1
|
Yang H, Liu Y, Cao G, Liu J, Xiao S, Xiao P, Tao Y, Gao H. Effects of lycopene on the growth performance, meat quality, cecal metagenome, and hepatic untargeted metabolome in heat stressed broilers. Poult Sci 2024; 103:104299. [PMID: 39316987 PMCID: PMC11462354 DOI: 10.1016/j.psj.2024.104299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
The occurrence of heat stress in poultry houses is inevitable and leads to oxidative stress in the birds. Lycopene, a natural hydrocarbon carotenoid, possesses potent antioxidant properties. This study aimed to investigate the impact of lycopene on growth performance, meat quality, cecal microflora, and liver metabolome in broilers subjected to heat stress. A total of 480 yellow feather broilers were randomly allocated into 4 treatment groups: birds fed standard diet (Con), birds fed standard diet and supplemented with lycopene (Lyc), birds fed standard diet and subjected to heat stress (Hs), and birds fed with lycopene and subjected to heat stress (Hs-Lyc). As compared with the normal temperature groups, Hs decreased the average daily gain (ADG) of birds during d 1 to 28, lowered the pH value either in breast meat or thigh meat, increased the L* value of breast meat, and decreased the a* value of thigh meat. In comparison with non-Lyc feeding birds, Lyc supplement elevated the ADG during d 1 to 56, increased the pH of breast meat, decrease the L* and b* values of thigh meat, simultaneously increase the a* value of thigh meat. The L* of breast meat and pH of thigh meat exhibited significant differences under Hs-Lyc treatment. Lyc-treated birds exhibited higher elasticity, gumminess, and resilience in breast meat than those in non-Lyc feeding birds. The cecal metagenome analysis indicated that Hs-Lyc treatment increased the abundance of Phocaeicola salanitronis and Prevotella sp.CAG:1058, Bacteroides sp.An269, and Bacteroides sp.An19 at the species level compared with other treatments. The hepatic untargeted metabolome analysis showed that administration of Lyc upregulated 20 metabolites and downregulated 60 metabolites compared to the Con birds. Futhermore, the Hs-Lyc treatment upregulated 34 metabolites and downregulated 45 metabolites compared to the Hs birds. The correlation between the metagenome and metabolome showed that Lyc supplementation induced significant alterations in the citrate cycle, metabolism of butanoate, glycolysis/gluconeogenesis, glyoxylate and dicarboxylate, alanine, aspartate, and glutamate compared with standard supplement. In contrast, Hs-Lyc treatment induced alterations in the citrate cycle, metabolism of pyruvate, glyoxylate, and dicarboxylate, glycolysis/gluconeogenesis, arginine, proline, alanine, aspartate, and glutamate compared with the standard supplement of heat-challenged broilers. In summary, dietary Lyc supplementation promoted the growth performance, changed the meat quality, modulated the cecal metagenome and hepatic metabolome in heat-stressed broilers.
Collapse
Affiliation(s)
- Huijuan Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunan, 650201, China; Zhejiang Huijia Biotechnology Co. Ltd., Anji, Zhejiang, 313307, China; College of Standardisation, China Jiliang Universtiy, Hangzhou, Zhejiang, 310058, China
| | - Yingsen Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangtian Cao
- College of Standardisation, China Jiliang Universtiy, Hangzhou, Zhejiang, 310058, China
| | - Jinsong Liu
- Zhejiang Huijia Biotechnology Co. Ltd., Anji, Zhejiang, 313307, China
| | - Shiping Xiao
- Zhejiang Huijia Biotechnology Co. Ltd., Anji, Zhejiang, 313307, China
| | - Peng Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunan, 650201, China
| | - Ye Tao
- Hangzhou Linping District Maternal & Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Hong Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunan, 650201, China.
| |
Collapse
|
2
|
Fayed RH, Ali SE, Yassin AM, Madian K, Bawish BM. Terminalia bellirica and Andrographis paniculata dietary supplementation in mitigating heat stress-induced behavioral, metabolic and genetic alterations in broiler chickens. BMC Vet Res 2024; 20:388. [PMID: 39227945 PMCID: PMC11370032 DOI: 10.1186/s12917-024-04233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Heat stress (HS) is one of the most significant environmental stressors on poultry production and welfare worldwide. Identification of innovative and effective solutions is necessary. This study evaluated the effects of phytogenic feed additives (PHY) containing Terminalia bellirica and Andrographis paniculata on behavioral patterns, hematological and biochemical parameters, Oxidative stress biomarkers, and HSP70, I-FABP2, IL10, TLR4, and mTOR genes expression in different organs of broiler chickens under chronic HS conditions. A total of 208 one-day-old Avian-480 broiler chicks were randomly allocated into four treatments (4 replicate/treatment, 52 birds/treatment): Thermoneutral control treatment (TN, fed basal diet); Thermoneutral treatment (TN, fed basal diet + 1 kg/ton feed PHY); Heat stress treatment (HS, fed basal diet); Heat stress treatment (HS, fed basal diet + 1 kg/ton feed PHY). RESULTS The findings of the study indicate that HS led to a decrease in feeding, foraging, walking, and comfort behavior while increasing drinking and resting behavior, also HS increased red, and white blood cells (RBCs and WBCs) counts, and the heterophile/ lymphocyte (H/L) ratio (P < 0.05); while both mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) were decreased (P < 0.05). In addition, HS negatively impacted lipid, protein, and glucose levels, liver and kidney function tests, and oxidative biomarkers by increasing malondialdehyde (MDA) levels and decreasing reduced glutathion (GSH) activity (P < 0.05). Heat stress (HS) caused the upregulation in HSP70, duodenal TLR4 gene expression, and the downregulation of I-FABP2, IL10, mTOR in all investigated tissues, and hepatic TLR4 (P < 0.05) compared with the TN treatment. Phytogenic feed additives (PHY) effectively mitigated heat stress's negative impacts on broilers via an improvement of broilers' behavior, hematological, biochemical, and oxidative stress biomarkers with a marked decrease in HSP70 expression levels while all tissues showed increased I-FABP2, IL10, TLR4, and mTOR (except liver) levels (P < 0.05). CONCLUSION Phytogenic feed additives (PHY) containing Terminalia bellirica and Andrographis paniculata have ameliorated the HS-induced oxidative stress and improved the immunity as well as the gut health and welfare of broiler chickens.
Collapse
Affiliation(s)
- Rabie H Fayed
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sara E Ali
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - K Madian
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Basma M Bawish
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
3
|
Madkour M, Aboelenin MM, Habashy WS, Matter IA, Shourrap M, Hemida MA, Elolimy AA, Aboelazab O. Effects of oregano and/or rosemary extracts on growth performance, digestive enzyme activities, cecal bacteria, tight junction proteins, and antioxidants-related genes in heat-stressed broiler chickens. Poult Sci 2024; 103:103996. [PMID: 39024691 PMCID: PMC11315179 DOI: 10.1016/j.psj.2024.103996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
The study examined the impact of adding oregano extract and/or rosemary to broiler diets to counteract the growth inhibition caused by heat stress (HS). It also investigated the effects on the activity of digestive enzymes, microbiological composition, and the expression of antioxidant and tight junction-related proteins. Three hundred- and fifty-day-old male broilers, were randomly assigned to 7 treatment groups, with each group comprising 5 replicates, and each replicate containing 10 chicks in a cage. The diets were: 1) a basal diet, 2) a diet supplemented with 50 mg/kg of rosemary, 3) a diet supplemented with 100 mg/kg of rosemary, 4) a diet supplemented with 50 mg/kg of oregano, 5) a diet supplemented with 100 mg/kg of oregano, 6) a combination diet containing 50 mg/kg each of rosemary and oregano, and 7) a combination diet containing 100 mg/kg each of rosemary and oregano. Dietary oregano extract enhanced the growth and feed utilization of heat-stressed birds, especially at a concentration of 50 mg/kg. Moreover, oregano extract improved jejunal protease and amylase activities. The extracts of rosemary and oregano significantly reduced IgG and IgM levels. Dietary 50 mg oregano extract significantly upregulated intestinal integrity-related genes including jejunal CLDNI, ZO-1, ZO-2, and MUC2. Dietary 50 mg oregano extract significantly downregulated hepatic NADPH oxidase 4 (NOX4) and nitric oxide synthase 2 (NOS2) expressions. Our results suggest that incorporating oregano leaf extract into the diet at a concentration of 50 mg/kg improves the growth performance of broilers exposed to heat stress. This improvement could be attributed to enhanced gut health and the modulation of genes associated with oxidative stress and tight junction proteins.
Collapse
Affiliation(s)
- Mahmoud Madkour
- Animal Production Department, National Research Centre, Dokki, Giza 12622, Egypt.
| | | | - Walid S Habashy
- Department of Animal and Poultry Production, Damanhour University, Damanhour, Al-Behira, Egypt
| | - Ibrahim A Matter
- Agricultural Microbiology Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mohamed Shourrap
- Poultry Production Department, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Cairo 11241, Egypt
| | - Mona A Hemida
- Poultry Production Department, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Cairo 11241, Egypt
| | - Ahmed A Elolimy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, Abu Dhabi, 15551, United Arab Emirates; Animal Production Department, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Osama Aboelazab
- Animal Production Department, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
4
|
Wu X, Du X, Pian H, Yu D. Effect of Curcumin on Hepatic mRNA and lncRNA Co-Expression in Heat-Stressed Laying Hens. Int J Mol Sci 2024; 25:5393. [PMID: 38791430 PMCID: PMC11121607 DOI: 10.3390/ijms25105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Heat stress is an important factor affecting poultry production; birds have a range of inflammatory reactions under high-temperature environments. Curcumin has anti-inflammatory and antioxidant effects. The purpose of this experiment was to investigate the effect of dietary curcumin supplementation on the liver transcriptome of laying hens under heat stress conditions. In the animal experiment, a total of 240 Hy-Line brown hens aged 280 days were divided randomly into four different experimental diets with four replicates, and each replicate consisted of 15 hens during a 42-D experiment. The ambient temperature was adjusted to 34 ± 2 °C for 8 h per day, transiting to a range of 22 °C to 28 °C for the remaining 16 h. In the previous study of our lab, it was found that supplemental 150 mg/kg curcumin can improve production performance, antioxidant enzyme activity, and immune function in laying hens under heat stress. To further investigate the regulatory mechanism of curcumin on heat stress-related genes, in total, six samples of three liver tissues from each of 0 mg/kg and 150 mg/kg curcumin test groups were collected for RNA-seq analysis. In the transcriptome analysis, we reported for the first time that the genes related to heat stress of mRNA, such as HSPA8, HSPH1, HSPA2, and DNAJA4, were co-expressed with lncRNA such as XLOC010450, XLOC037987, XLOC053511, XLOC061207, and XLOC100318, and all of these genes are shown to be down-regulated. These findings provide a scientific basis for the possible benefits of dietary curcumin addition in heat-stressed laying hens.
Collapse
Affiliation(s)
- Xinyue Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.P.)
| | - Xubin Du
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China;
| | - Huifang Pian
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.P.)
| | - Debing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.P.)
| |
Collapse
|
5
|
Yilmaz E, Gul M. Effects of dietary supplementation of cumin ( Cuminum cyminum L.) essential oil on expression of genes related to antioxidant, apoptosis, detoxification, and heat shock mechanism in heat-stressed broiler chickens. Anim Biotechnol 2023; 34:2766-2777. [PMID: 36052972 DOI: 10.1080/10495398.2022.2117183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study was carried out to evaluate the impact of cumin essential oil (CEO) supplementation on levels of certain gene expression related to antioxidant, apoptotic, detoxific, and heat shock mechanisms in the breast meat and ileum of heat-stressed broilers. The study was conducted on a 2 × 6 factorial design (heat stress + feed additive) on 600 day-old male broiler chicks for a period of 42 days. From day 7 to 42, although broilers in heat stress groups (HT) were exposed to constant chronic heat stress (36 °C), others were housed at thermoneutral ambient temperature (TN). The chicks in both conditions were fed with 6 experimental diets: C0 (basal diet with no additive), ANTIB (basal diet + 100 mg/kg chloramphenicol), VITE (basal diet + 50 IU α-tocopherol), C2 (basal diet + 200 mg/kg CEO), C4 (basal diet + 400 mg/kg CEO), C6 (basal diet+ 600 mg/kg CEO). The results showed that heat stress upregulated (except for Bcl-2) the genes related to antioxidant, apoptosis, detoxification, and heat shock mechanism. However, cumin essential oil increased the dose-dependently positive effect on certain genes in tissues of the heat-stressed broilers and downregulated (except for Bcl-2) these genes.
Collapse
Affiliation(s)
- Emre Yilmaz
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Mehmet Gul
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
6
|
Teyssier JR, Cozannet P, Greene E, Dridi S, Rochell SJ. Influence of different heat stress models on nutrient digestibility and markers of stress, inflammation, lipid, and protein metabolism in broilers. Poult Sci 2023; 102:103048. [PMID: 37797358 PMCID: PMC10613759 DOI: 10.1016/j.psj.2023.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023] Open
Abstract
This experiment determined the effects of different HS models and pair-feeding (PF) on nutrient digestibility and markers of stress, inflammation, and metabolism in broilers. Birds (720 total) were allocated into 12 environmentally controlled chambers and reared under thermoneutral conditions until 20 d. Until 41 d birds were exposed to 4 treatments, including: thermoneutral at 24°C (TN-al), daily cyclic HS (12 h at 24 and 12 h at 35°C; cyHS), constant HS at 35°C (coHS), and PF birds maintained at 24°C and fed to equalize FI with coHS birds (TN-coPF). At d 41, ileal digesta were collected to determine nutrient apparent ileal digestibility (AID). Blood, liver, and breast tissues were collected from 8 birds per treatment to determine the mRNA expression of stress, inflammation, and metabolism markers. An additional 8 TN-al birds were sampled after acute HS exposure at 35°C for 4 h (aHS), and 8 cyHS birds were sampled either right before or 4 h after HS initiation. Data were analyzed by 1-way ANOVA and means were separated using Tukey's HSD test. Compared with TN-al birds, AID of nitrogen and ether extract were reduced in coHS birds, and both cyHS and coHS reduced (P < 0.05) AID of total essential amino acids. TNFα and SOD2 expression were increased (P < 0.05) under aHS, coHS, and TN-coPF conditions. IL6 and HSP70 were increased (P < 0.05) under coHS and aHS, respectively. Expression of lipogenic enzymes ACCα and FASN were reduced by coHS and TN-coPF, while coHS increased the lipolytic enzyme ATGL (P < 0.05). IGF1 was lowered in coHS birds, and p70S6K and MyoG were reduced under coHS and TN-coPF (P < 0.05). Interestingly, MuRF1 and MAFbx were increased (P < 0.05) under coHS only. Overall, these results indicate that coHS has a greater impact on nutrient digestibility and metabolism than aHS and cyHS. Interestingly, increased protein degradation during HS appears to be mostly driven by HS per se and not the reduced FI.
Collapse
Affiliation(s)
- J R Teyssier
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - P Cozannet
- Adisseo France S.A.S., Center of Expertise in Research and Nutrition, 03600 Malicorne, France
| | - E Greene
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - S Dridi
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - S J Rochell
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
7
|
Tantiyasawasdikul V, Chomchuen K, Loengbudnark W, Chankitisakul V, Boonkum W. Comparative study and relationship analysis between purine content, uric acid, superoxide dismutase, and growth traits in purebred and crossbred Thai native chickens. Front Vet Sci 2023; 10:1263829. [PMID: 37818389 PMCID: PMC10560991 DOI: 10.3389/fvets.2023.1263829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/01/2023] [Indexed: 10/12/2023] Open
Abstract
The objective was to compare and analyze the relationship between growth, purine content, uric acid, and superoxide dismutase (SOD) in purebred and crossbred Thai native chickens. A total of 300 Thai native chickens were divided into 3 groups. Group 1 was purebred Thai native chickens (100%TN), Group 2 was 50% Thai native chickens (50%TN), and Group 3 was 25% Thai native chickens (25%TN). Data included the body weight (BW), average daily gain (ADG), and breast circumference (BrC). At 6, 8, and 10 weeks of age, 10 chickens from each group were randomly euthanized to collect breast meat, liver, and blood samples to analyze the purine content consisting of total purine, adenine, guanine, xanthine, and hypoxanthine, and uric acid, in breast meat and liver and SOD in blood. A general linear model, Pearson correlation and principal component analysis were used to analyze the significant differences and relationship between variables. The results showed the 25%TN group had the highest growth traits at every age, while the 100%TN group had the lowest (p < 0.05). Consistent with the analysis results of purine values, purine content and uric acid in breast meat and liver and SOD in blood decreased with age (p < 0.05). The correlations between purine content (total purine, adenine, guanine, xanthine, and hypoxanthine) and growth traits (BW, ADG, and BrC) ranged from moderate negative to moderate positive (-0.542 to 0.253)(p < 0.05). The correlations between uric acid and growth traits (0.348-0.760) and SOD and growth traits (0.132-0.516) were low to moderate positive with significant differences (p < 0.05). The principal component plot, which highlighted three principal components (PC 1, PC 2, and PC 3), explained 86.44 and 86.53% of the total information in breast meat and liver for selecting animals for optimal balance of the variation in the growth traits, purine content, uric acid, and SOD. Although purebred Thai native chickens showed the lowest growth traits, purine content, uric acid, and SOD were also lowest compared to crossbred Thai native chickens. Therefore, the development of genetics in Thai native chickens to produce healthy food could be possible.
Collapse
Affiliation(s)
| | - Kitsadee Chomchuen
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Wipas Loengbudnark
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Vibuntita Chankitisakul
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- Network Center of Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen, Thailand
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- Network Center of Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
8
|
Lee JY, Yoon JH, An SH, Cho IH, Lee CW, Jeon YJ, Joo SS, Ban BC, Lee JY, Jung HJ, Kim M, Kim ZH, Jung JY, Kim M, Kong C. Intestinal Immune Cell Populations, Barrier Function, and Microbiomes in Broilers Fed a Diet Supplemented with Chlorella vulgaris. Animals (Basel) 2023; 13:2380. [PMID: 37508157 PMCID: PMC10376636 DOI: 10.3390/ani13142380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
This study aimed to evaluate the effects of dietary Chlorella vulgaris (CV) on the distribution of immune cells, intestinal morphology, intestinal barrier function, antioxidant markers, and the cecal microbiome in 10-day-old broiler chickens. A total of 120 day-old Ross 308 male broiler chicks were assigned to two dietary treatments using a randomized complete block design, with body weight as the blocking factor. Birds fed a diet containing CV showed an increase in CD4+ T cells (p < 0.05) compared to those fed the control diet. The relative mRNA expression of intestinal epithelial barrier function-related markers (occludin and avian β-defensin 5) was elevated (p < 0.05) in the CV-supplemented group compared to the control group. The alpha diversity indices (Chao1 and observed features) of the cecal microbiome in 10-day-old birds increased (p < 0.05), indicating higher richness within the cecal bacterial community. In the microbiome analysis, enriched genera abundance of Clostridium ASF356 and Coriobacteriaceae CHKCI002 was observed in birds fed the diet containing CV compared to those fed the control diet. Taken together, dietary CV supplementation might alter intestinal barrier function, immunity, and microbiomes in 10-day-old broiler chickens.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - June Hyeok Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Su Hyun An
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - In Ho Cho
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Chae Won Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Yun Ji Jeon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Sang Seok Joo
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Byeong Cheol Ban
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Jae-Yeong Lee
- Animal Genetic Resources Research Center, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hyun Jung Jung
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Minji Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Z-Hun Kim
- Microbial Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Republic of Korea
| | - Ji Young Jung
- Microbial Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Republic of Korea
| | - Myunghoo Kim
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Changsu Kong
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Science, Kyungpook National University, Sangju 37224, Republic of Korea
- Research Institute of Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| |
Collapse
|
9
|
Marques JI, Leite PG, Furtado DA, de Oliveira AG, Cunha BB, de Melo DF, de Morais FTL. Thermal exchanges, physiological responses and productive performance of Guinea Fowl (Numidia meleagris) subjected to different air temperatures. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023:10.1007/s00484-023-02492-6. [PMID: 37219759 DOI: 10.1007/s00484-023-02492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
The objective of this research was to evaluate the thermal exchanges, physiological responses, productive performance and carcass yield of Guinea Fowl confined under thermoneutral conditions and under thermal stress. For the experiment, 96 animals were confined in 8 experimental boxes of 1 m2 of area, each, divided in equal numbers and placed inside two distinct climatic chambers, where the birds were distributed in a completely randomized design, with two treatments (air temperatures of 26 and 32 °C, respectively). For the collection of physiological responses and carcass yield 16 birds were evaluated and for the collection of data on feed and water consumption and productive responses, 48 birds per treatment were evaluated. The environmental variables (air temperature (AT), air relative humidity and wind speed), temperature and humidity index (THI), heat exchanges, physiological responses (respiratory rate, surface temperature, cloacal temperature and eyeball temperature), feed (FC) and water (WC) consumption and production responses (weight gain, feed conversion index and carcass yield) of the birds were evaluated. With the elevation of the AT, it could be noticed that the THI went from a thermal comfort condition to an emergency condition, where the birds lost part of their feathers, increased all physiological responses evaluated, and consequently, reduced by 53.5% the amount of heat dissipated in the sensible form and increased by 82.7% the heat losses in the latent form, increasing also the WC. ATs of up to 32 °C did not significantly affect the productive performance and carcass yield of the guinea fowl.
Collapse
Affiliation(s)
| | - Patrício Gomes Leite
- Chapadinha Science Center, Federal University of Maranhão, Chapadinha, Maranhão, Brazil
| | - Dermeval Araújo Furtado
- Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, Paraíba, Brazil
| | | | | | - Daniele Ferreira de Melo
- Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, Paraíba, Brazil
| | | |
Collapse
|
10
|
Goel A, Ncho CM, Jeong CM, Gupta V, Jung JY, Ha SY, Yang JK, Choi YH. Dietary supplementation of solubles from shredded, steam-exploded pine particles modifies gut length and cecum microbiota in cyclic heat-stressed broilers. Poult Sci 2023; 102:102498. [PMID: 36739799 PMCID: PMC9932117 DOI: 10.1016/j.psj.2023.102498] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/28/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
This study was conducted to investigate the effect of supplementing solubles from steam-exploded pine particles (SSPP) on mitigating the adverse effects of cyclic heat stress (CHS) in broilers which were distributed into 3 dietary treatment groups and 2 temperature conditions. Heat stress (HS) exposure for 6 h daily for 7 d adversely affected performance parameters and rectal temperature of chickens. The absolute and relative weights of the liver and bursa of Fabricius decreased in the CHS group while the relative lengths of the jejunum and ileum increased, which was rescued by dietary supplementation with SSPP. The expression of mucin2 (MUC2) and occludin (OCLN) genes was decreased in CHS birds. The expression of heat shock protein -70 and -90 increased in 0% HS compared to that in 0% NT. Birds supplemented with 0.4% SSPP had higher NADPH oxidase -1 expression than birds in the 0% and 0.1% SSPP treatments. Beta diversity of gut microbiota evaluated through unweighted UniFrac distances was significantly different among treatments. Bacteroidetes was among the 2 most abundant phyla in the cecum, which decreased with 0.1% NT and increased with 0.1% HS in comparison to 0% NT. A total of 13 genera were modified by HS, 5 were altered by dose, and nine showed an interaction effect. In conclusion, CHS adversely affects performance and gut health which can be mitigated with dietary SSPP supplementation that modifies the cecal microbiota in broilers.
Collapse
Affiliation(s)
- Akshat Goel
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Chris Major Ncho
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Chae-Mi Jeong
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Korea
| | - Vaishali Gupta
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Korea
| | - Ji-Young Jung
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Korea
| | - Si-Young Ha
- Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Korea
| | - Jae-Kyung Yang
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Korea
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
11
|
Romanov MN, Abdelmanova AS, Fisinin VI, Gladyr EA, Volkova NA, Koshkina OA, Rodionov AN, Vetokh AN, Gusev IV, Anshakov DV, Stanishevskaya OI, Dotsev AV, Griffin DK, Zinovieva NA. Selective footprints and genes relevant to cold adaptation and other phenotypic traits are unscrambled in the genomes of divergently selected chicken breeds. J Anim Sci Biotechnol 2023; 14:35. [PMID: 36829208 PMCID: PMC9951459 DOI: 10.1186/s40104-022-00813-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/27/2022] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND The genomes of worldwide poultry breeds divergently selected for performance and other phenotypic traits may also be affected by, and formed due to, past and current admixture events. Adaptation to diverse environments, including acclimation to harsh climatic conditions, has also left selection footprints in breed genomes. RESULTS Using the Chicken 50K_CobbCons SNP chip, we genotyped four divergently selected breeds: two aboriginal, cold tolerant Ushanka and Orloff Mille Fleur, one egg-type Russian White subjected to artificial selection for cold tolerance, and one meat-type White Cornish. Signals of selective sweeps were determined in the studied breeds using three methods: (1) assessment of runs of homozygosity islands, (2) FST based population differential analysis, and (3) haplotype differentiation analysis. Genomic regions of true selection signatures were identified by two or more methods or in two or more breeds. In these regions, we detected 540 prioritized candidate genes supplemented them with those that occurred in one breed using one statistic and were suggested in other studies. Amongst them, SOX5, ME3, ZNF536, WWP1, RIPK2, OSGIN2, DECR1, TPO, PPARGC1A, BDNF, MSTN, and beta-keratin genes can be especially mentioned as candidates for cold adaptation. Epigenetic factors may be involved in regulating some of these important genes (e.g., TPO and BDNF). CONCLUSION Based on a genome-wide scan, our findings can help dissect the genetic architecture underlying various phenotypic traits in chicken breeds. These include genes representing the sine qua non for adaptation to harsh environments. Cold tolerance in acclimated chicken breeds may be developed following one of few specific gene expression mechanisms or more than one overlapping response known in cold-exposed individuals, and this warrants further investigation.
Collapse
Affiliation(s)
- Michael N. Romanov
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia ,grid.9759.20000 0001 2232 2818School of Biosciences, University of Kent, Canterbury, UK
| | - Alexandra S. Abdelmanova
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Vladimir I. Fisinin
- grid.4886.20000 0001 2192 9124Federal State Budget Scientific Institution Federal Research Centre “All-Russian Poultry Research and Technological Institute” of the Russian Academy of Sciences, Sergiev Posad, Moscow Region Russia
| | - Elena A. Gladyr
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Natalia A. Volkova
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Olga A. Koshkina
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Andrey N. Rodionov
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Anastasia N. Vetokh
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Igor V. Gusev
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Dmitry V. Anshakov
- grid.4886.20000 0001 2192 9124Breeding and Genetic Centre “Zagorsk Experimental Breeding Farm” – Branch of the Federal Research Centre “All-Russian Poultry Research and Technological Institute” of the Russian Academy of Sciences, Sergiev Posad, Moscow Region Russia
| | - Olga I. Stanishevskaya
- grid.473314.6Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the L.K. Ernst Federal Research Centre for Animal Husbandry, St. Petersburg, Russia
| | - Arsen V. Dotsev
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Darren K. Griffin
- grid.9759.20000 0001 2232 2818School of Biosciences, University of Kent, Canterbury, UK
| | - Natalia A. Zinovieva
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| |
Collapse
|
12
|
Dietary shredded steam-exploded pine particle supplementation as a strategy to mitigate chronic cyclic heat stress by modulating gut microbiota in broilers. Sci Rep 2022; 12:19704. [PMID: 36385125 PMCID: PMC9669035 DOI: 10.1038/s41598-022-24031-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Improving the availability of underutilized waste for the economic use of livestock feed can be important in countries where feed grain production is scarce. Modulating the gut microbiota through the fibrous content present in these wastes may help mitigate the adverse effects of heat stress (HS). Here, we investigated the effects of dietary steam-exploded pine particle (SPP), a value-added waste product, on the performance, gut health, and cecum microbiota in heat-stressed broilers. Ross 308 broilers (n = 180) at 29 days of age were distributed into three dietary treatment groups (0%, 1%, and 2% SPP) and two temperature conditions (NT: 21 °C; CHS: 31 °C) and grown for seven days. CHS, but not SPP, adversely affected performance parameters, but SPP did not interactively modulate these results. On the contrary, both differently affected other parameters. CHS resulted in increased rectal temperature, total protein in serum, and Nox4 gene expression, whereas 2% SPP increased GLP-2 and the Nox4 gene expression in the duodenum in comparison to 0% and 1% SPP. CHS significantly modified the beta-diversity of cecal microbiota while 1% SPP supplementation in diets increased the abundance of the favorable bacterial genera in chicken. Concludingly, CHS adversely affects growth performances, gut health, stress-related genes, and cecal microbiota while dietary 1% SPP may facilitate the proliferation of beneficial microorganisms in the cecum of broilers.
Collapse
|
13
|
Kadawarage RW, Dunislawska A, Siwek M. Ecological footprint of poultry production and effect of environment on poultry genes. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The growing demand for poultry meat and eggs has forced plenty of changes in poultry production in recent years. According to FAO, the total number of poultry in the world in 2019 was 27.9 billion. About 93% of them are chickens. The number of chickens has doubled in the last 30 years. These animals are the most numerous in Asia and America. Hence, poultry meat is the most frequently obtained type of meat in recent years (it is 40.6% of the obtained meat). Focusing on lowering production costs has led to process optimization, which was possible by improving the use of animal genetics, optimizing feeding programs, and new production technologies. The applied process optimization and production increase practices may also lead to a deterioration of the ecological balance through pollution with chemical substances, water consumption, and natural resources. The aim of this paper was to review the current state of knowledge in the field of the ecological footprint of poultry production and the impact on environmental genes.
Collapse
Affiliation(s)
- Ramesha Wishna Kadawarage
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| |
Collapse
|
14
|
Cao X, Guo L, Zhou C, Huang C, Li G, Zhuang Y, Yang F, Liu P, Hu G, Gao X, Guo X. Effects of N-acetyl-l-cysteine on chronic heat stress-induced oxidative stress and inflammation in the ovaries of growing pullets. Poult Sci 2022; 102:102274. [PMID: 36402045 PMCID: PMC9673114 DOI: 10.1016/j.psj.2022.102274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022] Open
Abstract
The aims of this study were to investigate the effects of supplemental N-acetyl-l-cysteine (NAC) on chronic heat stress-induced oxidative stress and inflammation in the ovaries of growing pullets. A total of 120, 12-wk-old, Hy-Line Brown hens were randomly separated into 4 groups with 6 replicates of 5 birds in each group for 21 d. The 4 treatments were as follows: the CON group and CN group were supplemented with basal diet or basal diet with 1 g/kg NAC, respectively; and the HS group and HSN group were heat-stressed groups supplemented with basal diet or basal diet with 1 g/kg NAC, respectively. The results indicated that the ovaries suffered pathological damage due to chronic heat stress and that NAC effectively ameliorated these changes. Compared with the HS group, antioxidant enzyme activities (including SOD, GSH-Px, CAT, and T-AOC) were enhanced, while the MDA contents and the expression levels of HSP70 were decreased in the HSN group. In addition, NAC upregulated the expression levels of HO-1, SOD2, and GST by upregulating the activity of Nrf2 at different time points to mitigate oxidative stress caused by heat exposure. Simultaneously, NAC attenuated chronic heat stress-induced NF-κB pathway activation and decreased the expression levels of the proinflammatory cytokines IL-8, IL-18, TNF-α, IKK-α, and IFN-γ. Cumulatively, our results indicated that NAC could ameliorate chronic heat stress-induced ovarian damage by upregulating the antioxidative capacity and reducing the secretion of proinflammatory cytokines.
Collapse
|
15
|
Teyssier JR, Preynat A, Cozannet P, Briens M, Mauromoustakos A, Greene ES, Owens CM, Dridi S, Rochell SJ. Constant and cyclic chronic heat stress models differentially influence growth performance, carcass traits and meat quality of broilers. Poult Sci 2022; 101:101963. [PMID: 35709683 PMCID: PMC9201008 DOI: 10.1016/j.psj.2022.101963] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/17/2022] [Accepted: 04/30/2022] [Indexed: 02/03/2023] Open
Abstract
This experiment compared the effects of 2 chronic heat stress (HS) models, constant (coHS), and cyclic (cyHS), on broiler performance, carcass characteristics, and meat quality. A total of 720 male chicks from a Cobb 500 line were placed in 12 environmentally controlled chambers divided into 2 pens of 30 birds. Before the experimental HS models were applied, chamber temperatures were gradually decreased from 32°C at placement to 24°C on d 20. From 20 to 41 d, 4 chambers were set to 35°C (coHS), and 4 chambers were set to 35°C for 12 h and 24°C for the next 12 h (cyHS). Four thermoneutral chambers were maintained at 24°C with half of the birds pair-fed to equalize feed intake (FI) with coHS birds (TN-coPF) and half fed ad-libitum (TN-al). From 20 to 41 d, FI and BW gain (BWG) of cyHS, coHS and TN-coPF birds were decreased (P < 0.001), whereas feed conversion ratio (FCR) was increased (P < 0.001) for coHS and TN-coPF birds compared with TN-al birds. The overall BWG and FCR of coHS birds were lower (P < 0.001) than TN-coPF birds. Both HS models reduced (P < 0.001) carcass weight, pectoralis major yield, total breast meat yield, and increased (P < 0.001) wing yield relative to TN-al birds, with each of these measurements more impacted by coHS than by cyHS. Pair-fed birds had lower (P < 0.001) fat pad and a higher total breast meat yield than coHS birds. They also had the lowest (P < 0.001) pectoralis major ultimate pH and yellowness, and these parameters were lower (P < 0.001) for coHS birds than for TN-al birds. Both HS models reduced (P < 0.001) the incidence of woody breast and white striping. Thus, these data indicate that the detrimental effects of HS cannot be entirely explained by reduced FI and that HS per se affects metabolic pathways associated with muscle and lipid accretion in broilers.
Collapse
Affiliation(s)
- J R Teyssier
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - A Preynat
- Adisseo France SAS, Center of Expertise and Research in Nutrition, F-03600 Commentry, France
| | - P Cozannet
- Adisseo France SAS, Center of Expertise and Research in Nutrition, F-03600 Commentry, France
| | - M Briens
- Adisseo France SAS, Center of Expertise and Research in Nutrition, F-03600 Commentry, France
| | - A Mauromoustakos
- Agricultural Statistics Lab, University of Arkansas, Fayetteville, AR 72701, USA
| | - E S Greene
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - C M Owens
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - S Dridi
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - S J Rochell
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA.
| |
Collapse
|
16
|
Han G, Cui Y, Shen D, Li M, Ren Y, Bungo T, Chowdhury VS, Li Y, Li C. In ovo Feeding of L-Leucine Improves Antioxidative Capacity and Spleen Weight and Changes Amino Acid Concentrations in Broilers After Chronic Thermal Stress. Front Vet Sci 2022; 9:862572. [PMID: 35372553 PMCID: PMC8971722 DOI: 10.3389/fvets.2022.862572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
L-Leucine (L-Leu) was demonstrated to confer thermotolerance by in ovo feeding in broiler chicks and chickens in our previous studies. However, the L-Leu-mediated roles in recovering from the detrimental effects of heat stress in broilers are still unknown. This study aimed to investigate the effects of L-Leu in ovo feeding on the growth performance, relative weight of organs, serum metabolites and antioxidant parameters, and gene expression profiles in broiler chickens after chronic heat stress. Fertilized broiler eggs (Ross 308) were subjected to in ovo feeding of sterile water (0.5 mL/egg) or L-Leu (69 μmol/0.5 mL/egg) on embryonic day 7. After hatching, the male chicks were separated and used for the current study. All chickens were subjected to thermal stress exposure from 21 to 39 days of age and 1 week of recovery from 40 to 46 days of age. The results showed that in ovo feeding of L-Leu did not affect the body weight gain or relative weight of organs under chronic heat stress; however, the serum glutathione peroxidase was significantly increased and serum malondialdehyde was significantly decreased by L-Leu at 39 days of age. After 1 week of recovery, in ovo feeding of L-Leu significantly improved the relative spleen weight at 46 days of age. Subsequent RNA-seq analysis in the spleen showed that a total of 77 significant differentially expressed genes (DEGs) were identified, including 62 upregulated DEGs and 15 downregulated DEGs. Aspartic-type endopeptidase and peptidase activities were upregulated after recovery in the L-Leu group. The expression of genes related to B cell homeostatic proliferation and vestibular receptor cell differentiation, morphogenesis and development was downregulated in the L-Leu group. Moreover, the concentrations of serum catalase, total antioxidative capacity, isoleucine and ammonia were significantly decreased by L-Leu in ovo feeding after recovery. These results suggested that L-Leu in ovo feeding promoted the recovery of antioxidative status after chronic heat stress in broiler chickens.
Collapse
Affiliation(s)
- Guofeng Han
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yangyang Cui
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dan Shen
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mingyang Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yu Ren
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Takashi Bungo
- Department of Bioresource Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Vishwajit S. Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | - Yansen Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chunmei Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Chunmei Li
| |
Collapse
|
17
|
de Sousa FCB, Del Vesco AP, Zancanela V, Santana TP, de Souza Khatlab A, Feitosa VEM, Brito CO, Barbosa LT, Gasparino E. Effects of methionine as free amino acid and dipeptide on productive efficiency and meat quality of broilers under acute and chronic heat stress. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Context Methionine in the form of free amino acid has been widely studied in broilers challenged by heat stress (HS). However, the effects of methionine dipeptide in broilers subjected to HS are not known. Aims To evaluate the effects of methionine as free amino acid and dipeptide on the performance, oxidative status, plasma parameters and meat quality of broilers subjected to acute and chronic HS. Methods Broilers were evaluated at the following three experimental periods: 24 h of evaluation (21–22 days of age); 10 days of evaluation (22–32 days of age); and 20 days of evaluation (22–42 days of age). Broilers were divided into two groups; one group was raised in thermal comfort, and the other group was raised in continuous HS of 30°C. In both groups, animals received a diet without methionine supplementation (MD), with supplementation of methionine as free amino acid (dl-M), and with supplementation of methionine as dipeptide (dl-MM). Key results HS reduced body weight gain after 10 and 20 days of evaluation. Broilers under HS condition fed the MD diet had the highest concentrations of thiobarbituric acid reactive substances (TBARS) at 22 days of age and carbonylated proteins (CP) at 32 days of age. At 42 days of age, broilers fed the MD diet had higher concentrations of TBARS and CP. At 32 days of age, broilers under HS had lower high-density lipoprotein and higher low-density lipoprotein concentrations. In breast meat, broilers in thermal comfort fed the dl-M or dl-MM diets had a lower cooking loss. Broilers in HS fed the dl-M diet had the lowest cooking loss. HS reduced the pH of the meat of legs. Conclusions The acute and chronic HS affect the broiler performance in different ways. Methionine supplementation contributes to reduce the effects of HS. There were no notable differences between the supplementation of dl-M or dl-MM. Implications Productivity and the quality of the chicken meat are the most important attributes of the production. The ambient temperature can influence these parameters. The methionine in its most varied forms, due to its direct and indirect antioxidant function, has been shown to be an effective source of protection for the animal in adverse conditions such as during HS.
Collapse
|
18
|
A. Ahmed-Farid O, Salah AS, Nassan MA, El-Tarabany MS. Effects of Chronic Thermal Stress on Performance, Energy Metabolism, Antioxidant Activity, Brain Serotonin, and Blood Biochemical Indices of Broiler Chickens. Animals (Basel) 2021; 11:ani11092554. [PMID: 34573520 PMCID: PMC8467978 DOI: 10.3390/ani11092554] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary In the tropical and subtropical regions, heat stress is the main limiting factor of poultry industries. In this context, broilers are more liable to thermal stress due to their fast growth, rapid metabolic rate, and high level of production. The aim of the current work was to analyze changes in the brain serotonin, energy metabolism, antioxidant biomarkers, and blood chemistry of broiler chickens subjected to chronic thermal stress. Thermal stress disturbed the antioxidant defense system and energy metabolism and exhausted ATP levels in the liver tissues of broiler chickens. Interestingly, chronic thermal stress reduced the level of brain serotonin and the activity of CoQ10 in liver tissues. Abstract The aim of this paper was to investigate the effects of chronic thermal stress on the performance, energy metabolism, liver CoQ10, brain serotonin, and blood parameters of broiler chickens. In total, 100 one-day-old chicks were divided into two equal groups of five replicates. At 22 days of age and thereafter, the first group (TN) was maintained at a thermoneutral condition (23 ± 1 °C), while the second group (TS) was subjected to 8 h of thermal stress (34 °C). The heat-stressed group showed significantly lower ADFI but higher FCR than the thermoneutral group (p = 0.030 and 0.041, respectively). The TS group showed significantly higher serum cholesterol, ALT, and AST (p = 0.033, 0.024, and 0.010, respectively). Meanwhile, the TS group showed lower serum total proteins, albumin, globulin, and Na+ than the TN group (p = 0.001, 0.025, 0.032, and 0.002, respectively). Furthermore, the TS group showed significantly lower SOD and catalase in heart tissues (p = 0.005 and 0.001, respectively). The TS group showed significantly lower liver ATP than the TN group (p = 0.005). Meanwhile, chronic thermal stress significantly increased the levels of ADP and AMP in the liver tissues of broiler chickens (p = 0.004 and 0.029, respectively). The TS group showed significantly lower brain serotonin (p = 0.004) and liver CoQ10 (p = 0.001) than the TN group. It could be concluded that thermal stress disturbed the antioxidant defense system and energy metabolism and exhausted ATP levels in the liver tissues of broiler chickens. Interestingly, chronic thermal stress reduced the level of brain serotonin and the activity of CoQ10 in liver tissues.
Collapse
Affiliation(s)
- Omar A. Ahmed-Farid
- Physiology Department, National Organization for Drug Control and Research (NODCAR), Giza 35521, Egypt;
| | - Ayman S. Salah
- Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, New Valley University, El-Kharga 72511, Egypt;
| | - Mohamed Abdo Nassan
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif 21944, Saudi Arabia;
| | - Mahmoud S. El-Tarabany
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- Correspondence:
| |
Collapse
|
19
|
Uyanga VA, Wang M, Tong T, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. L-Citrulline Influences the Body Temperature, Heat Shock Response and Nitric Oxide Regeneration of Broilers Under Thermoneutral and Heat Stress Condition. Front Physiol 2021; 12:671691. [PMID: 34456742 PMCID: PMC8385788 DOI: 10.3389/fphys.2021.671691] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022] Open
Abstract
Heat stress (HS) adversely affects several physiological responses in organisms, but the underlying molecular mechanisms involved are yet to be fully understood. L-Citrulline (L-Cit) is a nutraceutical amino acid that is gaining research interest for its role in body temperature regulation and nitric oxide synthesis. This study investigated whether dietary supplementation with L-Cit (1% of basal diet) could ameliorate the effects of acute HS on thermotolerance, redox balance, and inflammatory responses of broilers. Ross 308 broilers (288 chicks) were subjected to two environments; thermoneutral at 24°C (TNZ) or HS at 35°C for 5 h, and fed two diets; control or L-Cit. The results showed that HS increased the ear, rectal (RT), and core body (CBT) temperatures of broilers, along with higher respiratory rate. The RT and CBT readings were intermittently affected with time effect, whereas, L-Cit supplementation lowered the mean CBT than the control diet. Antioxidant assays showed that superoxide dismutase was increased during HS, while, catalase was promoted by L-Cit supplementation. In addition, L-Cit induced glutathione peroxidase activity compared to the control diet during HS. Hypothalamic heat shock protein (HSP)-90 was upregulated by HS, but L-Cit downregulated heat shock factor (HSF)-1, and HSP 60 mRNA expressions. HSF 3 mRNA expression was downregulated by L-Cit under TNZ condition. More so, HS increased the plasma nitric oxide (NO) concentration but lowered the total NO synthase (tNOS) activity. In contrast, L-Cit supplementation limited NO production but increased the tNOS activity. Arginase activity was increased in the control fed group during HS but L-Cit supplementation lowered this effect. The NOS-COX pathway was significantly affected under TNZ condition, since L-Cit supplementation downregulated the mRNA expression of iNOS-COX2 in the hypothalamus, and further reduced the serum PGE2 concentration. Together, these data indicates that L-Cit influenced the antioxidant defense, heat shock response and nitric oxide regeneration both under thermoneutral and HS conditions; and that L-Cit may be directly and/or indirectly involved in the central regulation of body temperature.
Collapse
Affiliation(s)
- Victoria A. Uyanga
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai’an, China
| | - Minghui Wang
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai’an, China
| | - Tian Tong
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai’an, China
| | - Jingpeng Zhao
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai’an, China
| | - Xiaojuan Wang
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai’an, China
| | - Hongchao Jiao
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai’an, China
| | | | - Hai Lin
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
20
|
Dietary Curcumin Improves Energy Metabolism, Brain Monoamines, Carcass Traits, Muscle Oxidative Stability and Fatty Acid Profile in Heat-Stressed Broiler Chickens. Antioxidants (Basel) 2021; 10:antiox10081265. [PMID: 34439513 PMCID: PMC8389285 DOI: 10.3390/antiox10081265] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to elucidate the impacts of dietary curcumin supplementation on energy metabolism, brain monoamines and muscle oxidative stability in heat-stressed broilers. In total, 120 day-old chicks were allocated into three equal groups of four replicates. The first group (T1) was maintained on a thermoneutral condition, while the second group (T2) was subjected to 8 h of thermal stress (34 °C), and both groups fed the basal diet with no supplement. The third group (T3) was exposed to the same thermal stress conditions and fed the basal diet supplemented with curcumin (100 mg kg-1 diet). The dietary curcumin supplementation significantly increased the breast yield (p = 0.004), but reduced the percentage of abdominal fat (p = 0.017) compared with the T2 group. The addition of curcumin to broiler diets significantly improved the levels of monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) in breast and thigh muscles compared with the T2 group (p < 0.05). The curcumin-supplemented group showed significantly lower levels of malondialdehyde in the breast and thigh muscles than that of the T2 group (p = 0.001 and 0.015, respectively). The dietary curcumin supplementation significantly improved the levels of ATP and CoQ10 in liver tissues (p = 0.012 and 0.001, respectively) and brain serotonin (p = 0.006) as compared to the T2 group. Meanwhile, the heat-stressed group showed significantly higher levels of ADP and Na,K-ATPase in the liver tissues than that of the other experimental groups (p = 0.011 and 0.027, respectively). It could be concluded that dietary curcumin supplementation may improve carcass yield, energy biomarkers, brain serotonin and muscle oxidative stability of heat-stressed broiler chickens.
Collapse
|
21
|
Chen Y, Cheng Y, Du M, Zhou Y. Protective effects of dietary synbiotic supplementation on meat quality and oxidative status in broilers under heat stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30197-30206. [PMID: 33586106 DOI: 10.1007/s11356-021-12535-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
This study evaluated protective effects of synbiotic on meat quality and oxidative status of breast muscle in heat-stressed broilers. Twenty 2-day-old broilers were allocated in a 2×2 factorial design, and the main factors consisted of synbiotic level (0 (basal diet) or 1.5 g/kg synbiotic) and temperature (thermoneutral or high temperature), resulting in 4 treatments. From 22 to 42 days, chickens were raised at thermoneutral temperature (22 °C) or subjected to cyclic high temperature (heat stress, HS) by keeping them at 32-33 °C for 8 h and 22 °C for rest 16 h daily. Cyclic HS decreased relative weight, redness (45 min), and pH values (45 min and 24 h) but increased contents of moisture and ether extract, lightness (45 min and 24 h), drip loss (24 h and 48 h), and cooking loss in breast muscle of broilers compared with those under thermoneutral temperature. It also increased malondialdehyde content and mRNA abundances of heat shock protein 70 (HSP70) and HSP90 but decreased glutathione (GSH) concentration and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), as well as mRNA abundances of nuclear factor (erythroid 2)-like 2 (Nrf2), NAD(P)H quinone dehydrogenase 1 (NQO1), GSH-Px, and copper and zinc superoxide dismutase in breast muscle in broilers. Dietary synbiotic supplementation was effective in increasing weight and reducing lightness (45 min), drip loss (24 h and 48 h) and cooking loss of breast muscle in heat-stressed broilers compared with those fed the basal diet. It also reduced malondialdehyde content and HSP70 mRNA abundance and increased GSH-Px activity, GSH content, and mRNA abundances of Nrf2, NQO1 and GSH-Px in breast muscle of heat-stressed broilers. These results suggested that synbiotic supplementation at a level of 1.5 g/kg could ameliorate compromised meat quality and oxidative status in broilers under cyclic HS.
Collapse
Affiliation(s)
- Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yefei Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mingfang Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
22
|
Kumar M, Ratwan P, Dahiya SP, Nehra AK. Climate change and heat stress: Impact on production, reproduction and growth performance of poultry and its mitigation using genetic strategies. J Therm Biol 2021; 97:102867. [PMID: 33863431 DOI: 10.1016/j.jtherbio.2021.102867] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/15/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Heat stress is an important environmental determinant which adversely affects the performance of poultry worldwide. The present communication reviews the impact of heat stress on production, reproduction and growth performance of poultry, and its alleviation using genetic strategies. The adverse effects of high environmental temperature on poultry include decrease in growth rate, body weight, egg production, egg weight, egg quality, meat quality, semen quality, fertility and hatchability, which cause vast financial losses to the poultry industry. High ambient temperature has an antagonistic effect on performance traits of the poultry. Thus, selection of birds for high performance has increased their susceptibility to heat stress. Additionally, heat burden during transportation of birds from one place to another leads to reduced meat quality, increased mortality and welfare issues. Molecular markers are being explored nowadays to recognize the potential candidate genes related to production, reproduction and growth traits for selecting poultry birds to enhance thermo-tolerance and resistance against diseases. In conclusion, there is a critical need of formulating selection strategies based on genetic markers and exploring more genes in addition to HSP25, 70, 90, H1, RB1CC, BAG3, PDK, ID1, Na, F, dw and K responsible for thermoregulation, to improve the overall performance of poultry along with their ability to tolerate heat stress conditions.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Livestock Farm Complex, LUVAS, Hisar, 125004, Haryana, India.
| | - Poonam Ratwan
- Department of Animal Genetics and Breeding, LUVAS, Hisar, 125004, Haryana, India.
| | - S P Dahiya
- Department of Livestock Farm Complex, LUVAS, Hisar, 125004, Haryana, India.
| | - Anil Kumar Nehra
- Department of Veterinary Parasitology, LUVAS, Hisar, 125004, Haryana, India.
| |
Collapse
|
23
|
Goel A, Ncho CM, Choi YH. Regulation of gene expression in chickens by heat stress. J Anim Sci Biotechnol 2021; 12:11. [PMID: 33431031 PMCID: PMC7798204 DOI: 10.1186/s40104-020-00523-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/16/2020] [Indexed: 01/10/2023] Open
Abstract
Abstract High ambient temperatures are a critical challenge in the poultry industry which is a key producer of the animal-based food. To evaluate heat stress levels, various parameters have been used, including growth rates, blood metabolites, and hormones. The most recent advances have explored expression profiling of genes that may play vital roles under stress. A high ambient temperature adversely affects nutrient uptake and is known to modulate the expression of genes encoding for sodium-dependent glucose transporters, glucose transporters, excitatory amino acid transporters, and fatty acid-binding proteins which are responsible for the absorption of macronutrients in the intestine. Various defensive activities are stimulated to protect the cell of different tissues from the heat-generated stress, including expression of early stress response genes coding for heat shock protein (HSP), c-FOS like protein, brain-derived neurotrophic factor (BDNF), and neuronal nitric oxide synthase (nNOS); antioxidant enzyme genes such as superoxide dismutase (SOD), catalase (CAT), and nicotinamide adenine dinucleotide phosphate oxidase (NOX4); and immune-related genes such as cytokines and toll-like receptors (TLRs). The potential role of HSPs in protecting the cell from stress and their presence in several tissues make them suitable markers to be evaluated under heat stress. BDNF and c-FOS genes expressed in the hypothalamus help cells to adapt to an adverse environment. Heat causes damage to the cell by generating reactive oxygen species (ROS). The NOX4 gene is the inducer of ROS under heat stress, which is in turns controlled by antioxidant enzymes such as SOD and CAT. TLRs are responsible for protecting against pathogenic attacks arising from enhanced membrane permeability, and cytokines help in controlling the pathogen and maintaining homeostasis. Thus, the evaluation of nutrient transporters and defense mechanisms using the latest molecular biology tools has made it possible to shed light on the complex cellular mechanism of heat-stressed chickens. As the impacts of heat stress on the above-mentioned aspects are beyond the extent to which the reduced growth performance could be explained, heat stress has more specific effects on the regulation of these genes than previously thought. Graphical abstract Effect of heat exposure on the nutrient transporters, antioxidants, and immune inflammation in chickens. Most of the nutrient transporters were suppressed under heat stress. Increase in the production of reactive oxygen species resulted in enhanced production of antioxidant enzymes. Expression of various proinflammatory cytokines and toll-like receptors were enhanced due to heat stress in chicken.
![]()
Collapse
Affiliation(s)
- Akshat Goel
- Department of Animal Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Chris Major Ncho
- Department of Animal Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang National University, Jinju, 52828, Republic of Korea. .,Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju, 52828, Republic of Korea. .,Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
24
|
Nidamanuri AL, Leslie Leo Prince L, Yadav SP, Bhattacharya TK, Konadaka SRR, Bhanja SK. Effect of Supplementation of Fermented Yeast Culture on Hormones and Their Receptors on Exposure to Higher Temperature and on Production Performance after Exposure in Nicobari Chickens. Int J Endocrinol 2021; 2021:5539780. [PMID: 34394347 PMCID: PMC8357510 DOI: 10.1155/2021/5539780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/12/2021] [Accepted: 07/24/2021] [Indexed: 12/20/2022] Open
Abstract
Heat stress (HS) affects the production performance in chickens and causes economic loss to the producers. Most of the studies have been conducted on and for the welfare of broilers. We still lack information on the physiological parameters being affected during chronic heat stress in layers. To fill this gap, the present study evaluated the effect of heat stress (induced in the chamber) during the prelaying period (21-23 weeks) on plasma levels of the hormones leptin and ghrelin and GH and expression of the respective receptors and heat stress markers. Three groups were considered, one at room temperature (CR) and the other two groups (SH and CH) subjected to heat stress at 39°C for four hours for three weeks (21-23 weeks of age). The SH group (SH) feed was supplemented with fermented yeast culture (FYC, 700 mg/kg), whereas the CH group was devoid of it. After that, all the groups were shifted to shed under natural ambient conditions till 31 weeks of age. Studies were restricted to production performance only. Feed offered without yeast culture (CH group) had a smaller concentration of plasma hormones (P < 0.01) and increased expression fold of the hormone receptors (P < 0.01). Further, the group also presented higher liver AMP kinase enzyme, plasma MDA (malondialdehyde), and cholesterol concentrations. These changes likely explained the decrease in feed intake and the CH group's body weight and further reduced the production performance during the laying period. Supplementation with FYC to birds had an opposite effect on the above-mentioned parameters, reducing HS effects. In summary, supplementation with FYC (700 mg/kg) maintained physiological parameters as in the CR group under HS conditions and negated adverse effects on parameters both before and during laying periods.
Collapse
Affiliation(s)
- A. L. Nidamanuri
- Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana State, India
| | | | - S. P. Yadav
- Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana State, India
| | - T. K. Bhattacharya
- Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana State, India
| | - S. R. R. Konadaka
- Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana State, India
| | - S. K. Bhanja
- Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana State, India
| |
Collapse
|
25
|
Perini F, Cendron F, Rovelli G, Castellini C, Cassandro M, Lasagna E. Emerging Genetic Tools to Investigate Molecular Pathways Related to Heat Stress in Chickens: A Review. Animals (Basel) 2020; 11:ani11010046. [PMID: 33383690 PMCID: PMC7823582 DOI: 10.3390/ani11010046] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary New genomic tools have been used as an instrument in order to assess the molecular pathway involved in heat stress resistance. Local chicken breeds have a better attitude to face heat stress. This review aims to summarize studies linked to chickens, heat stress, and heat shock protein. Abstract Chicken products are the most consumed animal-sourced foods at a global level across greatly diverse cultures, traditions, and religions. The consumption of chicken meat has increased rapidly in the past few decades and chicken meat is the main animal protein source in developing countries. Heat stress is one of the environmental factors which decreases the productive performance of poultry and meat quality. Heat stress produces the over-expression of heat shock factors and heat shock proteins in chicken tissues. Heat shock proteins regulate several molecular pathways in cells in response to stress conditions, changing the homeostasis of cells and tissues. These changes can affect the physiology of the tissue and hence the production ability of chickens. Indeed, commercial chicken strains can reach a high production level, but their body metabolism, being comparatively accelerated, has poor thermoregulation. In contrast, native backyard chickens are more adapted to the environments in which they live, with a robustness that allows them to survive and reproduce constantly. In the past few years, new molecular tools have been developed, such as RNA-Seq, Single Nucleotide Polymorphisms (SNPs), and bioinformatics approaches such as Genome-Wide Association Study (GWAS). Based on these genetic tools, many studies have detected the main pathways involved in cellular response mechanisms. In this context, it is necessary to clarify all the genetic and molecular mechanisms involved in heat stress response. Hence, this paper aims to review the ability of the new generation of genetic tools to clarify the molecular pathways associated with heat stress in chickens, offering new perspectives for the use of these findings in the animal breeding field.
Collapse
Affiliation(s)
- Francesco Perini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia (PG), Italy; (F.P.); (G.R.); (C.C.); (E.L.)
| | - Filippo Cendron
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università, 16, 35020 Legnaro (PD), Italy;
- Correspondence:
| | - Giacomo Rovelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia (PG), Italy; (F.P.); (G.R.); (C.C.); (E.L.)
| | - Cesare Castellini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia (PG), Italy; (F.P.); (G.R.); (C.C.); (E.L.)
| | - Martino Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università, 16, 35020 Legnaro (PD), Italy;
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia (PG), Italy; (F.P.); (G.R.); (C.C.); (E.L.)
| |
Collapse
|
26
|
Shehata AM, Saadeldin IM, Tukur HA, Habashy WS. Modulation of Heat-Shock Proteins Mediates Chicken Cell Survival against Thermal Stress. Animals (Basel) 2020; 10:E2407. [PMID: 33339245 PMCID: PMC7766623 DOI: 10.3390/ani10122407] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Heat stress is one of the most challenging environmental stresses affecting domestic animal production, particularly commercial poultry, subsequently causing severe yearly economic losses. Heat stress, a major source of oxidative stress, stimulates mitochondrial oxidative stress and cell dysfunction, leading to cell damage and apoptosis. Cell survival under stress conditions needs urgent response mechanisms and the consequent effective reinitiation of cell functions following stress mitigation. Exposure of cells to heat-stress conditions induces molecules that are ready for mediating cell death and survival signals, and for supporting the cell's tolerance and/or recovery from damage. Heat-shock proteins (HSPs) confer cell protection against heat stress via different mechanisms, including developing thermotolerance, modulating apoptotic and antiapoptotic signaling pathways, and regulating cellular redox conditions. These functions mainly depend on the capacity of HSPs to work as molecular chaperones and to inhibit the aggregation of non-native and misfolded proteins. This review sheds light on the key factors in heat-shock responses for protection against cell damage induced by heat stress in chicken.
Collapse
Affiliation(s)
- Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt;
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Islam M. Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hammed A. Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Walid S. Habashy
- Department of Animal and Poultry Production, Damanhour University, Damanhour 22511, Egypt;
| |
Collapse
|
27
|
Supplementation of postbiotic RI11 improves antioxidant enzyme activity, upregulated gut barrier genes, and reduced cytokine, acute phase protein, and heat shock protein 70 gene expression levels in heat-stressed broilers. Poult Sci 2020; 100:100908. [PMID: 33518339 PMCID: PMC7936158 DOI: 10.1016/j.psj.2020.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
The aim of this work was to evaluate the impacts of feeding different levels of postbiotic RI11 on antioxidant enzyme activity, physiological stress indicators, and cytokine and gut barrier gene expression in broilers under heat stress. A total of 252 male broilers Cobb 500 were allocated in cages in environmentally controlled chambers. All the broilers received the same basal diet from 1 to 21 d. On day 22, the broilers were weighed and grouped into 7 treatment groups and exhibited to cyclic high temperature at 36 ± 1°C for 3 h per day until the end of the experiment. From day 22 to 42, broilers were fed with one of the 7 following diets: negative control, basal diet (0.0% RI11) (NC group); positive control, NC diet + 0.02% (w/w) oxytetracycline (OTC group); antioxidant control, NC diet + 0.02% (w/w) ascorbic acid. The other 4 other groups were as follows: NC diet + 0.2% cell-free supernatant (postbiotic RI11) (v/w), NC diet + 0.4% cell-free supernatant (postbiotic RI11) (v/w), NC diet + 0.6% cell-free supernatant (postbiotic RI11) (v/w), and NC diet + 0.8% cell-free supernatant (postbiotic RI11) (v/w). Supplementation of different levels (0.4, 0.6, and 0.8%) of postbiotic RI11 increased plasma glutathione peroxidase, catalase, and glutathione enzyme activity. Postbiotic RI11 groups particularly at levels of 0.4 and 0.6% upregulated the mRNA expression of IL-10 and downregulated the IL-8, tumor necrosis factor alpha, heat shock protein 70, and alpha-1-acid glycoprotein levels compared with the NC and OTC groups. Feeding postbiotic RI11, particularly at the level of 0.6%, upregulated ileum zonula occludens-1 and mucin 2 mRNA expressions. However, no difference was observed in ileum claudin 1, ceruloplasmin, IL-6, IL-2, and interferon expression, but downregulation of occludin expression was observed as compared with the NC group. Supplementation of postbiotic RI11 at different levels quadratically increased plasma glutathione peroxidase, catalase and glutathione, IL-10, mucin 2, and zonula occludens-1 mRNA expression and reduced plasma IL-8, tumor necrosis factor alpha, alpha-1-acid glycoprotein, and heat shock protein 70 mRNA expression. The results suggested that postbiotics produced from Lactiplantibacillus plantarum RI11 especially at the level of 0.6% (v/w) could be used as an alternative to antibiotics and natural sources of antioxidants in poultry feeding.
Collapse
|
28
|
Awad E, Zulkifli I, Ramiah S, Khalil E, Abdallh M. Prebiotics supplementation: an effective approach to mitigate the detrimental effects of heat stress in broiler chickens. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1759222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- E.A. Awad
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Selangor, Malaysia
- Preclinical Department, Universiti Malaysia Kelantan, Kelantan, Malaysia
| | - I. Zulkifli
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Animal Science, Universiti Putra Malaysia, Selangor, Malaysia
| | - S.K. Ramiah
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Selangor, Malaysia
| | - E.S. Khalil
- Department of Dairy Production, Faculty of Animal Production, University of Khartoum, Khartoum North, Sudan
| | - M.E. Abdallh
- School of Environmental and Rural Sciences, University of New England, Armidale, NSW, Australia
| |
Collapse
|
29
|
El-Zeftawy M, Mahmoud GB, Hassan M. Impact of thermal stress exposure on seminal quality, antioxidant defence system, TNF-α and TIMP-3 in Ossimi ram. Reprod Domest Anim 2020; 55:870-881. [PMID: 32386243 DOI: 10.1111/rda.13697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/20/2023]
Abstract
Heat stress (HS) occupies huge importance nowadays as it leads to severe economic losses especially in livestock. Preserving sheep against HS is one of the governmental scopes where it represents huge percentage of global ruminant. The present research was conducted to study semen quality, some stress and inflammatory markers in Ossimi rams under both hot and mild climatic conditions. The current study was conducted on selected 46 ram samples divided into two groups during summer and winter. Semen analysis, testosterone (TES), cortisol (COR) and blood glucose (BG) levels, and lipid and protein profiles were done. Concentrations of tumour necrosis factor alpha (TNF-α), tissue inhibitor of metalloproteinase-3 (TIMP-3), nitric oxide (NO), malondialdehyde (MDA) and reduced glutathione (GSH) and specific activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD) were assessed. The results in summer compared to winter revealed significant elevation of total defects and number of dead sperms; however, there was reduction in sperm total motility and concentration and external epididymal tail duct diameter. Histological study of epididymal tail lumen exhibited azoospermia. Further, TES, TIMP-3 and GSH levels were decreased and COR, TNF-α, NO and MDA were raised. Specific activities of GPx and SOD were also declined. Additionally, there was a significant increase in concentrations of BG and lipid profiles except high-density lipoprotein. Our data concluded that there were new insights into TNF-α and TIMP-3 as biomarkers can be used in diagnosis of sheep suffering from HS, but further studies are recommended to do in future work about such aspect.
Collapse
Affiliation(s)
- Marwa El-Zeftawy
- Biochemistry Department, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt.,Biochemistry Department, Faculty of Science, Biological Screening and Preclinical Trial Lab, Alexandria University, Alexandria, Egypt
| | - Gamal B Mahmoud
- Animal Production Department, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Mervat Hassan
- Theriogenology Department, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt
| |
Collapse
|
30
|
Pietrzak E, Dunislawska A, Siwek M, Zampiga M, Sirri F, Meluzzi A, Tavaniello S, Maiorano G, Slawinska A. Splenic Gene Expression Signatures in Slow-Growing Chickens Stimulated in Ovo with Galactooligosaccharides and Challenged with Heat. Animals (Basel) 2020; 10:ani10030474. [PMID: 32178295 PMCID: PMC7143207 DOI: 10.3390/ani10030474] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 01/07/2023] Open
Abstract
Galactooligosaccharides (GOS) that are delivered in ovo improve intestinal microbiota composition and mitigate the negative effects of heat stress in broiler chickens. Hubbard hybrids are slow-growing chickens with a high resistance to heat. In this paper, we determined the impact of GOS delivered in ovo on slow-growing chickens that are challenged with heat. The experiment was a 2 × 2 × 2 factorial design. On day 12 of incubation, GOS (3.5 mg/egg) was delivered into the egg (n = 300). Controls (C) were mock-injected with physiological saline (n = 300). After hatching, the GOS and C groups were split into thermal groups: thermoneutral (TN) and heat stress (HS). HS (30 °C) lasted for 14 days (days 36-50 post-hatching). The spleen (n = 8) was sampled after acute (8.5 h) and chronic (14 days) HS. The gene expression of immune-related (IL-2, IL-4, IL-6, IL-10, IL-12p40, and IL-17) and stress-related genes (HSP25, HSP90AA1, BAG3, CAT, and SOD) was detected with RT-qPCR. Chronic HS up-regulated the expression of the genes: IL-10, IL-12p40, SOD (p < 0.05), and CAT (p < 0.01). GOS delivered in ovo down-regulated IL-4 (acute p < 0.001; chronic p < 0.01), IL-12p40, CAT and SOD (chronic p < 0.05). The obtained results suggest that slow-growing hybrids are resistant to acute heat and tolerant to chronic heat, which can be supported with in ovo GOS administration.
Collapse
Affiliation(s)
- Elzbieta Pietrzak
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (E.P.); (A.D.); (M.S.)
| | - Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (E.P.); (A.D.); (M.S.)
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (E.P.); (A.D.); (M.S.)
| | - Marco Zampiga
- Department of Agricultural and Food Sciences, University of Bologna, Via del Florio 2, 40064 Ozzano dell’Emilia, Italy; (M.Z.); (F.S.); (A.M.)
| | - Federico Sirri
- Department of Agricultural and Food Sciences, University of Bologna, Via del Florio 2, 40064 Ozzano dell’Emilia, Italy; (M.Z.); (F.S.); (A.M.)
| | - Adele Meluzzi
- Department of Agricultural and Food Sciences, University of Bologna, Via del Florio 2, 40064 Ozzano dell’Emilia, Italy; (M.Z.); (F.S.); (A.M.)
| | - Siria Tavaniello
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via F. de Sanctis snc, 86100 Campobasso, Italy; (S.T.); (G.M.)
| | - Giuseppe Maiorano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via F. de Sanctis snc, 86100 Campobasso, Italy; (S.T.); (G.M.)
| | - Anna Slawinska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (E.P.); (A.D.); (M.S.)
- Correspondence: ; Tel.: +48-052-374-97-50
| |
Collapse
|
31
|
Bai S, He C, Zhang K, Ding X, Zeng Q, Wang J, Peng H, Bai J, Lu H, Xuan Y, Su Z. Effects of dietary inclusion of Radix Bupleuri and Radix Astragali extracts on the performance, intestinal inflammatory cytokines expression, and hepatic antioxidant capacity in broilers exposed to high temperature. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Effects of l-leucine in ovo feeding on thermotolerance, growth and amino acid metabolism under heat stress in broilers. Animal 2020. [DOI: 10.1017/s1751731120000464] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
33
|
Wang J, Xue X, Liu Q, Zhang S, Peng M, Zhou J, Chen L, Fang F. Effects of duration of thermal stress on growth performance, serum oxidative stress indices, the expression and localization of ABCG2 and mitochondria ROS production of skeletal muscle, small intestine and immune organs in broilers. J Therm Biol 2019; 85:102420. [PMID: 31657761 DOI: 10.1016/j.jtherbio.2019.102420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 02/09/2023]
Abstract
The purpose of the current study was to investigate that effect of duration of thermal stress on growth performance, oxidative stress indices in serum, the expression and localization of ABCG2, and mitochondria ROS production in skeletal muscle, small intestine and immune organs, and then to further reveal correlations between indicators. At 28 days of age, sixty broilers were randomly divided into the control group (25 ± 2 °C; 24 h/day) and the heat stress group (36 ± 2 °C; 8 h/day lasted for 1 week or 2 weeks). Fifteen broilers per group were respectively euthanized, and some samples were respectively collected from the control and the heat stress groups at the end of the 1st week or the 2nd week of heat stress. A typical heat stress response has been observed at this temperature. Compared with the control group, the birds subjected to heat stress at the end of the 1st week reduced (P < 0.05) body weight (BW), average daily feed intake (ADFI), average daily gain (ADG), the activity of serum antioxidant enzyme and content of glutathione (GSH), while increased (P < 0.05) feed conversion ratio (FCR), serum corticosterone and malondialdehyde (MDA) levels. However, when the heat stress lasted for the end of the 2nd week, there was no significant difference (P > 0.05) in ADFI, ADG, FCR and serum contents of corticosterone, MDA and GSH. Regardless of duration of thermal stress, the localization of ABCG2 protein had no change. Moreover, heat stress also did not affect (P > 0.05) the IOD of the ABCG2 positive portion and the expression of the ABCG2 mRNA in the pectorales, crureus, duodenum, jejunum, ileum and spleen, while significantly increased (P < 0.05) the corresponding tissues ROS production at the end of the 1st week of heat stress. In contrast, at the end of the 2nd week of heat stress, IOD of the ABCG2 positive portion and the expression of the ABCG2 mRNA in heat stress group significantly increased (P < 0.05), while the corresponding tissues ROS production had no difference (P > 0.05) compared to the control group. Collectively, duration of thermal stress affects growth performance, serum oxidative stress indices, and the expression of ABCG2 and the ROS production of broiler tissues in a time-dependent manner. There is a negative correlation between the expression of ABCG2 and the ROS production in the corresponding tissues under heat stress.
Collapse
Affiliation(s)
- Juhua Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China; Key Laboratory of Veterinary Pathobiology and Disease Control in Anhui Provincial, Hefei, China
| | - Xiuheng Xue
- College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China.
| | - Qi Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Suzi Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Mengling Peng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China; Key Laboratory of Veterinary Pathobiology and Disease Control in Anhui Provincial, Hefei, China
| | - Jie Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China; Key Laboratory of Veterinary Pathobiology and Disease Control in Anhui Provincial, Hefei, China
| | - Lijuan Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Fugui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China; Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding in Anhui Provincial, Hefei, China
| |
Collapse
|
34
|
He X, Lu Z, Ma B, Zhang L, Li J, Jiang Y, Zhou G, Gao F. Effects of dietary taurine supplementation on growth performance, jejunal morphology, appetite-related hormones, and genes expression in broilers subjected to chronic heat stress. Poult Sci 2019; 98:2719-2728. [PMID: 30778570 DOI: 10.3382/ps/pez054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/26/2019] [Indexed: 12/12/2022] Open
Abstract
This study was aimed to elucidate effects of taurine supplementation on growth performance, jejunal histology, and appetite-related genes expressions of broilers under heat stress. A total of 144 broilers on 28 d were allocated to three groups with 6 cages each group, 8 broilers per cage. The experiment period is from 28 to 42 d of age. In normal control (NC) group, chickens were held at 22°C ambient temperature (thermoneutral) and fed a basal diet. In the heat stress (HS) group, chickens were raised to constant HS at 32°C and received a basal diet. In the HS+ taurine group, chickens were fed a basal diet with 5 g/kg taurine supplementation. The results showed that HS group had lower average daily feed intake, average daily gain, higher feed/gain ratio compared with the NC group (P < 0.05), while taurine addition did not ameliorate the lowered growth performance. Cloacal temperatures and respiration rates in the HS and heat taurine group were higher (P < 0.05) than in the NC group. Heat stress treatment elevated (P < 0.05) the concentrations of ghrelin and cholecystokinin (CCK) in serum and intestine, together with peptide YY and somatostatin (SS) in the intestine after 7 or 14 d of heat exposure. In addition, HS damaged the jejunal morphology by shortening villus height and deepening crypt depth (P < 0.05), upregulated (P < 0.05) the mRNA expression of taste receptor type 1 member 1 (T1R1), taste receptor type 1 member 3 (T1R3), CCK and ghrelin in the intestine. Taurine supplementation significantly mitigated the impairment of jejunal morphology, decreased the concentrations of serum ghrelin, increased the concentrations of somatostatin and peptide YY in the duodenum, elevated the mRNA expression levels of CCK in the jejunum compared with the HS group. In conclusion, taurine exerted no positive effects on the growth performance, while mitigated the impairment of jejunal morphology, increased some anorexic hormones secretion and mRNA expression of appetite-related genes in the intestine of broilers subjected to HS.
Collapse
Affiliation(s)
- Xiaofang He
- College of Animal Science and Technology; Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Zhuang Lu
- College of Animal Science and Technology; Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Bingbing Ma
- College of Animal Science and Technology; Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lin Zhang
- College of Animal Science and Technology; Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jiaolong Li
- College of Animal Science and Technology; Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yun Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, P.R. China
| | - Guanghong Zhou
- College of Animal Science and Technology; Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Feng Gao
- College of Animal Science and Technology; Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
35
|
Salah AS, Mahmoud MA, Ahmed-Farid OA, El-Tarabany MS. Effects of dietary curcumin and acetylsalicylic acid supplements on performance, muscle amino acid and fatty acid profiles, antioxidant biomarkers and blood chemistry of heat-stressed broiler chickens. J Therm Biol 2019; 84:259-265. [PMID: 31466762 DOI: 10.1016/j.jtherbio.2019.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/16/2019] [Accepted: 07/01/2019] [Indexed: 11/19/2022]
Abstract
The objective was to investigate the effects of dietary curcumin and acetylsalicylic acid (ASA) on the performance and physiological responses of broiler chickens under chronic thermal stress. One hundred and sixty day-old male chicks (Ross 308) were divided equally into 4 groups (each contained 4 replicates). On the day 22 of age and thereafter, the first group (TN) was raised in a thermoneutral condition (23 ± 1 °C), while the second group (HS) was subjected to 8 h of thermal stress (34 °C) and both groups fed the basal diet with no supplements. The third (CR) and fourth (AS) groups were subjected to the same thermal stress conditions and fed curcumin-supplemented diet (100 mg curcumin kg-1 diet) and ASA-supplemented diet (1 g ASA kg-1 diet), respectively. Dietary treatment had a significant effect on ADFI (P = 0.041), average daily gain (P = 0.013) and final body weight (P = 0.001). The curcumin-supplemented had higher values for these measures compared with other experimental groups (P < 0.05). Also, the dietary curcumin supplement significantly increased the carcass yield as compared to the HS group (P < 0.05). Compared with the HS group, the dietary curcumin and ASA supplements decreased the concentration of malondialdehyde in the breast muscles (P = 0.014). Both dietary supplements exhibited a marked ability to restore the serum TAC, Na and K in heat-stressed broiler chickens. The current study reported a remarkable ability of curcumin supplement to restore the concentrations of polyunsaturated fatty acids (PUFA) in the breast muscles of heat-stressed broilers, including α-linolinec acid and Docosahexaenoic acid (P = 0.009 and 0.001, respectively). It could be concluded that supplemental dietary curcumin or ASA enhanced growth performance and antioxidant biomarkers of heat-stressed broilers. Moreover, curcumin might be an effective dietary supplement to alleviate the adverse effect of chronic thermal stress on carcass yield and meat quality.
Collapse
Affiliation(s)
- Ayman S Salah
- Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, New Valley University, Egypt
| | - Mohamed A Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, New Valley University, Egypt
| | - Omar A Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Mahmoud S El-Tarabany
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt.
| |
Collapse
|
36
|
Vieira FMC, Groff PM, Silva IJO, Nazareno AC, Godoy TF, Coutinho LL, Vieira AMC, Silva-Miranda KO. Impact of exposure time to harsh environments on physiology, mortality, and thermal comfort of day-old chickens in a simulated condition of transport. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:777-785. [PMID: 30796526 DOI: 10.1007/s00484-019-01691-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/09/2018] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to assess the variation of physiological responses and mortality of day-old chicks subjected to different thermal conditions and exposure times during simulated transport. For this purpose, day-old chicks (n = 900) were used and subjected to simulated conditions of transport in a climate chamber. The experimental design was a completely randomized block design, with the structure of the treatments in a 3 × 3 factorial scheme (thermal ranges and time intervals) and each level of containers considered a block. The physiological variables used in this trial were body weight, respiratory rate, cloacal temperature, average surface temperature, and gene expression of heat shock protein (HSP70). Regarding body weight, a small variation was observed between treatments (P > 0.05). The animals subjected to the heat treatment exhibited respiratory rates above 100 movements per minute (P < 0.05), average cloacal temperatures above 44.7 °C, surface temperatures above the comfort zone (greater than 39.6 °C; P < 0.05), and increased gene expression of HSP70 (P < 0.001), especially after 3 initial hours of exposure. In addition, the heat treatment lead to increased mortality of the animals (over 6%). Also in the cold treatment, despite the absence of mortality, the animals showed hypothermia from 3 h of exposure, based on the results of the average surface (28 °C) and cloacal temperatures (39.6 °C; P < 0.05). In this way, the results imply that the effects of thermal stress caused by heat as well as by cold in a simulated transport condition are increased when traveling for more than 3 h, indicating a trend of rising mortality after long-term transportation of day-old chickens.
Collapse
Affiliation(s)
- Frederico Márcio C Vieira
- Grupo de Estudos em Biometeorologia - GEBIOMET (Biometeorology Study Group), Federal University of Technology - Paraná (UTFPR), Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, Dois Vizinhos, Paraná, CEP 85660-000, Brazil.
| | - Priscila Michelin Groff
- Grupo de Estudos em Biometeorologia - GEBIOMET (Biometeorology Study Group), Federal University of Technology - Paraná (UTFPR), Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, Dois Vizinhos, Paraná, CEP 85660-000, Brazil
| | - Iran José O Silva
- Animal Environment Research Nucleus (NUPEA) - University of São Paulo (USP/ESALQ), Piracicaba, São Paulo, Brazil
| | - Aérica C Nazareno
- Animal Environment Research Nucleus (NUPEA) - University of São Paulo (USP/ESALQ), Piracicaba, São Paulo, Brazil
| | - Thais F Godoy
- Laboratory of Animal Biotechnology - University of São Paulo (USP/ESALQ), Piracicaba, São Paulo, Brazil
| | - Luiz L Coutinho
- Laboratory of Animal Biotechnology - University of São Paulo (USP/ESALQ), Piracicaba, São Paulo, Brazil
| | | | - Késia O Silva-Miranda
- Animal Environment Research Nucleus (NUPEA) - University of São Paulo (USP/ESALQ), Piracicaba, São Paulo, Brazil
| |
Collapse
|
37
|
Lu Z, Ma Y, Li Q, Liu E, Jin M, Zhang L, Wei C. The role of N 6-methyladenosine RNA methylation in the heat stress response of sheep (Ovis aries). Cell Stress Chaperones 2019; 24:333-342. [PMID: 30701478 PMCID: PMC6439051 DOI: 10.1007/s12192-018-00965-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022] Open
Abstract
With the intensive development of the sheep industry and increasing global temperatures, heat stress in sheep has become an increasingly severe and important issue in recent years. The level of N6-methyladenosine (m6A) RNA methylation changes in response to stress plays important roles in stress responses. However, the role of m6A in the heat stress response of sheep remains unclear. To explore this issue, we measured heat stress protein (HSP) expression, liver function indexes, m6A on RNA, m6A-related enzyme expression, and tissue damage in sheep that had been subjected to heat stress. At the transcriptome level, our results showed significant increases in m6A on RNA and increased mRNA levels of HSPs (HSP70, HSP90, and HSP110) and m6A-related enzymes [METTL3 (methyltransferase-like 3), METTL14 (methyltransferase-like 14), WTAP (wilms tumor 1-associated protein), FTO (fat mass and obesity-associated protein), ALKBH5 (alkB homologue 5), YTHDF1-3 (YTH domain family proteins), and YTHDC1-2 (YTH domain-containing proteins)] following heat stress. At the protein level, the expression of METTL3, YTHDF1-2, and YTHDC2 showed no significant differences following heat stress. However, in contrast to its mRNA level after heat stress, the protein expression of YTHDF3 was reduced, while the expression of HSPs (HSP70, HSP90, and HSP110), METTL14, WTAP, FTO, ALKBH5, YTHDF3, and YTHDC1 increased in line with their measured mRNA levels. Histological experiments revealed that heat stress caused varying degrees of damage to sheep liver tissue. Moreover, immunohistochemical staining indicated that the m6A-related enzymes were expressed in sheep hepatocytes, and differences in expression patterns were observed between the control and heat stress groups. In summary, differences in the level of m6A and the expression of m6A-related enzymes in the liver of sheep were observed after heat stress. This indicates that m6A is involved in the regulation of heat stress in sheep. Our findings provide a new avenue for studying the responses to heat stress in sheep.
Collapse
Affiliation(s)
- Zengkui Lu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qing Li
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Enmin Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Meilin Jin
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Caihong Wei
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
38
|
Zaglool AW, Roushdy EM, El-Tarabany MS. Impact of strain and duration of thermal stress on carcass yield, metabolic hormones, immunological indices and the expression of HSP90 and Myogenin genes in broilers. Res Vet Sci 2019; 122:193-199. [DOI: 10.1016/j.rvsc.2018.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022]
|