1
|
Divya G, Jaishree G, Sivarao T, Lakshmi KVD. Microwave assisted sol-gel approach for Zr doped TiO 2 as a benign photocatalyst for bismark brown red dye pollutant. RSC Adv 2023; 13:8692-8705. [PMID: 36936827 PMCID: PMC10015583 DOI: 10.1039/d3ra00328k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
A microwave supported sol-gel approach was developed in this study to fabricate Zr-doped TiO2 mesoporous nanostructures for efficient photocatalytic activity on bismark brown red (BBR) dye under visible light illumination. Sophisticated analytical techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy (EDX), X-ray fluorescence analysis (XRF), Fourier transform infrared (FT-IR), ultraviolet-visible diffuse reflectance (UV-vis-DRS) spectroscopy and Brunauer-Emmet-Teller (BET) surface area analyses were used to obtain their structural, electrical: optical and spectroscopic characteristics. The analysis results revealed that the developed nanostructures exhibited strong broad absorption in the visible region with good adsorption capacity and thus enhanced photocatalytic performance. The average crystallite size was found to be 12.5 nm (UTO), 6.4 nm (ZT4), and 4.7 nm (ZT4M4) respectively. The nanocatalysts (ZT4M4) showed a decrease in bandgap and particle size with an increase in the surface area of the Zr-TiO2 nanoparticles (119 m2 g-1). In comparison to previous studies on the photocatalytic degradation of BBR dye under visible light irradiation employing Ni-S co-doped (110 min), Cu-doped TiO2 (75 min), etc., ZT4M4 exhibited a remarkable degradation rate of 99% in 50 minutes. This may be due to the hydroxyl radicals being the principle reactive species responsible for the BBR dye oxidative degradation. The present study showed that ZT4M4 was found to be the best photocatalyst for the BBR dye degradation under the optimal conditions.
Collapse
Affiliation(s)
- Gorli Divya
- Dept of Chemistry, Andhra University Visakhapatnam 530003 India
| | - G Jaishree
- Dept of Chemistry, Andhra University Visakhapatnam 530003 India
| | - T Sivarao
- Dept of Chemistry, Andhra University Visakhapatnam 530003 India
| | | |
Collapse
|
2
|
Hajiani M, Sayadi MH, Mozafarjalali M, Ahmadpour N. Green Synthesis of Recyclable, Cost-Effective, Chemically Stable, and Environmentally Friendly CuS@Fe3O4 Nanoparticles for the Photocatalytic Degradation of Dye. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
3
|
Radia D, Fouzia T, Rachida R, Wahib NM, Bentahar F. Photocatalysis process to treat polluted water by azo dye Cibacron Brilliant Yellow 3G-P. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1774-1789. [PMID: 36240311 DOI: 10.2166/wst.2022.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The main objective of this study was to investigate the photodegradation of azo dye Cibacron Brilliant Yellow 3G-P using Anatase, Degussa-P25 and ZnO. These semi-conductors were characterized using XRD, BET and TEM-EDX. The variation of the amount of semi-conductors significantly affect the rate of color removal. The decolorization rate increased as the catalyst dosage was increased. Other parameters were also studied, such as stirring speed, pH, and initial dye concentration. It was found that the rate of decolorization increases with the increase of stirring speed. Decolorization of about 30, 60 and 80% was respectively achieved in the case of Anatase, Degussa-P25 and ZnO at low stirring speed (50rpm). At pH = 3, the degradation rate was found to be higher than the alkaline pH, about 95.58 and 85.71% of color has been decolorized with Anatase and Degussa-P25 respectively. While using ZnO, the color removal reached maximum in acidic and alkaline solutions, more than 95% of dye was decolorized. The concentrations dye solutions less than 80ppm led to the removal rate of about 95% in the case of ZnO, while it was only about 8-15% in the case of TiO2 with the concentration more than 20 ppm.
Collapse
Affiliation(s)
- Djouder Radia
- Laboratoire Phénomènes de transfert (LPDT), Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab-Ezzouar 16111, Algiers, Algeria; Centre de Développement des Énergies Renouvelables (CDER), Algiers 16340, Algeria
| | - Touahra Fouzia
- Research Centre in Analytical Chemistry and Physics (CRAPC), BP 248, Algiers 16004, Algeria E-mail:
| | - Rihani Rachida
- Laboratoire Phénomènes de transfert (LPDT), Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab-Ezzouar 16111, Algiers, Algeria
| | - Naceur Mohamed Wahib
- Laboratoire Eau, Environnement, et Developpement Durable (2E2D), Chemical Engineering Department, Blida1 University, BP 270 Blida, Algeria
| | - Fatiha Bentahar
- Laboratoire Phénomènes de transfert (LPDT), Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab-Ezzouar 16111, Algiers, Algeria
| |
Collapse
|
4
|
Fenton-like Remediation for Industrial Oily Wastewater Using Fe78Si9B13 Metallic Glasses. Catalysts 2022. [DOI: 10.3390/catal12091038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Metallic glasses (MGs) with a unique atomic structure have been widely used in the catalytic degradation of organic pollutants in the recent years. Fe78Si9B13 MGs exhibited excellent catalytic performance for the degradation of oily wastewater in a Fenton-like system for the first time. The oil removal and chemical oxygen demand (COD) removal from the oily wastewater were 72.67% and 70.18% within 60 min, respectively. Quenching experiments were performed to verify the production of active hydroxyl radicals (·OH) by activating hydrogen peroxide (H2O2). The formation of ·OH species can significantly contribute to the degradation reaction of oily wastewater. Fe78Si9B13 MG ribbons were highly efficient materials that exhibited superior reactivity towards H2O2 activation in oily wastewater treatment. The study revealed the catalytic capability of metallic glasses, presenting extensive prospects of their applications in oily wastewater treatment.
Collapse
|
5
|
Bisaria K, Sinha S, Singh R, Iqbal HMN. Recent advances in structural modifications of photo-catalysts for organic pollutants degradation - A comprehensive review. CHEMOSPHERE 2021; 284:131263. [PMID: 34198058 DOI: 10.1016/j.chemosphere.2021.131263] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
Over the last few years, industrial and anthropogenic activities have increased the presence of organic pollutants such as dyes, herbicides, pesticides, analgesics, and antibiotics in the water that adversely affect human health and the environment worldwide. Photocatalytic treatment is considered a promising, economical, effective, and sustainable process that utilizes light energy to degrade the pollutants in water. However, certain drawbacks like rapid recombination and low migration capability of photogenerated electrons and holes have restricted the use of photo-catalysts in industries. Hence, despite the abundance of lab-scale research, the technology is still not much commercialized in the mainstream. Several structural modifications in the photo-catalysts have been adopted to enhance the pollutant degradation performance to overcome the same. In this context, the present review article outlines the different advanced heterostructures synthesized to date for improved degradation of three major organic pollutants: antibiotics, dyes, and pesticides. Moreover, the article also emphasizes the degradation kinetics of photo-catalysts and the publication trend in the past decade along with the roadblocks preventing the transfer of technology from the laboratory to industry and new age photo-catalysts for the profitable implications in industrial sectors.
Collapse
Affiliation(s)
- Kavya Bisaria
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, India
| | - Surbhi Sinha
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, India.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
6
|
Zare EN, Iftekhar S, Park Y, Joseph J, Srivastava V, Khan MA, Makvandi P, Sillanpaa M, Varma RS. An overview on non-spherical semiconductors for heterogeneous photocatalytic degradation of organic water contaminants. CHEMOSPHERE 2021; 280:130907. [PMID: 34162104 DOI: 10.1016/j.chemosphere.2021.130907] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Because of their carcinogenicity and mutagenicity, the elimination of organic contaminants from surface and subsurface water is a subject of environmental significance. Conventional water decontamination approaches such as membrane separation, ultrafiltration, adsorption, reverse osmosis, coagulation, etc., have relatively higher operating costs and can generate highly toxic secondary contaminants. On the other hand, heterogeneous photocatalysis, an advanced oxidation process (AOP), is considered a clean and cost-effective process for organic pollutants degradation. Owing to their distinctive structure and physicochemical properties non-spherical semiconductors have gained considerable limelight in the photocatalytic degradation of organic contaminants. The current review briefly introduces a wide range of organic water contaminants. Recent advances in non-spherical semiconductor assembly and their photocatalytic degradation applications are highlighted. The underlying mechanism, fundamentals of photocatalytic reactions, and the factors affecting the degradation performance are also alluded including the current challenges and future research perspectives.
Collapse
Affiliation(s)
| | - Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, Kuopio, 70210, Finland
| | - Yuri Park
- Department of Separation Science, Lappeenranta-Lahti University of Technology LUT, Sammonkatu 12, FI, 50130, Mikkeli, Finland
| | - Jessy Joseph
- Department of Separation Science, Lappeenranta-Lahti University of Technology LUT, Sammonkatu 12, FI, 50130, Mikkeli, Finland
| | - Varsha Srivastava
- Department of Separation Science, Lappeenranta-Lahti University of Technology LUT, Sammonkatu 12, FI, 50130, Mikkeli, Finland
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Pooyan Makvandi
- Center for Materials Interfaces, Istituto Italiano di Tecnologia (IIT), Viale R. Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Mika Sillanpaa
- Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
7
|
|
8
|
Liang SX, Zhang LC, Reichenberger S, Barcikowski S. Design and perspective of amorphous metal nanoparticles from laser synthesis and processing. Phys Chem Chem Phys 2021; 23:11121-11154. [PMID: 33969854 DOI: 10.1039/d1cp00701g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Amorphous metal nanoparticles (A-NPs) have aroused great interest in their structural disordering nature and combined downsizing strategies (e.g. nanoscaling), both of which are beneficial for highly strengthened properties compared to their crystalline counterparts. Conventional synthesis strategies easily induce product contamination and/or size limitations, which largely narrow their applications. In recent years, laser ablation in liquid (LAL) and laser fragmentation in liquid (LFL) as "green" and scalable colloid synthesis methodologies have attracted extensive enthusiasm in the production of ultrapure crystalline NPs, while they also show promising potential for the production of A-NPs. Yet, the amorphization in such methods still lacks sufficient rules to follow regarding the formation mechanism and criteria. To that end, this article reviews amorphous metal oxide and carbide NPs from LAL and LFL in terms of NP types, liquid selection, target elements, laser parameters, and possible formation mechanism, all of which play a significant role in the competitive relationship between amorphization and crystallization. Furthermore, we provide the prospect of laser-generated metallic glass nanoparticles (MG-NPs) from MG targets. The current and potential applications of A-NPs are also discussed, categorized by the attractive application fields e.g. in catalysis and magnetism. The present work aims to give possible selection rules and perspective on the design of colloidal A-NPs as well as the synthesis criteria of MG-NPs from laser-based strategies.
Collapse
Affiliation(s)
- Shun-Xing Liang
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 7, Essen 45141, Germany.
| | - Lai-Chang Zhang
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA 6027, Australia
| | - Sven Reichenberger
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 7, Essen 45141, Germany.
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 7, Essen 45141, Germany.
| |
Collapse
|
9
|
Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108140] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Zhu C, Li Y, Yang Y, Chen Y, Yang Z, Wang P, Feng W. Influence of operational parameters on photocatalytic decolorization of a cationic azo dye under visible-light in aqueous Ag3PO4. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Zhu Y, Liu K, Muhammad Y, Zhang H, Tong Z, Yu B, Sahibzada M. Effects of divalent copper on tetracycline degradation and the proposed transformation pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5155-5167. [PMID: 31845280 DOI: 10.1007/s11356-019-07062-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
To reveal the characteristics of tetracycline (TC) photocatalytic degradation under Cu(II) coexistence, effects of Cu(II) on TC photocatalytic degradation by ZnO nanoparticles (ZnO NPs) as a function of pH, humic acid (HA), and initial Cu(II) concentration were investigated. Interaction of TC with Cu(II) in the treatment process was analyzed by circular dichroism (CD) spectroscopy, while TC degradation pathway was investigated by high-performance liquid chromatography-mass spectrometry. Sixty-five percent and ninety-one percent TC degradation within 60 min in the absence and presence of Cu(II), respectively, was reported. Both adsorption and photocatalytic degradation of TC under Cu(II) coexistence increased with increasing pH from 3 to 6, while decreased with further increase in pH. HA inhibited the degradation of TC by ZnO NPs both in the presence as well absence of Cu(II), while TC degradation decreased from 91 to 73% and from 73 to 37% in the presence and absence of Cu(II), respectively. TC degradation by ZnO NPs first increased then decreased with increasing Cu(II). Maximum TC degradation (about 94%) was obtained in the optimum concentration range of Cu(II) (0.05-0.15 mmol/L). In addition, there was a lag effect between TC adsorption and degradation on ZnO NPs. TC degradation was improved via Cu(II)-TC surface complexation and followed N-demethylation and hydroxylation routes. This study could be of potential importance in extrapolating the transformation of TC or other antibiotics under the coexistence of heavy metals in water.
Collapse
Affiliation(s)
- Ying Zhu
- College of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Kun Liu
- College of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yaseen Muhammad
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- Institute of Chemical Sciences, University of Peshawar, Peshawar, KP, 25120, Pakistan
| | - Hanbing Zhang
- College of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| | - Zhangfa Tong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Binbin Yu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Maria Sahibzada
- Department of Chemistry, Umea University, 90187, Umea, Sweden
| |
Collapse
|
12
|
Fe-Based Metallic Glasses and Dyes in Fenton-Like Processes: Understanding Their Intrinsic Correlation. Catalysts 2020. [DOI: 10.3390/catal10010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fe-based metallic glasses have been demonstrated as effective heterogeneous catalysts in Fenton-like processes for dye degradation. Yet, currently corresponding studies have limitations due to the limited study object (dyes) and the correlation between metallic glasses and dye pollutants in Fenton-like processes is still not comprehensively studied. Accordingly, this work intensively investigated the thermal catalytic behavior correlations between two Fe-based metallic glasses (Fe78Si9B13 and Fe73.5Si13.5B9Cu1Nb3) and eight different dyes. Results indicated a lower activation energy in the more active metallic glass and a dependence of the activation energy of Fe-based metallic glasses in dye solutions. In addition, a high H2O2 concentration led to a declined catalytic efficiency but a photo-enhanced Fenton-like process overcame this limitation at high concentration of H2O2 due to the decrease of pH and enhancement of irradiation. Furthermore, the average mineralization rates of Fe78Si9B13 and Fe73.5Si13.5B9Cu1Nb3 have been measured to be 42.7% and 12.6%, respectively, and the correlation between decolorization and mineralization revealed that a faster decolorization in a Fenton-like process contributed to a higher mineralization rate. This work provides an intrinsic viewpoint of the correlation between Fe-based metallic glasses and dyes in Fenton-like processes and holds the promise to further promote the industrial value of metallic glasses.
Collapse
|
13
|
Pt nanoparticles decorated heterostructured g-C 3N 4/Bi 2MoO 6 microplates with highly enhanced photocatalytic activities under visible light. Sci Rep 2019; 9:7636. [PMID: 31114005 PMCID: PMC6529451 DOI: 10.1038/s41598-019-42973-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/22/2019] [Indexed: 11/20/2022] Open
Abstract
Exploring an efficient and photostable heterostructured photocatalyst is a pivotal scientific topic for worldwide energy and environmental concerns. Herein, we reported that Pt decorated g-C3N4/Bi2MoO6 heterostructured composites with enhanced photocatalytic performance under visible light were simply synthesized by one-step hydrothermal method for methylene blue (MB) dye degradation. Results revealed that the synthetic Pt decorated g-C3N4/Bi2MoO6 composites with Bi2MoO6 contents of 20 wt.% (Pt@CN/20%BMO) presented the highest photocatalytic activity, exhibiting 7 and 18 times higher reactivity than the pure g-C3N4 and Bi2MoO6, respectively. Structural analyses showed that Bi2MoO6 microplates were anchored on the wrinkled flower-like g-C3N4 matrix with Pt decoration, leading to a large expansion of specific surface area from 10.79 m2/g for pure Bi2MoO6 to 46.09 m2/g for Pt@CN/20%BMO. In addition, the Pt@CN/20%BMO composites exhibited an improved absorption ability in the visible light region, presenting a promoted photocatalytic MB degradation. Quenching experiments were also conducted to provide solid evidences for the production of hydroxyl radicals (•OH), electrons (e−), holes (h+) and superoxide radicals (•O2−) during dye degradation. The findings in this critical work provide insights into the synthesis of heterostructured photocatalysts with the optimization of band gaps, light response and photocatalytic performance in wastewater remediation.
Collapse
|
14
|
Liu H, Zhou H, Li H, Liu X, Ren C, Liu Y, Li W, Zhang M. Fabrication of Bi2S3@Bi2WO6/WO3 ternary photocatalyst with enhanced photocatalytic performance: synergistic effect of Z-scheme/traditional heterojunction and oxygen vacancy. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Fe‐based Metallic Glasses in Functional Catalytic Applications. Chem Asian J 2018; 13:3575-3592. [DOI: 10.1002/asia.201801082] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 11/07/2022]
|
16
|
Nodehi A, Atashi H, Mansouri M. Improved photocatalytic degradation of reactive blue 81 using NiO-doped ZnO–ZrO2 nanoparticles. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1499522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Alireza Nodehi
- Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, Iran
| | - Hossein Atashi
- Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, Iran
| | - Mohsen Mansouri
- Department of Chemical Engineering, Ilam University, Ilam, Iran
| |
Collapse
|
17
|
A. Habeeb Alshamsi H, S. Hussein B. Hydrothermal Preparation of Silver Doping Zinc Oxide Nanoparticles: Studys, Characterization and Photocatalytic Activity. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/ojc/3404025] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study , we report the prepared of ZnO nanoparticles and Ag doped ZnO nanostructure via a hydrothermal process. The obtained nanostructures were characterized using different characterization techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) , atomic force microscopy (AFM) ,Fourier transform infrared spectrometry (FTIR)and UV/Visible spectrophotometer.The XRD results showed the wurtzite hexagonal structure of the ZnO Nanoparticles. Furthermore, the morphology of ZnO and Ag-ZnO nanostructures was obtained from SEM and AFM. The photocatalytic degradation of Cibacron Brilliant Yellow 3G-P (CB) dye was studied in presence of visible light using Ag-ZnO nanostructures as a photocatalyst. There are numerous factors which has an effect on the efficiency color removal of this process. Hence a study was conducted on the effect of several parameters on Ag-ZnO like amount of catalyst, CB dye concentration and pH of solution. Results showed Ag doping ZnO with 3% loading shows photocatalytic removal about 65% after 120 min which influenced superior photocatalytic activity than pure ZnO.
Collapse
Affiliation(s)
- Hassan A. Habeeb Alshamsi
- Department of Chemistry, College of Education, University of Al-Qadisiyah, Post Box 88, Diwaniya, Iraq
| | - Batool S. Hussein
- Department of Chemistry, College of Education, University of Al-Qadisiyah, Post Box 88, Diwaniya, Iraq
| |
Collapse
|
18
|
Liu Y, Gao W, Zhang C, Zhang L, Zhi Y. In situ formation of Ag/ZnO heterostructure arrays during synergistic photocatalytic process for SERS and photocatalysis. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Abstract
In this work, the heat-activated persulfate (PS) in the presence of Fe78Si9B13 metallic glasses (MGs) shows an extremely difference in degradation of azo dye and triarylmethane dye, where Fe78Si9B13 MGs exhibits a superior activation ability for PS with assistance of heat leading to the fast removal of two dyes. The structural features of Fe78Si9B13 MGs are firstly characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC), following analysis of surface topography by scanning electron microscope (SEM). The results show that with the addition of Fe78Si9B13 MGs, the recalcitrant azo dye is completely removed within 5 min while only 6% of removal rate can be achieved without adding MGs, indicating that the refractory azo dye can be easily degraded by sulfate radical (SO4•–) from heat/MGs/PS. On the other hand, no big variation occurs between PS and MGs/PS under heat activation in degrading triarylmethane dye. Sole PS activated by heat results in a fast removal rate, indicating that triarylmethane dye can be easily degraded by PS itself compared to azo dye. The findings in this work present an in-depth understanding of heat/MGs/PS system in dyes degradation.
Collapse
|
20
|
Spinel NiFe2O4 nanoparticles decorated BiOBr nanosheets for improving the photocatalytic degradation of organic dye pollutants. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.01.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Morphological tunable three-dimensional flower-like zinc oxides with high photoactivity for targeted environmental Remediation: Degradation of emerging micropollutant and radicals trapping experiments. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.10.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Chkili F, Person MD, Colbeau-Justin C, Abderrabba M. The Olive Mill Wastewater Decontamination with Photocatalysis Based on Tio2: Effect of Operational Parameters. ACTA ACUST UNITED AC 2017. [DOI: 10.13005/bbra/2527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ABSTRACT: This work aims to obtain treated olive mill wastewater (OMW) that can be used in other processes such as irrigation in agricultural production. The oxidative degradation and adsorption kinetics of the OMW were investigated by means of photo-catalysis in the presence of TiO2. The UV irradiation was chosen for this reaction rather than visible light since it eliminated 97% of the color versus 40 % with visible. It was also capable of reducing total organic carbon (TOC) and total phenolic compounds (TPhC) sufficiently after 4h of treatment. The extent of photocatalytic degradation increased with increasing TiO2 concentration up to 1 g/L, above which degradation rate declined. Furthermore, the OMW treatment didn’t require a pH value adjustment; whereas it was enhanced with the addition of hydrogen peroxide. The catalyst activity on repeated use was evaluated and after four successive cycles, its efficiency was maintained. Various commercial photocatalysts were tested and compared for OMW degradation efficiency.
Collapse
Affiliation(s)
- Fatma Chkili
- University of Tunis El Manar, Faculty of Sciences of Tunis, Campus University, 2092 Tunis, Tunisia
| | - Marine De Person
- LETIAM, Paris South Analytical Chemistry Group EA 4041, IUT d'Orsay, Paris South University 11, Plateau de Moulon, 91400 Orsay, France
| | - Christophe Colbeau-Justin
- University of Paris-Sud / University Paris-Saclay, Laboratory of Physical Chemistry, CNRS UMR 8000, 91405 Orsay, France
| | - Manef Abderrabba
- Preparatory Institute for Scientific and Technical Studies (IPEST), Materials, Molecules and Applications Laboratory (LMMA), BP 51 La Marsa 2070, Carthage, Tunisia
| |
Collapse
|
23
|
Excellent Performance of Fe78Si9B13 Metallic Glass for Activating Peroxymonosulfate in Degradation of Naphthol Green B. METALS 2017. [DOI: 10.3390/met7070273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Energy-absorption-based explanation of the TiO 2 /C photocatalytic activity enhancement mechanism. J Catal 2017. [DOI: 10.1016/j.jcat.2016.12.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Jia Z, Liang S, Zhang W, Wang W, Yang C, Zhang L. Heterogeneous photo Fenton-like degradation of cibacron brilliant red 3B-A dye using amorphous Fe 78 Si 9 B 13 and Fe 73.5 Si 13.5 B 9 Cu 1 Nb 3 alloys: The influence of adsorption. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.11.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Jia Z, Duan X, Zhang W, Wang W, Sun H, Wang S, Zhang LC. Ultra-sustainable Fe 78Si 9B 13 metallic glass as a catalyst for activation of persulfate on methylene blue degradation under UV-Vis light. Sci Rep 2016; 6:38520. [PMID: 27922099 PMCID: PMC5138629 DOI: 10.1038/srep38520] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/10/2016] [Indexed: 12/15/2022] Open
Abstract
Stability and reusability are important characteristics of advanced catalysts for wastewater treatment. In this work, for the first time, sulfate radicals (SO4∙-) with a high oxidative potential (Eo = 2.5-3.1 V) were successfully activated from persulfate by a Fe78Si9B13 metallic glass. This alloy exhibited a superior surface stability and reusability while activating persulfate as indicated by it being used for 30 times while maintaining an acceptable methylene blue (MB) degradation rate. The produced SiO2 layer on the ribbon surface expanded strongly from the fresh use to the 20th use, providing stable protection of the buried Fe. MB degradation and kinetic study revealed 100% of the dye degradation with a kinetic rate k = 0.640 within 20 min under rational parameter control. The dominant reactive species for dye molecule decomposition in the first 10 min of the reaction was hydroxyl radicals (∙OH, Eo = 2.7 V) and in the last 10 min was sulfate radicals (SO4∙-), respectively. Empirical operating variables for dye degradation in this work were under catalyst dosage 0.5 g/L, light irradiation 7.7 μW/cm2, and persulfate concentration 1.0 mmol/L. The amorphous Fe78Si9B13 alloy in this work will open a new gate for wastewater remediation.
Collapse
Affiliation(s)
- Zhe Jia
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA 6027, Australia
| | - Xiaoguang Duan
- Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Wenchang Zhang
- Environmental Protection Administration of Ji’an City, Ji’an, Jiangxi Province, 343000, China
| | - Weimin Wang
- School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA 6027, Australia
| | - Shaobin Wang
- Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Lai-Chang Zhang
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA 6027, Australia
| |
Collapse
|
27
|
Activated electric arc furnace slag as an efficient and reusable heterogeneous Fenton-like catalyst for the degradation of Reactive Black 5. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.07.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Ghasemi Z, Younesi H, Zinatizadeh AA. Kinetics and thermodynamics of photocatalytic degradation of organic pollutants in petroleum refinery wastewater over nano-TiO2 supported on Fe-ZSM-5. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.05.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|