1
|
Sato H, Narita S, Ishida M, Takahashi Y, Mingguo H, Kashima S, Yamamoto R, Koizumi A, Nara T, Numakura K, Saito M, Yoshioka T, Habuchi T. Specific Gut Microbial Environment in Lard Diet-Induced Prostate Cancer Development and Progression. Int J Mol Sci 2022; 23:ijms23042214. [PMID: 35216332 PMCID: PMC8878430 DOI: 10.3390/ijms23042214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 02/05/2023] Open
Abstract
Lard diet (LD) is a risk factor for prostate cancer (PCa) development and progression. Two immunocompetent mouse models fed with isocaloric specific fat diets (LD) enriched in saturated and monounsaturated fatty acid (SMFA), showed significanftly enhanced PCa progression with weight gain compared with a fish oil diet (FOD). High gut microbial divergency resulted from difference in diets, and the abundance of several bacterial species, such as in the orders Clostridiales and Lactobacillales, was markedly altered in the feces of LD- or FOD-fed mice. The proportion of the order Lactobacillales in the gut was negatively involved in SMFA-induced body weight gain and PCa progression. We found the modulation of lipid metabolism and cholesterol biosynthesis pathways with three and seven commonly up- and downregulated genes in PCa tissues, and some of them correlated with the abundance of the order Lactobacillales in mouse gut. The expression of sphingosine 1-phosphate receptor 2, which is associated with the order Lactobacillales and cancer progression in mouse models, was inversely associated with aggressive phenotype and weight gain in patients with PCa using the NCBI Gene Expression Omnibus database. Therefore, SMFA may promote PCa progression with the abundance of specific gut microbial species and overexpression of lipogenic genes in PCa. Therapeutics with alteration of gut microbiota and candidate genes involved in diet-induced PCa progression may be attractive in PCa.
Collapse
Affiliation(s)
- Hiromi Sato
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan; (H.S.); (M.I.); (Y.T.); (H.M.); (S.K.); (R.Y.); (A.K.); (T.N.); (K.N.); (M.S.); (T.H.)
| | - Shintaro Narita
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan; (H.S.); (M.I.); (Y.T.); (H.M.); (S.K.); (R.Y.); (A.K.); (T.N.); (K.N.); (M.S.); (T.H.)
- Correspondence: ; Tel.: +81-18-884-6154
| | - Masanori Ishida
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan; (H.S.); (M.I.); (Y.T.); (H.M.); (S.K.); (R.Y.); (A.K.); (T.N.); (K.N.); (M.S.); (T.H.)
| | - Yoshiko Takahashi
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan; (H.S.); (M.I.); (Y.T.); (H.M.); (S.K.); (R.Y.); (A.K.); (T.N.); (K.N.); (M.S.); (T.H.)
| | - Huang Mingguo
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan; (H.S.); (M.I.); (Y.T.); (H.M.); (S.K.); (R.Y.); (A.K.); (T.N.); (K.N.); (M.S.); (T.H.)
| | - Soki Kashima
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan; (H.S.); (M.I.); (Y.T.); (H.M.); (S.K.); (R.Y.); (A.K.); (T.N.); (K.N.); (M.S.); (T.H.)
| | - Ryohei Yamamoto
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan; (H.S.); (M.I.); (Y.T.); (H.M.); (S.K.); (R.Y.); (A.K.); (T.N.); (K.N.); (M.S.); (T.H.)
| | - Atsushi Koizumi
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan; (H.S.); (M.I.); (Y.T.); (H.M.); (S.K.); (R.Y.); (A.K.); (T.N.); (K.N.); (M.S.); (T.H.)
| | - Taketoshi Nara
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan; (H.S.); (M.I.); (Y.T.); (H.M.); (S.K.); (R.Y.); (A.K.); (T.N.); (K.N.); (M.S.); (T.H.)
| | - Kazuyuki Numakura
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan; (H.S.); (M.I.); (Y.T.); (H.M.); (S.K.); (R.Y.); (A.K.); (T.N.); (K.N.); (M.S.); (T.H.)
| | - Mitsuru Saito
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan; (H.S.); (M.I.); (Y.T.); (H.M.); (S.K.); (R.Y.); (A.K.); (T.N.); (K.N.); (M.S.); (T.H.)
| | - Toshiaki Yoshioka
- Field of Basic Science, Department of Occupational Therapy, Akita University Graduate School of Health Science, Akita 010-8543, Japan;
| | - Tomonori Habuchi
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan; (H.S.); (M.I.); (Y.T.); (H.M.); (S.K.); (R.Y.); (A.K.); (T.N.); (K.N.); (M.S.); (T.H.)
| |
Collapse
|
2
|
Narita S, Nara T, Sato H, Koizumi A, Huang M, Inoue T, Habuchi T. Research Evidence on High-Fat Diet-Induced Prostate Cancer Development and Progression. J Clin Med 2019; 8:jcm8050597. [PMID: 31052319 PMCID: PMC6572108 DOI: 10.3390/jcm8050597] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Although recent evidence has suggested that a high-fat diet (HFD) plays an important role in prostate carcinogenesis, the underlying mechanisms have largely remained unknown. This review thus summarizes previous preclinical studies that have used prostate cancer cells and animal models to assess the impact of dietary fat on prostate cancer development and progression. Large variations in the previous studies were found during the selection of preclinical models and types of dietary intervention. Subcutaneous human prostate cancer cell xenografts, such as LNCaP, LAPC-4, and PC-3 and genetic engineered mouse models, such as TRAMP and Pten knockout, were frequently used. The dietary interventions had not been standardized, and distinct variations in the phenotype were observed in different studies using distinct HFD components. The use of different dietary components in the research models is reported to influence the effect of diet-induced metabolic disorders. The proposed underlying mechanisms for HFD-induced prostate cancer were divided into (1) growth factor signaling, (2) lipid metabolism, (3) inflammation, (4) hormonal modulation, and others. A number of preclinical studies proposed that dietary fat and/or obesity enhanced prostate cancer development and progression. However, the relationship still remains controversial, and care should be taken when interpreting the results in a human context. Future studies using more sophisticated preclinical models are imperative in order to explore deeper understanding regarding the impact of dietary fat on the development and progression of prostate cancer.
Collapse
Affiliation(s)
- Shintaro Narita
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Taketoshi Nara
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Hiromi Sato
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Atsushi Koizumi
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Mingguo Huang
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Takamitsu Inoue
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Tomonori Habuchi
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| |
Collapse
|
3
|
Kim H, Yokoyama W, Davis PA. TRAMP prostate tumor growth is slowed by walnut diets through altered IGF-1 levels, energy pathways, and cholesterol metabolism. J Med Food 2015; 17:1281-6. [PMID: 25354213 DOI: 10.1089/jmf.2014.0061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dietary changes could potentially reduce prostate cancer morbidity and mortality. Transgenic adenocarcinoma of the mouse prostate (TRAMP) prostate tumor responses to a 100 g of fat/kg diet (whole walnuts, walnut oil, and other oils; balanced for macronutrients, tocopherols [α-and γ]) for 18 weeks ad libitum were assessed. TRAMP mice (n=17 per group) were fed diets with 100 g fat from either whole walnuts (diet group WW), walnut-like fat (diet group WLF, oils blended to match walnut's fatty acid profile), or as walnut oil (diet group WO, pressed from the same walnuts as WW). Fasted plasma glucose was from tail vein blood, blood was obtained by cardiac puncture, and plasma stored frozen until analysis. Prostate (genitourinary intact [GUI]) was weighed and stored frozen at -80°C. Plasma triglyceride, lipoprotein cholesterol, plasma multianalyte levels (Myriad RBM Rat Metabolic MAP), prostate (GUI), tissue metabolites (Metabolon, Inc., Durham, NC, USA), and mRNA (by Illumina NGS) were determined. The prostate tumor size, plasma insulin-like growth factor-1 (IGF-1), high density lipoprotein, and total cholesterol all decreased significantly (P<.05) in both WW and WO compared to WLF. Both WW and WO versus WLF showed increased insulin sensitivity (Homeostasis Model Assessment [HOMA]), and tissue metabolomics found reduced glucose-6-phosphate, succinylcarnitine, and 4-hydroxybutyrate in these groups suggesting effects on cellular energy status. Tissue mRNA levels also showed changes suggestive of altered glucose metabolism with WW and WO diet groups having increased PCK1 and CIDEC mRNA expression, known for their roles in gluconeogenesis and increased insulin sensitivity, respectively. WW and WO group tissues also had increased MSMB mRNa a tumor suppressor and decreased COX-2 mRNA, both reported to inhibit prostate tumor growth. Walnuts reduced prostate tumor growth by affecting energy metabolism along with decreased plasma IGF-1 and cholesterol. These effects are not due to the walnut's N-3 fatty acids, but due to component(s) found in the walnut's fat component.
Collapse
Affiliation(s)
- Hyunsook Kim
- 1 Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| | | | | |
Collapse
|
4
|
Fontana L, Adelaiye RM, Rastelli AL, Miles KM, Ciamporcero E, Longo VD, Nguyen H, Vessella R, Pili R. Dietary protein restriction inhibits tumor growth in human xenograft models. Oncotarget 2014; 4:2451-61. [PMID: 24353195 PMCID: PMC3926840 DOI: 10.18632/oncotarget.1586] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose: Data from epidemiological and experimental studies suggest that dietary protein intake may play a role in inhibiting prostate and breast cancer by modulating the IGF/AKT/mTOR pathway. In this study we investigated the effects of diets with different protein content or quality on prostate and breast cancer. Experimental Design: To test our hypothesis we assessed the inhibitory effect of protein diet restriction on prostate and breast cancer growth, serum PSA and IGF-1 concentrations, mTOR activity and epigenetic markers, by using human xenograft cancer models. Results: Our results showed a 70% inhibition of tumor growth in the castrate-resistant LuCaP23.1 prostate cancer model and a 56% inhibition in the WHIM16 breast cancer model fed with a 7% protein diet when compared to an isocaloric 21% protein diet. Inhibition of tumor growth correlated, in the LuCaP23.1 model, with decreased serum PSA and IGF-1 levels, down-regulation of mTORC1 activity, decreased cell proliferation as indicated by Ki67 staining, and reduction in epigenetic markers of prostate cancer progression, including the histone methyltransferase EZH2 and the associated histone mark H3K27me3. In addition, we observed that modifications of dietary protein quality, independently of protein quantity, decreased tumor growth. A diet containing 20% plant protein inhibited tumor weight by 37% as compared to a 20% animal dairy protein diet. Conclusions: Our findings suggest that a reduction in dietary protein intake is highly effective in inhibiting tumor growth in human xenograft prostate and breast cancer models, possibly through the inhibition of the IGF/AKT/mTOR pathway and epigenetic modifications.
Collapse
Affiliation(s)
- Luigi Fontana
- Department of Medicine, Washington University in St. Louis, MO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Moiola CP, De Luca P, Zalazar F, Cotignola J, Rodríguez-Seguí SA, Gardner K, Meiss R, Vallecorsa P, Pignataro O, Mazza O, Vazquez ES, De Siervi A. Prostate tumor growth is impaired by CtBP1 depletion in high-fat diet-fed mice. Clin Cancer Res 2014; 20:4086-95. [PMID: 24842953 DOI: 10.1158/1078-0432.ccr-14-0322] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Clinical and epidemiologic data suggest that obesity is associated with more aggressive forms of prostate cancer, poor prognosis, and increased mortality. C-terminal-binding protein 1 (CtBP1) is a transcription repressor of tumor suppressor genes and is activated by NADH binding. High calorie intake decreases intracellular NAD(+)/NADH ratio. The aim of this work was to assess the effect of high-fat diet (HFD) and CtBP1 expression modulation over prostate xenograft growth. EXPERIMENTAL DESIGN We developed a metabolic syndrome-like disease in vivo model by feeding male nude mice with HFD during 16 weeks. Control diet (CD)-fed animals were maintained at the same conditions. Mice were inoculated with PC3 cells stable transfected with shCtBP1 or control plasmids. Genome-wide expression profiles and Gene Set Enrichment Analysis (GSEA) were performed from PC3.shCtBP1 versus PC3.pGIPZ HFD-fed mice tumors. RESULTS No significant differences were observed in tumor growth on CD-fed mice; however, we found that only 60% of HFD-fed mice inoculated with CtBP1-depleted cells developed a tumor. Moreover these tumors were significantly smaller than those generated by PC3.pGIPZ control xenografts. We found 823 genes differentially expressed in shCtBP1 tumors from HFD-fed mice. GSEA from expression dataset showed that most of these genes correspond to cell adhesion, metabolic process, and cell cycle. CONCLUSIONS Metabolic syndrome-like diseases and CtBP1 expression cooperate to induce prostate tumor growth. Hence, targeting of CtBP1 expression might be considered for prostate cancer management and therapy in the subset of patients with metabolic syndromes.
Collapse
Affiliation(s)
- Cristian P Moiola
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, IBYME-CONICET; Laboratorio de Inflamación y Cáncer, Departamento de Química Biologica, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), IQUIBICEN - CONICET
| | - Paola De Luca
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, IBYME-CONICET; Laboratorio de Inflamación y Cáncer, Departamento de Química Biologica, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), IQUIBICEN - CONICET
| | - Florencia Zalazar
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, IBYME-CONICET; Laboratorio de Inflamación y Cáncer, Departamento de Química Biologica, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), IQUIBICEN - CONICET
| | - Javier Cotignola
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biologica, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), IQUIBICEN - CONICET
| | - Santiago A Rodríguez-Seguí
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET
| | - Kevin Gardner
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Roberto Meiss
- Departamento de Patología, Instituto de Estudios Oncológicos, Academia Nacional de Medicina
| | - Pablo Vallecorsa
- Departamento de Patología, Instituto de Estudios Oncológicos, Academia Nacional de Medicina
| | - Omar Pignataro
- Laboratorio de Endocrinología Molecular y Transducción de Señales, IBYME-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), IQUIBICEN - CONICET
| | - Osvaldo Mazza
- Hospital de Clínicas "José de San Martín", Buenos Aires, Argentina; and
| | - Elba S Vazquez
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biologica, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), IQUIBICEN - CONICET
| | - Adriana De Siervi
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, IBYME-CONICET; Laboratorio de Inflamación y Cáncer, Departamento de Química Biologica, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), IQUIBICEN - CONICET;
| |
Collapse
|
6
|
Lloyd JC, Masko EM, Wu C, Keenan MM, Pilla DM, Aronson WJ, Chi JT, Freedland SJ. Fish oil slows prostate cancer xenograft growth relative to other dietary fats and is associated with decreased mitochondrial and insulin pathway gene expression. Prostate Cancer Prostatic Dis 2013; 16:285-91. [PMID: 23877027 PMCID: PMC3830640 DOI: 10.1038/pcan.2013.19] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 12/12/2022]
Abstract
Background Previous mouse studies suggest that decreasing dietary fat content can slow prostate cancer (PCa) growth. To our knowledge, no study has yet compared the effect of multiple different fats on PCa progression. We sought to systematically compare the effect of fish oil, olive oil, corn oil, and animal fat on PCa progression. Methods A total of 96 male SCID mice were injected with LAPC-4 human PCa cells. Two weeks following injection, mice were randomized to a fish oil, olive oil, corn oil, or animal fat-based Western diet (35% kcals from fat). Animals were euthanized when tumors reached 1,000mm3. Serum was collected at sacrifice and assayed for PSA, insulin, IGF-1, IGFBP-3, and PGE-2 levels. Tumors were also assayed for PGE-2 and COX-2 levels and global gene expression analyzed using Affymetrix microarrays. Results Mice weights and tumor volumes were equivalent across groups at randomization. Overall, fish oil consumption was associated with improved survival, relative to other dietary groups (p=0.014). On gene expression analyses, the fish oil group had decreased signal in pathways related to mitochondrial physiology and insulin synthesis/secretion. Conclusions In this xenograft model, we found that consuming a diet in which fish oil was the only fat source slowed tumor growth and improved survival, compared to mice consuming diets composed of olive oil, corn oil, or animal fat. While prior studies showed that the amount of fat is important for PCa growth, the current study suggests that type of dietary fat consumed may also be important.
Collapse
Affiliation(s)
- J C Lloyd
- 1] Department of Surgery, Durham VA Medical Center, Durham, NC, USA [2] Division of Urology, Department of Surgery, Duke Prostate Center, Duke University School of Medicine, Durham, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Toren P, Mora BC, Venkateswaran V. Diet, obesity, and cancer progression: are adipocytes the link? Lipid Insights 2013; 6:37-45. [PMID: 25278767 PMCID: PMC4147777 DOI: 10.4137/lpi.s10871] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Obesity has been linked to more aggressive characteristics of several cancers, including breast and prostate cancer. Adipose tissue appears to contribute to paracrine interactions in the tumor microenvironment. In particular, cancer-associated adipocytes interact reciprocally with cancer cells and influence cancer progression. Adipokines secreted from adipocytes likely form a key component of the paracrine signaling in the tumor microenvironment. In vitro coculture models allow for the assessment of specific adipokines in this interaction. Furthermore, micronutrients and macronutrients present in the diet may alter the secretion of adipokines from adipocytes. The effect of dietary fat and specific fatty acids on cancer progression in several in vivo model systems and cancer types is reviewed. The more common approaches of caloric restriction or diet-induced obesity in animal models establish that such dietary changes modulate tumor biology. This review seeks to explore available evidence regarding how diet may modulate tumor characteristics through changes in the role of adipocytes in the tumor microenvironment.
Collapse
Affiliation(s)
- Paul Toren
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin C Mora
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
8
|
Zadra G, Photopoulos C, Loda M. The fat side of prostate cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1518-32. [PMID: 23562839 DOI: 10.1016/j.bbalip.2013.03.010] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/23/2013] [Accepted: 03/24/2013] [Indexed: 12/28/2022]
Abstract
Prostate cancer (PCa) metabolism appears to be unique in comparison with other types of solid cancers. Normal prostate cells mainly rely on glucose oxidation to provide precursors for the synthesis and secretion of citrate, resulting in an incomplete Krebs cycle and minimal oxidative phosphorylation for energy production. In contrast, during transformation, PCa cells no longer secrete citrate and they reactivate the Krebs cycle as energy source. Moreover, primary PCas do not show increased aerobic glycolysis and therefore they are not efficiently detectable with (18)F-FDG-PET. However, increased de novo lipid synthesis, strictly intertwined with deregulation in classical oncogenes and oncosuppressors, is an early event of the disease. Up-regulation and increased activity of lipogenic enzymes (including fatty acid synthase and choline kinase) occurs throughout PCa carcinogenesis and correlates with worse prognosis and poor survival. Thus, lipid precursors such as acetate and choline have been successfully used as alternative tracers for PET imaging. Lipid synthesis intermediates and FA catabolism also emerged as important players in PCa maintenance. Finally, epidemiologic studies suggested that systemic metabolic disorders including obesity, metabolic syndrome, and diabetes as well as hypercaloric and fat-rich diets might increase the risk of PCa. However, how metabolic disorders contribute to PCa development and whether dietary lipids and de novo lipids synthesized intra-tumor are differentially metabolized still remains unclear. In this review, we examine the switch in lipid metabolism supporting the development and progression of PCa and we discuss how we can exploit its lipogenic nature for therapeutic and diagnostic purposes. This article is part of a Special Issue entitled Lipid Metabolism in Cancer.
Collapse
Affiliation(s)
- Giorgia Zadra
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
9
|
Caso J, Masko EM, Ii JAT, Poulton SH, Dewhirst M, Pizzo SV, Freedland SJ. The effect of carbohydrate restriction on prostate cancer tumor growth in a castrate mouse xenograft model. Prostate 2013; 73:449-54. [PMID: 23038057 PMCID: PMC3594433 DOI: 10.1002/pros.22586] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 08/16/2012] [Indexed: 01/10/2023]
Abstract
BACKGROUND No- and low-carbohydrate diets delay tumor growth compared to western diet (WD) in prostate cancer (PCa) xenograft studies. The effect of these diets in concert with androgen deprivation is unknown. METHODS A total of 160 male SCID mice were injected with 1× 10(5) LAPC-4 human PCa cells. Of these, 150 mice were castrated and randomized to an ad libitum WD or fed via a paired-feeding protocol with a no-carbohydrate ketogenic diet (NCKD), 10% carbohydrate diet, or 20% carbohydrate diet. The remaining 10 mice were not castrated and were fed an ad libitum WD. The mice were sacrificed once volumes reached 1,000 mm3 and survival tested using the log-rank test. Serum from the median surviving 8 mice/group was assayed for insulin, IGF-1, and IGFBP-3. RESULTS Body weights were roughly equal among groups. The 10 non-castrated mice experienced accelerated tumor growth. Among castrated mice, WD had the most rapid tumor growth; 20% carbohydrate diet the slowest (P = 0.046). Survival was not significantly different among the various carbohydrate restricted groups (P = 0.51). When pooled, there was a non-significant trend (P = 0.11) in improved survival among the carbohydrate restricted diets versus WD. No significant difference in serum insulin, IGF-1, and IGFBP-3 levels was noted among all groups at pre-randomization or at sacrifice. CONCLUSIONS A 20% carbohydrate diet slowed tumor growth versus a WD. Though the benefit of carbohydrate restriction was somewhat less than in prior studies in non-castrate mice, these data still suggest diets achievable in humans may play a role in PCa management.
Collapse
Affiliation(s)
- Jorge Caso
- Division of Urologic Surgery, Duke Prostate Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Huang M, Narita S, Numakura K, Tsuruta H, Saito M, Inoue T, Horikawa Y, Tsuchiya N, Habuchi T. A high-fat diet enhances proliferation of prostate cancer cells and activates MCP-1/CCR2 signaling. Prostate 2012; 72:1779-88. [PMID: 22514016 DOI: 10.1002/pros.22531] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/30/2012] [Indexed: 12/23/2022]
Abstract
BACKGROUND Dietary patterns including high-fat diet (HFD) and high-carbohydrate diet (HCD) play an important role in prostate cancer progression. However, which of these diets have the greatest effect on tumor progression and its underlying mechanisms remains unclear. METHODS We investigated the effects of different diets on prostate cancer cell growth and the relevant circulating factors including serum insulin, growth factors, and inflammatory cytokines using the in vivo and ex vivo model. RESULTS The tumor growth of prostate cancer LNCaP xenograft was significantly higher in the HFD group than in the HCD and control diet (CD) groups (P = 0.01; HFD vs. HCD, P = 0.025; HFD vs. CD, P = 0.003). The mean level of the serum monocyte chemoattractant protein-1 (MCP-1) in the HFD group was significantly higher than that in the HCD and CD groups (P = 0.024; HFD vs. HCD, P = 0.033; HFD vs. CD, P = 0.001). The mRNA levels of CC chemokine receptor 2 (CCR2), which is an MCP-1 receptor, and the expression of activated Akt were the highest in the HFD group. Furthermore, serum from HFD-fed mice enhanced the proliferation of two PCa cells and CCR2 knockdown inhibited HFD-induced proliferation of LNCaP cells. CONCLUSIONS An HFD enhanced prostate cancer cell growth more strongly than an HCD or CD. MCP-1/CCR2 signaling may be involved in an HFD-induced prostate cancer progression.
Collapse
Affiliation(s)
- Mingguo Huang
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Suburu J, Chen YQ. Lipids and prostate cancer. Prostaglandins Other Lipid Mediat 2012; 98:1-10. [PMID: 22503963 DOI: 10.1016/j.prostaglandins.2012.03.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/13/2012] [Accepted: 03/30/2012] [Indexed: 12/25/2022]
Abstract
The role of lipid metabolism has gained particular interest in prostate cancer research. A large body of literature has outlined the unique upregulation of de novo lipid synthesis in prostate cancer. Concordant with this lipogenic phenotype is a metabolic shift, in which cancer cells use alternative enzymes and pathways to facilitate the production of fatty acids. These newly synthesized lipids may support a number of cellular processes to promote cancer cell proliferation and survival. Hence, de novo lipogenesis is under intense investigation as a therapeutic target. Epidemiologic studies suggest dietary fat may also contribute to prostate cancer; however, whether dietary lipids and de novo synthesized lipids are differentially metabolized remains unclear. Here, we highlight the lipogenic nature of prostate cancer, especially the promotion of de novo lipid synthesis, and the significance of various dietary lipids in prostate cancer development and progression.
Collapse
Affiliation(s)
- Janel Suburu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
12
|
A high-fat diet containing whole walnuts (Juglans regia) reduces tumour size and growth along with plasma insulin-like growth factor 1 in the transgenic adenocarcinoma of the mouse prostate model. Br J Nutr 2012; 108:1764-72. [PMID: 22244053 DOI: 10.1017/s0007114511007288] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) has been linked to fat intake, but the effects of both different dietary fat levels and types remain inconsistent and incompletely characterised. The effects on PCa in the transgenic adenocarcinoma of the mouse prostate (TRAMP) cancer model of an elevated fat (20 % of energy as fat) diet containing 155 g of whole walnuts were compared to those of an elevated fat (20 % of energy as soyabean oil) diet with matched macronutrients, tocopherols as well as a low-fat (8 % of energy as soyabean oil) diet. Mice, starting at 8 weeks of age, consumed one of the three different diets ad libitum; and prostates, livers and blood were obtained after 9, 18 or 24 weeks of feeding. No differences were observed in whole animal growth rates in either high-fat (HF) diet group, but prostate tumour weight and growth rate were reduced in the walnut diet group. Walnut diet group prostate weight, plasma insulin-like growth factor 1, resistin and LDL were lower at 18 weeks, while no statistically significant prostate weight differences by diet were seen at 9 or 24 weeks. Multiple metabolites in the livers differed by diet at 9 and 18 weeks. The walnut diet's beneficial effects probably represent the effects of whole walnuts' multiple constituents and not via a specific fatty acid or tocopherols. Moreover, as the two HF diets had dissimilar effects on prostate tumour growth rate and size, and yet had the same total fat and tocopherol composition and content, this suggests that these are not strongly linked to PCa growth.
Collapse
|
13
|
Abstract
As one of the most prevalent cancers, prostate cancer has enormous public health significance and prevention strategies would attenuate its economic, emotional, physical and social impact. Until recently, however, we have had only modest information about risk factors for this disease, apart from the well-established characteristics of age, family history and place of birth. The large worldwide variation in the incidence of prostate cancer and the increased risk in migrants who move from low-risk to high-risk countries provide strong support for modifiable environmental factors, particularly diet, in its etiology. Thus, dietary agents have gained considerable attention as chemopreventive agents against prostate cancer. Dietary fat, red and processed meat, vitamin E, selenium, tomatoes, cruciforms and green tea have all been linked with the development and aggressiveness of prostate cancer, through a range of molecular mechanisms. The direction of future clinical trials lies in clarifying the effects of these agents and exploring the biological mechanisms responsible for the prevention of prostate cancer. However, owing to the short time period between diagnosis and treatment, conventional dietary intervention techniques are not always realistic. Until large randomized trials confirm the benefit of chemopreventive and dietary modifications, patients can be advised to pursue a diet and lifestyle that enhances overall health.
Collapse
|