitudinal inflammatory markers. METHODS We conducted a secondary analysis of data collected from the CONTAIN randomized trial of convalescent plasma in patients hospitalized for COVID-19, including patients who completed an 18-month assessment of cognitive symptoms and PROMIS Global Health questionnaires. Patients with pre-COVID-19 dementia/cognitive abnormalities were excluded. Trajectories of serum cytokine panels, D-dimer, fibrinogen, C-reactive peptide (CRP), ferritin, lactate dehydrogenase (LDH), and absolute neutrophil counts (ANCs) were evaluated over 18 months using repeated measures and Friedman nonparametric tests. The relationships between the area under the curve (AUC) for each inflammatory marker and 18-month cognitive and global health outcomes were assessed. RESULTS A total of 279 patients (N = 140 received plasma, N = 139 received placebo) were included. At 18 months, 76/279 (27%) reported cognitive abnormalities and 78/279 (28%) reported fair or poor overall health. PROMIS Global Mental and Physical Health T-scores were 0.5 standard deviations below normal in 24% and 51% of patients, respectively. Inflammatory marker levels declined significantly from hospitalization to 18 months for all markers (IL-2, IL-2R, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-13, INFγ, TNFα, D-dimer, fibrinogen, ferritin, LDH, CRP, neutrophils; all p < 0.05), with the exception of IL-1β, which remained stable over time. There were no significant associations between the AUC for any inflammatory marker and 18-month cognitive symptoms, any neurologic symptom, or PROMIS Global Physical or Mental health T-scores. Receipt of convalescent plasma was not associated with any outcome measure. DISCUSSION At 18 months posthospitalization for COVID-19, cognitive abnormalities were reported in 27% of patients, and below average PROMIS Global Mental and Physical Health scores occurred in 24% and 51%, respectively. However, there were no associations with measured inflammatory markers, which decreased over time.
Collapse
Affiliation(s)
- Jennifer A Frontera
- From the Department of Neurology (J.A.F., T.W.), New York University Grossman School of Medicine; Department of Biostatistics (R.A.B.), NYU; Division of Infectious Disease (L.P.), Department of Medicine, Montefiore Medical Center; Department of Microbiology and Immunology; Division of Infectious Disease (H.Y.), Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx; and Division of Infectious Disease (M.B.O.), Department of Medicine, NYU Grossman School of Medicine, New York
| | - Rebecca A Betensky
- From the Department of Neurology (J.A.F., T.W.), New York University Grossman School of Medicine; Department of Biostatistics (R.A.B.), NYU; Division of Infectious Disease (L.P.), Department of Medicine, Montefiore Medical Center; Department of Microbiology and Immunology; Division of Infectious Disease (H.Y.), Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx; and Division of Infectious Disease (M.B.O.), Department of Medicine, NYU Grossman School of Medicine, New York
| | - Liise-Anne Pirofski
- From the Department of Neurology (J.A.F., T.W.), New York University Grossman School of Medicine; Department of Biostatistics (R.A.B.), NYU; Division of Infectious Disease (L.P.), Department of Medicine, Montefiore Medical Center; Department of Microbiology and Immunology; Division of Infectious Disease (H.Y.), Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx; and Division of Infectious Disease (M.B.O.), Department of Medicine, NYU Grossman School of Medicine, New York
| | - Thomas Wisniewski
- From the Department of Neurology (J.A.F., T.W.), New York University Grossman School of Medicine; Department of Biostatistics (R.A.B.), NYU; Division of Infectious Disease (L.P.), Department of Medicine, Montefiore Medical Center; Department of Microbiology and Immunology; Division of Infectious Disease (H.Y.), Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx; and Division of Infectious Disease (M.B.O.), Department of Medicine, NYU Grossman School of Medicine, New York
| | - Hyunah Yoon
- From the Department of Neurology (J.A.F., T.W.), New York University Grossman School of Medicine; Department of Biostatistics (R.A.B.), NYU; Division of Infectious Disease (L.P.), Department of Medicine, Montefiore Medical Center; Department of Microbiology and Immunology; Division of Infectious Disease (H.Y.), Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx; and Division of Infectious Disease (M.B.O.), Department of Medicine, NYU Grossman School of Medicine, New York
| | - Mila B Ortigoza
- From the Department of Neurology (J.A.F., T.W.), New York University Grossman School of Medicine; Department of Biostatistics (R.A.B.), NYU; Division of Infectious Disease (L.P.), Department of Medicine, Montefiore Medical Center; Department of Microbiology and Immunology; Division of Infectious Disease (H.Y.), Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx; and Division of Infectious Disease (M.B.O.), Department of Medicine, NYU Grossman School of Medicine, New York
| |
Collapse
|
16
|
Boyarchuk O, Perestiuk V, Kosovska T, Volianska L. Coagulation profile in hospitalized children with COVID-19: pediatric age dependency and its impact on long COVID development. Front Immunol 2024; 15:1363410. [PMID: 38510249 PMCID: PMC10950941 DOI: 10.3389/fimmu.2024.1363410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Pulmonary endotheliopathy and microvascular immunothrombosis play a key role in acute COVID-19. Moreover, persistent endotheliopathy and heightened coagulability frequently occur in individuals recovering from COVID-19, suggesting the intriguing possibility of their role in the development of long COVID. The aim of our study was to investigate the coagulation profile in patients with COVID-19 based on age and their role in the development of long COVID. Methods We conducted a prospective single-center cohort study from September 2022 to August 2023. The study involved 190 patients younger than 18 years who were hospitalized at the Ternopil City Children's Hospital, Ukraine due to COVID-19. Patients underwent determination of coagulation profile in addition to the general clinical examination. After discharge from the hospital, patients were monitored for the presence of long COVID symptoms. Among the 157 participants who consented for follow-up, 62 patients (39.5%) had long COVID symptoms according to the WHO definition, while the rest (95 patients) did not have symptoms of long COVID (fully recovered). Results The study revealed the normal count of platelets in the majority of patients (86.8%), whereas abnormalities in the coagulation profile were revealed in 94.5% of children with COVID-19, and these changes were age-dependent. The patients were mostly presented with increased activated partial thromboplastin time (69.1%), prothrombin time (PT) (39.8%) and D-dimer (45.0%). There was no significant difference between the median of platelet levels and coagulation profile indicators between the groups with long COVID and recovered. Among children who developed persistent long COVID symptoms there was a statistically higher percentage of abnormal PT values (53% versus 36.1%, p=0.0432), with no significant differences in other coagulation profile indicators. Abnormal PT along with female gender, comorbidities, especially allergic pathology, nutritional disorder, including obesity, were determined as potential risk factors of the long COVID development (Odds ratio - 2.0611; 95% 1.0179-4.1737, p=0.0445). Conclusions The study highlights the need for more extensive research into the coagulation profiles of pediatric populations, considering age-specific factors. This could enhance our understanding of thromboinflammation in COVID-19 and its potential contribution to the development of persistent symptoms.
Collapse
|
17
|
Gheorghita R, Soldanescu I, Lobiuc A, Caliman Sturdza OA, Filip R, Constantinescu – Bercu A, Dimian M, Mangul S, Covasa M. The knowns and unknowns of long COVID-19: from mechanisms to therapeutical approaches. Front Immunol 2024; 15:1344086. [PMID: 38500880 PMCID: PMC10944866 DOI: 10.3389/fimmu.2024.1344086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has been defined as the greatest global health and socioeconomic crisis of modern times. While most people recover after being infected with the virus, a significant proportion of them continue to experience health issues weeks, months and even years after acute infection with SARS-CoV-2. This persistence of clinical symptoms in infected individuals for at least three months after the onset of the disease or the emergence of new symptoms lasting more than two months, without any other explanation and alternative diagnosis have been named long COVID, long-haul COVID, post-COVID-19 conditions, chronic COVID, or post-acute sequelae of SARS-CoV-2 (PASC). Long COVID has been characterized as a constellation of symptoms and disorders that vary widely in their manifestations. Further, the mechanisms underlying long COVID are not fully understood, which hamper efficient treatment options. This review describes predictors and the most common symptoms related to long COVID's effects on the central and peripheral nervous system and other organs and tissues. Furthermore, the transcriptional markers, molecular signaling pathways and risk factors for long COVID, such as sex, age, pre-existing condition, hospitalization during acute phase of COVID-19, vaccination, and lifestyle are presented. Finally, recommendations for patient rehabilitation and disease management, as well as alternative therapeutical approaches to long COVID sequelae are discussed. Understanding the complexity of this disease, its symptoms across multiple organ systems and overlapping pathologies and its possible mechanisms are paramount in developing diagnostic tools and treatments.
Collapse
Affiliation(s)
- Roxana Gheorghita
- Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
| | - Iuliana Soldanescu
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), University of Suceava, Suceava, Romania
| | - Andrei Lobiuc
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
| | - Olga Adriana Caliman Sturdza
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
- Suceava Emergency Clinical County Hospital, Suceava, Romania
| | - Roxana Filip
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
- Suceava Emergency Clinical County Hospital, Suceava, Romania
| | - Adela Constantinescu – Bercu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
- Institute of Cardiovascular Science, Hemostasis Research Unit, University College London (UCL), London, United Kingdom
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), University of Suceava, Suceava, Romania
- Department of Computer, Electronics and Automation, University of Suceava, Suceava, Romania
| | - Serghei Mangul
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Quantitative and Computational Biology, USC Dornsife College of Letters, Arts and Sciences, University of Southern California (USC), Los Angeles, CA, United States
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA, United States
| |
Collapse
|
18
|
Valencia I, Lumpuy-Castillo J, Magalhaes G, Sánchez-Ferrer CF, Lorenzo Ó, Peiró C. Mechanisms of endothelial activation, hypercoagulation and thrombosis in COVID-19: a link with diabetes mellitus. Cardiovasc Diabetol 2024; 23:75. [PMID: 38378550 PMCID: PMC10880237 DOI: 10.1186/s12933-023-02097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024] Open
Abstract
Early since the onset of the COVID-19 pandemic, the medical and scientific community were aware of extra respiratory actions of SARS-CoV-2 infection. Endothelitis, hypercoagulation, and hypofibrinolysis were identified in COVID-19 patients as subsequent responses of endothelial dysfunction. Activation of the endothelial barrier may increase the severity of the disease and contribute to long-COVID syndrome and post-COVID sequelae. Besides, it may cause alterations in primary, secondary, and tertiary hemostasis. Importantly, these responses have been highly decisive in the evolution of infected patients also diagnosed with diabetes mellitus (DM), who showed previous endothelial dysfunction. In this review, we provide an overview of the potential triggers of endothelial activation related to COVID-19 and COVID-19 under diabetic milieu. Several mechanisms are induced by both the viral particle itself and by the subsequent immune-defensive response (i.e., NF-κB/NLRP3 inflammasome pathway, vasoactive peptides, cytokine storm, NETosis, activation of the complement system). Alterations in coagulation mediators such as factor VIII, fibrin, tissue factor, the von Willebrand factor: ADAMST-13 ratio, and the kallikrein-kinin or plasminogen-plasmin systems have been reported. Moreover, an imbalance of thrombotic and thrombolytic (tPA, PAI-I, fibrinogen) factors favors hypercoagulation and hypofibrinolysis. In the context of DM, these mechanisms can be exacerbated leading to higher loss of hemostasis. However, a series of therapeutic strategies targeting the activated endothelium such as specific antibodies or inhibitors against thrombin, key cytokines, factor X, complement system, the kallikrein-kinin system or NETosis, might represent new opportunities to address this hypercoagulable state present in COVID-19 and DM. Antidiabetics may also ameliorate endothelial dysfunction, inflammation, and platelet aggregation. By improving the microvascular pathology in COVID-19 and post-COVID subjects, the associated comorbidities and the risk of mortality could be reduced.
Collapse
Affiliation(s)
- Inés Valencia
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, IIS Hospital Universitario de La Princesa, 28009, Madrid, Spain.
| | - Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain
- Spanish Biomedical Research Centre On Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
| | - Giselle Magalhaes
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM), IdiPAZ, Madrid, Spain
| | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain.
- Spanish Biomedical Research Centre On Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain.
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain.
- Vascular Pharmacology and Metabolism (FARMAVASM), IdiPAZ, Madrid, Spain.
| |
Collapse
|
19
|
Salzmann M, Gibler P, Haider P, Brekalo M, Plasenzotti R, Filip T, Nistelberger R, Hartmann B, Wojta J, Hengstenberg C, Podesser BK, Kral-Pointner JB, Hohensinner PJ. Neutrophil extracellular traps induce persistent lung tissue damage via thromboinflammation without altering virus resolution in a mouse coronavirus model. J Thromb Haemost 2024; 22:188-198. [PMID: 37748582 DOI: 10.1016/j.jtha.2023.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND During infection, neutrophil extracellular traps (NETs) are associated with severity of pulmonary diseases such as acute respiratory disease syndrome. NETs induce subsequent immune responses, are directly cytotoxic to pulmonary cells, and are highly procoagulant. Anticoagulation treatment was shown to reduce in-hospital mortality, indicating thromboinflammatory complications. However, data are sparsely available on the involvement of NETs in secondary events after virus clearance, which can lead to persistent lung damage and postacute sequelae with chronic fatigue and dyspnea. OBJECTIVES This study focuses on late-phase events using a murine model of viral lung infection with postacute sequelae after virus resolution. METHODS C57BL/6JRj mice were infected intranasally with the betacoronavirus murine coronavirus (MCoV, strain MHV-A95), and tissue samples were collected after 2, 4, and 10 days. For NET modulation, mice were pretreated with OM-85 or GSK484 and DNase I were administered intraperitoneally between days 2 to 5 and days 4 to 7, respectively. RESULTS Rapid, platelet-attributed thrombus formation was followed by a second, late phase of thromboinflammation. This phase was characterized by negligible virus titers but pronounced tissue damage, apoptosis, oxidative DNA damage, and presence of NETs. Inhibition of NETs during the acute phase did not impact virus burden but decreased lung cell apoptosis by 67% and oxidative stress by 94%. Prevention of neutrophil activation by immune training before virus infection reduced damage by 75%, NETs by 31%, and pulmonary thrombi by 93%. CONCLUSION NETs are detrimental inducers of tissue damage during respiratory virus infection but do not contribute to virus clearance.
Collapse
Affiliation(s)
- Manuel Salzmann
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Patrizia Gibler
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Patrick Haider
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Mira Brekalo
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Roberto Plasenzotti
- Core facility laboratory animal breeding and husbandry, Medical University of Vienna, Vienna, Austria
| | - Thomas Filip
- Core facility laboratory animal breeding and husbandry, Medical University of Vienna, Vienna, Austria
| | - Rebecca Nistelberger
- Core facility laboratory animal breeding and husbandry, Medical University of Vienna, Vienna, Austria
| | - Boris Hartmann
- Institute of Veterinary Disease Control, AGES, Mödling, Austria
| | - Johann Wojta
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Christian Hengstenberg
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Julia B Kral-Pointner
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Philipp J Hohensinner
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Constantinescu-Bercu A, Lobiuc A, Căliman-Sturdza OA, Oiţă RC, Iavorschi M, Pavăl NE, Șoldănescu I, Dimian M, Covasa M. Long COVID: Molecular Mechanisms and Detection Techniques. Int J Mol Sci 2023; 25:408. [PMID: 38203577 PMCID: PMC10778767 DOI: 10.3390/ijms25010408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Long COVID, also known as post-acute sequelae of SARS-CoV-2 infection (PASC), has emerged as a significant health concern following the COVID-19 pandemic. Molecular mechanisms underlying the occurrence and progression of long COVID include viral persistence, immune dysregulation, endothelial dysfunction, and neurological involvement, and highlight the need for further research to develop targeted therapies for this condition. While a clearer picture of the clinical symptomatology is shaping, many molecular mechanisms are yet to be unraveled, given their complexity and high level of interaction with other metabolic pathways. This review summarizes some of the most important symptoms and associated molecular mechanisms that occur in long COVID, as well as the most relevant molecular techniques that can be used in understanding the viral pathogen, its affinity towards the host, and the possible outcomes of host-pathogen interaction.
Collapse
Affiliation(s)
- Adela Constantinescu-Bercu
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
| | - Andrei Lobiuc
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
| | - Olga Adriana Căliman-Sturdza
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
- Suceava Emergency Clinical County Hospital, 720224 Suceava, Romania
| | - Radu Cristian Oiţă
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Ştefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.C.O.); (I.Ș.); (M.D.)
| | - Monica Iavorschi
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
| | - Naomi-Eunicia Pavăl
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
| | - Iuliana Șoldănescu
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Ştefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.C.O.); (I.Ș.); (M.D.)
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Ştefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.C.O.); (I.Ș.); (M.D.)
- Department of Computers, Electronics and Automation, Ştefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91711, USA
| |
Collapse
|
21
|
Cojocaru DC, Mitu F, Leon MM, Dima-Cozma LC, Adam CA, Cumpăt CM, Negru RD, Maștaleru A, Onofrei V. Beyond the Acute Phase: Long-Term Impact of COVID-19 on Functional Capacity and Prothrombotic Risk-A Pilot Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:51. [PMID: 38256314 PMCID: PMC10819578 DOI: 10.3390/medicina60010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
Background and Objectives: Assessment of the prothrombotic, proinflammatory, and functional status of a cohort of COVID-19 patients at least two years after the acute infection to identify parameters with potential therapeutic and prognostic value. Materials and Methods: We conducted a retrospective, descriptive study that included 117 consecutive patients admitted to Iasi Pulmonary Rehabilitation Clinic for reassessment and a rehabilitation program at least two years after a COVID-19 infection. The cohort was divided into two groups based on the presence (n = 49) or absence (n = 68) of pulmonary fibrosis, documented through high-resolution computer tomography. Results: The cohort comprises 117 patients, 69.23% females, with a mean age of 65.74 ± 10.19 years and abnormal body mass index (31.42 ± 5.71 kg/m2). Patients with pulmonary fibrosis have significantly higher levels of C-reactive protein (CRP) (p < 0.05), WBC (7.45 ± 7.86/mm3 vs. 9.18 ± 17.24/mm3, p = 0.053), neutrophils (4.68 ± 7.88/mm3 vs. 9.07 ± 17.44/mm3, p < 0.05), mean platelet volume (MPV) (7.22 ± 0.93 vs. 10.25 ± 0.86 fL, p < 0.05), lactate dehydrogenase (p < 0.05), and D-dimers (p < 0.05), but not ferritin (p = 0.470), reflecting the chronic proinflammatory and prothrombotic status. Additionally, patients with associated pulmonary fibrosis had a higher mean heart rate (p < 0.05) and corrected QT interval (p < 0.05). D-dimers were strongly and negatively correlated with diffusion capacity corrected for hemoglobin (DLCO corr), and ROC analysis showed that the persistence of high D-dimers values is a predictor for low DLCO values (ROC analysis: area under the curve of 0.772, p < 0.001). The results of pulmonary function tests (spirometry, body plethysmography) and the 6-minute walk test demonstrated no significant difference between groups, without notable impairment within either group. Conclusions: Patients with COVID-19-related pulmonary fibrosis have a persistent long-term proinflammatory, prothrombotic status, despite the functional recovery. The persistence of elevated D-dimer levels could emerge as a predictive factor associated with impaired DLCO.
Collapse
Affiliation(s)
- Doina-Clementina Cojocaru
- Department of Medical Specialties I and III, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661 Iasi, Romania
| | - Florin Mitu
- Department of Medical Specialties I and III, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661 Iasi, Romania
- Academy of Medical Sciences, 030167 Bucharest, Romania
- Academy of Romanian Scientists, 700050 Iasi, Romania
| | - Maria-Magdalena Leon
- Department of Medical Specialties I and III, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661 Iasi, Romania
| | - Lucia Corina Dima-Cozma
- Department of Medical Specialties I and III, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661 Iasi, Romania
| | - Cristina Andreea Adam
- Department of Medical Specialties I and III, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661 Iasi, Romania
| | - Carmen Marinela Cumpăt
- Department of Medical Specialties I and III, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661 Iasi, Romania
| | - Robert D. Negru
- Department of Medical Specialties I and III, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661 Iasi, Romania
| | - Alexandra Maștaleru
- Department of Medical Specialties I and III, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661 Iasi, Romania
| | - Viviana Onofrei
- Department of Medical Specialties I and III, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- “St. Spiridon” Clinical Emergency Hospital, Cardiology Department Independence Boulevard No. 1, 700111 Iasi, Romania
| |
Collapse
|
22
|
Garcia-Larragoiti N, Cano-Mendez A, Jimenez-Vega Y, Trujillo M, Guzman-Cancino P, Ambriz-Murillo Y, Viveros-Sandoval ME. Inflammatory and Prothrombotic Biomarkers Contribute to the Persistence of Sequelae in Recovered COVID-19 Patients. Int J Mol Sci 2023; 24:17468. [PMID: 38139298 PMCID: PMC10744310 DOI: 10.3390/ijms242417468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The presence of long COVID (LC) following SARS-CoV-2 infection is a common condition that affects the quality of life of patients and represents a diagnostic challenge due to the diversity of symptoms that may coexist. We still do not have accurate information regarding the pathophysiological pathways that generate the presence of LC, and so it is important to know the inflammatory and immunothrombotic biomarker profiles and their implications in order to characterize risk subgroups and establish early therapeutic strategies. We performed the determination of inflammatory and immunothrombotic biomarkers in volunteers with previous diagnoses of SARS-CoV-2. The inflammatory biomarkers were analyzed in plasma by flow cytometry, and we analyzed the von Willebrand factor (vWF) in the plasma samples using ELISA. The clinical variables and the presence or absence of long COVID symptoms were then analyzed. IL-6, sCD40L, p-Selectin, PSGL-1, PAI-1, tPA, D-Dimer, TF, and Factor IX levels were elevated in the groups with LC, especially in the subgroup of patients with metabolic syndrome (MetS). VWF levels were found to be increased in patients with sequelae and MetS. Our results confirmed the persistence of an active immunothrombotic state, and so it is important to identify the population at risk in order to provide adequate clinical follow-up.
Collapse
Affiliation(s)
- Nallely Garcia-Larragoiti
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58060, Michoacán, Mexico
| | - Alan Cano-Mendez
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58060, Michoacán, Mexico
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58060, Michoacán, Mexico
| | - Yeny Jimenez-Vega
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58060, Michoacán, Mexico
| | - Mercedes Trujillo
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58060, Michoacán, Mexico
| | - Patricia Guzman-Cancino
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58060, Michoacán, Mexico
| | - Yesenia Ambriz-Murillo
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58060, Michoacán, Mexico
- Hospital Regional de Morelia ISSSTE, Morelia 58300, Michoacán, Mexico
| | - Martha Eva Viveros-Sandoval
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58060, Michoacán, Mexico
| |
Collapse
|
23
|
Palomo M, Moreno-Castaño AB, Salas MQ, Escribano-Serrat S, Rovira M, Guillen-Olmos E, Fernandez S, Ventosa-Capell H, Youssef L, Crispi F, Nomdedeu M, Martinez-Sanchez J, De Moner B, Diaz-Ricart M. Endothelial activation and damage as a common pathological substrate in different pathologies and cell therapy complications. Front Med (Lausanne) 2023; 10:1285898. [PMID: 38034541 PMCID: PMC10682735 DOI: 10.3389/fmed.2023.1285898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
The endothelium is a biologically active interface with multiple functions, some of them common throughout the vascular tree, and others that depend on its anatomical location. Endothelial cells are continually exposed to cellular and humoral factors, and to all those elements (biological, chemical, or hemodynamic) that circulate in blood at a certain time. It can adapt to different stimuli but this capability may be lost if the stimuli are strong enough and/or persistent in time. If the endothelium loses its adaptability it may become dysfunctional, becoming a potential real danger to the host. Endothelial dysfunction is present in multiple clinical conditions, such as chronic kidney disease, obesity, major depression, pregnancy-related complications, septic syndromes, COVID-19, and thrombotic microangiopathies, among other pathologies, but also in association with cell therapies, such as hematopoietic stem cell transplantation and treatment with chimeric antigen receptor T cells. In these diverse conditions, evidence suggests that the presence and severity of endothelial dysfunction correlate with the severity of the associated disease. More importantly, endothelial dysfunction has a strong diagnostic and prognostic value for the development of critical complications that, although may differ according to the underlying disease, have a vascular background in common. Our multidisciplinary team of women has devoted many years to exploring the role of the endothelium in association with the mentioned diseases and conditions. Our research group has characterized some of the mechanisms and also proposed biomarkers of endothelial damage. A better knowledge would provide therapeutic strategies either to prevent or to treat endothelial dysfunction.
Collapse
Affiliation(s)
- Marta Palomo
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Hematology External Quality Assessment Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Ana Belén Moreno-Castaño
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - María Queralt Salas
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, Barcelona, Spain
| | - Silvia Escribano-Serrat
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Montserrat Rovira
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, Barcelona, Spain
| | - Elena Guillen-Olmos
- Department of Nephrology and Kidney Transplantation, Hospital Clínic de Barcelona, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
| | - Sara Fernandez
- Medical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Lina Youssef
- BCNatal – Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic de Barcelona and Hospital Sant Joan de Déu, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Fatima Crispi
- BCNatal – Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic de Barcelona and Hospital Sant Joan de Déu, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Meritxell Nomdedeu
- Hemostasis and Hemotherapy Department, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Julia Martinez-Sanchez
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Blanca De Moner
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Maribel Diaz-Ricart
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Luchian ML, Higny J, Benoit M, Robaye B, Berners Y, Henry JP, Colle B, Xhaët O, Blommaert D, Droogmans S, Motoc AI, Cosyns B, Gabriel L, Guedes A, Demeure F. Unmasking Pandemic Echoes: An In-Depth Review of Long COVID's Unabated Cardiovascular Consequences beyond 2020. Diagnostics (Basel) 2023; 13:3368. [PMID: 37958264 PMCID: PMC10647305 DOI: 10.3390/diagnostics13213368] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
At the beginning of 2020, coronavirus disease 2019 (COVID-19) emerged as a new pandemic, leading to a worldwide health crisis and overwhelming healthcare systems due to high numbers of hospital admissions, insufficient resources, and a lack of standardized therapeutic protocols. Multiple genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been detected since its first public declaration in 2020, some of them being considered variants of concern (VOCs) corresponding to several pandemic waves. Nevertheless, a growing number of COVID-19 patients are continuously discharged from hospitals, remaining symptomatic even months after their first episode of COVID-19 infection. Long COVID-19 or 'post-acute COVID-19 syndrome' emerged as the new pandemic, being characterized by a high variability of clinical manifestations ranging from cardiorespiratory and neurological symptoms such as chest pain, exertional dyspnoea or cognitive disturbance to psychological disturbances, e.g., depression, anxiety or sleep disturbance with a crucial impact on patients' quality of life. Moreover, Long COVID is viewed as a new cardiovascular risk factor capable of modifying the trajectory of current and future cardiovascular diseases, altering the patients' prognosis. Therefore, in this review we address the current definitions of Long COVID and its pathophysiology, with a focus on cardiovascular manifestations. Furthermore, we aim to review the mechanisms of acute and chronic cardiac injury and the variety of cardiovascular sequelae observed in recovered COVID-19 patients, in addition to the potential role of Long COVID clinics in the medical management of this new condition. We will further address the role of future research for a better understanding of the actual impact of Long COVID and future therapeutic directions.
Collapse
Affiliation(s)
- Maria-Luiza Luchian
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Julien Higny
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Martin Benoit
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Benoit Robaye
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Yannick Berners
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Jean-Philippe Henry
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Benjamin Colle
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Olivier Xhaët
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Dominique Blommaert
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Steven Droogmans
- Department of Cardiology, Centrum voor Hart-en Vaatziekten, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Andreea Iulia Motoc
- Department of Cardiology, Centrum voor Hart-en Vaatziekten, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Bernard Cosyns
- Department of Cardiology, Centrum voor Hart-en Vaatziekten, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Laurence Gabriel
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Antoine Guedes
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Fabian Demeure
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| |
Collapse
|
25
|
Menichetti F. The Potential Role of Hypothalamic Phospholipid Liposomes in the Supportive Therapy of Some Manifestations of Post-COVID-19 Condition: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Brain Fog. J Clin Med 2023; 12:5478. [PMID: 37685544 PMCID: PMC10488182 DOI: 10.3390/jcm12175478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Post-COVID-19 condition (commonly known as Long COVID) is a heterogeneous clinical condition in which Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and brain fog stand out among the different clinical symptoms and syndromes. Cerebral metabolic alterations and neuroendocrine disorders seem to constitute an important part of the pathophysiology of Post-COVID-19 condition (PCC). Given the substantial lack of specific drugs and effective therapeutic strategies, hypothalamic phospholipid liposomes, which have been on the market for several years as adjuvant therapy for cerebral metabolic alterations resulting from neuroendocrine disorders, might represent a potential option in an overall therapeutic strategy that aims to control PCC-associated symptoms and syndromes. Their pharmacological mechanisms and clinical effects strongly support their potential effectiveness in PCC. Our initial clinical experience seems to corroborate this rationale. Further controlled clinical research is warranted in order to verify this hypothesis.
Collapse
|
26
|
Iba T, Levy JH. A commentary on "Thromboinflammation in long COVID - the elusive key to post-infection sequelae?". J Thromb Haemost 2023; 21:2061-2063. [PMID: 37468178 DOI: 10.1016/j.jtha.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/22/2023] [Indexed: 07/21/2023]
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
27
|
Wieder R. Awakening of Dormant Breast Cancer Cells in the Bone Marrow. Cancers (Basel) 2023; 15:cancers15113021. [PMID: 37296983 DOI: 10.3390/cancers15113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Up to 40% of patients with breast cancer (BC) have metastatic cells in the bone marrow (BM) at the initial diagnosis of localized disease. Despite definitive systemic adjuvant therapy, these cells survive in the BM microenvironment, enter a dormant state and recur stochastically for more than 20 years. Once they begin to proliferate, recurrent macrometastases are not curable, and patients generally succumb to their disease. Many potential mechanisms for initiating recurrence have been proposed, but no definitive predictive data have been generated. This manuscript reviews the proposed mechanisms that maintain BC cell dormancy in the BM microenvironment and discusses the data supporting specific mechanisms for recurrence. It addresses the well-described mechanisms of secretory senescence, inflammation, aging, adipogenic BM conversion, autophagy, systemic effects of trauma and surgery, sympathetic signaling, transient angiogenic bursts, hypercoagulable states, osteoclast activation, and epigenetic modifications of dormant cells. This review addresses proposed approaches for either eliminating micrometastases or maintaining a dormant state.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, 185 South Orange Avenue, MSB F671, Newark, NJ 07103, USA
| |
Collapse
|
28
|
Netiazhenko VZ, Mostovyi SI, Safonova OM, Mikhaliev KO. MICROCIRCULATORY ALTERATIONS IN STABLE CORONARY ARTERY DISEASE PATIENTS WITH CONCOMITANT COVID-19. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:2224-2238. [PMID: 37948719 DOI: 10.36740/wlek202310115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
OBJECTIVE The aim: To evaluate the alterations in microcirculation of stable coronary artery disease (SCAD) patients with concomitant COVID-19. PATIENTS AND METHODS Materials and methods: The cross-sectional study analyzed the data from 80 patients, being subdivided as follows: group 1 (G1) - SCAD without COVID-19 (n=30); group 2 (G2) - SCAD with concomitant COVID-19 (n=25); group 3 (G3) - COVID-19 without SCAD (n=25). The control group included 30 relatively healthy volunteers. The state of microcirculation was assessed by nailfold videocapillaroscopy (NVC) and laser Doppler flowmetry (LDF). RESULTS Results: NVC data from G2 revealed the sings of capillary bed remodeling, along with the most pronounced decrease in capillary (arteriolar part of the loop) blood flow velocity (vs. G1 and G3). LDF data from G2 were evident for the alterations in both endothelium-dependent and -independent mechanisms of microvascular flow regulation. The 72 % of G2 constituted the cases of microcirculatory hemodynamic «congestion-stasis» (MHCS) type (characterized by the decreased laser Doppler perfusion index and reduced endothelium-dependent microvascular reactivity [MVR]), and the cases of mixed type with reduced MVR. The pooled hyporeactive profile (of both MHCS type and a mixed type with reduced MVR) demonstrated the higher frequency of G2 patients (40 %), as against 11 % in the pooled alternative hemodynamic group (p<0,001) (included 80 % of cases with preserved MVR). CONCLUSION Conclusions: G2 profile demonstrated the predomination of patients, possessing a MHCS type or a mixed type with reduced MVR. The pooled microcirculatory hyporeactive profile was presented with G2 cases to a greater extent, than in the pooled profile with predominantly preserved MVR.
Collapse
Affiliation(s)
- Vasyl Z Netiazhenko
- BOGOMOLETS NATIONAL MEDICAL UNIVERSITY, KYIV, UKRAINE; STATE INSTITUTION OF SCIENCE «RESEARCH AND PRACTICAL CENTER OF PREVENTIVE AND CLINICAL MEDICINE» STATE ADMINISTRATIVE DEPARTMENT, KYIV, UKRAINE
| | - Serhii I Mostovyi
- BOGOMOLETS NATIONAL MEDICAL UNIVERSITY, KYIV, UKRAINE; SE «MEDBUD», KYIV, UKRAINE
| | | | - Kyrylo O Mikhaliev
- STATE INSTITUTION OF SCIENCE «RESEARCH AND PRACTICAL CENTER OF PREVENTIVE AND CLINICAL MEDICINE» STATE ADMINISTRATIVE DEPARTMENT, KYIV, UKRAINE
| |
Collapse
|