1
|
Yaylacıoğlu Tuncay F, Talim B, Dinçer PR. Mimicking TGFBI Hot-Spot Mutation Did Not Result in Any Deposit Formation in the Zebrafish Cornea. Curr Eye Res 2024; 49:458-466. [PMID: 38164916 DOI: 10.1080/02713683.2023.2298904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Mutations in transforming growth factor beta-induced (TGFBI) protein are associated with a group of corneal dystrophies (CDs), classified as TGFBI-associated CDs, characterized by deposits in the cornea. Mouse models were not proper in several aspects for modelling human disease. The goal of this study was to generate zebrafish mutants to investigate the corneal phenotype and to decide whether zebrafish could be a potential model for TGFBI-associated CDs. METHODS The conserved arginine residue, codon 117, in zebrafish tgfbi gene was targeted with Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 method. Cas9 VQR variant was used with two target-specific sgRNAs to generate mutations. The presence of mutations was evaluated by T7 Endonuclease Enzyme (T7EI) assay and the type of the mutations were evaluated by Sanger sequencing. The mutant zebrafish at 3 months and 1 year of age were investigated under the microscope for corneal opacity and eye sections were evaluated histopathologically with hematoxylin-eosin, masson-trichrome and congo red stains for corneal deposits. RESULTS We achieved indel variation at the target sequence that resulted in p.Ser115_Arg117delinsLeu (c. 347_353delinsT) by nonhomology mediated repair in F1. This zebrafish mutation had the potential to mimic two disease-causing mutations reported in human cases previously: R124L and R124L + del125-126. Mutant zebrafish did not show any corneal opacity or corneal deposits at 3 months and 1 year of age. CONCLUSION This study generated the first zebrafish model mimicking the R124 hot spot mutation in TGFBI-associated CDs. However, evaluations even at 1 year of age did not reveal any deposits in the cornea histopathologically. This study increased the cautions for modelling TGFBI-associated CDs in zebrafish in addition to differences in the corneal structure between zebrafish and humans.
Collapse
Affiliation(s)
- Fulya Yaylacıoğlu Tuncay
- Medical Biology, Gülhane Medical Faculty, University of Health Sciences, Ankara, Turkey
- Medical Biology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Beril Talim
- Pathology Unit, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | |
Collapse
|
2
|
Choi EH, Suh S, Sears AE, Hołubowicz R, Kedhar SR, Browne AW, Palczewski K. Genome editing in the treatment of ocular diseases. Exp Mol Med 2023; 55:1678-1690. [PMID: 37524870 PMCID: PMC10474087 DOI: 10.1038/s12276-023-01057-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 08/02/2023] Open
Abstract
Genome-editing technologies have ushered in a new era in gene therapy, providing novel therapeutic strategies for a wide range of diseases, including both genetic and nongenetic ocular diseases. These technologies offer new hope for patients suffering from previously untreatable conditions. The unique anatomical and physiological features of the eye, including its immune-privileged status, size, and compartmentalized structure, provide an optimal environment for the application of these cutting-edge technologies. Moreover, the development of various delivery methods has facilitated the efficient and targeted administration of genome engineering tools designed to correct specific ocular tissues. Additionally, advancements in noninvasive ocular imaging techniques and electroretinography have enabled real-time monitoring of therapeutic efficacy and safety. Herein, we discuss the discovery and development of genome-editing technologies, their application to ocular diseases from the anterior segment to the posterior segment, current limitations encountered in translating these technologies into clinical practice, and ongoing research endeavors aimed at overcoming these challenges.
Collapse
Affiliation(s)
- Elliot H Choi
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Susie Suh
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Avery E Sears
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Rafał Hołubowicz
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Sanjay R Kedhar
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Andrew W Browne
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA.
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
3
|
Sarkar S, Panikker P, D’Souza S, Shetty R, Mohan RR, Ghosh A. Corneal Regeneration Using Gene Therapy Approaches. Cells 2023; 12:1280. [PMID: 37174680 PMCID: PMC10177166 DOI: 10.3390/cells12091280] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
One of the most remarkable advancements in medical treatments of corneal diseases in recent decades has been corneal transplantation. However, corneal transplants, including lamellar strategies, have their own set of challenges, such as graft rejection, delayed graft failure, shortage of donor corneas, repeated treatments, and post-surgical complications. Corneal defects and diseases are one of the leading causes of blindness globally; therefore, there is a need for gene-based interventions that may mitigate some of these challenges and help reduce the burden of blindness. Corneas being immune-advantaged, uniquely avascular, and transparent is ideal for gene therapy approaches. Well-established corneal surgical techniques as well as their ease of accessibility for examination and manipulation makes corneas suitable for in vivo and ex vivo gene therapy. In this review, we focus on the most recent advances in the area of corneal regeneration using gene therapy and on the strategies involved in the development of such therapies. We also discuss the challenges and potential of gene therapy for the treatment of corneal diseases. Additionally, we discuss the translational aspects of gene therapy, including different types of vectors, particularly focusing on recombinant AAV that may help advance targeted therapeutics for corneal defects and diseases.
Collapse
Affiliation(s)
- Subhradeep Sarkar
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, Karnataka, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Priyalakshmi Panikker
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, Karnataka, India
| | - Sharon D’Souza
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore 560010, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore 560010, Karnataka, India
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, Karnataka, India
| |
Collapse
|
4
|
Low JYK, Shi X, Anandalakshmi V, Neo D, Peh GSL, Koh SK, Zhou L, Abdul Rahim MK, Boo K, Lee J, Mohanram H, Alag R, Mu Y, Mehta JS, Pervushin K. Release of frustration drives corneal amyloid disaggregation by brain chaperone. Commun Biol 2023; 6:348. [PMID: 36997596 PMCID: PMC10063603 DOI: 10.1038/s42003-023-04725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
TGFBI-related corneal dystrophy (CD) is characterized by the accumulation of insoluble protein deposits in the corneal tissues, eventually leading to progressive corneal opacity. Here we show that ATP-independent amyloid-β chaperone L-PGDS can effectively disaggregate corneal amyloids in surgically excised human cornea of TGFBI-CD patients and release trapped amyloid hallmark proteins. Since the mechanism of amyloid disassembly by ATP-independent chaperones is unknown, we reconstructed atomic models of the amyloids self-assembled from TGFBIp-derived peptides and their complex with L-PGDS using cryo-EM and NMR. We show that L-PGDS specifically recognizes structurally frustrated regions in the amyloids and releases those frustrations. The released free energy increases the chaperone's binding affinity to amyloids, resulting in local restructuring and breakage of amyloids to protofibrils. Our mechanistic model provides insights into the alternative source of energy utilized by ATP-independent disaggregases and highlights the possibility of using these chaperones as treatment strategies for different types of amyloid-related diseases.
Collapse
Affiliation(s)
- Jia Yi Kimberly Low
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, 518172, Shenzhen, China
| | | | - Dawn Neo
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| | - Gary Swee Lim Peh
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| | - Siew Kwan Koh
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| | - Lei Zhou
- School of Optometry, Department of Applied Biology and Chemical Technology, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - M K Abdul Rahim
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Ketti Boo
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - JiaXuan Lee
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Harini Mohanram
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Reema Alag
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Jodhbir S Mehta
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, 169857, Singapore.
- Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore, 168751, Singapore.
| | - Konstantin Pervushin
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
5
|
Clinical and Histopathologic Characteristics and Template of the TGFBI p.(His626Arg) Missense Variant Lattice Corneal Dystrophy. Cornea 2023:00003226-990000000-00241. [PMID: 36796020 DOI: 10.1097/ico.0000000000003247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/31/2022] [Indexed: 02/18/2023]
Abstract
PURPOSE The aim of this study was to define, following the IC3D template format, the clinical and histopathologic phenotype of the p.(His626Arg) missense variant lattice corneal dystrophy (LCDV-H626R), the most common variant lattice dystrophy, and to record long-term outcome of corneal transplantation in this dystrophy. METHODS A database search and a meta-analysis of published data on LCDV-H626R were conducted. A patient diagnosed with LCDV-H626R who underwent bilateral lamellar keratoplasty followed by rekeratoplasty of 1 eye is described, including histopathologic examination of the 3 keratoplasty specimens. RESULTS One hundred forty-five patients from at least 61 families and 11 countries diagnosed with LCDV-H626R were found. This dystrophy is characterized by recurrent erosions, asymmetric progression, and thick lattice lines that extend to corneal periphery. The median age is 37 (range, 25-59) years at the onset of symptoms, 45 (range, 26-62) years at the time of diagnosis, and 50 (range, 41-78) years at the time of the first keratoplasty, suggesting a median interval from the first symptoms to diagnosis and to keratoplasty of 7 and 12 years, respectively. Clinically unaffected carriers have been of age 6 to 45 years. Central anterior stromal haze and centrally thick, peripherally thinner branching lattice lines in the anterior to midstroma of the cornea were noted preoperatively. Histopathology of the host anterior corneal lamella showed a subepithelial fibrous pannus, a destroyed Bowman layer, and amyloid deposits extending to the deep stroma. In the rekeratoplasty specimen, amyloid localized to scarring along the Bowman membrane and to the margins of the graft. CONCLUSIONS The IC3D-type template for LCDV-H626R should help diagnose and manage variant carriers. The histopathologic spectrum of findings is broader and more nuanced than what has been reported.
Collapse
|
6
|
Abe Y, Omoto T, Kitamoto K, Toyono T, Yoshida J, Asaoka R, Yamagami S, Miyai T, Usui T. Corneal irregularity and visual function using anterior segment optical coherence tomography in TGFBI corneal dystrophy. Sci Rep 2022; 12:13759. [PMID: 35962009 PMCID: PMC9374664 DOI: 10.1038/s41598-022-17738-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/29/2022] [Indexed: 11/09/2022] Open
Abstract
The purpose of this study was to evaluate corneal irregular astigmatism of patients with granular and lattice corneal dystrophy (GCD and LCD). 70 GCD, 35 LCD, and 81 control eyes were included. Anterior and posterior corneal topographic data obtained from anterior segment optical coherence tomography were expanded into four components via Fourier harmonic analysis. These components were compared with healthy eyes and the association between each component and best-corrected visual acuity (BCVA) was investigated. Anterior and posterior components increased in both GCD and LCD eyes. Anterior and posterior components of GCD2, anterior of LCD type 1 (LCD1), posterior of LCD type IIIA (LCD 3A), and type IV (LCD4) significantly increased. BCVA was significantly associated with anterior and posterior components in LCD eyes but not in GCD. The anterior components of LCD1, anterior and posterior of LCD3A, and posterior of LCD4 , were positively correlated with BCVA. As conclusions, in GCD eyes, anterior and posterior components differed from those of the control but BCVA was not significantly associated with them. In LCD eyes, the anterior and posterior components increased, and BCVA was significantly associated with the anterior and posterior components.
Collapse
Affiliation(s)
- Yuito Abe
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Department of Ophthalmology, Kanto Central Hospital for Public School Teachers, 6-25-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8531, Japan
| | - Takashi Omoto
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Kohdai Kitamoto
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tetsuya Toyono
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Junko Yoshida
- Department of Ophthalmology, International University of Health and Welfare, 852 Hatakeda, Narita-shi, Chiba, 286-0124, Japan
| | - Ryo Asaoka
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Naka-ku, Hamamatsu-shi, Shizuoka, 430-8558, Japan
| | - Satoru Yamagami
- Department of Ophthalmology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Takashi Miyai
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tomohiko Usui
- Department of Ophthalmology, International University of Health and Welfare, 852 Hatakeda, Narita-shi, Chiba, 286-0124, Japan
| |
Collapse
|
7
|
Irusteta L, Ramírez-Miranda A, Navas-Pérez A, Montes-Almanza L, Arteaga J, García-Martínez F, Graue-Hernández E, Zenteno JC. Detailed phenotypic description of stromal corneal dystrophy in a large pedigree carrying the uncommon TGFBI p.Ala546Asp pathogenic variant. Ophthalmic Genet 2022; 43:589-593. [PMID: 35470743 DOI: 10.1080/13816810.2022.2068047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE The purpose of this study is to describe the corneal clinical spectrum and the intrafamilial phenotypic differences in an extended pedigree suffering from stromal corneal dystrophy due to the rare p.Ala546Asp mutation in TGFBI. METHODS A total of 15 members from a four-generation Mexican family were ascertained for clinical and genetic assessment. All individuals underwent slit-lamp biomicroscopic examination and an extensive ophthalmological examination including corneal topography (OCULUS Pentacam® AXL), corneal biomechanics (OCULUS Corvis ST), and corneal confocal biomicroscopy (Heidelberg Engineering®). A total of 10 individuals carried the heterozygous c.1637C>A (p. Ala546Asp) mutation at TGFBI exon 12. RESULTS Nine out of 10 mutation positive patients were available for clinical characterization. The mean age was 35.5 years, with the youngest and the eldest ones being 3 years old and 62 years old, respectively. The median age of onset of the symptoms was 19.7 years. Five (55.6%) patients presented with a predominantly granular corneal dystrophy type 2 (GCD2) phenotype, one presented with a lattice corneal dystrophy (LCD) phenotype, and one with a granular corneal dystrophy type 1 (GCD1) phenotype. Interestingly, two mutation positive subjects had no clinical deposits in the cornea, demonstrating incomplete penetrance of the disorder in this family. CONCLUSIONS Clinical differences in corneal phenotypes within this CD family and with other pedigrees carrying the same TGFBI genetic defect could be explained by the age of clinical examination of individual patients and/or by the presence of genetic and/or environmental modifiers.
Collapse
Affiliation(s)
- Leire Irusteta
- Department of Cornea, External Disease, and Refractive Surgery, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Arturo Ramírez-Miranda
- Department of Cornea, External Disease, and Refractive Surgery, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Alejandro Navas-Pérez
- Department of Cornea, External Disease, and Refractive Surgery, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Luis Montes-Almanza
- Research Unit-Genetics Department, Institute of Ophthalmology, "Conde de Valenciana", Mexico City, Mexico
| | - José Arteaga
- Department of Cornea, External Disease, and Refractive Surgery, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Froylán García-Martínez
- Research Unit-Genetics Department, Institute of Ophthalmology, "Conde de Valenciana", Mexico City, Mexico
| | - Enrique Graue-Hernández
- Department of Cornea, External Disease, and Refractive Surgery, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Juan C Zenteno
- Research Unit-Genetics Department, Institute of Ophthalmology, "Conde de Valenciana", Mexico City, Mexico.,Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
8
|
Kim D, Chong SH, Shin S, Ham S. Mutation effects on FAS1 domain 4 based on structure and solubility. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140746. [PMID: 34942360 DOI: 10.1016/j.bbapap.2021.140746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Mutations in the fasciclin 1 domain 4 (FAS1-4) of transforming growth factor β-induced protein (TGFBIp) are associated with insoluble extracellular deposits and corneal dystrophies (CDs). The decrease in solubility upon mutation has been implicated in CD; however, the exact molecular mechanisms are not well understood. Here, we performed molecular dynamics simulations followed by solvation thermodynamic analyses of the FAS1-4 domain and its three mutants-R555W, R555Q, and A546T-linked to granular corneal dystrophy type 1, Thiel-Behnke corneal dystrophy and lattice corneal dystrophy, respectively. We found that both R555W and R555Q mutants have less affinity toward solvent water relative to the wild-type protein. In the R555W mutant, a remarkable increase in solvation free energy was observed because of the structural changes near the mutation site. The mutation site W555 is buried in other hydrophobic residues, and R557 simultaneously forms salt bridges with E554 and D561. In the R555Q mutant, the increase in solvation free energy is caused by structural rearrangements far from the mutation site. R558 separately forms salt bridges with D575, E576, and E598. Thus, we thus identified the relationship between the decrease in solubility and conformational changes caused by mutations, which may be useful in designing potential therapeutics and in blocking FAS1 aggregation related to CD.
Collapse
Affiliation(s)
- DongGun Kim
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea; Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Song-Ho Chong
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Seokmin Shin
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Sihyun Ham
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea.
| |
Collapse
|
9
|
High ablation depth phototherapeutic keratectomy in an advanced case of Reis-Bucklers’ corneal dystrophy. Am J Ophthalmol Case Rep 2022; 25:101299. [PMID: 35112027 PMCID: PMC8789594 DOI: 10.1016/j.ajoc.2022.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/07/2021] [Accepted: 01/17/2022] [Indexed: 10/25/2022] Open
|
10
|
Deshmukh M, Liu YC, Rim TH, Venkatraman A, Davidson M, Yu M, Kim HS, Lee G, Jun I, Mehta JS, Kim EK. Automatic segmentation of corneal deposits from corneal stromal dystrophy images via deep learning. Comput Biol Med 2021; 137:104675. [PMID: 34425417 DOI: 10.1016/j.compbiomed.2021.104675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Granular dystrophy is the most common stromal dystrophy. To perform automated segmentation of corneal stromal deposits, we trained and tested a deep learning (DL) algorithm from patients with corneal stromal dystrophy and compared its performance with human segmentation. METHODS In this retrospective cross-sectional study, we included slit-lamp photographs by sclerotic scatter from patients with corneal stromal dystrophy and real-world slit-lamp photographs via various techniques (diffuse illumination, tangential illumination, and sclerotic scatter). Our data set included 1007 slit-lamp photographs of semi-automatically generated handcraft masks on granular and linear lesions from corneal stromal dystrophy patients (806 for the training set and 201 for test set). For external test (140 photographs), we applied the DL algorithm and compared between automated and human segmentation. For performance, we estimated the intersection of union (IoU), global accuracy, and boundary F1 (BF) score for segmentation. RESULTS In 201 internal test set, IoU, global accuracy, and BF score with 95 % confidence Interval were 0.81 (0.79-0.82), 0.99 (0.98-0.99), and 0.93 (0.92-0.95), respectively. In 140 heterogenous external test set as a real-world data, those were 0.64 (0.61-0.67), 0.95 (0.94-0.96), and 0.70 (0.64-0.76) via DL algorithm and 0.56 (0.51-0.61), 0.95 (0.94-0.96), and 0.70 (0.65-0.74) via human rater, respectively. CONCLUSIONS We developed an automated segmentation DL algorithm for corneal stromal deposits in patients with corneal stromal dystrophy. Segmentation on corneal deposits was accurate via the DL algorithm in the well-controlled dataset and showed reasonable performance in a real-world setting. We suggest this automatic segmentation of corneal deposits helps to monitor the disease and can evaluate possible new treatments.
Collapse
Affiliation(s)
| | - Yu-Chi Liu
- Singapore Eye Research Institute, Singapore; Singapore National Eye Centre, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore
| | - Tyler Hyungtaek Rim
- Singapore Eye Research Institute, Singapore; Singapore National Eye Centre, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore
| | | | | | - Marco Yu
- Singapore Eye Research Institute, Singapore
| | | | | | - Ikhyun Jun
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea; Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jodhbir S Mehta
- Singapore Eye Research Institute, Singapore; Singapore National Eye Centre, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore.
| | - Eung Kweon Kim
- Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Saevit Eye Hospital, Goyang-Si, Gyeonggi-Do, South Korea.
| |
Collapse
|
11
|
Mutation-induced dimerization of transforming growth factor-β-induced protein may drive protein aggregation in granular corneal dystrophy. J Biol Chem 2021; 297:100858. [PMID: 34097874 PMCID: PMC8220419 DOI: 10.1016/j.jbc.2021.100858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/23/2021] [Accepted: 06/03/2021] [Indexed: 11/21/2022] Open
Abstract
Protein aggregation in the outermost layers of the cornea, which can lead to cloudy vision and in severe cases blindness, is linked to mutations in the extracellular matrix protein transforming growth factor-β-induced protein (TGFBIp). Among the most frequent pathogenic mutations are R124H and R555W, both associated with granular corneal dystrophy (GCD) characterized by the early-onset formation of amorphous aggregates. The molecular mechanisms of protein aggregation in GCD are largely unknown. In this study, we determined the crystal structures of R124H, R555W, and the lattice corneal dystrophy-associated A546T. Although there were no changes in the monomeric TGFBIp structure of any mutant that would explain their propensity to aggregate, R124H and R555W demonstrated a new dimer interface in the crystal packing, which is not present in wildtype TGFBIp or A546T. This interface, as seen in both the R124H and R555W structures, involves residue 124 of the first TGFBIp molecule and 555 in the second. The interface is not permitted by the Arg124 and Arg555 residues of wildtype TGFBIp and may play a central role in the aggregation exhibited by R124H and R555W in vivo. Using cross-linking mass spectrometry and in-line size exclusion chromatography-small-angle X-ray scattering, we characterized a dimer formed by wildtype and mutant TGFBIps in solution. Dimerization in solution also involves interactions between the N- and C-terminal domains of two TGFBIp molecules but was not identical to the crystal packing dimerization. TGFBIp-targeted interventions that disrupt the R124H/R555W crystal packing dimer interface might offer new therapeutic opportunities to treat patients with GCD.
Collapse
|
12
|
Mok E, Kam KW, Aldave AJ, Young AL. Diagnosing Paraproteinemic Keratopathy: A Case Report. Case Rep Ophthalmol 2021; 12:337-343. [PMID: 34054481 PMCID: PMC8136328 DOI: 10.1159/000514375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/10/2021] [Indexed: 11/30/2022] Open
Abstract
A 65-year-old man presented with bilateral, painless, progressive blurring of vision over 9 years. Slit-lamp examination revealed bilateral subepithelial corneal opacities in clusters located at the mid-periphery. Anterior segment optical coherence tomography, in vivo confocal microscopy (IVCM), serum protein electrophoresis, and molecular genetic testing were performed to evaluate the cause of corneal opacities. Anterior segment optical coherence tomography revealed a band-like, hyperreflective lesion in the Bowman layer and anterior stroma of both corneas. IVCM revealed hyperreflective deposits in the epithelium, anterior stroma, and endothelium. Serum protein electrophoresis identified the presence of paraproteins (immunoglobulin kappa), and molecular genetic testing revealed absence of mutations in the transforming growth factor beta-induced gene (TGFBI) and collagen type XVII alpha 1 gene (COL17A1). The ocular diagnosis of paraproteinemic keratopathy eventually led to a systemic diagnosis of monoclonal gammopathy of undetermined significance by our hematologist/oncologist. Paraproteinemic keratopathy is a rare differential diagnosis in patients with bilateral corneal opacities and therefore may be misdiagnosed as corneal dystrophy or neglected as scars. In patients with bilateral corneal opacities of unknown cause, serological examination, adjunct anterior segment imaging, and molecular genetic testing play a role in establishing the diagnosis.
Collapse
Affiliation(s)
- Eugenie Mok
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong, Hong Kong, China
- Department of Ophthalmology & Visual Sciences, Prince of Wales Hospital, Hong Kong, Hong Kong, China
| | - Ka Wai Kam
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong, Hong Kong, China
- Department of Ophthalmology & Visual Sciences, Prince of Wales Hospital, Hong Kong, Hong Kong, China
| | - Anthony J. Aldave
- Stein Eye Institute, The University of California, Los Angeles, California, USA
| | - Alvin L. Young
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong, Hong Kong, China
- Department of Ophthalmology & Visual Sciences, Prince of Wales Hospital, Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Jaakkola AM, Järventausta PJ, Järvinen RS, Repo P, Kivelä TT, Turunen JA. A novel missense TGFBI variant p.(Ser591Phe) in a Finnish family with variant lattice corneal dystrophy. Eur J Ophthalmol 2021; 32:NP61-NP66. [PMID: 33645289 PMCID: PMC9294436 DOI: 10.1177/1120672121997305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION We describe the phenotype of a variant lattice corneal dystrophy (LCD) potentially caused by a novel variant c.1772C>T p.(Ser591Phe) in exon 13 of the transforming growth factor beta-induced (TGFBI) gene. CASE REPORT The proband, a 71-year-old woman referred because of bilateral LCD, first seen at the age of 65 years, with recent progressive symptoms, underwent a clinical ophthalmological examination, anterior segment optical coherence tomography and confocal microscopy. Additionally, three siblings and three children were examined. The identified TGFBI variant was screened in six family members using Sanger sequencing. A corneal dystrophy gene screen was performed for the proband. Translucent subepithelial irregularities and central to midperipheral stubby branching corneal stromal lattice lines, asymmetric between the right and the left eye, were visible and resulted in mild deterioration of vision in one eye. Genetic testing revealed a novel variant c.1772C>T in TGFBI, leading to the amino acid change p.(Ser591Phe). One daughter carried the same variant but had only thick stromal nerve fibres at the age of 49 years. The other family members neither had corneal abnormalities nor carried the variant. No keratoplasty is yet planned for the proband. CONCLUSIONS We classify the novel variant in TGFBI as possibly pathogenic, potentially causing the late-onset, asymmetric variant LCD. Our findings add to the growing number of TGFBI variants associated with a spectrum of phenotypes of variant LCD.
Collapse
Affiliation(s)
- Aino Maaria Jaakkola
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Petri J Järventausta
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Reetta-Stiina Järvinen
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
| | - Pauliina Repo
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
| | - Tero T Kivelä
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joni A Turunen
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Han SB, Anandalakshmi V, Wong CW, Ng SR, Mehta JS. Genotypic Homogeneity in Distinctive Transforming Growth Factor-Beta Induced (TGFBI) Protein Phenotypes. Int J Mol Sci 2021; 22:ijms22031230. [PMID: 33513810 PMCID: PMC7866065 DOI: 10.3390/ijms22031230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022] Open
Abstract
Background: To evaluate the distribution of the transforming growth factor-beta induced (TGFBI) corneal dystrophies in a multi-ethnic population in Singapore, and to present the different phenotypes with the same genotype. Methods: This study included 32 patients. Slit lamp biomicroscopy was performed for each patient to determine the disease phenotype. Genomic DNA was extracted from the blood samples and the 17 exons of the TGFBI gene were amplified by PCR and sequenced bi-directionally for genotype analysis. Results: Regarding phenotypes, the study patients comprised 11 (34.4%; 8 with R555W and 3 with R124H mutation) patients with granular corneal dystrophy type 1 (GCD1), 6 (18.8%; 5 with R124H and 1 with R124C mutation) patients with GCD2, 13 (40.6%; 7 with R124C, 2 with H626R, 2 with L550P, 1 with A620D and 1 with H572R) patients with lattice corneal dystrophy (LCD) and 2 (6.3%; 1 with R124L and 1 with R124C) patients with Reis–Bückler corneal dystrophy. Regarding genotype, R124H mutation was associated with GCD2 (5 cases; 62.5%) and GCD1 (3 cases; 37.5%). R124C mutation was associated with LCD (7 cases; 87.5%) and GCD2 (1 case; 12.5%). All the 8 cases (100%) of R555W mutation were associated with GCD1. Conclusions: Although the association between genotype and phenotype was good in most cases (65.7%; 21 of 32 patients), genotype/phenotype discrepancy was observed in a significant number.
Collapse
Affiliation(s)
- Sang Beom Han
- Department of Ophthalmology, Kangwon National University School of Medicine, Chuncheon 24289, Korea;
- Department of Ophthalmology, Kangwon National University Hospital, Chuncheon 24289, Korea
| | | | - Chee Wai Wong
- Singapore Eye Research Institute, Singapore 169856, Singapore; (V.A.); (C.W.W.); (S.R.N.)
- Singapore National Eye Centre, Singapore 168751, Singapore
| | - Si Rui Ng
- Singapore Eye Research Institute, Singapore 169856, Singapore; (V.A.); (C.W.W.); (S.R.N.)
- Singapore National Eye Centre, Singapore 168751, Singapore
| | - Jodhbir S. Mehta
- Singapore National Eye Centre, Singapore 168751, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Correspondence: ; Tel.: +65-91825146; Fax: +65-08701316622
| |
Collapse
|
15
|
Li M, Huang H, Li L, He C, Zhu L, Guo H, Wang L, Liu J, Wu S, Liu J, Xu T, Mao Z, Cao N, Zhang K, Lan F, Ding J, Yuan J, Liu Y, Ouyang H. Core transcription regulatory circuitry orchestrates corneal epithelial homeostasis. Nat Commun 2021; 12:420. [PMID: 33462242 PMCID: PMC7814021 DOI: 10.1038/s41467-020-20713-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022] Open
Abstract
Adult stem cell identity, plasticity, and homeostasis are precisely orchestrated by lineage-restricted epigenetic and transcriptional regulatory networks. Here, by integrating super-enhancer and chromatin accessibility landscapes, we delineate core transcription regulatory circuitries (CRCs) of limbal stem/progenitor cells (LSCs) and find that RUNX1 and SMAD3 are required for maintenance of corneal epithelial identity and homeostasis. RUNX1 or SMAD3 depletion inhibits PAX6 and induces LSCs to differentiate into epidermal-like epithelial cells. RUNX1, PAX6, and SMAD3 (RPS) interact with each other and synergistically establish a CRC to govern the lineage-specific cis-regulatory atlas. Moreover, RUNX1 shapes LSC chromatin architecture via modulating H3K27ac deposition. Disturbance of RPS cooperation results in cell identity switching and dysfunction of the corneal epithelium, which is strongly linked to various human corneal diseases. Our work highlights CRC TF cooperativity for establishment of stem cell identity and lineage commitment, and provides comprehensive regulatory principles for human stratified epithelial homeostasis and pathogenesis. Corneal epithelium shares similar molecular signatures to other stratified epithelia. Here, the authors map super-enhancers and accessible chromatin in corneal epithelium, identifying a transcription regulatory circuit, including RUNX1, PAX6, and SMAD3, required for corneal epithelial identity and homeostasis.
Collapse
Affiliation(s)
- Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lingyu Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Chenxi He
- Key Laboratory of Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences; Liver Cancer Institute, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Liqiong Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Huizhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Jingxin Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Tao Xu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Zhen Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Nan Cao
- Program of Stem Cells and Regenerative Medicine, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
| | - Kang Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China.,Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Fei Lan
- Key Laboratory of Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences; Liver Cancer Institute, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Junjun Ding
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China. .,Research Units of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China.
| |
Collapse
|
16
|
Benbouchta Y, Cherkaoui Jaouad I, Tazi H, Elorch H, Ouhenach M, Zrhidri A, Sadki K, Sefiani A, Lyahyai J, Berraho A. Novel mutation in the TGFBI gene in a Moroccan family with atypical corneal dystrophy: a case report. BMC Med Genomics 2021; 14:9. [PMID: 33407479 PMCID: PMC7789668 DOI: 10.1186/s12920-020-00861-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Corneal dystrophies (CDs) are a heterogeneous group of bilateral, genetically determined, noninflammatory bilateral corneal diseases that are usually limited to the cornea. CD is characterized by a large variability in the age of onset, evolution and visual impact and the accumulation of insoluble deposits at different depths in the cornea. Clinical symptoms revealed bilateral multiple superficial, epithelial, and stromal anterior granular opacities in different stages of severity among three patients of this family. A total of 99 genes are involved in CDs. The aim of this study was to identify pathogenic variants causing atypical corneal dystrophy in a large Moroccan family and to describe the clinical phenotype with severely different stages of evolution. CASE PRESENTATION In this study, we report a large Moroccan family with CD. Whole-exome sequencing (WES) was performed in the three affected members who shared a phenotype of corneal dystrophy in different stages of severity. Variant validation and familial segregation were performed by Sanger sequencing in affected sisters and mothers and in two unaffected brothers. Whole-exome sequencing showed a novel heterozygous mutation (c.1772C > A; p.Ser591Tyr) in the TGFBI gene. Clinical examinations demonstrated bilaterally multiple superficial, epithelial and stromal anterior granular opacities in different stages of severity among three patients in this family. CONCLUSIONS This report describes a novel mutation in the TGFBI gene found in three family members affected by different phenotypic aspects. This mutation is associated with Thiel-Behnke corneal dystrophy; therefore, it could be considered a novel phenotype genotype correlation, which will help in genetic counselling for this family.
Collapse
Affiliation(s)
- Yahya Benbouchta
- Department of Medical Genetics, National Institute of Health, 27, Avenue Ibn, BP 769 Agdal, 10 090 Rabat, Morocco
- Laboratory of Human Pathology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Imane Cherkaoui Jaouad
- Department of Medical Genetics, National Institute of Health, 27, Avenue Ibn, BP 769 Agdal, 10 090 Rabat, Morocco
| | - Habiba Tazi
- Ophtalmology Department, Hôpital Des Spécialités, Rabat, Morocco
| | - Hamza Elorch
- Ophtalmology Department, Hôpital Des Spécialités, Rabat, Morocco
| | - Mouna Ouhenach
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomic Center of Human Pathologies, Medical School and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Abdelali Zrhidri
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomic Center of Human Pathologies, Medical School and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Khalid Sadki
- Laboratory of Human Pathology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Abdelaziz Sefiani
- Department of Medical Genetics, National Institute of Health, 27, Avenue Ibn, BP 769 Agdal, 10 090 Rabat, Morocco
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomic Center of Human Pathologies, Medical School and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Jaber Lyahyai
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomic Center of Human Pathologies, Medical School and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Amina Berraho
- Ophtalmology Department, Hôpital Des Spécialités, Rabat, Morocco
| |
Collapse
|
17
|
Mohan RR, Martin LM, Sinha NR. Novel insights into gene therapy in the cornea. Exp Eye Res 2021; 202:108361. [PMID: 33212142 PMCID: PMC9205187 DOI: 10.1016/j.exer.2020.108361] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022]
Abstract
Corneal disease remains a leading cause of impaired vision world-wide, and advancements in gene therapy continue to develop with promising success to prevent, treat and cure blindness. Ideally, gene therapy requires a vector and gene delivery method that targets treatment of specific cells or tissues and results in a safe and non-immunogenic response. The cornea is a model tissue for gene therapy due to its ease of clinician access and immune-privileged state. Improvements in the past 5-10 years have begun to revolutionize the approach to gene therapy in the cornea with a focus on adeno-associated virus and nanoparticle delivery of single and combination gene therapies. In addition, the potential applications of gene editing (zinc finger nucleases [ZNFs], transcription activator-like effector nucleases [TALENs], Clustered Regularly Interspaced Short Palindromic Repeats/Associated Systems [CRISPR/Cas9]) are rapidly expanding. This review focuses on recent developments in gene therapy for corneal diseases, including promising multiple gene therapy, while outlining a practical approach to the development of such therapies and potential impediments to successful delivery of genes to the cornea.
Collapse
Affiliation(s)
- Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-health Vision Research Center, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States.
| | - Lynn M Martin
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-health Vision Research Center, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-health Vision Research Center, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
18
|
Schuh JCL, Holve DL, Mundwiler KE. Corneal Dystrophy in Dutch Belted Rabbits as a Possible Model of Thiel-Behnke Subtype of Epithelial-Stromal TGFβ-Induced Corneal Dystrophy. Toxicol Pathol 2020; 49:555-568. [PMID: 33287658 DOI: 10.1177/0192623320968092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The International Committee for Classification of Corneal Dystrophies (IC3D) categorized corneal dystrophies in humans using anatomic, genotypic, and clinicopathologic phenotypic features. Relative to the IC3D classification, a review of the veterinary literature confirmed that corneal dystrophy is imprecisely applied to any corneal opacity and to multiple poorly characterized histologic abnormalities of the cornea in animals. True corneal dystrophy occurs in mice with targeted mutations and spontaneously in pet dogs and cats and in Dutch belted (DB) rabbits, but these instances lack complete phenotyping or genotyping. Corneal dystrophy in DB rabbits can be an important confounding finding in ocular toxicology studies but has only been described once. Therefore, the ophthalmology and pathology of corneal dystrophy in 13 DB rabbits were characterized to determine whether the findings were consistent with or a possible model of any corneal dystrophy subtypes in humans. Slit lamp and optical coherence tomography (OCT) imaging were used to characterize corneal dystrophy over 4 months in young DB rabbits. The hyperechoic OCT changes correlated with light microscopic findings in the anterior stroma, consisting of highly disordered collagen fibers and enlarged keratocytes. Histochemical stains did not reveal abnormal deposits. Small clusters of 8 to 16 nm diameter curly fibers identified by transmission electron microscopy were consistent with Thiel-Behnke (TBCD) subtype of epithelial-stromal transforming growth factor β-induced dystrophies. Sporadic corneal dystrophy in DB rabbits appears to be a potential animal model of TBCD, but genotypic characterization will be required to confirm this categorization.
Collapse
Affiliation(s)
| | - Dana L Holve
- 486251Biological Test Center, Irvine, CA, USA.,Currently, Incline Village, NV, USA
| | - Karen E Mundwiler
- 486251Biological Test Center, Irvine, CA, USA.,Currently, Huntington Beach, CA, USA
| |
Collapse
|
19
|
Chen AC, Niruthisard D, Chung DD, Chuephanich P, Aldave AJ. Identification of A Novel TGFBI Gene Mutation (p.Serine524Cystine) Associated with Late Onset Recurrent Epithelial Erosions and Bowman Layer Opacities. Ophthalmic Genet 2020; 41:639-644. [PMID: 32880217 DOI: 10.1080/13816810.2020.1814345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/01/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Most transforming growth factor beta-induced (TGFBI) corneal dystrophies are associated with a characteristic phenotype, clinical course, and a conserved mutation in the TGFBI gene. However, we report a novel TGFBI missense mutation associated with a late-onset, variant Bowman layer dystrophy. METHODS Participants underwent slit-lamp examination and multimodal imaging. Polymerase chain reaction amplification and Sanger sequencing were performed on saliva-derived genomic DNA to screen TGFBI exons 4 and 12 as well as COL17A1 exon 46. PolyPhen-2 and SIFT were used to predict the functional impact of any identified variants. RESULTS A 56-year-old Thai woman reported a four-year history of decreased vision and intermittent eye irritation, suggestive of recurrent epithelial erosions, in both eyes. Slit-lamp exam revealed bilateral, irregular, limbal-sparing Bowman layer opacities, which were also noted on anterior segment optical coherence tomography. Phototherapeutic keratectomy was performed in the right eye, improving the best-corrected visual acuity from 20/50 to 20/30. Sequencing of the TGFBI gene revealed a novel heterozygous, missense mutation in exon 12 (c.1571 C > G; p.Ser524Cys), which was present in an affected son and absent in an unaffected son, and was predicted to be damaging by PolyPhen-2 and SIFT. The patient was diagnosed with a variant Bowman layer dystrophy given the late onset of an atypical phenotype and the identification of a novel TGFBI mutation. CONCLUSIONS A novel TGFBI missense mutation is associated with a late-onset Bowman layer dystrophy. Given the atypical clinical appearance and course, molecular genetic analysis was utilized to establish a definitive diagnosis.
Collapse
Affiliation(s)
- Angela C Chen
- Stein Eye Institute, David Geffen School of Medicine at UCLA , Los Angeles, CA, USA
| | - Duangratn Niruthisard
- Stein Eye Institute, David Geffen School of Medicine at UCLA , Los Angeles, CA, USA
- Department of Ophthalmology, Banphaeo General Hospital (Public Organization) , Samutsakhon, Thailand
| | - Doug D Chung
- Stein Eye Institute, David Geffen School of Medicine at UCLA , Los Angeles, CA, USA
| | - Pichaya Chuephanich
- Department of Ophthalmology, Phramongkutklao Hospital, Phramongkutklao College of Medicine , Bangkok, Thailand
| | - Anthony J Aldave
- Stein Eye Institute, David Geffen School of Medicine at UCLA , Los Angeles, CA, USA
| |
Collapse
|
20
|
Mohammadi A, Ahmadi Shadmehri A, Taghavi M, Yaghoobi G, Pourreza MR, Tabatabaiefar MA. A pathogenic variant in the transforming growth factor beta I ( TGFBI) in four Iranian extended families segregating granular corneal dystrophy type II: A literature review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1020-1027. [PMID: 32952948 PMCID: PMC7478261 DOI: 10.22038/ijbms.2020.36763.8757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/15/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Granular and lattice corneal dystrophies (GCDs & LCDs) are autosomal dominant inherited disorders of the cornea. Due to genetic heterogeneity and large genes, unraveling the mutation is challenging. MATERIALS AND METHODS Patients underwent comprehensive clinical examination, and targeted next-generation sequencing (NGS) was used for mutation detection. Co-segregation and in silico analysis was accomplished. RESULTS Patients suffered from GCD. NGS disclosed a known pathogenic variant, c.371G>A (p.R124H), in exon 4 of TGFBI. The variant co-segregated with the phenotype in the family. Homozygous patients manifested with more severe phenotypes. Variable expressivity was observed among heterozygous patients. CONCLUSION The results, in accordance with previous studies, indicate that the c.371G>A in TGFBI is associated with GCD. Some phenotypic variations are related to factors such as modifier genes, reduced penetrance and environmental effects.
Collapse
Affiliation(s)
- Aliasgar Mohammadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azam Ahmadi Shadmehri
- Department of Genetics, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Gholamhossein Yaghoobi
- Department of Ophthalmology, Birjand University of Medical Science, South Khorasan, Iran
- Social Detrimental Health Center, Birjand University of Medical Science, South Khorasan, Iran
| | - Mohammad Reza Pourreza
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
21
|
Lv Y, Li XJ, Wang HP, Liu B, Chen W, Zhang L. TGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1012-1019. [PMID: 32952947 PMCID: PMC7478252 DOI: 10.22038/ijbms.2020.42396.10019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 04/28/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs). MATERIALS AND METHODS Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were used to elucidate the related mechanisms by which TGF-β1 adjusts myocardial differentiation in rat BMSCs. RESULTS Immunocytochemistry revealed that cTnI and Cx43 expressed positively in the cells that were transduced with TGF-β1. The results of Western blot (WB) test showed that the levels of intranuclear β-catenin and total β-catenin were all significantly decreased. However, the cytoplasmic β-catenin level was largely unchanged. Moreover, the levels of GSK-3β were largely unchanged in BMSCs, whereas phosphorylated GSK-3β was significantly decreased in BMSCs. When given the activator of Wnt/β-catenin pathway (lithium chloride, LiCl) to BMSCs transducted with TGF-β1, β-catenin was increased, while phosphorylated β-catenin was decreased. In addition, cyclinD1, MMP-7, and c-Myc protein in BMSCs transducted with Lenti-TGF-β1-GFP were significantly lower. CONCLUSION These results indicate that TGF-β1 promotes BMSCs cardiomyogenic differentiation by promoting the phosphorylation of β-catenin and inhibiting cyclinD1, MMP-7, and c-Myc expression in Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yang Lv
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, Hebei, China
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiu-juan Li
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, Hebei, China
| | - Hai-Ping Wang
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, Hebei, China
| | - Bo Liu
- Department of Pathology, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Wei Chen
- Department of Pathology, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Lei Zhang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
22
|
Pharmaceutical modulation of the proteolytic profile of Transforming Growth Factor Beta induced protein (TGFBIp) offers a new avenue for treatment of TGFBI-corneal dystrophy. J Adv Res 2020; 24:529-543. [PMID: 32637173 PMCID: PMC7327833 DOI: 10.1016/j.jare.2020.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 05/11/2020] [Indexed: 11/24/2022] Open
Abstract
Corneal stromal dystrophies are a group of hereditary disorders caused by mutations in the TGFBI gene and affect the corneal stroma and epithelium. The disease is characterized by the accumulation of insoluble deposits of the mutant TGFBIp leading to poor visual acuity in patients. Mutations are hypothesized to disrupt the protein folding and stability, leading oligomerization of the mutant protein. Current treatment relies on surgical intervention, either tissue removal or substitution, both of which are associated with disease recurrence. The lead compounds reported here prevent/delay the atypical proteolysis of the mutant protein and the generation of amyloidogenic fragments.
Corneal dystrophies are a group of genetically inherited disorders with mutations in the TGFBI gene affecting the Bowman’s membrane and the corneal stroma. The mutant TGFBIp is highly aggregation-prone and is deposited in the cornea. Depending on the type of mutation the protein deposits may vary (amyloid, amorphous powdery aggregate or a mixed form of both), making the cornea opaque and thereby decreases visual acuity. The aggregation of the mutant protein is found to be specific with a unique aggregation mechanism distinct to the cornea. The proteolytic processing of the mutant protein is reported to be different compared to the WT protein. The proteolytic processing of mutant protein gives rise to highly amyloidogenic peptide fragments. The current treatment option, available for patients, is tissue replacement surgery that is associated with high recurrence rates. The clinical need for a simple treatment option for corneal dystrophy patients has become highly essential either to prevent the protein aggregation or to dissolve the preformed aggregates. Here, we report the screening of 2500 compounds from the Maybridge RO3 fragment library using weak affinity chromatography (WAC). The primary hits from WAC were validated by 15N-HSQC NMR assays and specific regions of binding were identified. The recombinant mutant proteins (4th FAS-1 domain of R555W and H572R) were subjected to limited proteolysis by trypsin together with the lead compounds identified by NMR assays. The lead compounds (MO07617, RJF00203 and, BTB05094) were effective to delay/prevent the generation of amyloidogenic peptides in the R555W mutant and compounds (RJF00203 and BTB05094) were effective to delay/prevent the generation of amyloidogenic peptides in the H572R mutant. Thus the lead compounds reported here upon further validation and/or modification might be proposed as a potential treatment option to prevent/delay aggregation by inhibiting the formation of amyloidogenic peptides in TGFBI-corneal dystrophy.
Collapse
Key Words
- 1D, 1-Dimensional
- 2D, 2-Dimensional
- 3D, 3-Dimensional
- AA, Amino Acid
- BMRB, Biological Magnetic Resonance Data Bank
- Corneal dystrophy
- DMSO, Dimethyl sulfoxide
- DSS, 4, 4-dimethyl-4-silapentane-1-sulfonic acid
- EIC, Extracted Ion Chromatogram
- EMI, Emilin-like domain
- FAS1, Fasciclin like Domain
- FPLC, Fast Protein Liquid Chromatography
- Fragment screening
- GCD, Granular Corneal Dystrophy
- HPLC, High-performance liquid chromatography
- HSQC, Heteronuclear Single Quantum Coherence Spectroscopy
- IPTG, Isopropyl-beta-D-thiogalactopyranoside
- ITC, Isothermal Titration Calorimetry
- LB, Luria Bertani
- LCD, Lattice Corneal Dystrophy
- LE, Ligand Efficiency
- MALDI, Matrix-Assisted Laser Desorption/Ionization
- MS, Mass spectrometry/spectrometer
- PBS, Phosphate Buffered Saline
- Proteolysis
- SD, Standard Deviation
- SDS-PAGE, Sodium Dodecyl Sulphate-polyacrylamide gel electrophoresis
- SPR, Surface Plasmon Resonance
- TFA, Trifluoroacetic acid
- TGFBI, Transforming Growth Factor Beta Induced
- TGFBIp
- TGFBIp, Transforming Growth Factor Beta Induced protein
- TOF, Time-of-Flight
- WAC, Weak affinity chromatography
- WT, Wild Type
- Weak affinity chromatography
- ms, Millisecond
Collapse
|
23
|
Nielsen NS, Poulsen ET, Lukassen MV, Chao Shern C, Mogensen EH, Weberskov CE, DeDionisio L, Schauser L, Moore TC, Otzen DE, Hjortdal J, Enghild JJ. Biochemical mechanisms of aggregation in TGFBI-linked corneal dystrophies. Prog Retin Eye Res 2020; 77:100843. [DOI: 10.1016/j.preteyeres.2020.100843] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/22/2022]
|
24
|
Lukassen MV, Poulsen ET, Donaghy J, Mogensen EH, Christie KA, Roshanravan H, DeDioniso L, Nesbit MA, Moore T, Enghild JJ. Protein Analysis of the TGFBI R124H Mouse Model Gives Insight into Phenotype Development of Granular Corneal Dystrophy. Proteomics Clin Appl 2020; 14:e1900072. [PMID: 32558206 DOI: 10.1002/prca.201900072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/14/2020] [Indexed: 01/20/2023]
Abstract
PURPOSE Mutations in the transforming growth factor β-induced protein (TGFBIp) are associated with TGFBI-linked corneal dystrophies, which manifests as protein deposits in the cornea. A total of 70 different disease-causing mutations have been reported so far including the common R124H substitution, which is associated with granular corneal dystrophy type 2 (GCD2). The disease mechanism of GCD2 is not known and the current treatments only offer temporary relief due to the reoccurrence of deposits. EXPERIMENTAL DESIGN The corneal protein profiles of the three genotypes (wild-type (WT), heterozygotes, and homozygotes) of a GCD2 mouse model are compared using label-free quantitative LC-MS/MS. RESULTS The mice do not display corneal protein deposits and the global protein expression between the three genotypes is highly similar. However, the expression of mutated TGFBIp is 41% of that of the WT protein. CONCLUSIONS AND CLINICAL RELEVANCE It is proposed that the lowered expression level of mutant TGFBIp protein relative to WT protein is the direct cause of the missing development of corneal deposits in the mouse. The overall protein profiles of the corneas are not impacted by the reduced amount of TGFBIp. Altogether, this supports a partial reduction in mutated TGFBIp as a potential treatment strategy for GCD2.
Collapse
Affiliation(s)
- Marie V Lukassen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, 8000, Denmark
| | - Ebbe T Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Jack Donaghy
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Emilie H Mogensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Kathleen A Christie
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | | | - Larry DeDioniso
- Avellino Labs USA, Menlo Park, San Francisco, CA, 94025, USA
| | - M Andrew Nesbit
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Tara Moore
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK.,Avellino Labs USA, Menlo Park, San Francisco, CA, 94025, USA
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, 8000, Denmark
| |
Collapse
|
25
|
Malkondu F, Arıkoğlu H, Erkoç Kaya D, Bozkurt B, Özkan F. Investigation of TGFBI (transforming growth factor beta-induced) Gene Mutations in Families with Granular Corneal Dystrophy Type 1 in the Konya Region. Turk J Ophthalmol 2020; 50:64-70. [PMID: 32366062 PMCID: PMC7204905 DOI: 10.4274/tjo.galenos.2019.55770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objectives: Granular corneal dystrophies (GCD) are characterized by small, discrete, sharp-edged, grayish-white opacities in the corneal stroma. Among the genes responsible for the development of GCD, the most strongly related gene is transforming growth factor beta-induced (TGFBI), located in the 5q31.1 locus. Studies show that R124H in exon 4 and R555W in exon 12 are hot-spot mutations in the TGFBI gene that lead to GCD development. In this study, we aimed to investigate these two hot-spot mutations in exons 4 and 12 of the TGFBI gene and other possible mutations in the same regions, which code important functional regions of the protein, in Turkish families with GCD1 and to determine the relationship between the mutations and disease and related phenotypes. Materials and Methods: The study included, 16 individuals diagnosed with GCD type 1 (GCD1), 11 of these patients’ healthy relatives, and 28 unrelated healthy individuals. DNA was obtained from peripheral blood samples taken from each individual and polymerase chain reaction was used to amplify target gene regions. Genotyping studies were done by sequence analysis. Results: The R124S mutation in exon 4 of TGFBI was not detected in the patients or healthy individuals in our study. However, all individuals diagnosed as having GCD1 were found to be heterozygous carriers of the R555W mutation in exon 12 of TGFBI. This mutation was not detected in healthy family members or control individuals unrelated to these families. In addition, we detected the silent mutation F540F in exon 12 and c.32924 G>A substitution in an intronic region of the gene in a few patients and healthy individuals. Conclusion: Our study strongly supports the association of GCD1 with R555W mutation in exon 12 region of the TGFBI gene, as reported in the literature.
Collapse
Affiliation(s)
- Fatma Malkondu
- Selçuk University Faculty of Medicine, Department of Medical Biology, Konya, Turkey
| | - Hilal Arıkoğlu
- Selçuk University Faculty of Medicine, Department of Medical Biology, Konya, Turkey
| | - Dudu Erkoç Kaya
- Selçuk University Faculty of Medicine, Department of Medical Biology, Konya, Turkey
| | - Banu Bozkurt
- Selçuk University Faculty of Medicine, Department of Ophtalmology, Konya, Turkey
| | - Fehmi Özkan
- Konya Numune Hospital, Clinic of Ophtalmology, Konya, Turkey
| |
Collapse
|
26
|
Effect of osmolytes on in-vitro aggregation properties of peptides derived from TGFBIp. Sci Rep 2020; 10:4011. [PMID: 32132634 PMCID: PMC7055237 DOI: 10.1038/s41598-020-60944-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/14/2020] [Indexed: 12/17/2022] Open
Abstract
Protein aggregation has been one of the leading triggers of various disease conditions, such as Alzheimer’s, Parkinson’s and other amyloidosis. TGFBI-associated corneal dystrophies are protein aggregation disorders in which the mutant TGFBIp aggregates and accumulates in the cornea, leading to a reduction in visual acuity and blindness in severe cases. Currently, the only therapy available is invasive and there is a known recurrence after surgery. In this study, we tested the inhibitory and amyloid dissociation properties of four osmolytes in an in-vitroTGFBI peptide aggregation model. The 23-amino acid long peptide (TGFBIp 611–633 with the mutation c.623 G>R) from the 4th FAS-1 domain of TGFBIp that rapidly forms amyloid fibrils was used in the study. Several biophysical methods like Thioflavin T (ThT) fluorescence, Circular Dichroism (CD), fluorescence microscopy and Transmission electron microscopy (TEM) were used to study the inhibitory and amyloid disaggregation properties of the four osmolytes (Betaine, Raffinose, Sarcosine, and Taurine). The osmolytes were effective in both inhibiting and disaggregating the amyloid fibrils derived from TGFBIp 611–633 c.623 G>R peptide. The osmolytes did not have an adverse toxic effect on cultured human corneal fibroblast cells and could potentially be a useful therapeutic strategy for patients with TGFBIp corneal dystrophies.
Collapse
|
27
|
Dammacco R, Merlini G, Lisch W, Kivelä TT, Giancipoli E, Vacca A, Dammacco F. Amyloidosis and Ocular Involvement: an Overview. Semin Ophthalmol 2019; 35:7-26. [PMID: 31829761 DOI: 10.1080/08820538.2019.1687738] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose: To describe the ophthalmic manifestations of amyloidosis and the corresponding therapeutic measures.Methods: The 178 patients included in the study had different types of amyloidosis, diagnosed at a single internal medicine institution (Bari, Italy). To provide a comprehensive review of the types of amyloidosis that can be associated with ocular involvement, the images and clinical descriptions of patients with amyloidosis structurally related to gelsolin, keratoepithelin and lactoferrin were obtained in collaborations with the ophthalmology departments of hospitals in Mainz (Germany) and Helsinki (Finland).Results: Overall, ocular morbidity was detected in 41 of the 178 patients with amyloidosis (23%). AL amyloidosis was diagnosed in 18 patients with systemic disease, 3 with multiple myeloma, and 11 with localized amyloidosis. AA amyloidosis was detected in 2 patients with rheumatoid arthritis and 3 with Behçet syndrome, and transthyretin amyloidosis in 4 patients. The treatment of AL amyloidosis is based on chemotherapy to suppress the production of amyloidogenic L-chains and on surgical excision of orbital or conjunctival masses. AA amyloidosis is managed by targeting the underlying condition. Vitreous opacities and additional findings of ocular involvement in patients with transthyretin amyloidosis indicate the need for pars plana vitrectomy. Gelsolin amyloidosis, characterized by lattice corneal amyloidosis and polyneuropathy, results in recurrent keratitis and corneal scarring, such that keratoplasty is inevitable. In patients with lattice corneal dystrophies associated with amyloid deposits of keratoepithelin fragments, corneal transparency is compromised by deposits of congophilic material in the subepithelial layer and deep corneal stroma. Patients with established corneal opacities are treated by corneal transplantation, but the prognosis is poor because recurrent corneal deposits are possible after surgery. In patients with gelatinous drop-like dystrophy, the amyloid fibrils that accumulate beneath the corneal epithelium consist of lactoferrin and can severely impair visual acuity. Keratoplasty and its variants are performed for visual rehabilitation.Conclusion: A routine ophthalmic follow-up is recommended for all patients with established or suspected amyloidosis, independent of the biochemical type of the amyloid. Close collaboration between the ophthalmologist and the internist will facilitate a more precise diagnosis of ocular involvement in amyloidosis and allow the multidisciplinary management of these patients.Abbreviations: CD: corneal dystrophy; CLA: corneal lattice amyloidosis; CNS: central nervous system; CT: computed tomography; FAP: familial amyloidotic polyneuropathy; GDLCD: gelatinous drop-like corneal dystrophy; GLN: gelsolin; LCD: lattice corneal dystrophy; MRI: magnetic resonance imaging; OLT: orthotopic liver transplantation; TEM: transmission electron microscopy; TGFBI: transforming growth factor β induced; TTR: transthyretin.
Collapse
Affiliation(s)
- Rosanna Dammacco
- Department of Ophthalmology and Neuroscience, University of Bari "Aldo Moro", Medical School, Bari, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Walter Lisch
- Department of Ophthalmology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tero T Kivelä
- Department of Ophthalmology, University of Helsinki, Helsinki, Finland.,Helsinki University Central Hospital, Helsinki, Finland
| | - Ermete Giancipoli
- Department of Biomedical Sciences, Ophthalmology Unit, University of Sassari, Sassari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Medical School, Bari, Italy
| | - Franco Dammacco
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Medical School, Bari, Italy
| |
Collapse
|
28
|
Zhang J, Wu D, Li Y, Fan Y, Chen H, Hong J, Xu J. Novel Mutations Associated With Various Types of Corneal Dystrophies in a Han Chinese Population. Front Genet 2019; 10:881. [PMID: 31555324 PMCID: PMC6726741 DOI: 10.3389/fgene.2019.00881] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/21/2019] [Indexed: 11/30/2022] Open
Abstract
Aims: To study the genetic spectra of corneal dystrophies (CDs) in Han Chinese patients using next-generation sequencing (NGS). Methods: NGS-based targeted region sequencing was performed to evaluate 71 CD patients of Han Chinese ethnicity. A custom-made capture panel was designed to capture all coding exons and untranslated regions plus 25 bp of intronic flanking sequences of 801 candidate genes for eye diseases. The Genome Analysis Tool Kit Best Practices pipeline and an intensive computational prediction pipeline were applied for the analysis of pathogenic variants. Results: We achieved a mutation detection rate of 59.2% by NGS. Eighteen known mutations in CD-related genes were found in 42 out of 71 patients, and these cases showed a genotype–phenotype correlation consistent with previous reports. Nine novel variants that were likely pathogenic were found in various genes, including CHST6, TGFBI, SLC4A11, AGBL1, and COL17A1. These variants were all predicted to be protein-damaging by an intensive computational analysis. Conclusions: This study expands the spectra of genetic mutations associated with various types of CDs in the Chinese population and highlights the clinical utility of targeted NGS for genetically heterogeneous CD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Ophthalmology and Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Dan Wu
- Department of Ophthalmology and Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yue Li
- Department of Ophthalmology and Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yidan Fan
- Department of Ophthalmology and Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Huiyu Chen
- Department of Ophthalmology and Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jiaxu Hong
- Department of Ophthalmology and Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jianjiang Xu
- Department of Ophthalmology and Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
29
|
Poulsen ET, Nielsen NS, Scavenius C, Mogensen EH, Risør MW, Runager K, Lukassen MV, Rasmussen CB, Christiansen G, Richner M, Vorum H, Enghild JJ. The serine protease HtrA1 cleaves misfolded transforming growth factor β-induced protein (TGFBIp) and induces amyloid formation. J Biol Chem 2019; 294:11817-11828. [PMID: 31197037 PMCID: PMC6682723 DOI: 10.1074/jbc.ra119.009050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
The serine protease high-temperature requirement protein A1 (HtrA1) is associated with protein-misfolding disorders such as Alzheimer's disease and transforming growth factor β-induced protein (TGFBIp)-linked corneal dystrophy. In this study, using several biochemical and biophysical approaches, including recombinant protein expression, LC-MS/MS and 2DE analyses, and thioflavin T (ThT) fluorescence assays for amyloid fibril detection, and FTIR assays, we investigated the role of HtrA1 both in normal TGFBIp turnover and in corneal amyloid formation. We show that HtrA1 can cleave WT TGFBIp but prefers amyloidogenic variants. Corneal TGFBIp is extensively processed in healthy people, resulting in C-terminal degradation products spanning the FAS1-4 domain of TGFBIp. We show here that HtrA1 cleaves the WT FAS1-4 domain only inefficiently, whereas the amyloidogenic FAS1-4 mutations transform this domain into a considerably better HTRA1 substrate. Moreover, HtrA1 cleavage of the mutant FAS1-4 domains generated peptides capable of forming in vitro amyloid aggregates. Significantly, these peptides have been previously identified in amyloid deposits in vivo, supporting the idea that HtrA1 is a causative agent for TGFBIp-associated amyloidosis in corneal dystrophy. In summary, our results indicate that TGFBIp is an HtrA1 substrate and that some mutations in the gene encoding TGFBIp cause aberrant HtrA1-mediated processing that results in amyloidogenesis in corneal dystrophies.
Collapse
Affiliation(s)
| | - Nadia Sukusu Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Emilie Hage Mogensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Michael W Risør
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark
| | - Kasper Runager
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark
| | - Marie V Lukassen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark
| | - Casper B Rasmussen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | | | - Mette Richner
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
30
|
Campos-Mollo E, Varela-Conde Y, Arriola-Villalobos P, Cabrera-Beyrouti R, Benítez-Del-Castillo JM, Maldonado MJ, Escribano J. Transforming growth factor beta-induced p.(L558P) variant is associated with autosomal dominant lattice corneal dystrophy type IV in a large cohort of Spanish patients. Clin Exp Ophthalmol 2019; 47:871-880. [PMID: 31056827 DOI: 10.1111/ceo.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/18/2019] [Accepted: 04/30/2019] [Indexed: 11/27/2022]
Abstract
IMPORTANCE Rare transforming growth factor beta-induced (TGFBI) gene variants are involved in autosomal dominant corneal dystrophies (CDs) with heterogeneous clinical features. BACKGROUND The purpose of this study was to analyse TGFBI gene variants and genotype-phenotype correlations in a cohort affected by atypical stromal CD. DESIGN Retrospective cohort study (from May 2014 to September 2017). PARTICIPANTS Thirty-five individuals from 10 unrelated South European families presenting atypical lattice CD (LCD) were included. METHODS Corneal phenotypes were assessed by slit-lamp examination and optical coherence tomography (OCT). Contrast sensitivity was measured under mesopic conditions. Genomic DNA was obtained from blood samples, and all 17 TGFBI exons were screened for variants by Sanger sequencing. MAIN OUTCOME MEASURES p.(L558P) variant of TGFBI gene. RESULTS The p.(L558P) variant was identified in 22 members of the 10 families diagnosed with atypical LCD, characterized by late-onset and absence of recurrent erosion syndrome. OCT revealed punctiform deposits in the deep-mid stroma and normal anterior stroma. This variant was demonstrated to be transmitted with the disease according to autosomal dominant inheritance in most families. CONCLUSIONS AND RELEVANCE To the best of our knowledge, we describe a detailed clinical characterization of the largest CD cohort carrying the TGFBI p.(L558P) variant. We propose that the atypical phenotype of this recently reported alteration can be classified as a form of LCD type IV. The results show that OCT and anterior-posterior analysis of the stromal location of the opacities, along with a genetic analysis of TGFBI, are required to ensure accurate diagnosis and management of CDs.
Collapse
Affiliation(s)
- Ezequiel Campos-Mollo
- Ophthalmology Department, Hospital Virgen de los Lirios, Alcoy, Spain.,Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality, Institute of Health Carlos III, Madrid, Spain
| | - Yago Varela-Conde
- Ophthalmology Department, Hospital Universitario Río Hortega, Valladolid, Spain
| | - Pedro Arriola-Villalobos
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality, Institute of Health Carlos III, Madrid, Spain.,Ophthalmology Department, Hospital Clínico San Carlos, Madrid, Spain.,Institute of Health Research, Hospital Clínico San Carlos, Madrid, Spain
| | | | - José-Manuel Benítez-Del-Castillo
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality, Institute of Health Carlos III, Madrid, Spain.,Ophthalmology Department, Hospital Clínico San Carlos, Madrid, Spain.,Institute of Health Research, Hospital Clínico San Carlos, Madrid, Spain.,Immunology, Ophthalmology and Otorhinolaryngology Department, Complutense University, Madrid, Spain.,Rementería Clinic, Madrid, Spain
| | - Miguel J Maldonado
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality, Institute of Health Carlos III, Madrid, Spain.,Institute of Applied Ophthalmobiology (IOBA-Eye Institute), University of Valladolid, Valladolid, Spain
| | - Julio Escribano
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality, Institute of Health Carlos III, Madrid, Spain.,Genetics Area, Faculty of Medicine/IDINE, University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
31
|
Zhang T, Liu C, He J, Kang Y, Wang F, Li S. Cornea guttata associated with special phenotypic variants of granular corneal dystrophy type 2 in a Chinese family. Eur J Ophthalmol 2019; 30:469-474. [PMID: 30871369 DOI: 10.1177/1120672119832176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE The aim of this study was to analyze the relevant gene mutations in a Chinese family with special phenotypic variants of granular corneal dystrophy type 2 with cornea guttata. METHODS A total of 11 individuals from the affected family underwent complete ophthalmic examination. Genomic DNA was extracted from peripheral leukocytes of affected and unaffected family members. High-throughput sequencing was performed to screen for mutations in 290 genes associated with inherited ophthalmic diseases. Results were validated by bidirectional Sanger sequencing. RESULTS An Arg124His (R124H) mutation of the transforming growth factor beta-induced gene was identified in three members of the affected family: the proband (II-1), his mother (I-2), and his son (III-1). The eyes of the proband and his mother had bilateral superficial whitish ring patches with clear centers occupying their central corneas and appeared to be discoid or ring shaped. In addition, specular microscopic examination showed the presence of dark, round bodies. In vivo confocal microscopy showed some hyporeflective round images (cornea guttata), containing occasionally central highlight, in the proband, his mother, and one of his elder sisters. CONCLUSION We report, for the first time, atypical granular corneal dystrophy type 2 with cornea guttata associated with a single R124H mutation in a Chinese family. Our findings emphasize that genotyping is essential for the accurate diagnosis and classification of granular corneal dystrophy type 2.
Collapse
Affiliation(s)
- Tao Zhang
- Aier School of Ophthalmology, Central South University and Beijing Aier-Intech Eye Hospital, Beijing, P.R. China
| | - Chang Liu
- Aier School of Ophthalmology, Central South University and Beijing Aier-Intech Eye Hospital, Beijing, P.R. China
| | - Jingliang He
- Aier School of Ophthalmology, Central South University and Beijing Aier-Intech Eye Hospital, Beijing, P.R. China
| | - Yanwei Kang
- Aier School of Ophthalmology, Central South University and Beijing Aier-Intech Eye Hospital, Beijing, P.R. China
| | - Feng Wang
- Aier School of Ophthalmology, Central South University and Beijing Aier-Intech Eye Hospital, Beijing, P.R. China
| | - Shaowei Li
- Aier School of Ophthalmology, Central South University and Beijing Aier-Intech Eye Hospital, Beijing, P.R. China
| |
Collapse
|
32
|
Identification of a Heterozygous Mutation in the TGFBI Gene in a Hui-Chinese Family with Corneal Dystrophy. J Ophthalmol 2019; 2019:2824179. [PMID: 30915236 PMCID: PMC6399521 DOI: 10.1155/2019/2824179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/16/2019] [Accepted: 01/30/2019] [Indexed: 11/18/2022] Open
Abstract
Background/Aims Corneal dystrophies (CDs) belong to a group of hereditary heterogeneous corneal diseases which result in visual impairment due to the progressive accumulation of deposits in different corneal layers. So far, mutations in several genes have been responsible for various CDs. The purpose of this study is to identify gene mutations in a three-generation Hui-Chinese family associated with granular corneal dystrophy type I (GCD1). Methods A three-generation Hui-Chinese pedigree with GCD1 was recruited for this study. Slit-lamp biomicroscopy, optical coherence tomography, and confocal microscopy were performed to determine the clinical features of available members. Whole exome sequencing was performed on two patients to screen for potential disease-causing variants in the family. Sanger sequencing was used to test the variant in the family members. Results Clinical examinations demonstrated bilaterally abundant multiple grayish-white opacities in the basal epithelial and superficial stroma layers of corneas of the two patients. Whole exome sequencing revealed that a heterozygous missense mutation (c.1663C > T, p.Arg555Trp) in the transforming growth factor beta-induced gene (TGFBI) was shared by the two patients, and it cosegregated with this disease in the family confirmed by Sanger sequencing. Conclusions The results suggested that the heterozygous TGFBI c.1663C > T (p.Arg555Trp) mutation was responsible for GCD1 in the Hui-Chinese family, which should be of great help in genetic counseling for this family.
Collapse
|
33
|
Nithianandan H, Chao-Shern C, DeDionisio L, Moore T, Chan CC. Trauma-induced exacerbation of epithelial-stromal TGFBI lattice corneal dystrophy. Can J Ophthalmol 2019; 54:e47-e49. [DOI: 10.1016/j.jcjo.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/02/2018] [Indexed: 11/16/2022]
|
34
|
Analysis of TGFBI Gene Mutations in Three Chinese Families with Corneal Dystrophy. J Ophthalmol 2019; 2019:6769013. [PMID: 30805211 PMCID: PMC6362487 DOI: 10.1155/2019/6769013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/24/2018] [Indexed: 11/17/2022] Open
Abstract
Objective To identify the types of TGFBI (transforming growth factor, beta-induced) gene mutations in three Chinese families with Reis-Bücklers corneal dystrophy (RBCD), lattice corneal dystrophy type I (LCDI), or Avellino corneal dystrophy (ACD) and to investigate the relationship between the phenotypes and genotypes of corneal dystrophy. Methods Peripheral blood was collected from 24 patients and 76 phenotypically normal members in three Chinese families as well as from 100 healthy controls. Genomic DNA was extracted. All 17 exons of the TGFBI gene, and the exon-intron junctions were examined by polymerase chain reaction (PCR) and direct DNA sequencing to identify and analyse gene mutations. In addition, all members of the three families were subjected to detailed clinical examinations. Results The heterozygous c.371G > T (p.R124L) mutation was detected in exon 4 of the TGFBI gene in nine patients from the family with RBCD. In contrast, this mutation was not found in the phenotypically normal members of the family. The heterozygous c.370C > T (p.R124C) mutation was found in exon 4 of the TGFBI gene in 11 patients from the family with LCDI. This mutation was not found in the phenotypically normal members of the family. The heterozygous c.371G > A (p.R124H) mutation was detected in exon 4 of the TGFBI gene in four patients from the family with ACD. Again, this mutation was not found in the phenotypically normal members of the family. The TGFBI gene mutations cosegregated with the disease phenotypes in the three families and exhibited an autosomal dominant mode of inheritance. No TGFBI gene mutations were detected in the 100 healthy controls. Conclusion There is a high degree of correlation between the phenotypes and genotypes of TGFBI-linked corneal dystrophies. R124 represents a mutational hotspot in the TGFBI gene. Gene mutation analysis provides a reliable basis for the definitive diagnosis of corneal dystrophy.
Collapse
|
35
|
Vinciguerra P, Vinciguerra R, Randleman JB, Torres I, Morenghi E, Camesasca FI. Sequential Customized Therapeutic Keratectomy for Reis-Bücklers' Corneal Dystrophy: Long-term Follow-up. J Refract Surg 2018; 34:682-688. [DOI: 10.3928/1081597x-20180829-01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/28/2018] [Indexed: 11/20/2022]
|
36
|
Nagano C, Nozu K, Yamamura T, Minamikawa S, Fujimura J, Sakakibara N, Nakanishi K, Horinouchi T, Iwafuchi Y, Kusuhara S, Matsumiya W, Yoshikawa N, Iijima K. TGFBI-associated corneal dystrophy and nephropathy: a novel syndrome? CEN Case Rep 2018; 8:14-17. [PMID: 30088155 DOI: 10.1007/s13730-018-0356-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022] Open
Abstract
Transforming growth factor beta-induced (TGFBI)-associated corneal dystrophies are a group of inherited progressive corneal diseases. One of these TGFBI-associated corneal dystrophies is Avellino corneal dystrophy, an autosomal dominant corneal dystrophy characterized by multiple asymmetric stromal opacities that potentially impair vision. Recently, a case with corneal dystrophy complicated by nephropathy possessing a pathogenic variant of the TGFBI gene was reported for the first time. Here, we report the second case with the same condition and the same mutation in the TGFBI gene. The patient was an 18-year-old male. He and his father had already been diagnosed with corneal dystrophy. Proteinuria was revealed in the patient during urine screening at school. Since his serum creatinine level was raised, a percutaneous renal biopsy was performed. Light microscopy demonstrated oligomeganephronia. Electron microscopy demonstrated an irregular basement membrane. TGFBI was analyzed by direct sequencing. A heterozygous mutation c.371G > A in exon 4, which caused an amino acid substitution from arginine to histidine at codon 124, was identified in the patient and his father. Although only one case of TGFBI-associated corneal dystrophy and nephropathy has been reported, our case's clinical and pathological findings were almost identical to those in that reported case. Further investigations of this new disease entity should be reported to all nephrologists and ophthalmologists.
Collapse
Affiliation(s)
- China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Shogo Minamikawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Junya Fujimura
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Keita Nakanishi
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yoichi Iwafuchi
- Department of Internal Medicine, Koseiren Sanjo General Hospital, Tsukanome 5-1-62, Sanjo, 955-0055, Japan
| | - Sentaro Kusuhara
- Department of Ophthalmology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Wataru Matsumiya
- Department of Ophthalmology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Norishige Yoshikawa
- Clinical Research Center, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
37
|
Lithium chloride (LiCl) induced autophagy and downregulated expression of transforming growth factor β-induced protein (TGFBI) in granular corneal dystrophy. Exp Eye Res 2018; 173:44-50. [PMID: 29679546 DOI: 10.1016/j.exer.2018.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/19/2018] [Accepted: 04/11/2018] [Indexed: 01/20/2023]
Abstract
This study evaluated whether lithium chloride (LiCl) prevents cytoplasmic accumulation of mutant-transforming growth factor β-induced protein (Mut-TGFBI) in granular corneal dystrophy (GCD) via activation of the autophagy pathway. Levels of TGFBI and microtubule-associated protein 1A/1B-light chain 3 (LC3) in 3 GCD patients and healthy controls were analyzed by immunohistochemistry (IHC) staining and Western blot. Primary corneal fibroblasts were isolated and transfected with wild type or mutant type TGFBI over-expressed vectors, and then treated with LiCl and/or autophagy inhibitor 3-methyladenine (3-MA). Then, levels of TGFBI, glycogen synthase kinase-3 (GSK-3) and LC3-I/-II were detected. Cell viability and transmission electron microscopy assay were also performed. Levels of TGFBI and LC3 were significantly increased in GCD patients. Over-expression of mutant type TGFBI inhibited cell viability and induced autophagy in corneal fibroblasts. LiCl downregulated the expression of TGFBI in mutant type TGFBI over-expressed cells in a dose- and time-dependent manner. LiCl enhanced autophagy in mutant type TGFBI over-expressed cells and recovered cell viability in those cells. However, the effects of LiCl were partly attenuated when autophagy was suppressed by 3-MA. To summarize, treatment with LiCl inhibited the expression of TGFBI and recovery the inhibitory of mutant type TGFBI in cell viability, at least part through enhancing of autophagy. These data strongly suggest that LiCl may be useful in the treatment of GCD.
Collapse
|
38
|
Nielsen NS, Juhl DW, Poulsen ET, Lukassen MV, Poulsen EC, Risør MW, Scavenius C, Enghild JJ. Mutation-Induced Deamidation of Corneal Dystrophy-Related Transforming Growth Factor β-Induced Protein. Biochemistry 2017; 56:6470-6480. [PMID: 29140698 DOI: 10.1021/acs.biochem.7b00668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mutations in the transforming growth factor β-induced protein (TGFBIp) cause phenotypically diverse corneal dystrophies, where protein aggregation in the cornea leads to severe visual impairment. Previous studies have shown a relationship between mutant-specific corneal dystrophy phenotypes and the thermodynamic stability of TGFBIp. Using liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance (NMR), we investigated correlations between the structural integrity of disease-related mutants of the fourth FAS1 domain (FAS1-4) and deamidation of TGFBIp residue Asn622. We observed a high rate of Asn622 deamidation in the A546D and A546D/P551Q FAS1-4 mutants that were both largely unstructured as determined by NMR. Conversely, the more structurally organized A546T and V624M FAS1-4 mutants had reduced deamidation rates, suggesting that a folded and stable FAS1-4 domain precludes Asn622 deamidation. Wild-type, R555Q, and R555W FAS1-4 mutants displayed very slow deamidation, which agrees with their similar and ordered NMR structures, where Asn622 is in a locked conformation. We confirmed the FAS1-4 mutational effect on deamidation rates in full-length TGFBIp mutants and found a similar ranking compared to that of the FAS1-4 domain alone. Consequently, the deamidation rate of Asn622 can be used to predict the structural effect of the many destabilizing and/or stabilizing mutations reported for TGFBIp. In addition, the deamidation of Asn622 may influence the pathophysiology of TGFBIp-induced corneal dystrophies.
Collapse
Affiliation(s)
- Nadia Sukusu Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Dennis Wilkens Juhl
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Ebbe Toftgaard Poulsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Marie V Lukassen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Emil Christian Poulsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Michael W Risør
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Carsten Scavenius
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Jan J Enghild
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| |
Collapse
|
39
|
Song Y, Sun M, Wang N, Zhou X, Zhao J, Wang Q, Chen S, Deng Y, Qiu L, Chen Y, Aldave AJ, Zhang F. Prevalence of transforming growth factor β-induced gene corneal dystrophies in Chinese refractive surgery candidates. J Cataract Refract Surg 2017; 43:1489-1494. [PMID: 29233738 DOI: 10.1016/j.jcrs.2017.07.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 02/05/2023]
Abstract
PURPOSE To determine the prevalence of the transforming growth factor (TGF) β-induced gene corneal dystrophies in refractive surgery candidates in China. SETTING Five hospitals in China. DESIGN Prospective case series. METHOD Refractive surgical candidates from 5 preselected eye hospitals/centers in China were recruited after providing informed consent. All patients had slitlamp biomicroscopy and collection of a buccal swab as a source of DNA for screening of the TGF β-induced gene for the 5 most common mutations associated with Reis-Bückler corneal dystrophy, Thiel-Behnke corneal dystrophy, granular corneal dystrophy type 1, granular corneal dystrophy type 2, and lattice corneal dystrophy type 1. RESULTS Of the 2068 refractive surgery candidates analyzed, 4 had corneal opacities in both eyes on slitlamp examination. Screening for the TGF β-induced gene found the heterozygous p.R124H mutation associated with granular corneal dystrophy type 2 in each of the 4 individuals with corneal opacities as well as in a fifth individual who did not have any corneal opacities, for a prevalence of 0.24%. Exacerbation of dystrophic corneal deposition developed after laser refractive surgery in 2 individuals who did not have preoperative TGF β-induced gene screening. CONCLUSIONS The prevalence of the TGF β-induced gene corneal dystrophies in Chinese refractive surgery candidates was estimated to be approximately 0.24%. Genetic testing is recommended to identify and exclude from candidacy all individuals with a TGF β-induced gene dystrophy before elective keratorefractive surgery to avoid causing accelerated postoperative dystrophic deposition.
Collapse
Affiliation(s)
- Yanzheng Song
- From the Beijing Tongren Eye Center (Song, Sun, N. Wang, Zhang), Beijing Tongren Hospital, Capital Medical University and Beijing Ophthalmology & Visual Sciences Key Laboratory, the Peking University Third Hospital (Y. Chen), Beijing, Key Laboratory of Myopia, Ministry of Health, Department of Ophthalmology (Zhou, Zhao), the Eye and ENT Hospital of Fudan University, Shanghai, the Eye Hospital of Wenzhou Medical University (Q. Wang, S. Chen), Wenzhou, the West China Hospital of Sichuan University (Deng, Qiu), Chengdu, China; the Stein Eye Institute (Aldave), University of California Los Angeles Medical Center, Los Angeles, California, USA
| | - Mingshen Sun
- From the Beijing Tongren Eye Center (Song, Sun, N. Wang, Zhang), Beijing Tongren Hospital, Capital Medical University and Beijing Ophthalmology & Visual Sciences Key Laboratory, the Peking University Third Hospital (Y. Chen), Beijing, Key Laboratory of Myopia, Ministry of Health, Department of Ophthalmology (Zhou, Zhao), the Eye and ENT Hospital of Fudan University, Shanghai, the Eye Hospital of Wenzhou Medical University (Q. Wang, S. Chen), Wenzhou, the West China Hospital of Sichuan University (Deng, Qiu), Chengdu, China; the Stein Eye Institute (Aldave), University of California Los Angeles Medical Center, Los Angeles, California, USA
| | - Ningli Wang
- From the Beijing Tongren Eye Center (Song, Sun, N. Wang, Zhang), Beijing Tongren Hospital, Capital Medical University and Beijing Ophthalmology & Visual Sciences Key Laboratory, the Peking University Third Hospital (Y. Chen), Beijing, Key Laboratory of Myopia, Ministry of Health, Department of Ophthalmology (Zhou, Zhao), the Eye and ENT Hospital of Fudan University, Shanghai, the Eye Hospital of Wenzhou Medical University (Q. Wang, S. Chen), Wenzhou, the West China Hospital of Sichuan University (Deng, Qiu), Chengdu, China; the Stein Eye Institute (Aldave), University of California Los Angeles Medical Center, Los Angeles, California, USA
| | - Xingtao Zhou
- From the Beijing Tongren Eye Center (Song, Sun, N. Wang, Zhang), Beijing Tongren Hospital, Capital Medical University and Beijing Ophthalmology & Visual Sciences Key Laboratory, the Peking University Third Hospital (Y. Chen), Beijing, Key Laboratory of Myopia, Ministry of Health, Department of Ophthalmology (Zhou, Zhao), the Eye and ENT Hospital of Fudan University, Shanghai, the Eye Hospital of Wenzhou Medical University (Q. Wang, S. Chen), Wenzhou, the West China Hospital of Sichuan University (Deng, Qiu), Chengdu, China; the Stein Eye Institute (Aldave), University of California Los Angeles Medical Center, Los Angeles, California, USA
| | - Jing Zhao
- From the Beijing Tongren Eye Center (Song, Sun, N. Wang, Zhang), Beijing Tongren Hospital, Capital Medical University and Beijing Ophthalmology & Visual Sciences Key Laboratory, the Peking University Third Hospital (Y. Chen), Beijing, Key Laboratory of Myopia, Ministry of Health, Department of Ophthalmology (Zhou, Zhao), the Eye and ENT Hospital of Fudan University, Shanghai, the Eye Hospital of Wenzhou Medical University (Q. Wang, S. Chen), Wenzhou, the West China Hospital of Sichuan University (Deng, Qiu), Chengdu, China; the Stein Eye Institute (Aldave), University of California Los Angeles Medical Center, Los Angeles, California, USA
| | - Qinmei Wang
- From the Beijing Tongren Eye Center (Song, Sun, N. Wang, Zhang), Beijing Tongren Hospital, Capital Medical University and Beijing Ophthalmology & Visual Sciences Key Laboratory, the Peking University Third Hospital (Y. Chen), Beijing, Key Laboratory of Myopia, Ministry of Health, Department of Ophthalmology (Zhou, Zhao), the Eye and ENT Hospital of Fudan University, Shanghai, the Eye Hospital of Wenzhou Medical University (Q. Wang, S. Chen), Wenzhou, the West China Hospital of Sichuan University (Deng, Qiu), Chengdu, China; the Stein Eye Institute (Aldave), University of California Los Angeles Medical Center, Los Angeles, California, USA
| | - Shihao Chen
- From the Beijing Tongren Eye Center (Song, Sun, N. Wang, Zhang), Beijing Tongren Hospital, Capital Medical University and Beijing Ophthalmology & Visual Sciences Key Laboratory, the Peking University Third Hospital (Y. Chen), Beijing, Key Laboratory of Myopia, Ministry of Health, Department of Ophthalmology (Zhou, Zhao), the Eye and ENT Hospital of Fudan University, Shanghai, the Eye Hospital of Wenzhou Medical University (Q. Wang, S. Chen), Wenzhou, the West China Hospital of Sichuan University (Deng, Qiu), Chengdu, China; the Stein Eye Institute (Aldave), University of California Los Angeles Medical Center, Los Angeles, California, USA
| | - Yingping Deng
- From the Beijing Tongren Eye Center (Song, Sun, N. Wang, Zhang), Beijing Tongren Hospital, Capital Medical University and Beijing Ophthalmology & Visual Sciences Key Laboratory, the Peking University Third Hospital (Y. Chen), Beijing, Key Laboratory of Myopia, Ministry of Health, Department of Ophthalmology (Zhou, Zhao), the Eye and ENT Hospital of Fudan University, Shanghai, the Eye Hospital of Wenzhou Medical University (Q. Wang, S. Chen), Wenzhou, the West China Hospital of Sichuan University (Deng, Qiu), Chengdu, China; the Stein Eye Institute (Aldave), University of California Los Angeles Medical Center, Los Angeles, California, USA
| | - Lemei Qiu
- From the Beijing Tongren Eye Center (Song, Sun, N. Wang, Zhang), Beijing Tongren Hospital, Capital Medical University and Beijing Ophthalmology & Visual Sciences Key Laboratory, the Peking University Third Hospital (Y. Chen), Beijing, Key Laboratory of Myopia, Ministry of Health, Department of Ophthalmology (Zhou, Zhao), the Eye and ENT Hospital of Fudan University, Shanghai, the Eye Hospital of Wenzhou Medical University (Q. Wang, S. Chen), Wenzhou, the West China Hospital of Sichuan University (Deng, Qiu), Chengdu, China; the Stein Eye Institute (Aldave), University of California Los Angeles Medical Center, Los Angeles, California, USA
| | - Yueguo Chen
- From the Beijing Tongren Eye Center (Song, Sun, N. Wang, Zhang), Beijing Tongren Hospital, Capital Medical University and Beijing Ophthalmology & Visual Sciences Key Laboratory, the Peking University Third Hospital (Y. Chen), Beijing, Key Laboratory of Myopia, Ministry of Health, Department of Ophthalmology (Zhou, Zhao), the Eye and ENT Hospital of Fudan University, Shanghai, the Eye Hospital of Wenzhou Medical University (Q. Wang, S. Chen), Wenzhou, the West China Hospital of Sichuan University (Deng, Qiu), Chengdu, China; the Stein Eye Institute (Aldave), University of California Los Angeles Medical Center, Los Angeles, California, USA
| | - Anthony J Aldave
- From the Beijing Tongren Eye Center (Song, Sun, N. Wang, Zhang), Beijing Tongren Hospital, Capital Medical University and Beijing Ophthalmology & Visual Sciences Key Laboratory, the Peking University Third Hospital (Y. Chen), Beijing, Key Laboratory of Myopia, Ministry of Health, Department of Ophthalmology (Zhou, Zhao), the Eye and ENT Hospital of Fudan University, Shanghai, the Eye Hospital of Wenzhou Medical University (Q. Wang, S. Chen), Wenzhou, the West China Hospital of Sichuan University (Deng, Qiu), Chengdu, China; the Stein Eye Institute (Aldave), University of California Los Angeles Medical Center, Los Angeles, California, USA
| | - Fengju Zhang
- From the Beijing Tongren Eye Center (Song, Sun, N. Wang, Zhang), Beijing Tongren Hospital, Capital Medical University and Beijing Ophthalmology & Visual Sciences Key Laboratory, the Peking University Third Hospital (Y. Chen), Beijing, Key Laboratory of Myopia, Ministry of Health, Department of Ophthalmology (Zhou, Zhao), the Eye and ENT Hospital of Fudan University, Shanghai, the Eye Hospital of Wenzhou Medical University (Q. Wang, S. Chen), Wenzhou, the West China Hospital of Sichuan University (Deng, Qiu), Chengdu, China; the Stein Eye Institute (Aldave), University of California Los Angeles Medical Center, Los Angeles, California, USA.
| |
Collapse
|
40
|
Poulsen ET, Runager K, Nielsen NS, Lukassen MV, Thomsen K, Snider P, Simmons O, Vorum H, Conway SJ, Enghild JJ. Proteomic profiling of TGFBI-null mouse corneas reveals only minor changes in matrix composition supportive of TGFBI knockdown as therapy against TGFBI-linked corneal dystrophies. FEBS J 2017; 285:101-114. [PMID: 29117645 DOI: 10.1111/febs.14321] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/25/2017] [Accepted: 11/03/2017] [Indexed: 12/27/2022]
Abstract
TGFBIp is a constituent of the extracellular matrix in many human tissues including the cornea, where it is one of the most abundant proteins expressed. TGFBIp interacts with Type I, II, IV, VI, and XII collagens as well as several members of the integrin family, suggesting it plays an important role in maintaining structural integrity and possibly corneal transparency as well. Significantly, more than 60 point mutations within the TGFBI gene have been reported to result in aberrant TGFBIp folding and aggregation in the cornea, resulting in severe visual impairment and blindness. Several studies have focused on targeting TGFBIp in the cornea as a therapeutic approach to treat TGFBI-linked corneal dystrophies, but the effect of this approach on corneal homeostasis and matrix integrity remained unknown. In the current study, we evaluated the histological and proteomic profiles of corneas from TGFBI-deficient mice as well as potential redundant functions of the paralogous protein POSTN. The absence of TGFBIp in mouse corneas did not grossly affect the collagen scaffold, and POSTN is unable to compensate for loss of TGFBIp. Proteomic comparison of wild-type and TGFBI-/- mice revealed 11 proteins were differentially regulated, including Type VI and XII collagens. However, as these alterations did not manifest at the macroscopic and behavioral levels, these data support partial or complete TGFBI knockdown as a potential therapy against TGFBI-linked corneal dystrophies. Lastly, in situ hybridization verified TGFBI mRNA in the epithelial cells but not in other cell types, supportive of a therapy directed specifically at this lineage.
Collapse
Affiliation(s)
| | - Kasper Runager
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Nadia Sukusu Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Denmark
| | - Marie V Lukassen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Denmark
| | - Karen Thomsen
- Interdisciplinary Nanoscience Center, Aarhus University, Denmark
| | - Paige Snider
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Olga Simmons
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Denmark.,Department of Clinical Medicine, Aalborg University, Denmark
| | - Simon J Conway
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Denmark
| |
Collapse
|
41
|
Qu C, Yu M, Guo X, Li J, Liu X, Shi Y, Gong B. Transforming growth factor β induced mutation-associated phenotype in a Chinese family exhibiting lattice corneal dystrophy. Biomed Rep 2017; 7:314-318. [PMID: 29085627 DOI: 10.3892/br.2017.975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/18/2017] [Indexed: 01/15/2023] Open
Abstract
Lattice corneal dystrophy type I (LCDI) is associated with a large number of missense mutations in the transforming growth factor β induced (TGFBI) gene. The aim of the present study was to analyze TGFBI mutation in a Chinese family with LCDI, and to describe the clinical features and phenotype-genotype correlation within this family. Three generations of this family with LCDI were enrolled in the current study. Complete ophthalmic examinations were performed on all family members and mutation screenings of the coding regions of TGFBI were analyzed using a direct sequencing method. All family members underwent slit-lamp examination, and two patients and one of normal members in the family were evaluated by laser scanning in vivo confocal microscopy. A single heterozygous c.370C>T (p.R124C) mutation was identified in exon 4 of the TGFBI gene in five affected individuals, but not in the other family members and 400 normal control subjects. The affected members exhibited similar clinical features of LCDI, except that patient III:5 presented with mild symptoms. Confocal microscopy in vivo examination demonstrated that the proband (II:2) and his affected niece (III:4) had disruptions in multiple corneal layers, including the basal epithelial cells, stroma cells and Bowman's membrane. Thus, the R124C mutation in the TGFBI gene was identified in a Chinese family with LCDI. These results characterized the clinical features and revealed a genotype-associated phenotype in this family, which may contribute to understanding the pathogenesis of LCDI.
Collapse
Affiliation(s)
- Chao Qu
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China.,Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Man Yu
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China.,Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Xiaoxin Guo
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Jing Li
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Xiaoqi Liu
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Yi Shi
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Bo Gong
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
42
|
García-Castellanos R, Nielsen NS, Runager K, Thøgersen IB, Lukassen MV, Poulsen ET, Goulas T, Enghild JJ, Gomis-Rüth FX. Structural and Functional Implications of Human Transforming Growth Factor β-Induced Protein, TGFBIp, in Corneal Dystrophies. Structure 2017; 25:1740-1750.e2. [PMID: 28988748 DOI: 10.1016/j.str.2017.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/02/2017] [Accepted: 09/01/2017] [Indexed: 12/31/2022]
Abstract
A major cause of visual impairment, corneal dystrophies result from accumulation of protein deposits in the cornea. One of the proteins involved is transforming growth factor β-induced protein (TGFBIp), an extracellular matrix component that interacts with integrins but also produces corneal deposits when mutated. Human TGFBIp is a multi-domain 683-residue protein, which contains one CROPT domain and four FAS1 domains. Its structure spans ∼120 Å and reveals that vicinal domains FAS1-1/FAS1-2 and FAS1-3/FAS1-4 tightly interact in an equivalent manner. The FAS1 domains are sandwiches of two orthogonal four-stranded β sheets decorated with two three-helix insertions. The N-terminal FAS1 dimer forms a compact moiety with the structurally novel CROPT domain, which is a five-stranded all-β cysteine-knot solely found in TGFBIp and periostin. The overall TGFBIp architecture discloses regions for integrin binding and that most dystrophic mutations cluster at both molecule ends, within domains FAS1-1 and FAS1-4.
Collapse
Affiliation(s)
- Raquel García-Castellanos
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence), Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain
| | - Nadia Sukusu Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 10, 8000 Aarhus C, Denmark
| | - Kasper Runager
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 10, 8000 Aarhus C, Denmark
| | - Ida B Thøgersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 10, 8000 Aarhus C, Denmark
| | - Marie V Lukassen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 10, 8000 Aarhus C, Denmark
| | - Ebbe T Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 10, 8000 Aarhus C, Denmark
| | - Theodoros Goulas
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence), Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 10, 8000 Aarhus C, Denmark
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence), Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|
43
|
A Novel Entity of Corneal Diseases with Irregular Posterior Corneal Surfaces: Concept and Clinical Relevance. Cornea 2017; 36 Suppl 1:S53-S59. [DOI: 10.1097/ico.0000000000001388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Venkatraman A, Dutta B, Murugan E, Piliang H, Lakshminaryanan R, Sook Yee AC, Pervushin KV, Sze SK, Mehta JS. Proteomic Analysis of Amyloid Corneal Aggregates from TGFBI-H626R Lattice Corneal Dystrophy Patient Implicates Serine-Protease HTRA1 in Mutation-Specific Pathogenesis of TGFBIp. J Proteome Res 2017; 16:2899-2913. [PMID: 28689406 DOI: 10.1021/acs.jproteome.7b00188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
TGFBI-associated corneal dystrophies are inherited disorders caused by TGFBI gene variants that promote deposition of mutant protein (TGFBIp) as insoluble aggregates in the cornea. Depending on the type and position of amino acid substitution, the aggregates may be amyloid fibrillar, amorphous globular or both, but the molecular mechanisms that drive these different patterns of aggregation are not fully understood. In the current study, we report the protein composition of amyloid corneal aggregates from lattice corneal dystrophy patients of Asian origin with H626R and R124C mutation and compared it with healthy corneal tissues via LC-MS/MS. We identified several amyloidogenic, nonfibrillar amyloid associated proteins and TGFBIp as the major components of the deposits. Our data indicates that apolipoprotein A-IV, apolipoprotein E, and serine protease HTRA1 were significantly enriched in patient deposits compared to healthy controls. HTRA1 was also found to be 7-fold enriched in the amyloid deposits of patients compared to the controls. Peptides sequences (G511DNRFSMLVAAIQSAGLTETLNR533 and Y571HIGDEILVSGGIGALVR588) derived from the fourth FAS-1 domain of TGFBIp were enriched in the corneal aggregates in a mutation-specific manner. Biophysical studies of these two enriched sequences revealed high propensity to form amyloid fibrils under physiological conditions. Our data suggests a possible proteolytic processing mechanism of mutant TGFBIp by HTRA1 and peptides generated by mutant protein may form the β-amyloid core of corneal aggregates in dystrophic patients.
Collapse
Affiliation(s)
- Anandalakshmi Venkatraman
- Singapore Eye Research Institute , 11 Third Hospital Avenue, Singapore 168751
- School of Biological Sciences, Nanyang Technological University , Singapore 637551
| | - Bamaprasad Dutta
- School of Biological Sciences, Nanyang Technological University , Singapore 637551
| | - Elavazhagan Murugan
- Singapore Eye Research Institute , 11 Third Hospital Avenue, Singapore 168751
- Duke-NUS Graduate Medical School , Singapore 169857
| | - Hao Piliang
- School of Biological Sciences, Nanyang Technological University , Singapore 637551
| | - Rajamani Lakshminaryanan
- Singapore Eye Research Institute , 11 Third Hospital Avenue, Singapore 168751
- Duke-NUS Graduate Medical School , Singapore 169857
| | - Anita Chan Sook Yee
- Singapore National Eye Centre , 11 Third Hospital Avenue, Singapore 168751
- Department of Pathology, Singapore General Hospital , Singapore 169608
- Duke-NUS Graduate Medical School , Singapore 169857
| | | | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University , Singapore 637551
| | - Jodhbir S Mehta
- Singapore Eye Research Institute , 11 Third Hospital Avenue, Singapore 168751
- Department of Pathology, Singapore General Hospital , Singapore 169608
- Duke-NUS Graduate Medical School , Singapore 169857
| |
Collapse
|
45
|
State of the Art and Beyond: Anterior Segment Diagnostics Genetic Diagnostics in Corneal Disease. Int Ophthalmol Clin 2017; 57:13-26. [PMID: 28590278 DOI: 10.1097/iio.0000000000000178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Effect of position-specific single-point mutations and biophysical characterization of amyloidogenic peptide fragments identified from lattice corneal dystrophy patients. Biochem J 2017; 474:1705-1725. [PMID: 28381645 PMCID: PMC5632800 DOI: 10.1042/bcj20170125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 12/16/2022]
Abstract
Corneal stromal dystrophies are a group of genetic disorders that may be caused by mutations in the transforming growth factor β-induced (TGFBI) gene which results in the aggregation and deposition of mutant proteins in various layers of the cornea. The type of amino acid substitution dictates the age of onset, anatomical location of the deposits, morphological features of deposits (amyloid, amorphous powder or a mixture of both forms) and the severity of disease presentation. It has been suggested that abnormal turnover and aberrant proteolytic processing of the mutant proteins result in the accumulation of insoluble protein deposits. Using mass spectrometry, we identified increased abundance of a 32 amino acid-long peptide in the 4th fasciclin-like domain-1 (FAS-1) domain of transforming growth factor β-induced protein (amino acid 611-642) in the amyloid deposits of the patients with lattice corneal dystrophies (LCD). In vitro studies demonstrated that the peptide readily formed amyloid fibrils under physiological conditions. Clinically relevant substitution (M619K, N622K, N622H, G623R and H626R) of the truncated peptide resulted in profound changes in the kinetics of amyloid formation, thermal stability of the amyloid fibrils and cytotoxicity of fibrillar aggregates, depending on the position and the type of the amino acid substitution. The results suggest that reduction in the overall net charge, nature and position of cationic residue substitution determines the amyloid aggregation propensity and thermal stability of amyloid fibrils.
Collapse
|
47
|
Utility of Anterior Segment Optical Coherence Tomography in the Management of Corneal Transplantation. CURRENT OPHTHALMOLOGY REPORTS 2016. [DOI: 10.1007/s40135-016-0114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Lukassen MV, Scavenius C, Thøgersen IB, Enghild JJ. Disulfide Bond Pattern of Transforming Growth Factor β-Induced Protein. Biochemistry 2016; 55:5610-5621. [PMID: 27609313 DOI: 10.1021/acs.biochem.6b00694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Transforming growth factor β-induced protein (TGFBIp) is an extracellular matrix protein composed of an NH2-terminal cysteine-rich domain (CRD) annotated as an emilin (EMI) domain and four fasciclin-1 (FAS1-1-FAS1-4) domains. Mutations in the gene cause corneal dystrophies, a group of debilitating protein misfolding diseases that lead to severe visual impairment. Previous studies have shown that TGFBIp in the cornea is cross-linked to type XII collagen through a reducible bond. TGFBIp contains 11 cysteine residues and is thus able to form five intramolecule disulfide bonds, leaving a single cysteine residue available for the collagen cross-link. The structures of TGFBIp and its homologues are unknown. We here present the disulfide bridge pattern of TGFBIp, which was determined by generating specific peptides. These were separated by ion exchange followed by reversed-phase high-performance liquid chromatography and analyzed by mass spectrometry and Edman degradation. The NH2-terminal CRD contains six cysteine residues, and one of these (Cys65) was identified as the candidate for the reducible cross-link between TGFBIp and type XII collagen. In addition, the CRD contained two intradomain disulfide bridges (Cys49-Cys85 and Cys84-Cys97) and one interdomain disulfide bridge to FAS1-2 (Cys74-Cys339). Significantly, this arrangement violates the predicted disulfide bridge pattern of an EMI domain. The cysteine residues in FAS1-3 (Cys473 and Cys478) were shown to form an intradomain disulfide bridge. Finally, an interdomain disulfide bridge between FAS1-1 and FAS1-2 (Cys214-Cys317) was identified. The interdomain disulfide bonds indicate that the NH2 terminus of TGFBIp (CRD, FAS1-1, and FAS1-2) adopts a compact globular fold, leaving FAS1-3 and FAS1-4 exposed.
Collapse
Affiliation(s)
- Marie V Lukassen
- Interdisciplinary Nanoscience Center (iNANO) and ‡Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Carsten Scavenius
- Interdisciplinary Nanoscience Center (iNANO) and ‡Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Ida B Thøgersen
- Interdisciplinary Nanoscience Center (iNANO) and ‡Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Jan J Enghild
- Interdisciplinary Nanoscience Center (iNANO) and ‡Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| |
Collapse
|
49
|
Yagi-Yaguchi Y, Yamaguchi T, Okuyama Y, Satake Y, Tsubota K, Shimazaki J. Corneal Higher Order Aberrations in Granular, Lattice and Macular Corneal Dystrophies. PLoS One 2016; 11:e0161075. [PMID: 27536778 PMCID: PMC4990250 DOI: 10.1371/journal.pone.0161075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/29/2016] [Indexed: 11/25/2022] Open
Abstract
Purpose To evaluate the corneal higher-order aberrations (HOAs) in granular, lattice and macular corneal dystrophies. Methods This retrospective study includes consecutive patients who were diagnosed as granular corneal dystrophy type2 (GCD2; 121 eyes), lattice corneal dystrophies type 1, type 3A (LCDI; 20 eyes, LCDIIIA; 32 eyes) and macular corneal dystrophies (MCD; 13 eyes), and 18 healthy control eyes. Corneal HOAs were calculated using anterior segment optical coherence tomography, and the correlations between HOAs and visual acuity were analyzed. Results HOAs of the total cornea within 4 mm diameter were significantly larger in GCD2 (0.17 ± 0.35 μm), in LCDI (0.33 ± 0.27), LCDIIIA (0.61 ± 1.56) and in MCD (0.23 ± 0.18), compared with healthy controls (0.09 ± 0.02μm, all P < 0.01). HOAs of the total cornea within 6 mm diameter were significantly larger in GCD2 (0.32 ± 0.48), in LCDI (0.60 ± 0.46), LCDIIIA (0.83 ± 2.29) and in MCD (0.44 ± 0.24), compared with healthy controls (0.19 ± 0.06, all P < 0.001). In GCD2, there was no significant correlation between logMAR and HOAs (r = 0.113, P = 0.227). In MCD, LCDI and LCDIIIA, logMAR was positively significantly correlated with HOAs (r = 0.620 and P = 0.028, r = 0.587 and P = 0.007, r = 0.614 and P < 0.001, respectively). Conclusions Increased HOAs occur in eyes with corneal dystrophies, especially in eye with LCD and MCD. Larger amount corneal HOAs are associated with poorer visual acuity in patients with LCD and MCD.
Collapse
Affiliation(s)
- Yukari Yagi-Yaguchi
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba, Japan
| | - Takefumi Yamaguchi
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba, Japan
- * E-mail:
| | - Yumi Okuyama
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba, Japan
| | - Yoshiyuki Satake
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Jun Shimazaki
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba, Japan
| |
Collapse
|
50
|
Oliver VF, Vincent AL. The Genetics and Pathophysiology of IC3D Category 1 Corneal Dystrophies: A Review. Asia Pac J Ophthalmol (Phila) 2016; 5:272-81. [PMID: 27213768 DOI: 10.1097/apo.0000000000000205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Corneal dystrophies are a group of inherited disorders affecting the cornea, many of which lead to visual impairment. The International Committee for Classification of Corneal Dystrophies has established criteria to clarify the status of the various corneal dystrophies, which include the knowledge of the underlying genetics. In this review, we discuss the International Committee for Classification of Corneal Dystrophies category 1 (second edition) corneal dystrophies, for which a clear genetic link has been established. We highlight the various mechanisms underlying corneal dystrophy pathology, including structural disorganization, instability or maladhesion, aberrant protein stability and deposition, abnormal cellular proliferation or apoptosis, and dysfunction of normal enzymatic processes. Understanding these genetic mechanisms is essential for designing targets for therapeutic intervention, especially in the age of gene therapy and gene editing.
Collapse
Affiliation(s)
- Verity Frances Oliver
- From the *Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; and †Eye Department, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| | | |
Collapse
|