1
|
Li W, Lv J, Yue Y, Wang Y, Zhang J, Qian G. A review of enhanced adsorption removal of odor contaminants with low ppm concentration levels: the key to technological breakthrough as well as challenges. JOURNAL OF HAZARDOUS MATERIALS 2024; 482:136512. [PMID: 39577279 DOI: 10.1016/j.jhazmat.2024.136512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/03/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
The industrial production processes often produce different concentrations and types of odorous pollutants. Most odors have a low odor threshold, and the human sense of smell can still have a strong, unpleasant odor even at low ppb concentrations. The main challenges in low ppm concentration odor purification are short contact time, high air volume, low equilibrium adsorption capacity, and easy physical desorption. For the first time, this work reviews the technical paths how to purify four typical types of low concentrations of odors such as H2S, NH3, CH3SH, and CH3SCH3 from low ppm concentration levels to low ppb, with the view of the odor sources, the development of treatment technology, international permissible emission standards, and the recent status of adsorbent materials. To begin, Citespace software is employed to analyze the progress, hotspots, and technology trends in the field of odor pollutant research over the past 28 years and the factors that affect removal efficiency of low-concentration odorous pollutants are discussed in detail. Then, taking activated carbon, molecular sieve, and metal-organic frameworks as target adsorbents, how to strengthen the integrated ways of physical adsorption and chemical adsorption of these adsorbents are suggested starting from the synergistic effects of modifications for pore structure, surface chemical functional groups, and complexation and redox reactions of metal ions. As a practice, the application cases of purifying low-concentration odorous pollutants by the adsorption are briefly introduced. Finally, the challenges of developing novel adsorption materials and technologies to purify low-concentration odorous pollutants toward lower than odor threshold are presented.
Collapse
Affiliation(s)
- Wenying Li
- SHU Center of Green Urban Mining / Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, 381 Nanchen Road, Shanghai 200444, China.
| | - Jianing Lv
- SHU Center of Green Urban Mining / Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, 381 Nanchen Road, Shanghai 200444, China.
| | - Yang Yue
- SHU Center of Green Urban Mining / Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, 381 Nanchen Road, Shanghai 200444, China.
| | - Yao Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China.
| | - Jia Zhang
- SHU Center of Green Urban Mining / Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, 381 Nanchen Road, Shanghai 200444, China.
| | - Guangren Qian
- SHU Center of Green Urban Mining / Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, 381 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
2
|
Bayout A, Cammarano C, Costa IM, Veryasov G, Hulea V. Management of methyl mercaptan contained in waste gases - an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44669-44690. [PMID: 38963632 DOI: 10.1007/s11356-024-34112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Methyl mercaptan is a typical volatile organosulfur pollutant contained in many gases emitted by urban waste treatment, various industries, natural gas handling, refining processes, and energy production. This work is a comprehensive overview of the scientific and practical aspects related to the management of methyl mercaptan pollution. The main techniques, including absorption, adsorption, oxidation, and biological treatments, are examined in detail. For each method, its capability as well as the technical advantages and drawbacks have been highlighted. The emerging methods developed for the removal of methyl mercaptan from natural gas are also reviewed. These methods are based on the catalytic conversion of CH3SH to hydrocarbons and H2S.
Collapse
Affiliation(s)
- Abdelilah Bayout
- Charles Gerhardt Institute of Montpellier, University of Montpellier, CNRS, ENSCM, 1919 Rte de Mende, 34293, Montpellier Cedex 5, France
- TotalEnergies, One Tech, Zone Industrielle C, 7181, Feluy, Belgium
| | - Claudia Cammarano
- Charles Gerhardt Institute of Montpellier, University of Montpellier, CNRS, ENSCM, 1919 Rte de Mende, 34293, Montpellier Cedex 5, France
- TotalEnergies, One Tech, Zone Industrielle C, 7181, Feluy, Belgium
| | - Izabel Medeiros Costa
- Charles Gerhardt Institute of Montpellier, University of Montpellier, CNRS, ENSCM, 1919 Rte de Mende, 34293, Montpellier Cedex 5, France
- TotalEnergies, One Tech, Zone Industrielle C, 7181, Feluy, Belgium
| | - Gleb Veryasov
- Charles Gerhardt Institute of Montpellier, University of Montpellier, CNRS, ENSCM, 1919 Rte de Mende, 34293, Montpellier Cedex 5, France
- TotalEnergies, One Tech, Zone Industrielle C, 7181, Feluy, Belgium
| | - Vasile Hulea
- Charles Gerhardt Institute of Montpellier, University of Montpellier, CNRS, ENSCM, 1919 Rte de Mende, 34293, Montpellier Cedex 5, France.
- TotalEnergies, One Tech, Zone Industrielle C, 7181, Feluy, Belgium.
| |
Collapse
|
3
|
Su H, Liu J, Hu Y, Ai T, Gong C, Lu J, Luo Y. Comparative Study of α- and β-MnO 2 on Methyl Mercaptan Decomposition: The Role of Oxygen Vacancies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:775. [PMID: 36839143 PMCID: PMC9964818 DOI: 10.3390/nano13040775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
As a representative sulfur-containing volatile organic compounds (S-VOCs), CH3SH has attracted widespread attention due to its adverse environmental and health risks. The performance of Mn-based catalysts and the effect of their crystal structure on the CH3SH catalytic reaction have yet to be systematically investigated. In this paper, two different crystalline phases of tunneled MnO2 (α-MnO2 and β-MnO2) with the similar nanorod morphology were used to remove CH3SH, and their physicochemical properties were comprehensively studied using high-resolution transmission electron microscope (HRTEM) and electron paramagnetic resonance (EPR), H2-TPR, O2-TPD, Raman, and X-ray photoelectron spectroscopy (XPS) analysis. For the first time, we report that the specific reaction rate for α-MnO2 (0.029 mol g-1 h-1) was approximately 4.1 times higher than that of β-MnO2 (0.007 mol g-1 h-1). The as-synthesized α-MnO2 exhibited higher CH3SH catalytic activity towards CH3SH than that of β-MnO2, which can be ascribed to the additional oxygen vacancies, stronger surface oxygen migration ability, and better redox properties from α-MnO2. The oxygen vacancies on the catalyst surface provided the main active sites for the chemisorption of CH3SH, and the subsequent electron transfer led to the decomposition of CH3SH. The lattice oxygen on catalysts could be released during the reaction and thus participated in the further oxidation of sulfur-containing species. CH3SSCH3, S0, SO32-, and SO42- were identified as the main products of CH3SH conversion. This work offers a new understanding of the interface interaction mechanism between Mn-based catalysts and S-VOCs.
Collapse
Affiliation(s)
- Hong Su
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Jiangping Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Yanan Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Tianhao Ai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Chenhao Gong
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Jichang Lu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Yongming Luo
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
4
|
Xie Y, Bao J, Song X, Sun X, Ning P, Wang C, Wang F, Ma Y, Fan M, Li K. Catalysts for gaseous organic sulfur removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130029. [PMID: 36166909 DOI: 10.1016/j.jhazmat.2022.130029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Organic sulfur gases (COS, CS2 and CH3SH) are widely present in reducing industrial off-gases, and these substances pose difficulties for the recovery of carbon monoxide and other gases. The reaction pathways and reaction mechanisms of organic sulfur on different catalyst surfaces have yet to be fully summarized. The literature shows that many factors, such as catalyst synthesis method, loaded metal composition, number of surface hydroxyl groups, number of acid-base sites and methods of surface modification, have important effects on the catalytic performance of metal catalysts. Therefore, this paper presents a comprehensive review of the research on the application of catalysts such as zeolites, metal oxides, carbon-based materials, and hydrotalcite-like derivatives in the field of organic sulfur removal. Future research prospects are summarized, more in situ characterization experiments and theoretical calculations are needed for the catalytic decomposition of methanethiol to analyze the coke generation pathways at the microscopic level, while the simultaneous removal of multiple organic sulfur gases needs to be focused on. Based on previous catalyst research, we propose possible innovations in catalyst design, desulfurization technology and organic sulfur resource utilization technology.
Collapse
Affiliation(s)
- Yuxuan Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jiacheng Bao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xin Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xin Sun
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Chi Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Fei Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yixing Ma
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Maohong Fan
- Department of Chemical Engineering and Department of Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.
| | - Kai Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
5
|
Bimetallic Lanthanum-Cerium-Loaded HZSM-5 Composite for Catalytic Deoxygenation of Microalgae-Hydrolyzed Oil into Green Hydrocarbon Fuels. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228018. [PMID: 36432121 PMCID: PMC9697213 DOI: 10.3390/molecules27228018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022]
Abstract
Due to their high lipid content, microalgae are one of the most significant sources of green hydrocarbons, which might help lessen the world's need for fossil fuels. Many zeolite-based catalysts are quickly deactivated by coke production and have a short lifetime. In this study, a bimetallic Lanthanum-Cerium (La-Ce)-modified HZSM-5 zeolite catalyst was synthesized through an impregnation method and was tested for the conversion of hydrolyzed oil into oxygen-free hydrocarbon fuels of high energy content. Initially, hydrolyzed oil (HO), the byproduct of the transesterification process, was obtained by the reaction of crude oil derived from Chlorella vulgaris microalgae and a methanol. Various catalysts were produced, screened, and evaluated for their ability to convert algal HO into hydrocarbons and other valuable compounds in a batch reactor. The performance of HZSM-5 was systematically tested in view of La-Ce loaded on conversion, yield, and selectivity. NH3-TPD analysis showed that the total acidity of the La-Ce-modified zeolites was lower than that of the pure HZSM-5 catalyst. TGA testing revealed that including the rare earth elements La and Ce in the HZSM-5 catalyst lowered the catalyst propensity for producing coke deposits. The acid sites necessary for algal HO conversion were improved by putting La and Ce into HZSM-5 zeolite at various loading percentages. The maximum hydrocarbon yield (42.963%), the highest HHV (34.362 MJ/Kg), and the highest DOD% (62.191%) were all achieved by the (7.5%La-2.5%Ce)/HZSM-5 catalyst, which was synthesized in this work. For comparison, the hydrocarbon yield for the parent HZSM-5 was 21.838%, the HHV was (33.230 MJ/Kg), and the DOD% was 44.235%. In conclusion, La and Ce-loading on the parent HZSM-5 may be responsible for the observed alterations in textural properties; nevertheless, there is no clear correlation between the physical features and the hydrocarbon yield (%). The principal effect of La and Ce modifying the parent HZSM-5 zeolite was to modify the acidic sites needed to enhance the conversion (%) of the algal HO during the catalytic deoxygenation process, which in turn raised the hydrocarbon yield (%) and increased the HHV and DOD%.
Collapse
|
6
|
Cao X, Ai T, Xu Z, Lu J, Chen D, He D, Liu J, Tian R, Zhao Y, Luo Y. Insights into the different catalytic behavior between Ce and Cr modified MCM-41 catalysts: Cr2S3 as new active species for CH3SH decomposition. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Ce-Loaded HZSM-5 Composite for Catalytic Deoxygenation of Algal Hydrolyzed Oil into Hydrocarbons and Oxygenated Compounds. Molecules 2022; 27:molecules27217251. [DOI: 10.3390/molecules27217251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the extensive research into the catalytic uses of zeolite-based catalysts, these catalysts have a limited useful lifetime because of the deactivating effect of coke production. This study looks at the use of Cerium (Ce) loaded HZSM-5 zeolite catalysts in the hydrocarbon and oxygenated chemical conversion from Chlorella Vulgaris microalgae crude oil. Characterization of structure, morphology, and crystallinity was performed after the catalysts were manufactured using the impregnation technique. Soxhlet extraction was carried out to extract the crude oil of microalgae. Transesterification reaction was used to produce algal hydrolyzed oil (HO), and the resulting HO was put to use in a batch reactor at 300 °C, 1000 rpm, 7 bars of nitrogen pressure, a catalyst to the algal HO ratio of 15% (wt. %), and a retention time of 6 h. To determine which Ce-loaded HZSM-5 catalysts would be most effective in converting algal HO into non-oxygenated molecules (hydrocarbons), we conducted a series of tests. Liquid product characteristics were analyzed for elemental composition, higher heating value (HHV), atomic ratios of O/C and H/C, and degree of deoxygenation (DOD%). Results were categorized into three groups: product yield, chemical composition, and carbon number distribution. When Cerium was added to HZSM-5 zeolite at varying loading percentages, the zeolite’s acid sites became more effective in facilitating the algal HO conversion. The results showed that 10%Ce/HZSM-5 had the greatest conversion of the algal HO, the yield of hydrocarbons, HHV, and DOD% (98.2%, 30%, 34.05 MJ/Kg, and 51.44%, respectively) among all the synthesized catalysts in this research. In conclusion, the physical changes seen in the textural characteristics may be attributed to Cerium-loading on the parent HZSM-5; nevertheless, there is no direct association between the physical features and the hydrocarbons yield (%). The primary impact of Cerium alteration of the parent HZSM-5 zeolite was to change the acidic sites required to boost the conversion (%) of the algal HO in the catalytic deoxygenation process, which in turn increased the hydrocarbons yield (%), which in turn increased the HHV and DOD%.
Collapse
|
8
|
Nuhma MJ, Alias H, Tahir M, Jazie AA. Catalytic Deoxygenation of Hydrolyzed Oil of Chlorella Vulgaris Microalgae over Lanthanum-Embedded HZSM-5 Zeolite Catalyst to Produce Bio-Fuels. Molecules 2022; 27:molecules27196527. [PMID: 36235064 PMCID: PMC9570545 DOI: 10.3390/molecules27196527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Microalgae is one of the most important sources of green hydrocarbons because it contains a high percentage of lipids and is likely to reduce reliance on fossil fuels. Several zeolite-based catalysts have a short lifetime due to coke-formation deactivation. In this study, a lanthanum-modified HZSM-5 zeolite catalyst for the conversion of crude oil into non-oxygenated compounds (hydrocarbons) and oxygenated compounds has been investigated. The crude oil of Chlorella Vulgaris microalgae was extracted using Soxhlet and converted into hydrolyzed oil (HO) through a transesterification reaction. The experiments were conducted in a batch reactor (300 °C, 1000 rpm, 7 bar of N2, the catalyst to the algal HO ratio of 15% (wt.%) and 6 h). The results were organized into three groups: product yield, chemical composition, and carbon number distribution. The liquid products were investigated, including their elemental composition, higher heating value (HHV), atomic ratios of O/C and H/C, and degree of deoxygenation (DOD%). The loading of lanthanum into HZSM-5 zeolite with different loading percentages enhanced the acid sites needed for the algal HO conversion. Among all the synthesized catalysts, 10%La/HZSM-5 produced the highest conversion of the algal HO, the highest yield of hydrocarbons, the highest HHV, and the highest DOD%; those were 100%, 36.88%, 34.16 MJ/kg, and 56.11%, respectively. The enhanced catalytic conversion was due to the presence of lanthanum, which alters the active sites for the desired reactions of catalytic deoxygenation. The main effect of the modification of the parent HZSM-5 zeolite with lanthanum led to adjusting the acidic sites needed to increase the conversion (%) of the algal HO in the catalytic deoxygenation process and thus increase the hydrocarbon yield (%), which in turn led to an increase in the HHV and DOD%. The proposed La-based zeolite composite is promising for different energy applications due to its unique benefits compared to other expensive and less-stable catalysts.
Collapse
Affiliation(s)
- Mustafa Jawad Nuhma
- Department of Chemical Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
- Chemical Engineering Department, College of Engineering, University of Al-Qadisiyah, Al-Diwaniyah City 999048, Iraq
| | - Hajar Alias
- Department of Chemical Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
- Correspondence: (H.A.); (M.T.); Tel.: +60-19-0385-5571 (H.A.); +97-15-0996-1678 (M.T.)
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (H.A.); (M.T.); Tel.: +60-19-0385-5571 (H.A.); +97-15-0996-1678 (M.T.)
| | - Ali A. Jazie
- Chemical Engineering Department, College of Engineering, University of Al-Qadisiyah, Al-Diwaniyah City 999048, Iraq
| |
Collapse
|
9
|
Wang L, Zhang X, He J, Zhu J, Hu L. The removal of ethyl mercaptan by Fe2O3/HNb3O8-NS composite. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Wang J, Wang P, Wu Z, Yu T, Abudula A, Sun M, Ma X, Guan G. Mesoporous catalysts for catalytic oxidation of volatile organic compounds: preparations, mechanisms and applications. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Volatile organic compounds (VOCs) are mainly derived from human activities, but they are harmful to the environment and our health. Catalytic oxidation is the most economical and efficient method to convert VOCs into harmless substances of water and carbon dioxide at relatively low temperatures among the existing techniques. Supporting noble metal and/or transition metal oxide catalysts on the porous materials and direct preparation of mesoporous catalysts are two efficient ways to obtain effective catalysts for the catalytic oxidation of VOCs. This review focuses on the preparation methods for noble-metal-based and transition-metal-oxide-based mesoporous catalysts, the reaction mechanisms of the catalytic oxidations of VOCs over them, the catalyst deactivation/regeneration, and the applications of such catalysts for VOCs removal. It is expected to provide guidance for the design, preparation and application of effective mesoporous catalysts with superior activity, high stability and low cost for the VOCs removal at lower temperatures.
Collapse
Affiliation(s)
- Jing Wang
- School of Chemical Engineering , Northwest University, International Science & Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources; Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy; Shaanxi Research Center of Engineering Technology for Clean Coal Conversion; and Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi , Xi’an 710069 , Shaanxi , China
| | - Peifen Wang
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
| | - Zhijun Wu
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
| | - Tao Yu
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
| | - Abuliti Abudula
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
| | - Ming Sun
- School of Chemical Engineering , Northwest University, International Science & Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources; Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy; Shaanxi Research Center of Engineering Technology for Clean Coal Conversion; and Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi , Xi’an 710069 , Shaanxi , China
| | - Xiaoxun Ma
- School of Chemical Engineering , Northwest University, International Science & Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources; Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy; Shaanxi Research Center of Engineering Technology for Clean Coal Conversion; and Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi , Xi’an 710069 , Shaanxi , China
| | - Guoqing Guan
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
- Energy Conversion Engineering Laboratory , Institute of Regional Innovation (IRI), Hirosaki University , 2-1-3 Matsubara , Aomori 030-0813 , Japan
| |
Collapse
|
11
|
High-efficient esterification of rosin and glycerol catalyzed by novel rare earth Lewis acidic ionic liquid: Reaction development and mechanistic study. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Promotional Effects of Rare-Earth Praseodymium (Pr) Modification over MCM-41 for Methyl Mercaptan Catalytic Decomposition. Processes (Basel) 2021. [DOI: 10.3390/pr9020400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Praseodymium (Pr)-promoted MCM-41 catalyst was investigated for the catalytic decomposition of methyl mercaptan (CH3SH). Various characterization techniques, such as X-ray diffraction (XRD), N2 adsorption–desorption, temperature-programmed desorption of ammonia (NH3-TPD) and carbon dioxide (CO2-TPD), hydrogen temperature-programmed reduction (H2-TPR), and X-ray photoelectron spectrometer (XPS), were carried out to analyze the physicochemical properties of material. XPS characterization results showed that praseodymium was presented on the modified catalyst in the form of praseodymium oxide species, which can react with coke deposit to prolong the catalytic stability until 120 h. Meanwhile, the strong acid sites were proved to be the main active center over the 10% Pr/MCM-41 catalyst by NH3-TPD results during the catalytic elimination of methyl mercaptan. The possible reaction mechanism was proposed by analyzing the product distribution results. The final products were mainly small-molecule products, such as methane (CH4) and hydrogen sulfide (H2S). Dimethyl sulfide (CH3SCH3) was a reaction intermediate during the reaction. Therefore, this work contributes to the understanding of the reaction process of catalytic decomposition methyl mercaptan and the design of anti-carbon deposition catalysts.
Collapse
|
13
|
Lu J, Liu J, Zhao Y, He D, Han C, He S, Luo Y. The identification of active chromium species to enhance catalytic behaviors of alumina-based catalysts for sulfur-containing VOC abatement. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121289. [PMID: 31586919 DOI: 10.1016/j.jhazmat.2019.121289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/11/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
As to the treatment of sulfur containing VOCs (examples are compounds of CH3SH and C2H5SH), finding a catalyst with high performance is necessary. In this work, Cr(x)-Al2O3 (x = 1.0, 2.5, 5.0, 7.5 and 10 wt%) catalysts were synthesized, and their behaviors toward CH3SH and C2H5SH abatement were investigated. The results indicated that Cr(7.5)-Al2O3 exhibited higher activity than other samples and the reported catalysts, on which CH3SH could be almost completely converted at 375 °C, while the temperature for the reported catalysts was above 450 °C. Moreover, there was no obvious deactivation during 30 h on stream over Cr(7.5)-Al2O3, while only about 10 h was found on the reported CeO2 and HZSM-5 catalysts. The improvement in the catalytic performance could be explained by the important role of the Cr6+ species, while the state of Cr3+ was suggested to be ineffective in the degradation process. The identification of the active Cr sites was proved by the characterization measurements, and the control experiments by using mechanical mixtures of CrO3 or Cr2O3 with Al2O3 as well as the comparison studies between spent Al2O3 and spent Cr(7.5)-Al2O3 catalysts.
Collapse
Affiliation(s)
- Jichang Lu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Jiangping Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Yutong Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Dedong He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China.
| | - Caiyun Han
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Sufang He
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming, 650093, PR China
| | - Yongming Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China.
| |
Collapse
|
14
|
Yi H, Zhang X, Tang X, Zhao S, Ma C, Han W, Song L. Promotional Effects of Transition Metal Modification over Al
2
O
3
for CH
3
SH Catalytic Oxidation. ChemistrySelect 2019. [DOI: 10.1002/slct.201902673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Honghong Yi
- Department of Environmental EngineeringSchool of Energy and Environmental EngineeringUniversity of Science and Technology Beijing Beijing 100083, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants Beijing 100083, PR China
| | - Xiaodong Zhang
- Department of Environmental EngineeringSchool of Energy and Environmental EngineeringUniversity of Science and Technology Beijing Beijing 100083, PR China
| | - Xiaolong Tang
- Department of Environmental EngineeringSchool of Energy and Environmental EngineeringUniversity of Science and Technology Beijing Beijing 100083, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants Beijing 100083, PR China
| | - Shunzheng Zhao
- Department of Environmental EngineeringSchool of Energy and Environmental EngineeringUniversity of Science and Technology Beijing Beijing 100083, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants Beijing 100083, PR China
| | - Chuanbo Ma
- Department of Environmental EngineeringSchool of Energy and Environmental EngineeringUniversity of Science and Technology Beijing Beijing 100083, PR China
| | - Wen Han
- Department of Environmental EngineeringSchool of Energy and Environmental EngineeringUniversity of Science and Technology Beijing Beijing 100083, PR China
| | - Lingling Song
- Department of Environmental EngineeringSchool of Energy and Environmental EngineeringUniversity of Science and Technology Beijing Beijing 100083, PR China
| |
Collapse
|