1
|
Li J, Kudereti T, Wusiman A, Abula S, He X, Li J, Yang Y, Guo Q, Guo Q. Regulatory Effects of Alhagi Honey Small-Molecule Sugars on Growth Performance and Intestinal Microbiota of Lambs. Animals (Basel) 2024; 14:2402. [PMID: 39199936 PMCID: PMC11350646 DOI: 10.3390/ani14162402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
The present study was designed to assess the impact of Alhagi honey small-molecule sugars (AHAS) on Hu lambs. Therefore, in this study, AHAS low-dose (AHAS-L, 200 mg/ kg per day), AHAS medium-dose (AHAS-M, 400 mg/kg per day), and AHAS high-dose (AHAS-H, 800 mg/kg per day) were administered to Hu lambs to investigate the regulatory effects of AHAS on growth performance, oxidation index, immune system enhancement, and intestinal microbiota. The results showed that lambs in the AHAS-H group exhibited significantly increased in average daily weight gain, and growth performance compared to those in the control group (p < 0.05). Moreover, AHAS-H supplementation resulted in increased levels of serum antioxidant enzymes (SOD, GSH-Px, and T-AOC), serum antibodies (IgA, IgG, and IgM), and cytokines (IL-4, 10,17, IFN-γ, and TNF-α) compared with the control group (p < 0.05). Additionally, it increased the quantity and richness of beneficial bacteria at such as Sphingomonas, Ralstonia, and Flavobacterium, activating various metabolic pathways and promoting the production of various short-chain fatty acids. In summary, our findings highlight the potential of AHAS-H treatment in enhancing intestinal health of lambs by improving intestinal function, immunity, and related metabolic pathways. Consequently, these results suggest that AHAS holds promising potential as a valuable intervention for optimizing growth performance and intestinal health in lambs.
Collapse
Affiliation(s)
- Jianlong Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Tuerhong Kudereti
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Adelijiang Wusiman
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Saifuding Abula
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Xiaodong He
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Jiaxin Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Yang Yang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Qianru Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| |
Collapse
|
2
|
Bashar AM, Abdelnour SA, El-Darawany AA, Sheiha AM. Dietary Supplementation of Microalgae and/or Nanominerals Mitigate the Negative Effects of Heat Stress in Growing Rabbits. Biol Trace Elem Res 2024; 202:3639-3652. [PMID: 37964041 PMCID: PMC11534902 DOI: 10.1007/s12011-023-03953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
Heat stress (HS) is one of the most significant environmental factors that result in fluctuations and shrinkage in rabbit growth, health, and overall productivity. This study aims to investigate the effects of dietary mineral nanoparticles (selenium or zinc) and/or Spirulina platensis (SP) independently and in combination on stressed growing rabbits. A total of 180 weaned growing New Zealand White rabbits were included in this study and randomly divided into six dietary treatments. Rabbits received a basal diet (control group; CON group) or fortified with SP (1 g/kg diet), selenium nanoparticles (SeNPs, 50 mg/kg diet), zinc nanoparticles (ZnNPs, 100 mg/kg diet), and a mixture of SP and SeNPs (SPSeNPs) or SP and ZnNPs (SPZnNPs) groups for 8 weeks during summer conditions. The obtained results demonstrated a significant increase in the final body weight and weight gain (p < 0.05). Additionally, the feed conversion ratio was improved during the periods from 6 to 14 weeks in the treated rabbits compared to those in the CON group. Dietary supplements considerably improved (p < 0.05) the blood hematology (WBCs, Hb, RBCs, and Hct) and some carcass traits (liver weights and edible giblets). All dietary supplements significantly decreased serum levels of total glycerides (p < 0.0001), AST (p = 0.0113), ALT (p = 0.0013), creatinine (p = 0.0009), and uric acid (p = 0.0035) compared to the CON group. All treated groups (except ZnNPs) had lower values of total bilirubin and indirect bilirubin in a dose-dependent way when compared to the CON group. The values of IgA, IgG, and superoxide dismutase were significantly improved (p < 0.05) in all treated rabbits compared to the CON group. Compared with the CON group, the levels of T3 (p < 0.05) were significantly increased in all treated growing rabbits (except for the ZnNP group), while the serum cortisol, interferon-gamma (IFN-γ), malondialdehyde, and protein carbonyl were significantly decreased in the treated groups (p < 0.05). Dietary supplements sustained the changes in hepatic, renal, and cardiac impairments induced by HS in growing rabbits. Adding SP (1 g/kg diet) or SeNPs (50 mg/kg diet) in the diet, either individually or in combination, improved growth performance, blood picture, and immunity-antioxidant responses in stressed rabbits. Overall, these feed additives (SP, SeNPs, or their mixture) can be applied as an effective nutritional tool to reduce negative impacts of summer stress conditions, thereby maintaining the health status and improving the heat tolerance in growing rabbits.
Collapse
Affiliation(s)
- Amr M Bashar
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Abdelhalim A El-Darawany
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Asmaa M Sheiha
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
3
|
Ivanova Z, Petrova V, Grigorova N, Vachkova E. Identification of the Reference Genes for Relative qRT-PCR Assay in Two Experimental Models of Rabbit and Horse Subcutaneous ASCs. Int J Mol Sci 2024; 25:2292. [PMID: 38396967 PMCID: PMC10889259 DOI: 10.3390/ijms25042292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Obtaining accurate and reliable gene expression results in real-time RT-PCR (qRT-PCR) data analysis requires appropriate normalization by carefully selected reference genes, either a single or a combination of multiple housekeeping genes (HKGs). The optimal reference gene/s for normalization should demonstrate stable expression across varying conditions to diminish potential influences on the results. Despite the extensive database available, research data are lacking regarding the most appropriate HKGs for qRT-PCR data analysis in rabbit and horse adipose-derived stem cells (ASCs). Therefore, in our study, we comprehensively assessed and compared the suitability of some widely used HKGs, employing RefFinder and NormFinder, two extensively acknowledged algorithms for robust data interpretation. The rabbit and horse ASCs were obtained from subcutaneous stromal vascular fraction. ASCs were induced into tri-lineage differentiation, followed by the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) treatment of the adipose-differentiated rabbit ASCs, while horse experimental groups were formed based on adipogenic, osteogenic, and chondrogenic differentiation. At the end of the experiment, the total mRNA was obtained and used for the gene expression evaluation of the observed factors. According to our findings, glyceraldehyde 3-phosphate dehydrogenase was identified as the most appropriate endogenous control gene for rabbit ASCs, while hypoxanthine phosphoribosyltransferase was deemed most suitable for horse ASCs. The obtained results underscore that these housekeeping genes exhibit robust stability across diverse experimental conditions, remaining unaltered by the treatments. In conclusion, the current research can serve as a valuable baseline reference for experiments evaluating gene expression in rabbit and horse ASCs. It highlights the critical consideration of housekeeping gene abundance and stability in qPCR experiments, emphasizing the need for an individualized approach tailored to the specific requirements of the study.
Collapse
Affiliation(s)
- Zhenya Ivanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (V.P.); (N.G.); (E.V.)
| | | | | | | |
Collapse
|
4
|
Moheteer A, Li J, Abulikemu X, Lakho SA, Meng Y, Zhang J, Khand FM, Leghari A, Abula S, Guo Q, Liu D, Mai Z, Tuersong W, Wusiman A. Preparation and activity study of Ruoqiang jujube polysaccharide copper chelate. Front Pharmacol 2024; 14:1347817. [PMID: 38273828 PMCID: PMC10809154 DOI: 10.3389/fphar.2023.1347817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Background: Polysaccharide metal chelate exhibit both immunoregulatory activity and metal element supplementation effects. Methods: In this study, Ruoqiang jujube polysaccharide copper chelate (RJP-Cu) was prepared and the preparation conditions were optimized using the response surface method. Subsequently, RJP-Cu was administered to lambs to evaluate its impact on growth performance, copper ion (Cu2+) supplementation, immune enhancement, and intestinal flora was evaluated. Results: The results indicated that optimal RJP-Cu chelation conditions included a sodium citrate content of 0.5 g, a reaction temperature of 50°C, and a solution pH of 8.0, resulting in a Cu2+ concentration of 583°mg/kg in RJP-Cu. Scanning electron microscopy (SEM) revealed significant structural changes in RJP before and after chelation. RJP-Cu displaying characteristic peaks of both polysaccharides and Cu2+ chelates. Blood routine indexes showed no significant differences among the RJP-Cu-High dose group (RJP-Cu-H), RJP-Cu-Medium dose group (RJP-Cu-M), RJP-Cu-low dose group (RJP-Cu-L) and the control group (p > 0.05). However, compared with the control group, the RJP-Cu-H, M, and L dose groups significantly enhanced lamb production performance (p < 0.05). Furthermore, RJP-Cu-H, M, and L dose groups significantly increased serum Cu2+ concentration, total antioxidant capacity (T-AOC), catalase (CAT), and total superoxide dismutase (T-SOD) contents compared with control group (p < 0.05). The RJP-Cu-H group exhibited significant increases in serum IgA and IgG antibodies, as well as the secretion of cytokines IL-2, IL-4, and TNF-α compared to the control group (p < 0.05). Furthermore, RJP-Cu-H group increased the species abundance of lamb intestinal microbiota, abundance and quantity of beneficial bacteria, and decrease the abundance and quantity of harmful bacteria. The RJP-Cu-H led to the promotion of the synthesis of various Short Chain Fatty Acids (SCFAs), improvements in atrazine degradation and clavulanic acid biosynthesis in lambs, while reducing cell apoptosis and lipopolysaccharide biosynthesis. Conclusion: Thus, these findings demonstrate that RJP-Cu, as a metal chelate, could effectively promote lamb growth performance, increase Cu2+ content, and potentially induce positive immunomodulatory effects by regulating antioxidant enzymes, antibodies, cytokines, intestinal flora, and related metabolic pathways.
Collapse
Affiliation(s)
- Aierpati Moheteer
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Jianlong Li
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xireli Abulikemu
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Shakeel Ahmed Lakho
- Veterinary and Animal Sciences Sakrand, Shaheed Benazir Bhutto University, Sakrand, Pakistan
| | - Yan Meng
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Jiayi Zhang
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Faiz Muhammad Khand
- Veterinary and Animal Sciences Sakrand, Shaheed Benazir Bhutto University, Sakrand, Pakistan
| | - Ambreen Leghari
- Veterinary and Animal Sciences Sakrand, Shaheed Benazir Bhutto University, Sakrand, Pakistan
| | - Saifuding Abula
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Qingyong Guo
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Dandan Liu
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Zhanhai Mai
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Waresi Tuersong
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Adelijiang Wusiman
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
5
|
El-Gindy YM, Sabir SA, Zahran SM, Ahmed MH, Reuben RC, Salem AZM. Effect of dietary onion (Allium cepa L.) powder as an antioxidant on semen quality, blood biochemicals, and reproductive parameters, as well as immunological variables of rabbit bucks under severe heat stress. Trop Anim Health Prod 2023; 55:380. [PMID: 37882945 DOI: 10.1007/s11250-023-03788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
This study aimed to evaluate the antioxidant effects of onion (Allium cepa L.) powder on the immunological variables, redox state, and semen quality of rabbit bucks exposed to severe heat stress. Thirty-six mature bucks (7 months old) were divided into three groups consisting of 12 bucks each, namely group I, control; group II, 400 mg onion powder/kg diet; and group III, 800 mg onion powder/kg diet. The quality of semen was evaluated for volume, pH, motility, concentration, total sperm output, viability, and packed sperm volume. Blood samples were collected in the 12th week for estimation of red blood cells (RBC), white blood cells (WBC), and erythrocytic indices. Serum proteins, glutamate oxaloacetate (GOT), glutamate pyruvate transaminase (GPT), urea, creatinine, testosterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), immunoglobulins, malondialdehyde (MDA), total antioxidant capacity (TAC), glutathione, superoxide dismutase (SOD), and catalase (CAT) were measured. The temperature-humidity index (THI) obtained was within the range of 28.85-33.08 indicating severe heat stress. The results show that mass and individual motility, concentration, total sperm output, sperm viability, and packed sperm volume were higher (P < 0.05) in groups II and group III, with group III having the highest (P < 0.05) levels compared to group I. Compared to group I, groups II and III had higher (P < 0.05) concentrations of RBC, MCV, MCH, FSH, LH, SOD, and catalase. The highest concentration (P < 0.05) of GPT was obtained in group III compared to other groups. The highest concentration of IgG (P < 0.05) was obtained in group II while the lowest was in group I. In conclusion, dietary supplementation with onion powder at 400 or 800 mg/kg diet improves semen quality, RBC, FSH, LH, SOD, catalase, and IgG while ameliorating the adverse effects of heat stress and improve the health and reproduction of rabbits.
Collapse
Affiliation(s)
- Yassmine Moemen El-Gindy
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Salem Adress Sabir
- Animal Production Department, Faculty of Agriculture, Omer Al-Mukhtar University, Bieda, Libya
| | - Soliman Mohamed Zahran
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed Hassana Ahmed
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, One Health Research Group, University of La Rioja, Logroño, Spain
| | - Abdelfattah Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México.
| |
Collapse
|