1
|
Nsiah ST, Fabijanczuk KC, McLuckey SA. Structural characterization of fatty acid anions via gas-phase charge inversion using Mg(tri-butyl-terpyridine) 2 2+ reagent ions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9741. [PMID: 38567638 DOI: 10.1002/rcm.9741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
RATIONALE Free fatty acids and lipid classes containing fatty acid esters are major components of lipidome. In the absence of a chemical derivatization step, FA anions do not yield all of the structural information that may be of interest under commonly used collision-induced dissociation (CID) conditions. A line of work that avoids condensed-phase derivatization takes advantage of gas-phase ion/ion chemistry to charge invert FA anions to an ion type that provides the structural information of interest using conventional CID. This work was motivated by the potential for significant improvement in overall efficiency for obtaining FA chain structural information. METHODS A hybrid triple quadrupole/linear ion-trap tandem mass spectrometer that has been modified to enable the execution of ion/ion reaction experiments was used to evaluate the use of 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine (ttb-Terpy) as the ligand in divalent magnesium complexes for charge inversion of FA anions. RESULTS Mg(ttb-Terpy)2 2+ complexes provide significantly improved efficiency in producing structurally informative products from FA ions relative to Mg(Terpy)2 2+ complexes, as demonstrated for straight-chain FAs, branched-chain FAs, unsaturated FAs, and cyclopropane-containing FAs. It was discovered that most of the structurally informative fragmentation from [FA-H + Mg(ttb-Terpy)]+ results from the loss of a methyl radical from the ligand followed by radical-directed dissociation (RDD), which stands in contrast to the charge-remote fragmentation (CRF) believed to be operative with the [FA-H + Mg(Terpy)]+ ions. CONCLUSIONS This work demonstrates that a large fraction of product ions from the CID of ions of the form [FA-H + Mg(ttb-Terpy)]+ are derived from RDD of the FA backbone, with a very minor fraction arising from structurally uninformative dissociation channels. This ligand provides an alternative to previously used ligands for the structural characterization of FAs via CRF.
Collapse
Affiliation(s)
- Sarah T Nsiah
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Stubb H, Viitaja T, Trevorah RM, Raitanen JE, Moilanen J, Svedström KJ, Ekholm FS. Another Brick in the Wall of Tear Film Insights Added Through the Total Synthesis and Biophysical Profiling of anteiso-Branched Wax and Cholesteryl Esters. JOURNAL OF NATURAL PRODUCTS 2024; 87:954-965. [PMID: 38547477 PMCID: PMC11389978 DOI: 10.1021/acs.jnatprod.3c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The tear film lipid layer (TFLL) plays a vital part in maintenance of ocular health and represents a unique biological barrier comprising unusual and specialized lipid classes and species. The wax and cholesteryl esters (WEs and CEs) constitute roughly 80-90% of the TFLL. The majority of species in these lipid classes are branched and it is therefore surprising that the synthesis and properties of the second largest category of species, i.e., the anteiso-branched species, remain poorly characterized. In this study, we have developed a total synthesis route and completed a detailed NMR spectroscopic characterization of two common anteiso-branched species, namely: (22S)-22-methyltetracosanyl oleate and cholesteryl (22'S)-22'-methyltetracosanoate. In addition, we have studied their structural properties in the bulk state by wide-angle and small-angle X-ray scattering and their behavior at the aqueous interface using Langmuir monolayer techniques. A comparison to the properties displayed by iso-branched and straight-chain analogues indicate that branching patterns lead to distinct properties in the CE and WE lipid classes. Overall, this study complements the previous work in the field and adds another important brick in the tear film insights wall.
Collapse
Affiliation(s)
- Henrik Stubb
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Tuomo Viitaja
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
- Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Ryan M Trevorah
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Jan-Erik Raitanen
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Jukka Moilanen
- Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Kirsi J Svedström
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Filip S Ekholm
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| |
Collapse
|
3
|
Nagar S, Ajouz L, Nichols KK, Kumar S, Zhao C, Naidoo KK, Robinson MR, Borchman D. Relationship Between Human Meibum Lipid Composition and the Severity of Meibomian Gland Dysfunction: A Spectroscopic Analysis. Invest Ophthalmol Vis Sci 2023; 64:22. [PMID: 37466951 PMCID: PMC10362926 DOI: 10.1167/iovs.64.10.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Purpose Information on the relationship between meibum lipid composition and severity of meibomian gland dysfunction (MGD) is limited. The purpose of this study was to analyze the molecular components of meibum collected from individuals with no MGD, mild-to-moderate MGD, and severe MGD. Methods Adults with and without MGD were enrolled in a prospective, multicenter, exploratory clinical trial (ClinicalTrials.gov Identifier: NCT01979887). Molar ratios of cholesteryl ester to wax ester (RCE/WE) and aldehyde to wax ester (Rald/WE) in meibum samples were measured with 1H-NMR spectroscopy. Results were evaluated for participants grouped by MGD disease status and severity (non-MGD, mild-to-moderate MGD, and severe MGD), as defined by maximum meibum quality scores, Schirmer test results, and Subject Ocular Symptom Questionnaire responses. Results Sixty-nine meibum samples from 69 individuals were included in the analysis: 24 non-MGD, 24 mild-to-moderate MGD, and 21 severe MGD. Mean RCE/WE was 0.29 in non-MGD, 0.14 in mild-to-moderate MGD (P = 0.038 vs. non-MGD, 51% lower), and 0.07 in severe MGD (P = 0.16 vs. mild-to-moderate MGD, 52% lower; P = 0.002 vs. non-MGD, 76% lower). Mean Rald/WE was 0.00022 in non-MGD, 0.00083 in mild-to-moderate MGD (P = 0.07 vs. non-MGD, 277% higher), and 0.0024 in severe MGD (P = 0.003 vs. mild-to-moderate MGD, 190% higher; P < 0.001 vs. non-MGD, 992% higher). Conclusions RCE/WE was lowest and Rald/WE was highest in the severe MGD cohort, suggesting that these meibum constituent molar ratios may result from the pathophysiology associated with MGD and can impact ocular surface lipid and tear film homeostasis. These findings may potentially help identify targets for MGD treatment.
Collapse
Affiliation(s)
- Saumya Nagar
- Allergan, an AbbVie company, Irvine, CA, United States
| | - Layla Ajouz
- Allergan, an AbbVie company, Irvine, CA, United States
| | - Kelly K Nichols
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sandeep Kumar
- Allergan, an AbbVie company, Irvine, CA, United States
| | - Cathy Zhao
- Allergan, an AbbVie company, Irvine, CA, United States
| | - Kugen K Naidoo
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, United States
| | | | - Douglas Borchman
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, United States
| |
Collapse
|
4
|
Amano S, Shimazaki J, Yokoi N, Hori Y, Arita R. Meibomian Gland Dysfunction Clinical Practice Guidelines. Jpn J Ophthalmol 2023; 67:448-539. [PMID: 37351738 DOI: 10.1007/s10384-023-00995-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 06/24/2023]
Affiliation(s)
- Shiro Amano
- Ochanomizu Inoue Eye Clinic, 4-3 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.
| | - Jun Shimazaki
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuichi Hori
- Department of Ophthalmology, Toho University Omori Medical Center, Tokyo, Japan
| | | |
Collapse
|
5
|
Chiou YR, Lin PY, Chou YB, Huang PW, Fan NW. Differential characteristics among asymptomatic and symptomatic meibomian gland dysfunction and those with dry eye. BMC Ophthalmol 2023; 23:154. [PMID: 37041510 PMCID: PMC10091660 DOI: 10.1186/s12886-023-02878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/22/2023] [Indexed: 04/13/2023] Open
Abstract
PURPOSE To identify the characteristics of asymptomatic meibomian gland dysfunction (MGD), symptomatic MGD, and MGD coexisting with dry eye disease (DED). METHODS This cross sectional study enrolled a total of 153 eyes of 87 MGD patients. Participants filled in ocular surface disease index (OSDI) questionnaires. Age, gender, Schirmer's test, meibomian gland (MG) related parameters, lipid layer thickness (LLT) and blinking were compared among patients with asymptomatic MGD, symptomatic MGD, and MGD with DED. Multivariate regression was used to analyze the significant factor of DED in MGD. Spearman's rank correlation analysis was used to evaluate the association between the significant factors and MG function. RESULTS There was no difference in age, Schirmer's test, lid changes, MG secretion, and MG morphology among three groups. The OSDI of asymptomatic MGD, symptomatic MGD and MGD coexisting with DED were 8.5 ± 2.9, 28.5 ± 12.8 and 27.9 ± 10.5, respectively. Patients with MGD coexisting with DED exhibited more frequent eye blinking than that of patients with asymptomatic MGD (8.1 ± 4.1 vs. 6.1 ± 3.5 blinks/20 sec, P = 0.022), and reduced LLT than that of patients with asymptomatic MGD (68.6 ± 17.2 vs. 77.6 ± 14.5 nm, P = 0.010) and symptomatic MGD (78.0 ± 17.1 nm, P = 0.015). Multivariate analysis identified LLT (per nm, OR = 0.96, 95% CI = 0.93-0.99, P = 0.002) as a significant factor associated with DED development in MGD. The number of expressible MG was positively correlated with LLT (Spearman's correlation coefficient = 0.299, P = 0.016) but negatively correlated with the number of blinking (Spearman's correlation coefficient = -0.298, P = 0.016) in MGD patients with DED, and these findings were not identified in those without DED. CONCLUSIONS Asymptomatic MGD, symptomatic MGD, and MGD coexisting with DED share similar characteristics, including meibum secretion and morphology, but MGD patients coexisting with DED exhibited significantly reduced LLT.
Collapse
Affiliation(s)
- Yi-Ran Chiou
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Yu Lin
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yu-Bai Chou
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Po-Wei Huang
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Nai-Wen Fan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan.
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
| |
Collapse
|
6
|
Liu Q, Cheng W, Liu C, Jin X, Ming S, Zhao D, Feng X. Evaluation of effects of 3% diquafosol ophthalmic solution on preocular tear film stability after trabeculectomy. Int Ophthalmol 2022; 43:1903-1910. [DOI: 10.1007/s10792-022-02589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/12/2022] [Indexed: 11/23/2022]
|
7
|
Randolph CE, Beveridge CH, Iyer S, Blanksby SJ, McLuckey SA, Chopra G. Identification of Monomethyl Branched-Chain Lipids by a Combination of Liquid Chromatography Tandem Mass Spectrometry and Charge-Switching Chemistries. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2156-2164. [PMID: 36218280 PMCID: PMC10173259 DOI: 10.1021/jasms.2c00225] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
While various mass spectrometric approaches have been applied to lipid analysis, unraveling the extensive structural diversity of lipids remains a significant challenge. Notably, these approaches often fail to differentiate between isomeric lipids─a challenge that is particularly acute for branched-chain fatty acids (FAs) that often share similar (or identical) mass spectra to their straight-chain isomers. Here, we utilize charge-switching strategies that combine ligated magnesium dications with deprotonated fatty acid anions. Subsequent activation of these charge inverted anions yields mass spectra that differentiate anteiso-branched- from straight-chain and iso-branched-chain FA isomers with the predictable fragmentation enabling de novo assignment of anteiso branch points. The application of these charge-inversion chemistries in both gas- and solution-phase modalities is demonstrated to assign the position of anteiso-methyl branch-points in FAs and, with the aid of liquid chromatography, can be extended to de novo assignment of additional branching sites via predictable fragmentation patterns as methyl branching site(s) move closer to the carboxyl carbon. The gas-phase approach is shown to be compatible with top-down structure elucidation of complex lipids such as phosphatidylcholines, while the integration of solution-phase charge-inversion with reversed phase liquid chromatography enables separation and unambiguous identification of FA structures within isomeric mixtures. Taken together, the presented charge-switching MS-based technique, in combination with liquid chromatography, enables the structural identification of branched-chain FA without the requirement of authentic methyl-branched FA reference standards.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Connor H. Beveridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Sanjay Iyer
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Stephen J. Blanksby
- Central Analytical Research Facility and the School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
- Department of Computer Science (by courtesy), Purdue Institutes of Drug Discovery and Integrative Neuroscience, Purdue Center for Cancer Research, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
8
|
Paranjpe V, Galor A, Grambergs R, Mandal N. The role of sphingolipids in meibomian gland dysfunction and ocular surface inflammation. Ocul Surf 2022; 26:100-110. [PMID: 35973562 PMCID: PMC10259413 DOI: 10.1016/j.jtos.2022.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Inflammation occurs in response to tissue injury and invasion of microorganisms and is carried out by the innate and adaptive immune systems, which are regulated by numerous chemokines, cytokines, and lipid mediators. There are four major families of bioactive lipid mediators that play an integral role in inflammation - eicosanoids, sphingolipids (SPL), specialized pro-resolving mediators (SPM), and endocannabinoids. SPL have been historically recognized as important structural components of cellular membranes; their roles as bioactive lipids and inflammatory mediators are recent additions. Major SPL metabolites, including sphingomyelin, ceramide, ceramide 1-phosphate (C1P), sphingosine, sphingosine 1-phosphate (S1P), and their respective enzymes have been studied extensively, primarily in cell-culture and animal models, for their roles in cellular signaling and regulating inflammation and apoptosis. Less focus has been given to the involvement of SPL in eye diseases. As such, the aim of this review was to examine relationships between the SPL family and ocular surface diseases, focusing on their role in disease pathophysiology and discussing the potential of therapeutics that disrupt SPL pathways.
Collapse
Affiliation(s)
- Vikram Paranjpe
- Department of Ophthalmology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Anat Galor
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA.
| | - Richard Grambergs
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA
| | - Nawajes Mandal
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA; Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
9
|
Viitaja T, Raitanen JE, Hynynen A, Moilanen J, Svedström K, Paananen RO, Ekholm FS. On the importance of chain branching in tear film lipid layer wax and cholesteryl esters. Colloids Surf B Biointerfaces 2022; 214:112429. [PMID: 35278859 DOI: 10.1016/j.colsurfb.2022.112429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
The tear film lipid layer (TFLL) is important to the maintenance of ocular surface health. Surprisingly, information on the individual roles of the myriad of unique lipids found therein is limited. The most abundant lipid species are the wax esters (WE) and cholesteryl esters (CE), and, especially their branched analogs. The isolation of these lipid species from the TFLL has proved to be tedious, and as a result, insights on their biophysical profiles and role in the TFLL is currently lacking. Herein, we circumvent these issues by a total synthesis of the most abundant iso-methyl branched WEs and CEs found in the TFLL. Through a detailed characterization of the biophysical properties, by the use of Langmuir monolayer and wide-angle X-ray scattering techniques, we demonstrate that chain branching alters the behavior of these lipid species on multiple levels. Taken together, our results fill an important knowledge gap concerning the structure and function of the TFLL on the whole.
Collapse
Affiliation(s)
- Tuomo Viitaja
- Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014, Finland; Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, Helsinki FI-00290, Finland
| | - Jan-Erik Raitanen
- Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014, Finland
| | - Antti Hynynen
- Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014, Finland
| | - Jukka Moilanen
- Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, Helsinki FI-00290, Finland
| | - Kirsi Svedström
- Department of Physics, University of Helsinki, P.O. Box 64, Helsinki FI-00014, Finland
| | - Riku O Paananen
- Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014, Finland; Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, Helsinki FI-00290, Finland.
| | - Filip S Ekholm
- Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014, Finland.
| |
Collapse
|
10
|
Hao R, Liu Z, Chou Y, Huang C, Jing D, Wang H, Gao S, Li X. Analysis of Globular Cells in Corneal Nerve Vortex. Front Med (Lausanne) 2022; 9:806689. [PMID: 35273973 PMCID: PMC8901892 DOI: 10.3389/fmed.2022.806689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
Purpose Less was known about globular cells which were a type of dendritic cells (DCs) in cornea. We aimed to investigate the morphological and distribution characteristics of globular cells in corneal vortex and their clinical correlations with ocular surface. Methods Case records of patients who underwent in vivo confocal microscopy (IVCM) were evaluated retrospectively. The morphology and distribution features of globular cells in cornea nerve vortex and their co-existence status with Langerhans cells (LCs) were analyzed. Data of ocular surface symptoms and signs were collected and their correlations with globular cells distribution patterns and dendritic forms were performed. Dry eye patients without LCs were treated with preservative-free artificial tears, while patients with LCs were treated with artificial tears and fluoromethalone until the activated LCs disappeared. Results A total of 836 eyes from 451 individuals were included. Three distribution patterns of globular cells in vortex were investigated, type 1 scattered globular cells (57.66%), type 2 large amounts of globular cells (≥50 cells) gathering in vortex and along some fixed vortex direction horizontally (13.52%) and type 3 no globular cells (28.83%). Their location and cell count altered slightly in the follow-ups but would not disappear. LCs could co-exist with globular cells and could fade after treatment. The type 2 distribution pattern was associated with older age (p = 0.000) and higher upper eyelid Meiboscore (p = 0.006). Dendritic globular cells had higher Meiboscore than Non-dendritic forms. Conclusions Globular cells had characteristic distribution patterns and biological features different from LCs. They were associated with long-term irritation of the meibomian gland dysfunction.
Collapse
Affiliation(s)
- Ran Hao
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Ziyuan Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Yilin Chou
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Chen Huang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Dalan Jing
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Haikun Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Shuang Gao
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Xuemin Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
11
|
Human meibum and tear film derived cholesteryl and wax esters in meibomian gland dysfunction and tear film structure. Ocul Surf 2022; 23:12-23. [PMID: 34774809 PMCID: PMC9875797 DOI: 10.1016/j.jtos.2021.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE This study evaluated the presence and roles of cholesteryl esters (CEs) and wax esters (WEs) from human tear film and meibum in meibomian gland dysfunction (MGD). METHODS Out of 195 enrolled subjects, 164 and 179 subjects provided tear and meibum samples, respectively. Subjects were classified into normal, asymptomatic MGD, MGD, and mixed (MGD & aqueous deficient). The precorneal tear film (PCTF) thinning rate (evaporation) was measured using optical coherence tomography. Lipids extracted from tear and meibum samples were infused into a SCIEX 5600 TripleTOF mass spectrometer. CE and WE intensities quantified with Analyst 1.7 TF and LipidView 1.3 were compared across disease groups in MetaboAnalyst 5.0 and correlated with PCTF thinning rates. RESULTS The numbers of unique CEs and WEs identified in the samples were 125 and 86, respectively. Unsupervised Principal Component (PC) analysis and supervised Partial Least Square Discriminant analysis exhibited little separation among groups for both CEs and WEs in tears and meibum. Spearman's correlation analyses showed no association between either the first or second PC scores with PCTF thinning rates. CONCLUSION The abundances of human PCTF and meibum-derived CEs and WEs were independent of MGD disease status and PCTF thinning (evaporation). CEs and WEs alterations do not contribute to alterations in tear film dynamics in MGD, such as has been demonstrated by the (O-acyl) ω-hydroxy fatty acids (OAHFAs).
Collapse
|
12
|
Phan MAT, Madigan MC, Stapleton F, Willcox M, Golebiowski B. Human meibomian gland epithelial cell culture models: Current progress, challenges, and future directions. Ocul Surf 2021; 23:96-113. [PMID: 34843998 DOI: 10.1016/j.jtos.2021.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022]
Abstract
The widely used immortalised human meibomian gland epithelia cell (iHMGEC) line has made possible extensive studies of the biology and pathophysiology of meibomian glands (MG). Tissue culture protocols for iHMGEC have been revised and modified to optimise the growth conditions for cell differentiation and lipid accumulation. iHMGEC proliferate in serum-free medium but require serum or other appropriate exogenous factors to differentiate. Several supplements can enhance differentiation and neutral lipid accumulation in iHMGEC grown in serum-containing medium. In serum-free medium, rosiglitazone, a peroxisome proliferator activator receptor-γ (PPARγ) agonist, is reported to induce iHMGEC differentiation, neutral lipid accumulation and expression of key biomarkers of differentiation. iHMGEC cultured in serum-containing medium under hypoxia or with azithromycin increases DNAse 2 activity, a biomarker of terminal differentiation in sebocytes. The production of lipids with composition similar to meibum has not been observed in vitro and this remains a major challenge for iHMGEC culture. Innovative methodologies such as 3D ex vivo culture of MG and generation of MG organoids from stem cells are important for further developing a model that more closely mimics the in vivo biology of human MG and to facilitate the next generation of studies of MG disease and dry eye.
Collapse
Affiliation(s)
- Minh Anh Thu Phan
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia.
| | - Michele C Madigan
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia
| | - Fiona Stapleton
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia
| | - Blanka Golebiowski
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia
| |
Collapse
|
13
|
Ewurum A, Veligandla SR, Swindle JS, Clark JD, Borchman D. A spectroscopic approach to measuring meibum lipid composition and conformation in donors with Sjӧgren's syndrome. Exp Eye Res 2021; 210:108713. [PMID: 34363797 PMCID: PMC8429180 DOI: 10.1016/j.exer.2021.108713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 01/15/2023]
Abstract
Patients with Sjӧgren's syndrome (SS) have dry eye associated with meibomian gland dysfunction (MGD). The meibum from donors with dry eye due to MGD but without SS (MMGD) presents with lower levels of cholesteryl ester, less straight chains, and more ordered hydrocarbon chains compared with meibum from donors without MGD (Mn). The aim of the current study was to compare the composition and hydrocarbon chain conformation of meibum from donors with Sjögren's syndrome (Mss) to Mn and MMGD. Meibum was expressed from patients with SS using an ILUX instrument (Alcon Inc., Fort Worth TX). All of the nine meibum donors with SS were female. Meibum composition was characterized using 1H-NMR and meibum hydrocarbon chain conformation was measured using fourier transform infrared spectroscopy. Meibum from every donor with SS measured contained a significantly (P < 0.01) higher cholesteryl ester/wax ester ratio and more straight chains compared with donors without SS or dry eye. None of the nine phase transitional parameters were significantly different, P > 0.05, for Mss compared with Mn. Nor was the CH3/CH2 band height ratio used to estimate the number of hydrocarbon CH3 and CH2 moieties different, P = 0.22, for Mss compared with Mn. In conclusion, the compositional differences between Mss compared with Mn did not result in differences in any of the nine meibum lipid phase transitional parameters measured. The compositional differences observed between Mss and Mn could be markers for or contribute to SS as the differences could lead to tear film lipid packing differences other than conformational differences.
Collapse
Affiliation(s)
- Anthony Ewurum
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Sravya R Veligandla
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Jordan S Swindle
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Jeremy D Clark
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Douglas Borchman
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
14
|
Ewurum A, Ankem A, Georgiev G, Borchman D. A spectroscopic study of the composition and conformation of cholesteryl and wax esters purified from meibum. Chem Phys Lipids 2021; 238:105088. [PMID: 33965419 DOI: 10.1016/j.chemphyslip.2021.105088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/20/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
Elucidating wax ester (WE) and cholesteryl ester (CE) compositional, structural and functional relationships is key to our understanding of how these lipids are involved in natural and pathological processes. Little is known about how CE and WE interact with one another. The focus of the present study is to bridge this gap of knowledge. CE and WE were collected from human meibum as a source of esters with complex hydrocarbon chains. MgO column chromatography was used to separate WE and CE. The esters were characterized using 1H-NMR and Fourier transform infrared spectroscopy. The complexity of the hydrocarbon chains of native WE and CE influenced how changes in the ratio of WE and CE ester influenced some lipid phase transitional parameters but not others. Changes in CE content of WE/CE mixtures undoubtedly modifies the hydrocarbon chain conformation and packing of the mixture. The nature of the change depends on the conformation of the WE and CE. Differences in the complexity of the hydrocarbon chains are likely not to be a major influence on alterations in the order or phase transition temperature when more ordered WE is added to less ordered CE.
Collapse
Affiliation(s)
- Anthony Ewurum
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Akhila Ankem
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, USA
| | - Georgi Georgiev
- iBB - Institute for Bioengineering and Biosciences, Interdisciplinary Complex, IST, University of Lisbon, 1649-004, Lisbon, Portugal
| | - Douglas Borchman
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
15
|
Blinchevsky S, Ramasubramanian A, Borchman D, Sayied S, Venkatasubramanian K. Meibum Lipid Composition and Conformation in Parkinsonism. EC OPHTHALMOLOGY 2021; 12:20-29. [PMID: 34604868 PMCID: PMC8485155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Patients with Parkinson's disease (PD) exhibit unstable tear films. Tear film lipid composition and structure are related to tear film stability and dry eye and tear lipids have not been characterized in people with PD. The aim of this study is to characterize Meibum tear lipids in donors with PD using 1H-NMR and infrared spectroscopy. METHODS Three cohorts were compared: meibum from donors with PD (Mp) n = 10, meibum from donors with PD and dry eye (Mpd) n = 3, meibum from donors without PD (Mn) n = 29. RESULTS There were no significant differences, P > 0.05, in hydrocarbon branching for Mp compared with Mn. Mn contained twice as much cholesteryl esters compared with Mp, P < 0.0001. The cooperativity of the phase transition was significantly 37% lower for Mp compared with Mn, P < 0.0001. Mpd was much more ordered (stiffer) with compared with Mp and Mn, P < 0.0001. CONCLUSION Changes in meibum lipid composition and structure could be a marker for and/or contribute to increase the susceptibility of dry eye in patients with PD. A less cooperative phase transition for Mp compared with Mn indicates that Mp was more heterogeneous and/or contained more contaminants than Mn. The data support the idea that more ordered lipid contributes to dry eye.
Collapse
Affiliation(s)
- Solomon Blinchevsky
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, USA
| | | | - Douglas Borchman
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, USA,Corresponding Author: Douglas Borchman, Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, USA
| | - Shanzeh Sayied
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, USA
| | | |
Collapse
|
16
|
Borchman D. Lipid conformational order and the etiology of cataract and dry eye. J Lipid Res 2021; 62:100039. [PMID: 32554545 PMCID: PMC7910524 DOI: 10.1194/jlr.tr120000874] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Lens and tear film lipids are as unique as the systems they reside in. The major lipid of the human lens is dihydrosphingomylein, found in quantity only in the lens. The lens contains a cholesterol to phospholipid molar ratio as high as 10:1, more than anywhere else in the body. Lens lipids contribute to maintaining lens clarity, and alterations in lens lipid composition due to age are likely to contribute to cataract. Lens lipid composition reflects adaptations to the unique characteristics of the lens: no turnover of lens lipids or proteins; the lowest amount of oxygen of any tissue; and contains almost no intracellular organelles. The tear film lipid layer (TFLL) is also unique. The TFLL is a thin (100 nm) layer of lipid on the surface of tears covering the cornea that contributes to tear film stability. The major lipids of the TFLL are wax esters and cholesterol esters that are not found in the lens. The hydrocarbon chains associated with the esters are longer than those found anywhere else in the body (as long as 32 carbons), and many are branched. Changes in the composition and structure of the 30,000 different moieties of TFLL contribute to the instability of tears. The focus of the current review is how spectroscopy has been used to elucidate the relationships between lipid composition, conformational order and function, and the etiology of cataract and dry eye.
Collapse
Affiliation(s)
- Douglas Borchman
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202.
| |
Collapse
|
17
|
Ramasubramanian A, Ahmed SF, Borchman D. Changes in meibum composition following plaque bachytherapy for choroidal melanoma. BMJ Open Ophthalmol 2020; 5:e000614. [PMID: 33294624 PMCID: PMC7689590 DOI: 10.1136/bmjophth-2020-000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 11/03/2022] Open
Abstract
Objectives Dry eye is common when external beam radiation is used for the treatment of choroidal melanoma (CM). As meibum structure and composition have been related to dry eye, we determined if plaque bachytherapy for CM alters meibum composition. Design 1H-NMR spectroscopy was used to measure the lipid composition of meibum. Setting The University of Louisville, Kentucky, USA. Participants All 13 participants had CM and one participant had iris melanoma. Main outcome measures Cholesteryl ester (CE) to wax ester (WE) ratio, amount of meibum esters (ME) and meibum lipid saturation were measured. Results ME decreased by 80%±18% (±99% CI) in 11 eyes that were treated compared with the contralateral untreated eye. ME increased by 181% in two eyes that were treated compared with the contralateral untreated eye. The mole % CE/WE for meibum was significantly (p<0.0001) 67% lower in eyes that were irradiated compared with control eyes from donors without CM and were not treated. Plaque brachytherapy induced the de-esterification of CE. The intensity of the meibum cis double bond resonances did not change significantly (p>0.05). Conclusion Eyes that had plaque brachytherapy had a lower amount of expressible meibum and a lower CE/WE ratio compared with meibum from the contralateral eye that received no treatment and eyes that did not have uveal melanoma. Both the quality and quantity of meibum should be considered in designing a therapy for dry eye after plaque brachytherapy.
Collapse
Affiliation(s)
| | - Simra Fatima Ahmed
- Department of Ophthtalmology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Douglas Borchman
- Department of Ophthtalmology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
18
|
Tanno H, Sassa T, Sawai M, Kihara A. Production of branched-chain very-long-chain fatty acids by fatty acid elongases and their tissue distribution in mammals. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158842. [PMID: 33069870 DOI: 10.1016/j.bbalip.2020.158842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 01/12/2023]
Abstract
Although most mammalian fatty acids (FAs) are straight-chain, there also exist branched-chain FAs such as iso- and anteiso-FAs, especially in the meibomian glands. Meibum lipids, which are secreted from the meibomian glands and are important for dry eye prevention, contain abundant branched-chain lipids, such as cholesteryl esters and wax esters with chain-lengths of ≥C21 (very-long-chain; VLC). However, the exact tissue distribution of branched-chain lipids or the enzymes involved in the production of branched-chain VLCFAs has remained poorly understood. Here, we revealed that FA elongases ELOVL1, ELOVL3, and ELOVL7, of the seven mammalian ELOVL isozymes, elongated saturated branched-chain acyl-CoAs. ELOVL3 was highly active toward iso-C17:0 and anteiso-C17:0 acyl-CoAs and elongated them up to iso-C23:0 and anteiso-C25:0 acyl-CoAs, respectively. ELOVL1 elongated both iso- and anteiso-C23:0 acyl-CoAs to C25:0 acyl-CoAs. By establishing a liquid chromatography-tandem mass spectrometry method capable of separating branched- and straight-chain lipids, we showed that essentially all of the cholesteryl esters and 88% of the wax esters in the mouse meibomian glands are branched. In Elovl1 mutant mice, the levels of ≥C24:0 branched-chain cholesteryl esters and ≥C25:0 branched-chain wax esters were decreased, indicating that ELOVL1 indeed elongates branched-chain VLC acyl-CoAs in vivo. In addition, substantial amounts of ceramides containing branched-chain FAs were present in the skin, meibomian glands, and liver. Our findings provide new insights into the molecular mechanisms that create FA and lipid diversity.
Collapse
Affiliation(s)
- Honoka Tanno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | - Megumi Sawai
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|
19
|
Meibum lipid hydrocarbon chain branching and rheology after hematopoietic stem cell transplantation. Biochem Biophys Rep 2020; 23:100786. [PMID: 32715105 PMCID: PMC7374597 DOI: 10.1016/j.bbrep.2020.100786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose Meibum from donors who have had hematological stem cell transplantations (MHSCT) are susceptible to severe dry eye symptoms and exhibit very high lipid order (stiffness) compared with meibum from donors without dry eye (Mn). Since lipid order could have functional consequences, we compared the rheology and composition of Mn and MHSCT to measure meibum compositional, structural and functional relationships. Methods The rheology and composition was measured using Langmuir trough and 1H NMR spectroscopy, respectively. Results MHSCT and Mn was studied from 16 to 43 donors, respectively, using NMR spectroscopy. MHSCT contained significantly 16% more straight chain and 24% less iso-chain hydrocarbons compared with Mn. The cholesteryl ester to wax ester molar ratio, and hydrocarbon chain unsaturation were not significantly different, for MHSCT compared with Mn. Surface pressure-area isotherms of meibum from 30 donors without dry-eye were grouped into 4 pools (PC) and meibum from 32 donors with dry eye who had hematopoietic stem cell transplantation (PT) were grouped into 3 pools. Above 15 years of age the Пmax and (Cs−1)max increased with age for both the PC and the PT cohorts. (Cs−1)max values were higher for PT samples compared with age matched PC samples, indicating they had higher elasticity and stiffness. A more ordered lipid could contribute to the formation of a discontinuous patchy tear film lipid layer, which in turn results in deteriorated spreading, and decreased surface elasticity. Conclusions The composition and rheology of meibum from donors with dry eye and who have had HSCT support the idea from other studies that more ordered meibum may contribute to or be a marker of dry eye. More straight chain and less iso-chain hydrocarbons could contribute to HSCT dry eye. Meibum elasticity and stiffness increased with age. Meibum elasticity and stiffness increased with HSCT dry eye. Differences could contribute to a discontinuous patchy tear film lipid layer. Differences could result in deteriorated spreading, and decreased surface elasticity.
Collapse
|
20
|
Hetman ZA, Borchman D. Concentration dependent cholesteryl-ester and wax-ester structural relationships and meibomian gland dysfunction. Biochem Biophys Rep 2020; 21:100732. [PMID: 32042930 PMCID: PMC7000810 DOI: 10.1016/j.bbrep.2020.100732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/08/2023] Open
Abstract
Background With dry eye, the ratio of cholesteryl ester (CE) to wax ester (WE) decreases substantially in meibum, but the functional and structural consequences of this change are speculative. The aim of this study is to confirm this finding and to bridge this gap in knowledge by investigating the effect of varying CE/WE ratios on lipid structure and thermodynamics. Methods Infrared spectroscopy was use to quantify CE and WE in human meibum and to measure hydrocarbon chain conformation and thermodynamics in a cholesteryl behenate, stearyl stearate model system. Results The CE/WE molar ratio was 36% lower for meibum from donors with dry eye due to meibomian gland dysfunction compared with meibum from donors without dry eye. CE (5 mol %) dramatically increased the phase transition temperature of pure WE from -0.12 °C to 63 °C in the mixture. Above 5 mol % CB, the phase transition temperature increased linearly, from 68.5 °C to 85 °C. In the ordered state, CE caused an increase in lipid order from about 72% trans rotamers to about 86% trans rotamers. Above 10% CE, the hydrocarbon chains were arranged in a monoclinic geometry. Conclusions The CE/WE is lower in meibum from donors with dry eye due to meibomian-gland dysfunction. Major conformational changes in the hydrocarbon chains of wax and cholesteryl ester mixtures begin to occur with just 5% CB and above. General significance CE-WE interactions may be important for in understanding lipid layer structure and functional relationships on the surface of tears, skin and plants. The CE/WE is lower in meibum from donors with meibomian-gland dysfunction. CE may be important for the tear film lipid layer structure and function. CE-WE interactions may be important on the surface of tears, skin and plants. Conformational changes in WE and CE mixtures begin to occur with just 5% CE. CE, cholesteryl ester; WE, wax ester.
Collapse
Affiliation(s)
| | - Douglas Borchman
- Corresponding author. The Kentucky Lions Eye Center, University of Louisville, 301 E. Muhammad Ali Blvd, Louisville, KY, 40202.
| |
Collapse
|
21
|
Borchman D, Ramakrishnan V, Henry C, Ramasubramanian A. Differences in Meibum and Tear Lipid Composition and Conformation. Cornea 2020; 39:122-128. [PMID: 31369460 PMCID: PMC8454188 DOI: 10.1097/ico.0000000000002095] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE The compositional, structural, and functional relationships of meibum may provide insights into the loss of tear film stability. Although the conformation of meibum lipids has been studied rigorously, that of tear lipids has not. METHODS Tear lipids (TLHSCT) and meibum (MHSCT) from patients who had hematopoietic stem cell transplantation were pooled prospectively. The infrared spectra of meibum from donors with (MMGD) and without (Mn) meibomian gland dysfunction were retrospectively analyzed to measure the lipid composition and structure. The infrared CH stretching region was used to measure the relative content of CH3 and CH2 moieties in the meibum. RESULTS The 3 major findings of the current study are as follows: 1) compared with Mn, MHSCT and MMGD had 18% fewer CH3 moieties; 2) compared with MHSCT, the phase transition temperature, cooperativity, and order were approximately 20% greater for TLHSCT; and 3) compared with Mn and MMGD, MHSCT and TLHSCT contained fewer double bonds. CONCLUSIONS Tear lipids are more ordered than meibum lipids, which could have functional consequences. The human meibum peak height ratio of the CH3/CH2 bands is not a factor related to tear film stability with age or sex. The amount of CH3 moieties relative to CH2 moieties and saturation could contribute to a higher meibum lipid order associated with a younger age, meibomian gland dysfunction, and dry eye from hematopoietic stem cell transplantation. Therefore, the hydrocarbon order may be a marker of or contribute to an unstable tear film layer.
Collapse
Affiliation(s)
- Douglas Borchman
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY
| | | | | | | |
Collapse
|
22
|
Borchman D, Ramasubramanian A, Foulks GN. Human Meibum Cholesteryl and Wax Ester Variability With Age, Sex, and Meibomian Gland Dysfunction. Invest Ophthalmol Vis Sci 2019; 60:2286-2293. [PMID: 31112994 PMCID: PMC6530518 DOI: 10.1167/iovs.19-26812] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose Relationships between tear film lipid (TFL) layer composition, structure, and function could provide insight into the etiology of dry eye. The molar ratio of cholesteryl ester (CE)/wax ester (WE) was measured in meibum from normal donors (Mn) and compared with meibum from donors with meibomian gland dysfunction (MMGD). Methods CE/WE was measured using nuclear magnetic resonance spectroscopy. Results CE/WE was distributed into two populations with 81% distributed near 0.55 and 19% near 0.3. CE/WE were higher in donors 13 to 19 years old compared with donors 1 to 12 years old and 20 to 88 years old. CE/WE for MMGD was 30% lower, 0.34 ± 0.04, compared with Mn, 0.49 ± 0.04. There were no sex differences in CE/WE. There were no significant racial differences between the CE/WE ratios for Asians and Caucasians. The CE/WE ratio was higher for blacks and lower for Hispanics compared to Caucasians. Due to the small number sampled, confirmation of the later racial results is needed. The packing of CE and WE in the TFL layer was proposed. Conclusions Although MMGD contains much less CE than Mn, factors other than the CE content, such as the levels of saturation and/or proteins, may be responsible for the higher order of MMGD. In addition to saturation, CE could contribute to the increase in order of Mn between 0 and 20 years of age. Observed changes in the meibum content of CE alone is not likely to influence tear film stability.
Collapse
Affiliation(s)
- Douglas Borchman
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States
| | - Aparna Ramasubramanian
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States
| | - Gary N Foulks
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States
| |
Collapse
|
23
|
Lipid Saturation and the Rheology of Human Tear Lipids. Int J Mol Sci 2019; 20:ijms20143431. [PMID: 31336861 PMCID: PMC6678947 DOI: 10.3390/ijms20143431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/24/2019] [Accepted: 07/04/2019] [Indexed: 02/03/2023] Open
Abstract
Elevated levels of acyl chain saturation of meibomian lipids are associated with enhanced tear film (TF) stability in infants to shortened TF breakup time with meibomian gland dysfunction. Thus, the effect of saturation on the surface properties of human TF lipids (TFLs) using a Langmuir surface balance and Brewster angle microscopy was studied. Lipid phase transitions were measured using infrared spectroscopy. The raise in the % of saturation resulted in thicker, and more elastic films at π = 12 mN/m, with the effects being proportional to the saturation level. At the same time, at lower (≤10 mN/m) π, the raise in saturation resulted in an altered spreading and modified structure of TFL layers. The strong impact of saturation on TFL surface properties correlated with a saturation induced increase of the TFL acyl chain order, phase transition temperature, and lipid-lipid interactions. The native TFL order and πmax were significantly greater, compared with native meibum collected from the same individual. Aggregation of lipids on the tear surface due to saturation was not as significant as it was for meibum. Although the surface pressure/area isotherms for TFL were similar for meibum, differences in rheology and phase transition parameters warrant the study of both.
Collapse
|