1
|
Hu H, Yu XC, Hu YY, Wei D, Liu YK, Li WH, Zhu SG. Microalgal-bacterial biofilms enhance pollutant removal coupling with eicosapentaenoic acid production in high-concentration ammonia‑nitrogen wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178121. [PMID: 39700979 DOI: 10.1016/j.scitotenv.2024.178121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/17/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Microalgal-bacterial biofilms have emerged as a promising approach for wastewater treatment. However, its potential to treat high-concentration ammonia‑nitrogen wastewater coupling with high-value fatty acid production remains unclear. Therefore, this study explored the efficiency of a microalgal-bacterial biofilm in treating high-concentration ammonia‑nitrogen wastewater and its ability to produce high-value fatty acids, with the activated sludge (bacteria) and microalgal-bacterial suspension as control. The results indicated that pollutant removal in the microalgal-bacterial biofilm system was the most efficient, with a 98.3 % removal efficiency for chemical oxygen demand, 87.46 % for ammonium nitrogen, and 20.6 % for phosphate. Coupling analysis of microbial community shift and nitrogen conversion genes showed that the relative abundance of Rhodanobacter and Nitrosomonas significantly increased in microalgal-bacterial biofilms, and the expression of nitrification-related genes (amo and hao) and denitrification-related genes (nasA,napA, narI, narV, nirK, and norB) increased compared to the control systems, which played an important role in nitrogen removal. The microalgal-bacterial biofilm system exhibited higher levels of fatty acid synthase and omega-6 fatty acid desaturation, resulting in a dry weight content and production of eicosapentaenoic acid (EPA) with 15.8,19.1 times greater than that achieved by the microalgal suspension system. These results present a foundation for application of pollutant removal in high ammonia nitrogen wastewater coupling with high-value acid production by microalgal-bacterial biofilms.
Collapse
Affiliation(s)
- Hao Hu
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Xiang-Chong Yu
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Yan-Yun Hu
- Instruments Center for Physical Science, University of Science and Technology of China, Hefei 230026, PR China
| | - Dong Wei
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Yan-Kun Liu
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Wei-Hua Li
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Shu-Guang Zhu
- Energy saving Research Institute, Anhui Jianzhu University, Hefei 230601, PR China; Engineering Research Center of Building Energy Efficiency Control and Evaluation, Ministry of Education, Anhui Jianzhu University, Hefei 230601, PR China.
| |
Collapse
|
2
|
Kabir Ahmad SF, Kanadasan G, Lee KT, Vadivelu VM. Insight into recent advances in microalgae biogranulation in wastewater treatment. Crit Rev Biotechnol 2024; 44:1594-1609. [PMID: 38485522 DOI: 10.1080/07388551.2024.2317785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/09/2023] [Accepted: 12/22/2023] [Indexed: 11/20/2024]
Abstract
Microalgae-based technology is widely utilized in wastewater treatment and resource recovery. However, the practical implementation of microalgae-based technology is hampered by the difficulty in separating microalgae from treated water due to the low density of microalgae. This review is designed to find the current status of the development and utilization of microalgae biogranulation technology for better and more cost-effective wastewater treatment. This review reveals that the current trend of research is geared toward developing microalgae-bacterial granules. Most previous works were focused on studying the effect of operating conditions to improve the efficiency of wastewater treatment using microalgae-bacterial granules. Limited studies have been directed toward optimizing operating conditions to induce the secretion of extracellular polymeric substances (EPSs), which promotes the development of denser microalgae granules with enhanced settling ability. Likewise, studies on the understanding of the EPS role and the interaction between microalgae cells in forming granules are scarce. Furthermore, the majority of current research has been on the cultivation of microalgae-bacteria granules, which limits their application only in wastewater treatment. Cultivation of microalgae granules without bacteria has greater potential because it does not require additional purification and can be used for border applications.
Collapse
Affiliation(s)
| | - Gobi Kanadasan
- Department of Petrochemical Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
| | - Vel Murugan Vadivelu
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
3
|
Liang P, Wang H, Hu X, Elshobary M, Cui Y, Zou B, Zhu F, Schagerl M, El-Sheekh M, Huo S. Impact of the NH4+/NO3− ratio on growth of oil-rich filamentous microalgae Tribonema minus in simulated nitrogen-rich wastewater. JOURNAL OF WATER PROCESS ENGINEERING 2024; 68:106378. [DOI: 10.1016/j.jwpe.2024.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
|
4
|
Satiro J, Gomes A, Florencio L, Simões R, Albuquerque A. Effect of microalgae and bacteria inoculation on the startup of bioreactors for paper pulp wastewater and biofuel production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121305. [PMID: 38830287 DOI: 10.1016/j.jenvman.2024.121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
The use of microalgae and bacteria as a strategy for the startup of bioreactors for the treatment of industrial wastewater can be a sustainable and economically viable alternative. This technology model provides satisfactory results in the nitrification and denitrification process for nitrogen removal, organic matter removal, biomass growth, sedimentation, and byproducts recovery for added-value product production. The objective of this work was to evaluate the performance of microalgae and bacteria in their symbiotic process when used in the treatment of paper pulp industry wastewater. The experiment, lasting fourteen days, utilized four bioreactors with varying concentrations in mgVSS/L of microalgae to bacteria ratio (R1-100:100, R2-100:300, R3-100:500, R4-300:100) in the startup process. Regarding the sludge volumetric index (SVI), the results show that the R1 and R2 reactors developed SVI30/SVI10 biomass in the range of 85.57 ± 7.33% and 84.72 ± 8.19%, respectively. The lipid content in the biomass of reactors R1, R2, R3 e R4 was 13%, 7%, 19%, and 22%, respectively. This high oil content at the end of the batch, may be related to the nutritional stress that the species underwent during this feeding regime. In terms of chlorophyll, the bioreactor with an initial inoculation of 100:100 showed better symbiotic growth of microalgae and bacteria, allowing exponential growth of microalgae. The total chlorophyll value for this bioreactor was 801.46 ± 196.96 μg/L. Biological removal of nitrogen from wastewater from the paper pulp industry is a challenge due to the characteristics of the effluent, but the four reactors operated in a single batch obtained good nitrogen removal. Ammonia nitrogen removal performances were 91.55 ± 9.99%, 72.13 ± 19.18%, 64.04 ± 21.34%, and 86.15 ± 30.10% in R1, R2, R3, and R4, respectively.
Collapse
Affiliation(s)
- Josivaldo Satiro
- University of Beira Interior, Department of Civil Engineering and Architecture, FibEnTech, Geobiotec, 6201-001, Covilhã, Portugal; Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Av. Academica Helio Ramos, s/n. Cidade Universitária, CEP, 50740-530, Recife, PE, Brazil.
| | - Arlindo Gomes
- University of Beira Interior, Department of Chemistry, FibEnTech, 6201-001, Covilhã, Portugal.
| | - Lourdinha Florencio
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Av. Academica Helio Ramos, s/n. Cidade Universitária, CEP, 50740-530, Recife, PE, Brazil.
| | - Rogério Simões
- University of Beira Interior, Department of Chemistry, FibEnTech, 6201-001, Covilhã, Portugal.
| | - Antonio Albuquerque
- University of Beira Interior, Department of Civil Engineering and Architecture, FibEnTech, Geobiotec, 6201-001, Covilhã, Portugal.
| |
Collapse
|
5
|
Condori MAM, Condori MM, Gutierrez MEV, Choix FJ, García-Camacho F. Bioremediation potential of the Chlorella and Scenedesmus microalgae in explosives production effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171004. [PMID: 38369159 DOI: 10.1016/j.scitotenv.2024.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
This study explores microalgae-based bioremediation for treating black gunpowder production effluents, an understudied yet environmentally significant stream. Two native microalgae, Chlorella sp. MC18 (CH) and Scenedesmus sp. MJ23-R (SC), were assessed for growth kinetics and nutrient removal capabilities in culture media containing different proportions of untreated raw wastewater. Results show both species thrived in 100 % raw wastewater, displaying robust growth and substantial biomass production in parallelepiped-shaped photobioreactors. SC showed superior performance, with higher maximum specific growth rate (0.549 d-1), biomass yield (454.57 mg L-1) and biomass productivity (64.94 mg L-1 d-1) compared to CH (0.524 d-1, 380.60 mg L-1, 54.37 mg L-1 d-1, respectively). The use of 100 % raw wastewater as a culture medium eliminated the need for additional freshwater input, thus reducing the water footprint. The bioremediation process also resulted in a high removal efficiency in turbidity (>95 % CH, >76 % SC), total suspended solids (>93 % CH, >74 % SC), biochemical oxygen demand (BOD5) (>62 % CH, >93 % SC) and chemical oxygen demand (COD) (>63 % CH, >87 % SC), bringing the effluent into compliance with environmental regulations. Although nitrogen (>45 % CH, >57 % SC) and sulphate (>43 % CH, >35 % SC) removal efficiencies was high, potassium bioremediation was limited (<6 %). The proximate chemical composition of the microalgal biomass revealed different allocations to carbohydrates, lipids and proteins. The results suggest promising applications for biofuel production and aquaculture. This research highlights the potential of microalgae-based bioremediation for sustainable wastewater management in the explosives industry, contributing to the UN Sustainable Development Goals and promoting green industrial practices.
Collapse
Affiliation(s)
| | | | | | - Francisco J Choix
- CONAHCYT - Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, CP 31125, Chihuahua, Chihuahua, Mexico
| | | |
Collapse
|
6
|
Leong WH, Rawindran H, Ameen F, Alam MM, Chai YH, Ho YC, Lam MK, Lim JW, Tong WY, Bashir MJK, Ravindran B, Alsufi NA. Advancements of microalgal upstream technologies: Bioengineering and application aspects in the paradigm of circular bioeconomy. CHEMOSPHERE 2023; 339:139699. [PMID: 37532206 DOI: 10.1016/j.chemosphere.2023.139699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Sustainable energy transition has brought the attention towards microalgae utilization as potential feedstock due to its tremendous capabilities over its predecessors for generating more energy with reduced carbon footprint. However, the commercialization of microalgae feedstock remains debatable due to the various factors and considerations taken into scaling-up the conventional microalgal upstream processes. This review provides a state-of-the-art assessment over the recent developments of available and existing microalgal upstream cultivation systems catered for maximum biomass production. The key growth parameters and main cultivation modes necessary for optimized microalgal growth conditions along with the fundamental aspects were also reviewed and evaluated comprehensively. In addition, the advancements and strategies towards potential scale-up of the microalgal cultivation technologies were highlighted to provide insights for further development into the upstream processes aimed at sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Wai Hong Leong
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Algal Bio Co. Ltd, Todai-Kashiwa Venture Plaza, 5-4-19 Kashiwanoha, Kashiwa, Chiba, 277-0082, Japan.
| | - Hemamalini Rawindran
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Yee Ho Chai
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Yeek Chia Ho
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Man Kee Lam
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| | - Woei-Yenn Tong
- Universiti Kuala Lumpur, Institute of Medical Science Technology, A1-1, Jalan TKS 1, Taman Kajang Sentral, 43000, Kajang, Selangor, Malaysia
| | - Mohammed J K Bashir
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Balasubramani Ravindran
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Nizar Abdallah Alsufi
- Department of Management Information System and Production Management, College of Business & Economics, Qassim University, P.O. BOX 6666, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
7
|
Dos Santos Neto AG, Barragán-Trinidad M, Florêncio L, Buitrón G. Strategy for the formation of microalgae-bacteria aggregates in high-rate algal ponds. ENVIRONMENTAL TECHNOLOGY 2023; 44:1863-1876. [PMID: 34898377 DOI: 10.1080/09593330.2021.2014577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
This work studied the formation of aggregates used for wastewater treatment in high-rate algal ponds (HRAP). For this, the establishment of microalgae-bacteria aggregates in these systems was evaluated, considering strategies for the inoculation and start-up. Two HRAP were operated in parallel, at first in batch mode and then in continuous flow. The wastewater treatment was efficient, with removal rates around 80% for COD and N-ammoniacal. Volatile suspended solids and chlorophyll for the culture grew continuously reached a concentration of 548 ± 11 mg L-1 and 7.8 mg L-1, respectively. Larger photogranules were observed when the system was placed in a continuous regime. The protein fraction of extracellular polymeric substances was identified as a determinant in photogranules formation. During the continuous regime, more than 50% of the biomass was higher than 0.2 mm, flocculation efficiency of 78 ± 6%, and the volumetric sludge index of 32 ± 5 mL g-1. The genetic sequencing showed the growth of cyanobacteria in the aggregate and the presence of microalgae from the chlorophytes and diatoms groups in the final biomass.
Collapse
Affiliation(s)
- Antonio G Dos Santos Neto
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, Brazil
| | - Martín Barragán-Trinidad
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Lourdinha Florêncio
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, Brazil
| | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
8
|
Hu H, Wu DD, Yu L, Hu Y, Meng FL, Wei D. Pollutants removal, microbial community shift and oleic acid production in symbiotic microalgae-bacteria system. BIORESOURCE TECHNOLOGY 2023; 370:128535. [PMID: 36587770 DOI: 10.1016/j.biortech.2022.128535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The functional interaction between microorganisms is key in symbiotic microalga-bacteria systems; however, evaluations of fungi and pathogenic microorganisms are not clear. In this study, the roles of three groups (i.e., microalgae-activated sludge (MAS), Microalgae, and activated sludge) in pollutant removal and biomass recovery were comparatively studied. The data implied that microalgal assimilation and bacterial heterotrophic degradation were the major approaches for degradation of nutrients and organic matter, respectively. According to 16S rRNA and internal transcribed spacer sequencing, the relative abundance of Rhodotorula increased remarkably, favoring nutrient exchange between the microalgae and bacteria. The abundances of two types of pathogenic genes (human pathogens and animal parasites) were reduced in the MAS system. The oleic acid content in the MAS system (51.2 mg/g) was 1.7 times higher than that in the Microalgae system. The results can provide a basis for practical application and resource utilization of symbiotic microalgae-bacteria systems.
Collapse
Affiliation(s)
- Hao Hu
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Advanced Technology Institute of Green Building Research of Anhui Province, Anhui Jianzhu University, Hefei 230601, PR China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Dan-Dan Wu
- Anhui Water Conservancy Technical College, Hefei 231603, PR China
| | - Li Yu
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Advanced Technology Institute of Green Building Research of Anhui Province, Anhui Jianzhu University, Hefei 230601, PR China
| | - Yi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Fan-Li Meng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Dong Wei
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
9
|
Yang Y, Ge S, Pan Y, Qian W, Wang S, Zhang J, Zhuang LL. Screening of microalgae species and evaluation of algal-lipid stimulation strategies for biodiesel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159281. [PMID: 36216060 DOI: 10.1016/j.scitotenv.2022.159281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Microalgae is considered an alternative source for biodiesel production producing renewable, sustainable and carbon-neutral energy. Microalgae property changes among species, which determines the efficiency of biodiesel production. Besides the lipid content evaluation, multi-principles (including high lipid productivity, high biomass yield, pollution resistance and desired fatty acid, etc.) for superior oil-producing species screening was proposed in this review and three microalgae species (Chlorella vulgaris, Scenedesmus obliquus and Mychonastes afer) with high bio-lipid producing prospect were screened out based on big data digging and analysis. The multilateral strategies for algal-lipid stimulating were also compared, among which, nutrient restriction, temperature control, heterotrophy and chemicals addition showed high potential in enhancing lipid accumulation; while electromagnetic field showed little effect. Interestingly, it was found that the lipid accumulation was more sensitive to nitrogen (N)-limitation other than phosphorus (P). Nutrient restriction, salinity stress etc. enhanced lipid accumulation by creating a stressed environment. Hence, optimum conditions (e.g. N:15-35 mg/L and P:4-16 mg/L) should be set to balance the lipid accumulation and biomass growth, and further guarantee the algal-lipid productivity. Otherwise, two-step cultivation could be applied during all the stressed stimulation. Different from lab study, effectiveness, operability and economy should be all considered for stimulation strategy selection. Nutrient restriction, temperature control and heterotrophy were highly feasible after the multidimensional evaluation.
Collapse
Affiliation(s)
- Yanan Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shuhan Ge
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Yitong Pan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Weiyi Qian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shengnan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
10
|
Sun X, Li X, Tang S, Lin K, Zhao T, Chen X. A review on algal-bacterial symbiosis system for aquaculture tail water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157620. [PMID: 35901899 DOI: 10.1016/j.scitotenv.2022.157620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Aquaculture is one of the fastest growing fields of global food production industry in recent years. To maintain the ecological health of aquaculture water body and the sustainable development of aquaculture industry, the treatment of aquaculture tail water (ATW) is becoming an indispensable task. This paper discussed the demand of environmentally friendly and cost-effective technologies for ATW treatment and the potential of algal-bacterial symbiosis system (ABSS) in ATW treatment. The characteristics of ABSS based technology for ATW treatment were analyzed, such as energy consumption, greenhouse gas emission, environmental adaptability and the possibility of removal or recovery of carbon, nitrogen and phosphorus as resource simultaneously. Based on the principle of ABSS, this paper introduced the key environmental factors that should be paid attention to in the establishment of ABSS, and then summarized the species of algae, bacteria and the proportion of algae and bacteria commonly used in the establishment of ABSS. Finally, the reactor technologies and the relevant research gaps in the establishment of ABSS were reviewed and discussed.
Collapse
Affiliation(s)
- Xiaoyan Sun
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082 Zhuhai, China.
| | - Xiaopeng Li
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China
| | - Shi Tang
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China
| | - Kairong Lin
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082 Zhuhai, China
| | - Tongtiegang Zhao
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082 Zhuhai, China
| | - Xiaohong Chen
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; Center for Water Resources and Environment Research, Sun Yat-sen University, 510275 Guangzhou, China
| |
Collapse
|
11
|
Talapatra N, Ghosh UK. New concept of biodiesel production using food waste digestate powder: Co-culturing algae-activated sludge symbiotic system in low N and P paper mill wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157207. [PMID: 35809734 DOI: 10.1016/j.scitotenv.2022.157207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
This paper aims to demonstrate an innovative process for the conversion of food waste digestate (FWD) powder into biofuel. The effects of different doses of FWD are investigated on microalgae-activated sludge (MAS) in treating pulp and paper mill wastewater (PPW) which generally contains insufficient nitrogen and phosphorus. FWD was added to adjust the initial N:P molar ratio in MAS at various levels (8:1 to 15:1). The highest Auxenochlorella protothecoides biomass achieved was 1.67 gL-1 at a 13.45:1 N/P molar ratio of PPW. After 10 days of cultivation, Auxenochlorella protothecoides-activated sludge system removed 91.7 %, 74.6 %, and 91.5 % of total nitrogen, phosphorus, and sCOD respectively at D0.836 gL-1 DD. The highest lipid productivity was reported as 41.27 ± 2.43 mg L-1 day-1. Fatty acid methyl ester (FAME) analysis showed the presence of an appreciable percentage of balanced saturated and unsaturated fatty acids i.e. palmitic, oleic, and linoleic acid, rendering its potential as a feedstock for biodiesel production. Activated sludge induced flocculation of Auxenochlorella protothecoides was measured. The whole process establishes an effective means of circular economy, where the secondary source of recyclable nutrients i.e. FWD will be used as a source of N and P in PPW to obtain algal biodiesel from a negative value industrial wastewater.
Collapse
Affiliation(s)
- Namita Talapatra
- Department of Polymer and Process Engineering, IIT Roorkee Saharanpur Campus, Saharanpur 247001, India.
| | - Uttam Kumar Ghosh
- Department of Polymer and Process Engineering, IIT Roorkee Saharanpur Campus, Saharanpur 247001, India.
| |
Collapse
|
12
|
Optimization of Microalgae–Bacteria Consortium in the Treatment of Paper Pulp Wastewater. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125799] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The microalgae–bacteria consortium is a promising and sustainable alternative for industrial wastewater treatment, since it may allow good removal of organic matter and nutrients, as well as the possibility of producing products with added value from the algae biomass. This research investigated the best bacterial and microalgae inoculation ratio for system start-up and evaluation of removing organic matter (as chemical oxygen demand (COD)), ammoniacal nitrogen (NH4+–N), nitrite nitrogen (NO2−–N), nitrate nitrogen (NO3−–N), phosphate phosphorus (PO43−–P) and biomass formation parameters in six photobioreactors with a total volume of 1000 mL. Reactors were operated for 14 days with the following ratios of pulp mill biomass aerobic (BA) and Scenedesmus sp. microalgae (MA): 0:1 (PBR1), 1:0 (PBR2), 1:1 (PBR3), 3:1 (PBR4), 5:1 (PBR5), and 1:3 (PBR6). Results show that COD removal was observed in just two days of operation in PBR4, PBR5, and PBR6, whereas for the other reactors (with a lower rate of initial inoculation) it took five days. The PBR5 and PBR6 performed better in terms of NH4+–N removal, with 86.81% and 77.11%, respectively, which can be attributed to assimilation by microalgae and nitrification by bacteria. PBR6, with the highest concentration of microalgae, had the higher PO43−–P removal (86%), showing the advantage of algae in consortium with bacteria for phosphorus uptake. PBR4 and PBR5, with the highest BA, led to a better biomass production and sedimentability on the second day of operation, with flocculation efficiencies values over 90%. Regarding the formation of extracellular polymeric substances (EPS), protein production was substantially higher in PBR4 and PBR5, with more BA, with average concentrations of 49.90 mg/L and 49.05 mg/L, respectively. The presence of cyanobacteria and Chlorophyceae was identified in all reactors except PBR1 (only MA), which may indicate a good formation and structuring of the microalgae–bacteria consortium. Scanning electron microscopy (SEM) analysis revealed that filamentous microalgae were employed as a foundation for the fixation of bacteria and other algae colonies.
Collapse
|
13
|
Huang WM, Chen JH, Nagarajan D, Lee CK, Varjani S, Lee DJ, Chang JS. Immobilization of Chlorella sorokiniana AK-1 in bacterial cellulose by co-culture and its application in wastewater treatment. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Kabir SB, Khalekuzzaman M, Hossain N, Jamal M, Alam MA, Abomohra AEF. Progress in biohythane production from microalgae-wastewater sludge co-digestion: An integrated biorefinery approach. Biotechnol Adv 2022; 57:107933. [DOI: 10.1016/j.biotechadv.2022.107933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/30/2022] [Accepted: 02/25/2022] [Indexed: 12/30/2022]
|
15
|
Zhang X, Liu L, Peng J, Yuan F, Li J, Wang J, Chen J, Wang H, Tyagi RD. Heavy metal impact on lipid production from oleaginous microorganism cultivated with wastewater sludge. BIORESOURCE TECHNOLOGY 2022; 344:126356. [PMID: 34822989 DOI: 10.1016/j.biortech.2021.126356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Using municipal wastewater sludge to produce microbial lipid is an effective way of resource recycling. Sludge contains heavy metals and may lead to negative impact on lipid production. However, relative study has not been reported. In this study, metal impact on Lipomyces starkeyi lipid accumulation was conducted. Results showed that Cd2+ had great impact on lipid accumulation, but other metals had no much impact. The maximum lipid content of L. starkeyi cultivated in 0.55 mg/L of Cd2+ was only 41% w/w, which was lower than the control (51% w/w). The inhibition on acetyl-CoA formation was observed when Cd2+ was in the medium. After removing metals from sludge, the lipid accumulation was only around half of the one without metal removal. It would be due to that not only the toxic metals in the sludge were removed as well as the metals such as Zn2+ which can enhance lipid accumulation.
Collapse
Affiliation(s)
- Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong 518055, PR China
| | - Lu Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong 518055, PR China
| | - Juan Peng
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong 518055, PR China
| | - Fang Yuan
- Shenzhen Environmental Technology Group Co. LTD, Shenzhen 518010, PR China
| | - Ji Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong 518055, PR China
| | - Jiawen Wang
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, PR China
| | - Jiaxin Chen
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong 518055, PR China
| | - R D Tyagi
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
16
|
Nguyen TTD, Bui XT, Nguyen TT, Hao Ngo H, Yi Andrew Lin K, Lin C, Le LT, Dang BT, Bui MH, Varjani S. Co-culture of microalgae-activated sludge in sequencing batch photobioreactor systems: Effects of natural and artificial lighting on wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 343:126091. [PMID: 34624475 DOI: 10.1016/j.biortech.2021.126091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Co-culture using microalgae-activated sludge in Sequencing Batch Photobioreactors (PBRs) was investigated for wastewater treatment performance. This study evaluated the effect of natural and artificial lighting conditons on treatment performance under consideration of energy consumption. The results found that the removal of nutrients and COD of natural lighting condition was only 10% and 13% lower than those of artificial lighting respectively. Generally, artificial lighting mode took an advantage in pollutants removal. However, standing at 0.294 kWh L-1, the total energy consumption of natural lighting was over two times less than that of artificial lighting. It reveals the natural lighting system played a dominant role for cutting energy costs significantly compared to artificial lighting one (∼57%). As a practical viewpoint on energy aspect and treatment performance, a natural lighting PBR system would be a sustainable option for microalgae-activated sludge co-culture system treating wastewater.
Collapse
Affiliation(s)
- Thi-Thuy-Duong Nguyen
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Vietnam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet st., district 10, Ho Chi Minh City, Vietnam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Vietnam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet st., district 10, Ho Chi Minh City, Vietnam.
| | - Thanh-Tin Nguyen
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Vietnam; School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, SydneyNWS 2007, Australia
| | - Kun Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Linh-Thy Le
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Vietnam; Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), ward 11, district 5, Ho Chi Minh City, Vietnam
| | - Bao-Trong Dang
- Ho Chi Minh City University of Technology (HUTECH), 475A Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| | - Manh-Ha Bui
- Department of Environmental Sciences, Saigon University, Ho Chi Minh City 700000, Vietnam
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| |
Collapse
|
17
|
Fazal T, Rehman MSU, Javed F, Akhtar M, Mushtaq A, Hafeez A, Alaud Din A, Iqbal J, Rashid N, Rehman F. Integrating bioremediation of textile wastewater with biodiesel production using microalgae (Chlorella vulgaris). CHEMOSPHERE 2021; 281:130758. [PMID: 34000658 DOI: 10.1016/j.chemosphere.2021.130758] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Microalgae-led wastewater treatment is a promising biorefinery approach to promote environmental and economical sustainability. In this study, Chlorella vulgaris (C. vulgaris) was employed for the bioremediation of textile wastewater (TWW) and biodiesel production. C. vulgaris is cultivated in undiluted and diluted TWW (50%). Cultivation in freshwater containing BG11 medium was set as a control. Results show the highest growth (1.62 ± 0.12 OD680) in diluted TWW followed by BG11 medium (1.56 ± 0.15 OD680) and undiluted TWW (0.89 ± 0.11 OD680). The highest methylene blue decolorization of 99.7% was observed in diluted TWW as compared to 98.5% in undiluted TWW. Morever, COD removal efficiency was also higher (99.7 ± 4.2%) in diluted TWW than BG11 medium (94.4 ± 3.5%) and undiluted TWW (76.3 ± 2.8%). For all treatment, more than 80% nitrogen and phosphorous removal were achieved. Otther than this, fatty acids methyl ester (FAME) yield in diluted TWW was higher (11.07 mg g-1) than the undiluted TWW (9.12 mg L-1). Major FAME were palmitic acid (C16:0) and linolenoic acid (C18:3) which are suitable for biodiesel production. All these results suggest that C. vulgaris can be cultivated in both diluted and undiluted TWW for biodiesel production. However, cultivation in undiluted TWW is more favorable as it displaces the need for freshwater addition in the growth medium.
Collapse
Affiliation(s)
- Tahir Fazal
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan; Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Saif Ur Rehman
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Fahed Javed
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Mueed Akhtar
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Azeem Mushtaq
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Ainy Hafeez
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Aamir Alaud Din
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Javed Iqbal
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Naim Rashid
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan; Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation', Doha, Qatar
| | - Fahad Rehman
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan.
| |
Collapse
|
18
|
Mishra B, Varjani S, Kumar G, Awasthi MK, Awasthi SK, Sindhu R, Binod P, Rene ER, Zhang Z. Microbial approaches for remediation of pollutants: Innovations, future outlook, and challenges. ENERGY & ENVIRONMENT 2021; 32:1029-1058. [DOI: 10.1177/0958305x19896781] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Environmental contamination with persistent organic pollutants has emerged as a serious threat of pollution. Bioremediation is a key to eliminate these harmful pollutants from the environment and has gained the interest of researchers during the past few decades. Scientific knowledge upon microbial interactions with individual pollutants over the past decades has helped to abate environmental pollution. Traditional bioremediation approaches have limitations for their applications; hence, it is essential to discover new bioremediation approaches with biotechnological interventions for best results. The developments in various methodologies are expected to increase the efficiency of bioremediation techniques and provide environmentally sound strategies. This paper deals with the profiling of microorganisms present in polluted sites using various techniques such as culture-based approaches and omics-based approaches. Besides this, it also provides up-to-date scientific literature on the microbial electrochemical technologies which are nowadays considered as the best approach for remediation of pollutants. Detailed information about future outlook and challenges to evaluate the effect of various treatment technologies for remediation of pollutants has been discussed.
Collapse
Affiliation(s)
- Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, India
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A& F University, Shaanxi Province, PR China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A& F University, Shaanxi Province, PR China
| | - Raveendran Sindhu
- CSIR–National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, India
| | - Parameswaran Binod
- CSIR–National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, India
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, IHE Delft Institute of Water Education, Delft, The Netherlands
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A& F University, Shaanxi Province, PR China
| |
Collapse
|
19
|
Xie Z, Lin W, Luo J. Co-cultivation of microalga and xylanolytic bacterium by a continuous two-step strategy to enhance algal lipid production. BIORESOURCE TECHNOLOGY 2021; 330:124953. [PMID: 33725519 DOI: 10.1016/j.biortech.2021.124953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
To enhance microalgal lipid production, canonical two-step cultivation strategy that by transferring the microalgal cells grown in nutrient-replete medium to nutrient-depleted medium is widely used. However, the harvesting step during the transfer raises the production cost. To avoid the harvesting step, this study developed a continuous two-step (CTS) cultivation strategy. In the strategy, Chlorella sacchrarophila was grown in bioreactor while a xylanolytic bacterium Cellvibrio pealriver grown in an inner bag that embedded in the bioreactor; after the first-step co-cultivation, the inner bag is removed which then start the second-step cultivation of C. sacchrarophila. Based on the strategy, the lipid production was determined as 825.34-929.79 mg·L-1, which were 1.7-1.9 times higher than that of cultivation in canonical two-step strategy using glucose as feedstock. During the CTS strategy, the co-cultivation using xylan as feedstock promotes the microalgal growth and the removal of inner bag produces nutrient-depleted condition for enhancing microalgal lipid production.
Collapse
Affiliation(s)
- Zhangzhang Xie
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Science, Guangdong Academy of Science, Guangzhou 510650, PR China
| | - Weitie Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Jianfei Luo
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
20
|
Leong WH, Lim JW, Lam MK, Lam SM, Sin JC, Samson A. Novel sequential flow baffled microalgal-bacterial photobioreactor for enhancing nitrogen assimilation into microalgal biomass whilst bioremediating nutrient-rich wastewater simultaneously. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124455. [PMID: 33168319 DOI: 10.1016/j.jhazmat.2020.124455] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
A novel sequential flow baffled microalgal-bacterial (SFB-AlgalBac) photobioreactor was designed to cater for the synergistic interactions between microalgal and bacterial consortia to enhance nitrogen assimilation into microalgal biomass from nutrient-rich wastewater medium. The performance of the SFB-AlgalBac photobioreactor was found to be optimum at the influent flow rate of 5.0 L/d, equivalent to 20 days of hydraulic retention time (HRT). The highest microalgal nitrogen assimilation rate (0.0271 /d) and biomass productivity (1350 mg/d) were recorded amidst this flow rate. Further increase to the 10.0 L/d flow rate reduced the photobioreactor performance, as evidenced by a reduction in microalgal biomass productivity (>10%). The microalgal biomass per unit of nitrogen assimilated values were attained at 16.69 mg/mg for the 5.0 L/d flow rate as opposed to 7.73 mg/mg for the 10.0 L/d flow rate, despite both having comparable specific growth rates. Also, the prior influent treatment by activated sludge was found to exude extracellular polymeric substances which significantly improved the microalgal biomass settleability up to 37%. The employment of SFB-AlgalBac photobioreactor is anticipated could exploit the low-cost nitrogen sources from nutrient-rich wastewaters via bioconversion into valuable microalgal biomass while fulfilling the requirements of sustainable wastewater treatment technologies.
Collapse
Affiliation(s)
- Wai Hong Leong
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Man Kee Lam
- Department of Chemical Engineering, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Sze Mun Lam
- Department of Environmental Engineering, Faculty of Engineering and Green Technology (FEGT), Universiti Tunku Abdul Rahman, 31900 Kampar, Perak Darul Ridzuan, Malaysia
| | - Jin Chung Sin
- Department of Petrochemical Engineering, Faculty of Engineering and Green Technology (FEGT), Universiti Tunku Abdul Rahman, 31900 Kampar, Perak Darul Ridzuan, Malaysia
| | - Abby Samson
- Department of Mechanical Engineering, The University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
21
|
Nguyen TT, Lam MK, Cheng YW, Uemura Y, Mansor N, Lim JW, Show PL, Tan IS, Lim S. Reaction kinetic and thermodynamics studies for in-situ transesterification of wet microalgae paste to biodiesel. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Farahin AW, Natrah I, Nagao N, Yusoff FM, Shariff M, Banerjee S, Katayama T, Nakakuni M, Koyama M, Nakasaki K, Toda T. Tolerance of Tetraselmis tetrathele to High Ammonium Nitrogen and Its Effect on Growth Rate, Carotenoid, and Fatty Acids Productivity. Front Bioeng Biotechnol 2021; 9:568776. [PMID: 33585428 PMCID: PMC7876249 DOI: 10.3389/fbioe.2021.568776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/06/2021] [Indexed: 11/20/2022] Open
Abstract
Microalgae can use either ammonium or nitrate for its growth and vitality. However, at a certain level of concentration, ammonium nitrogen exhibits toxicity which consequently can inhibit microalgae productivity. Therefore, this study is aimed to investigate the tolerance of Tetraselmis tetrathele to high ammonium nitrogen concentrations and its effects on growth rate, photosynthetic efficiency (Fv/Fm), pigment contents (chlorophyll a, lutein, neoxanthin, and β-carotene), and fatty acids production. Experiments were performed at different ammonium nitrogen concentrations (0.31–0.87 gL−1) for 6 days under a light source with an intensity of 300 μmol photons m−2 s−1 and nitrate-nitrogen source as the experimental control. The findings indicated no apparent enhancement of photosynthetic efficiency (Fv/Fm) at high levels of ammonium nitrogen (NH4+-N) for T. tetrathele within 24 h. However, after 24 h, the photosynthetic efficiency of T. tetrathele increased significantly (p < 0.05) in high concentration of NH4+-N. Chlorophyll a content in T. tetrathele grown in all of the different NH4+-N levels increased significantly compared to nitrate-nitrogen (NO3-N) treatment (p < 0.05); which supported that this microalgal could grow even in high level of NH4+-N concentrations. The findings also indicated that T. tetrathele is highly resistant to high ammonium nitrogen which suggests T. tetrathele to be used in the aquaculture industry for bioremediation purpose to remove ammonium nitrogen, thus reducing the production cost while improving the water quality.
Collapse
Affiliation(s)
- Abd Wahab Farahin
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ikhsan Natrah
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia.,International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Norio Nagao
- Bluescientific Shinkamigoto Co. Ltd., Nagasaki, Japan
| | - Fatimah Md Yusoff
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia.,International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohamed Shariff
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Veterinary Clinical Studies, Faculty of Veterinary Medicines, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sanjoy Banerjee
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Tomoyo Katayama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | | | - Mitsuhiko Koyama
- School of Environment and Society, Tokyo Institute of Technology, Ookayama, Japan
| | - Kiyohiko Nakasaki
- School of Environment and Society, Tokyo Institute of Technology, Ookayama, Japan
| | - Tatsuki Toda
- Department of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka Meguro University, Hachioji, Japan
| |
Collapse
|
23
|
Comparative Performances of Microalgal-Bacterial Co-Cultivation to Bioremediate Synthetic and Municipal Wastewaters Whilst Producing Biodiesel Sustainably. Processes (Basel) 2020. [DOI: 10.3390/pr8111427] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The potentiality of a microalgal-bacterial culture system was explored in bioremediating wastewater while generating biomass for biodiesel production. A pre-determined optimal activated sludge and microalgal ratio was adopted and cultivation performance was evaluated in both synthetic and municipal wastewater media for nitrogen removal along with biomass and lipid generation for biodiesel production. The microalgal-bacterial consortium grown in the municipal wastewater medium produced higher biomass and lipid yields than those in the synthetic wastewater medium. The presence of trace elements in the municipal wastewater medium, e.g., iron and copper, contributed to the upsurge of biomass, thereby leading to higher lipid productivity. Both the microbial cultures in the synthetic and municipal wastewater media demonstrated similar total nitrogen removal efficiencies above 97%. However, the nitrification and assimilation rates were relatively higher for the microbial culture in the municipal wastewater medium, corresponding to the higher microbial biomass growth. Accordingly, the feasibility of the microalgal-bacterial consortium for bioremediating real municipal wastewaters was attested in this study by virtue of higher biomass and lipid production. The assessment of fatty acid methyl esters (FAME) composition showed the mixed microbial biomasses comprised 80–93% C16 to C18 FAME species, signifying efficient fuel combustion properties for quality biodiesel requirements.
Collapse
|
24
|
Asgharnejad H, Sarrafzadeh MH. Development of Digital Image Processing as an Innovative Method for Activated Sludge Biomass Quantification. Front Microbiol 2020; 11:574966. [PMID: 33042087 PMCID: PMC7530208 DOI: 10.3389/fmicb.2020.574966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/31/2020] [Indexed: 01/09/2023] Open
Abstract
Activated sludge process is the most common method for biological treatment of industrial and municipal wastewater. One of the most important parameters in performance of activated sludge systems is quantitative monitoring of biomass to keep the cell concentration in an optimum range. In this study, a novel method for activated sludge quantification based on image processing and RGB analysis is proposed. According to the results, the intensity of blue color in the macroscopic image of activated sludge culture can be a very accurate index for cell concentration measurement and R2 coefficient, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) which are 0.990, 2.000, 0.323, and 13.848, respectively, prove this claim. Besides, in order to avoid the difficulties of working in the three-parameter space of RGB, converting to grayscale space has been applied which can estimate cell concentration with R 2 = 0.99. Ultimately, an exponential correlation between RGB values and cell concentrations in lower amounts of biomass has been proposed based on Beer-Lambert law which can estimate activated sludge biomass concentration with R 2 = 0.97 based on B index.
Collapse
Affiliation(s)
- Hashem Asgharnejad
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | |
Collapse
|
25
|
Nguyen TTD, Nguyen TT, An Binh Q, Bui XT, Ngo HH, Vo HNP, Andrew Lin KY, Vo TDH, Guo W, Lin C, Breider F. Co-culture of microalgae-activated sludge for wastewater treatment and biomass production: Exploring their role under different inoculation ratios. BIORESOURCE TECHNOLOGY 2020; 314:123754. [PMID: 32650264 DOI: 10.1016/j.biortech.2020.123754] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 05/23/2023]
Abstract
In this study, mixed culture (microalgae:activated sludge) of a photobioreactor (PBR) were investigated at different inoculation ratios (1:0, 9:1, 3:1, 1:1, 0:1 wt/wt). This work was not only to determine the optimal ratio for pollutant remediation and biomass production but also to explore the role of microorganisms in the co-culture system. The results showed high total biomass concentrations were obtained from 1:0 and 3:1 ratio being values of 1.06, 1.12 g L-1, respectively. Microalgae played a dominant role in nitrogen removal via biological assimilation while activated sludge was responsible for improving COD removal. Compared with the single culture of microalgae, the symbiosis between microalgae and bacteria occurred at 3:1 and 1:1 ratio facilitated a higher COD removal by 37.5-45.7 %. In general, combined assessment based on treatment performance and biomass productivity facilitated to select an optimal ratio of 3:1 for the operation of the co-culture PBR.
Collapse
Affiliation(s)
- Thi-Thuy-Duong Nguyen
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam
| | - Thanh-Tin Nguyen
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam
| | - Quach An Binh
- Faculty of Applied Sciences-Health, Dong Nai Technology University, Dong Nai 810000, Viet Nam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Hoang Nhat Phong Vo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Chitsan Lin
- National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Florian Breider
- ENAC, IIE, Central Environmental Laboratory (CEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 2, 1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Hwangbo M, Chu KH. Recent advances in production and extraction of bacterial lipids for biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139420. [PMID: 32464391 DOI: 10.1016/j.scitotenv.2020.139420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Lipid-based biofuel is a clean and renewable energy that has been recognized as a promising replacement for petroleum-based fuels. Lipid-based biofuel can be made from three different types of intracellular biolipids; triacylglycerols (TAGs), wax esters (WEs), and polyhydroxybutyrate (PHB). Among many lipid-producing prokaryotes and eukaryotes, biolipids from prokaryotes have been recently highlighted due to simple cultivation of lipid-producing prokaryotes and their ability to accumulate high biolipid contents. However, the cost of lipid-based biofuel production remains high, in part, because of high cost of lipid extraction processes. This review summarizes the production mechanisms of these different types of biolipids from prokaryotes and extraction methods for these biolipids. Traditional and improved physical/chemical approaches for biolipid extraction remain costly, and these methods are summarized and compared in this review. Recent advances in biological lipid extraction including phage-based cell lysis or secretion of biolipids are also discussed. These new techniques are promising for bacterial biolipids extraction. Challenges and future research needs for cost-effective lipid extraction are identified in this review.
Collapse
Affiliation(s)
- Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
27
|
Jeong D, Jang A. Exploration of microalgal species for simultaneous wastewater treatment and biofuel production. ENVIRONMENTAL RESEARCH 2020; 188:109772. [PMID: 32544724 DOI: 10.1016/j.envres.2020.109772] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Microalgal isolates obtained from stream water and wastewater treatment plant were examined to select a suitable microalgal species capable of simultaneously removing nutrient and producing biofuel. Ten isolates were identified using internal transcribed spacer (ITS) region sequencing analysis and were determined to be green microalgae, belonging to phylum Chlorophyta. The highest nutrient removal rates of 8.1 mg-T-N/L-d and 1.6 mg-T-P/L-d were achieved by Chlorella sorokiniana UTEX 1810 under photo-autotrophic cultivation conditions. Fatty acid methyl ester (FAME) composition analysis was conducted to estimate biofuel quality using gas chromatography with mass spectrometry on the basis of the lipid content extracted from microalgal cell. The composition of FAME is mainly composed of palmitic acid (C16:0), stearic acid (C18:0), linoleic acid (C18:2), and heneicosanoic acid (C21:0). These results suggest that C. sorokiniana UTEX 1810 is a promising candidate for simultaneous removal of nutrient and biofuel production from wastewater.
Collapse
Affiliation(s)
- Dawoon Jeong
- Institute of Environmental Research, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
28
|
Foladori P, Petrini S, Andreottola G. How suspended solids concentration affects nitrification rate in microalgal-bacterial photobioreactors without external aeration. Heliyon 2020; 6:e03088. [PMID: 31909261 PMCID: PMC6939075 DOI: 10.1016/j.heliyon.2019.e03088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 11/27/2022] Open
Abstract
The use of microalgae for the treatment of municipal wastewater makes possible to supply oxygen and save energy, but must be coupled with bacterial nitrification to obtain nitrogen removal efficiency above 90%. This paper explores how the concentration of Total Suspended Solids (TSS, from 0.2 to 3.9 g TSS/L) affects the nitrification kinetic in three microalgal-bacterial consortia treating real municipal wastewater. Two different behaviors were observed: (1) solid-limited kinetic at low TSS concentrations, (2) light-limited kinetic at higher concentrations. For each consortium, an optimal TSS concentration that produced the maximum volumetric ammonium removal rate (around 1.8–2.0 mg N L−1 h−1), was found. The relationship between ammonium removal rate and TSS concentration was then modelled considering bacteria growth, microalgae growth and limitation by dissolved oxygen and light intensity. Assessment of the optimal TSS concentrations makes possible to concentrate the microbial biomass in a photobioreactor while ensuring high kinetics and a low footprint.
Collapse
Affiliation(s)
- Paola Foladori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123, Trento, Italy
| | - Serena Petrini
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123, Trento, Italy
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123, Trento, Italy
| |
Collapse
|
29
|
Kumar R, Ghosh AK, Pal P. Synergy of biofuel production with waste remediation along with value-added co-products recovery through microalgae cultivation: A review of membrane-integrated green approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134169. [PMID: 31505365 DOI: 10.1016/j.scitotenv.2019.134169] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Development of advanced biofuels such as bioethanol and biodiesel from renewable resources is critical for the earth's sustainable management and to slow down the global climate change by partial replacement of gasoline and diesel in the transport sector. Being a diverse group of aquatic micro-organisms, algae are the most prominent resources on the planet, distributed in an aquatic system, a potential source of bioenergy, biomass and secondary metabolites. Microalgae-based biofuel production is widely accepted as non-food fuel sources and better choice for achieving goals of incorporation of a clean fuel source into the transportation sector. The present review article provides a comprehensive literature survey as well as a novel approach on the application of microalgae for their simultaneous cultivation and bioremediation of high nutrient containing wastewater. In addition to that, merits and demerits of different existing conventional techniques for microalgae culture reactors, harvesting of algal biomass, oil recovery, use of different catalysts for transesterification reactions and other by-products recovery have been discussed and compared with the membrane-based system to find out the best optimal conditions for higher biomass as well as lipid yield. This article also deals with the use of a tailor-made membrane in an appropriate module that can be used in upstream and downstream processes during algal-based biofuels production. Such membrane-integrated system has the potential of low-cost and eco-friendly separation, purification and concentration enrichment of biodiesel as well as other valuable algal by-products which can bring the high degree of process intensification for scale-up at the industrial stage.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Chemistry, The University of Burdwan, 713104, India.
| | - Alak Kumar Ghosh
- Department of Chemistry, The University of Burdwan, 713104, India
| | - Parimal Pal
- Environment and Membrane Technology Laboratory, Department of Chemical Engineering, National Institute of Technology Durgapur 713209, India
| |
Collapse
|
30
|
Leong WH, Azella Zaine SN, Ho YC, Uemura Y, Lam MK, Khoo KS, Kiatkittipong W, Cheng CK, Show PL, Lim JW. Impact of various microalgal-bacterial populations on municipal wastewater bioremediation and its energy feasibility for lipid-based biofuel production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109384. [PMID: 31419674 DOI: 10.1016/j.jenvman.2019.109384] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
The microalgal-bacterial co-cultivation was adopted as an alternative in making microbial-based biofuel production to be more feasible in considering the economic and environmental prospects. Accordingly, the microalgal-bacterial symbiotic relationship was exploited to enhance the microbial biomass yield, while bioremediating the nitrogen-rich municipal wastewater. An optimized inoculation ratio of microalgae and activated sludge (AS:MA) was predetermined and further optimization was performed in terms of different increment ratios to enhance the bioremediation process. The nitrogen removal was found accelerating with the increase of the increment ratios of inoculated AS:MA, though all the increment ratios had recorded a near complete total nitrogen removal (94-95%). In light of treatment efficiency and lipid production, the increment ratio of 0.5 was hailed as the best microbial population size in accounting the total nitrogen removal efficiency of 94.45%, while not compromising the lipid production of 0.241 g/L. Moreover, the cultures in municipal wastewater had attained higher biomass and lipid productions of 1.42 g/L and 0.242 g/L, respectively, as compared with the synthetic wastewater which were only 1.12 g/L (biomass yield) and 0.175 g/L (lipid yield). This was possibly due to the presence of trace elements which had contributed to the increase of biomass yield; thus, higher lipid attainability from the microalgal-bacterial culture. This synergistic microalgal-bacterial approach had been proven to be effective in treating wastewater, while also producing useful biomass for eventual lipid production with comparable net energy ratio (NER) value of 0.27, obtained from the life-cycle analysis (LCA) studies. Thereby, contributing towards long-term sustainability and possible commercialization of microbial-based biofuel production.
Collapse
Affiliation(s)
- Wai Hong Leong
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Siti Nur Azella Zaine
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Yeek Chia Ho
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Yoshimitsu Uemura
- Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Man Kee Lam
- Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000 Thailand
| | - Chin Kui Cheng
- Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300 Gambang, Pahang, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| |
Collapse
|
31
|
Molazadeh M, Danesh S, Ahmadzadeh H, Pourianfar HR. Influence of CO2 concentration and N:P ratio on Chlorella vulgaris-assisted nutrient bioremediation, CO2 biofixation and biomass production in a lagoon treatment plant. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|