1
|
Deng Z, Ou M, Shi Y, Li G, Lv L. Ginsenoside Rg3 attenuates the stemness of breast cancer stem cells by activating the hippo signaling pathway. Toxicol Appl Pharmacol 2025; 494:117158. [PMID: 39561883 DOI: 10.1016/j.taap.2024.117158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Ginsenoside Rg3 (Rg3), a bioactive compound from ginseng, is gaining attention for its potential in targeting cancer stem cells in cancer therapy. The therapeutic effect of Rg3 on breast cancer stem cells (BCSCs) has not been systematically explored using a suitable approach. Our study leverages a multi-faceted strategy, including network pharmacology, molecular docking, and in vitro experiments validation, to explore the effect of Rg3 against BCSCs. We identified 38 common targets of Rg3 and BCSCs through public databases mining. The analysis of protein-protein interaction network revealed Myc, Stat3, Bcl2, Cdh1, Egf, Il6, Egfr, Nfkb1, Sox2 and Sirt1 as the top 10 potential targets. Molecular docking further validated Rg3 has robust binding potential with these targets. Utilizing the BCSC-enriched MCF-7 and MDA-MB-231 mammosphere model, in vitro experiments substantiated Rg3's ability to induce apoptosis, suppress proliferation, and inhibit mammospheres formation of BCSCs. Rg3 also decreased the ALDHhigh and CD44+/CD24-/low subpopulations and downregulated the expression of cancer stem cell markers such as c-MYC, ALDH1A1, NANOG in BCSCs. After Rg3 treatment, most of the top 10 genes in BCSC-enriched MCF-7 mammospheres showed a significant reduction in expression, with Cdh1 (E-cadherin) being the most markedly downregulated. The E-cadherin/catenin complex acts as an upstream regulator of the Hippo signaling pathway, which is crucial for BCSC function and is among the top 20 enriched pathways identified by KEGG analysis. Mechanistically, Rg3 attenuates the stemness of BCSCs by activating the Hippo signaling pathway. This study provides a comprehensive evaluation of Rg3 as a promising therapeutic agent against BCSCs.
Collapse
Affiliation(s)
- Zhicheng Deng
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei 516621, Guangdong, China
| | - Mengdie Ou
- School of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yonghui Shi
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China
| | - Guocheng Li
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei 516621, Guangdong, China; Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China.
| | - Li Lv
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China.
| |
Collapse
|
2
|
Ramu A, Ak L, Chinnappan J. Identification of prostate cancer associated genes for diagnosis and prognosis: a modernized in silico approach. Mamm Genome 2024; 35:683-710. [PMID: 39153107 DOI: 10.1007/s00335-024-10060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Prostate cancer (PCa) ranks as the second leading cause of cancer-related deaths in men. Diagnosing PCa relies on molecular markers known as diagnostic biomarkers, while prognostic biomarkers are used to identify key proteins involved in PCa treatments. This study aims to gather PCa-associated genes and assess their potential as either diagnostic or prognostic biomarkers for PCa. A corpus of 152,064 PCa-related data from PubMed, spanning from May 1936 to December 2020, was compiled. Additionally, 4199 genes associated with PCa terms were collected from the National Center of Biotechnology Information (NCBI) database. The PubMed corpus data was extracted using pubmed.mineR to identify PCa-associated genes. Network and pathway analyses were conducted using various tools, such as STRING, DAVID, KEGG, MCODE 2.0, cytoHubba app, CluePedia, and ClueGO app. Significant marker genes were identified using Random Forest, Support Vector Machines, Neural Network algorithms, and the Cox Proportional Hazard model. This study reports 3062 unique PCa-associated genes along with 2518 corresponding unique PMIDs. Diagnostic markers such as IL6, MAPK3, JUN, FOS, ACTB, MYC, and TGFB1 were identified, while prognostic markers like ACTB and HDAC1 were highlighted in PubMed. This suggests that the potential target genes provided by PubMed data outweigh those in the NCBI database.
Collapse
Affiliation(s)
- Akilandeswari Ramu
- Anthropology and Health Informatics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India.
| | - Lekhashree Ak
- Anthropology and Health Informatics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Jayaprakash Chinnappan
- Anthropology and Health Informatics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
3
|
Mohajer F, Khoradmehr A, Riazalhosseini B, Zendehboudi T, Nabipour I, Baghban N. In vitro detection of marine invertebrate stem cells: utilizing molecular and cellular biology techniques and exploring markers. Front Cell Dev Biol 2024; 12:1440091. [PMID: 39239558 PMCID: PMC11374967 DOI: 10.3389/fcell.2024.1440091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Marine invertebrate stem cells (MISCs) represent a distinct category of pluripotent and totipotent cells with remarkable abilities for self-renewal and differentiation into multiple germ layers, akin to their vertebrate counterparts. These unique cells persist throughout an organism's adult life and have been observed in various adult marine invertebrate phyla. MISCs play crucial roles in numerous biological processes, including developmental biology phenomena specific to marine invertebrates, such as senescence, delayed senescence, whole-body regeneration, and asexual reproduction. Furthermore, they serve as valuable models for studying stem cell biology. Despite their significance, information about MISCs remains scarce and scattered in the scientific literature. In this review, we have carefully collected and summarized valuable information about MISC detection by perusing the articles that study and detect MISCs in various marine invertebrate organisms. The review begins by defining MISCs and highlighting their unique features compared to vertebrates. It then discusses the common markers for MISC detection and in vitro techniques employed in invertebrate and vertebrates investigation. This comprehensive review provides researchers and scientists with a cohesive and succinct overview of MISC characteristics, detection methods, and associated biological phenomena in marine invertebrate organisms. We aim to offer a valuable resource to researchers and scientists interested in marine invertebrate stem cells, fostering a better understanding of their broader implications in biology. With ongoing advancements in scientific techniques and the continued exploration of marine invertebrate species, we anticipate that further discoveries will expand our knowledge of MISCs and their broader implications in biology.
Collapse
Affiliation(s)
- Fatemeh Mohajer
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Behnaz Riazalhosseini
- The Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tuba Zendehboudi
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Neda Baghban
- Food Control Laboratory, Food and Drug Deputy, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
4
|
López L, Fernández-Vañes L, Cabal VN, García-Marín R, Suárez-Fernández L, Codina-Martínez H, Lorenzo-Guerra SL, Vivanco B, Blanco-Lorenzo V, Llorente JL, López F, Hermsen MA. Sox2 and βIII-Tubulin as Biomarkers of Drug Resistance in Poorly Differentiated Sinonasal Carcinomas. J Pers Med 2023; 13:1504. [PMID: 37888115 PMCID: PMC10608336 DOI: 10.3390/jpm13101504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Poorly differentiated sinonasal carcinomas (PDCs) are tumors that have a poor prognosis despite advances in classical treatment. Predictive and prognostic markers and new personalized treatments could improve the oncological outcomes of patients. In this study, we analyzed SOX2 and βIII-tubulin as biomarkers that could have prognostic and therapeutic impacts on these tumors. The cohort included 57 cases of PDCs: 36 sinonasal undifferentiated carcinoma (SNUC) cases, 13 olfactory neuroblastoma (ONB) cases, and 8 sinonasal neuroendocrine carcinoma (SNEC) cases. Clinical follow-up data were available for 26 of these cases. Sox2 expression was detected using immunohistochemistry in 6 (75%) SNEC cases, 19 (53%) SNUC cases, and 6 (46%) ONB cases. The absence of Sox2 staining correlated with a higher rate of recurrence (p = 0.015), especially distant recurrence. The majority of cases showed βIII-tubulin expression, with strong positivity in 85%, 75%, and 64% of SNEC, ONB, and SNUC cases, respectively. Tumors with stronger βIII-tubulin expression demonstrated longer disease-free survival than those with no expression or low expression (p = 0.049). Sox2 and βIII-tubulin expression is common in poorly differentiated sinonasal tumors and has prognostic and therapeutic utility.
Collapse
Affiliation(s)
- Luis López
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (L.L.); (L.F.-V.); (J.L.L.)
| | - Laura Fernández-Vañes
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (L.L.); (L.F.-V.); (J.L.L.)
| | - Virginia N. Cabal
- Department of Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.N.C.); (R.G.-M.); (L.S.-F.); (H.C.-M.); (S.L.L.-G.); (M.A.H.)
| | - Rocío García-Marín
- Department of Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.N.C.); (R.G.-M.); (L.S.-F.); (H.C.-M.); (S.L.L.-G.); (M.A.H.)
| | - Laura Suárez-Fernández
- Department of Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.N.C.); (R.G.-M.); (L.S.-F.); (H.C.-M.); (S.L.L.-G.); (M.A.H.)
| | - Helena Codina-Martínez
- Department of Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.N.C.); (R.G.-M.); (L.S.-F.); (H.C.-M.); (S.L.L.-G.); (M.A.H.)
| | - Sara L. Lorenzo-Guerra
- Department of Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.N.C.); (R.G.-M.); (L.S.-F.); (H.C.-M.); (S.L.L.-G.); (M.A.H.)
| | - Blanca Vivanco
- Department of Pathology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.V.); (V.B.-L.)
| | - Verónica Blanco-Lorenzo
- Department of Pathology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.V.); (V.B.-L.)
| | - José L. Llorente
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (L.L.); (L.F.-V.); (J.L.L.)
| | - Fernando López
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (L.L.); (L.F.-V.); (J.L.L.)
| | - Mario A. Hermsen
- Department of Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.N.C.); (R.G.-M.); (L.S.-F.); (H.C.-M.); (S.L.L.-G.); (M.A.H.)
| |
Collapse
|
5
|
Vasilatis DM, Lucchesi CA, Ghosh PM. Molecular Similarities and Differences between Canine Prostate Cancer and Human Prostate Cancer Variants. Biomedicines 2023; 11:biomedicines11041100. [PMID: 37189720 DOI: 10.3390/biomedicines11041100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Dogs are one of few species that naturally develop prostate cancer (PCa), which clinically resembles aggressive, advanced PCa in humans. Moreover, PCa-tumor samples from dogs are often androgen receptor (AR)-negative and may enrich our understanding of AR-indifferent PCa in humans, a highly lethal subset of PCa for which few treatment modalities are available This narrative review discusses the molecular similarities between dog PCa and specific human-PCa variants, underscoring the possibilities of using the dog as a novel pre-clinical animal model for human PCa, resulting in new therapies and diagnostics that may benefit both species.
Collapse
Affiliation(s)
- Demitria M Vasilatis
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Veterans Affairs (VA)-Northern California Healthcare System, Mather, CA 95655, USA
| | | | - Paramita M Ghosh
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Veterans Affairs (VA)-Northern California Healthcare System, Mather, CA 95655, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| |
Collapse
|
6
|
Niharika, Roy A, Mishra J, Chakraborty S, Singh SP, Patra SK. Epigenetic regulation of pluripotency inducer genes NANOG and SOX2 in human prostate cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:241-260. [PMID: 37019595 DOI: 10.1016/bs.pmbts.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The cells of multicellular organisms are genetically homogeneous but heterogenous in structure and function by virtue of differential gene expression. During embryonic development, differential gene expression by modification of chromatin (DNA and histone complex) regulates the developmental proceedings before and after the germ layers are formed. Post-replicative DNA modification, where the fifth carbon atom of the cytosine gets methylated (hereafter, DNA methylation), does not incorporate mutations within the DNA. In the past few years, a boom has been observed in the field of research related to various epigenetic regulation models, which includes DNA methylation, post-translational modification of histone tails, control of chromatin structure by non-coding RNAs, and remodeling of nucleosome. Epigenetic effects like DNA methylation or histone modification play a cardinal role in development but also be able to arise stochastically, as observed during aging, in tumor development and cancer progression. Over the past few decades, researchers allured toward the involvement of pluripotency inducer genes in cancer progression and apparent for prostate cancer (PCa); also, PCa is the most diagnosed tumor worldwide and comes to the second position in causing mortality in men. The anomalous articulation of pluripotency-inducing transcription factor; SRY-related HMG box-containing transcription factor-2 (SOX2), Octamer-binding transcription factor 4 (OCT4) or POU domain, class 5, transcription factor 1 (POU5F1), and NANOG have been reported in different cancers which includes breast cancer, tongue cancer, and lung cancer, etc. Although there is a variety in gene expression signatures demonstrated by cancer cells, the epigenetic mode of regulation at the pluripotency-associated genes in PCa has been recently explored. This chapter focuses on the epigenetic control of NANOG and SOX2 genes in human PCa and the precise role thereof executed by the two transcription factors.
Collapse
|
7
|
Castellón EA, Indo S, Contreras HR. Cancer Stemness/Epithelial-Mesenchymal Transition Axis Influences Metastasis and Castration Resistance in Prostate Cancer: Potential Therapeutic Target. Int J Mol Sci 2022; 23:ijms232314917. [PMID: 36499245 PMCID: PMC9736174 DOI: 10.3390/ijms232314917] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of cancer death in men, worldwide. Mortality is highly related to metastasis and hormone resistance, but the molecular underlying mechanisms are poorly understood. We have studied the presence and role of cancer stem cells (CSCs) and the Epithelial-Mesenchymal transition (EMT) in PCa, using both in vitro and in vivo models, thereby providing evidence that the stemness-mesenchymal axis seems to be a critical process related to relapse, metastasis and resistance. These are complex and related processes that involve a cooperative action of different cancer cell subpopulations, in which CSCs and mesenchymal cancer cells (MCCs) would be responsible for invading, colonizing pre-metastatic niches, initiating metastasis and an evading treatments response. Manipulating the stemness-EMT axis genes on the androgen receptor (AR) may shed some light on the effect of this axis on metastasis and castration resistance in PCa. It is suggested that the EMT gene SNAI2/Slug up regulates the stemness gene Sox2, and vice versa, inducing AR expression, promoting metastasis and castration resistance. This approach will provide new sight about the role of the stemness-mesenchymal axis in the metastasis and resistance mechanisms in PCa and their potential control, contributing to develop new therapeutic strategies for patients with metastatic and castration-resistant PCa.
Collapse
Affiliation(s)
- Enrique A. Castellón
- Correspondence: (E.A.C.); (H.R.C.); Tel.: +56-229-786-863 (E.A.C.); +56-229-786-862 (H.R.C.)
| | | | - Héctor R. Contreras
- Correspondence: (E.A.C.); (H.R.C.); Tel.: +56-229-786-863 (E.A.C.); +56-229-786-862 (H.R.C.)
| |
Collapse
|
8
|
JAG1 Intracellular Domain Enhances AR Expression and Signaling and Promotes Stem-like Properties in Prostate Cancer Cells. Cancers (Basel) 2022; 14:cancers14225714. [PMID: 36428807 PMCID: PMC9688638 DOI: 10.3390/cancers14225714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/01/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
JAG1 expression is upregulated in high-grade metastatic prostate carcinomas and associated with poor disease-free survival of patients with prostate cancer. Intriguingly, all JAG1-positive prostate carcinomas express JICD although JICD function in prostate cancer (PC) cells is poorly understood. In this study, we found that JICD overexpression increased the expression levels of AR, especially AR-Vs, in PC cell lines and significantly enhanced androgen-independent and androgen-dependent function of ARs. Interestingly, JICD overexpression upregulated the expression of the PCSC marker CD133 in PC cells as the expression of self-renewal markers; namely, NANOG and OCT3/4 increased. In addition, JICD overexpression highly increased the expression of anti-apoptotic BCL-XL protein, while it little affected the expression of apoptotic BIM protein. In 3D cell culture assays, the spheres formed by JICD-overexpressing PC subline cells (C4-2 and CWR22Rv1) were larger than those formed by control (EV) subline cells with undifferentiated morphology. Although JICD overexpression caused quiescence in cell proliferation, it activated the expression of components in PCSC-related signaling pathways, increased PC cell mobility, and promoted in vivo xenograft mouse tumorigenesis. Therefore, JICD may play a crucial role in enhancing androgen independence and promoting stem-like properties in PC cells and should be considered a novel target for CRPC and PCSC diagnostic therapy.
Collapse
|
9
|
Wolf I, Gratzke C, Wolf P. Prostate Cancer Stem Cells: Clinical Aspects and Targeted Therapies. Front Oncol 2022; 12:935715. [PMID: 35875084 PMCID: PMC9304860 DOI: 10.3389/fonc.2022.935715] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Despite decades of research and successful improvements in diagnosis and therapy, prostate cancer (PC) remains a major challenge. In recent years, it has become clear that PC stem cells (PCSCs) are the driving force in tumorigenesis, relapse, metastasis, and therapeutic resistance of PC. In this minireview, we discuss the impact of PCSCs in the clinical practice. Moreover, new therapeutic approaches to combat PCSCs are presented with the aim to achieve an improved outcome for patients with PC.
Collapse
Affiliation(s)
- Isis Wolf
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Gratzke
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Philipp Wolf,
| |
Collapse
|
10
|
Xie D, Chen Y, Wan X, Li J, Pei Q, Luo Y, Liu J, Ye T. The Potential Role of CDH1 as an Oncogene Combined With Related miRNAs and Their Diagnostic Value in Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:916469. [PMID: 35784532 PMCID: PMC9243438 DOI: 10.3389/fendo.2022.916469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the leading cause of cancer-related mortality in females and the most common malignancy with high morbidity worldwide. It is imperative to develop new biomarkers and therapeutic targets for early diagnosis and effective treatment in BC. METHODS We revealed the oncogene function of cadherin 1 (CDH1) via bioinformatic analysis in BC. Moreover, miRNA database was utilized to predict miRNAs upstream of CDH1. Expression of CDH1-related miRNAs in BC and their values in BC stemness and prognosis were analyzed through TCGA-BRCA datasets. In addition, Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) were performed to explore the potential functions and signaling pathways of CDH1 in combination with CDH1-related miRNAs in BC progression. Finally, the differential expressions of soluble E-cadherin (sE-cad), which is formed by the secretion of CDH1-encoded E-cadherin into serum, analyzed by enzyme-linked immunosorbent assay (ELISA). Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expression level of CDH1-related miRNAs in serum samples. RESULTS The mRNA and protein expressions of CDH1 were elevated in BC tissues compared with normal counterparts. Moreover, CDH1 overexpression was positively correlated with BC stage, metastatic, stemness characteristics, and poor prognosis among patients. In predictive analysis, miR-340, miR-185, and miR-20a target CDH1 and are highly expressed in BC. miR-20a overexpression alone was strongly associated with high stemness characteristics and poor prognosis of BC. Additionally, GO, KEGG, and hallmark effect gene set analysis demonstrated that CDH1 in combination with overexpression of miR-340, miR-185, or miR-20a participated in multiple biological processes and underly signaling pathways involving in tumorigenesis and development of BC. Finally, we provide experimental evidence that the combined determination of serum sE-cad and miR-20a in BC has highly diagnostic efficiency. CONCLUSIONS This study provides evidence for CDH1 as an oncogene in BC and suggests that miR-20a may regulate the stemness characteristics of BC to exert a pro-oncogenic effect by regulating CDH1. Moreover, sE-cad and miR-20a in serum can both be used as valid noninvasive markers for BC diagnosis.
Collapse
|
11
|
Krog RT, de Miranda NFCC, Vahrmeijer AL, Kooreman NG. The Potential of Induced Pluripotent Stem Cells to Advance the Treatment of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13225789. [PMID: 34830945 PMCID: PMC8616212 DOI: 10.3390/cancers13225789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Despite improvements in the treatment of several cancer types, the extremely poor prognosis of pancreatic cancer patients has remained unchanged over the last decades. Therefore, new therapeutic regimens for pancreatic cancer are highly needed. In this review, we will discuss the potential of induced pluripotent stem cells (iPSCs) to generate representative pancreatic cancer models that can aid the development of novel diagnostics and therapeutic strategies. Furthermore, the potential of iPSCs as pancreatic cancer vaccines or as a basis for cellular therapies will be discussed. With promising preclinical results and ongoing clinical trials, the potential of iPSCs to further the treatment of pancreatic cancer is being explored and, in turn, will hopefully provide additional therapies to increase the poor survival rates of this patient population. Abstract Advances in the treatment of pancreatic ductal adenocarcinoma (PDAC) using neoadjuvant chemoradiotherapy, chemotherapy, and immunotherapy have had minimal impact on the overall survival of patients. A general lack of immunogenic features and a complex tumor microenvironment (TME) are likely culprits for therapy refractoriness in PDAC. Induced pluripotent stem cells (iPSCs) should be explored as a means to advance the treatment options for PDAC, by providing representative in vitro models of pancreatic cancer development. In addition, iPSCs could be used for tailor-made cellular immunotherapies or as a source of tumor-associated antigens in the context of vaccination.
Collapse
Affiliation(s)
- Ricki T. Krog
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.T.K.); (A.L.V.)
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | | | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.T.K.); (A.L.V.)
| | - Nigel G. Kooreman
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.T.K.); (A.L.V.)
- Correspondence:
| |
Collapse
|
12
|
Xie C, Lin PJ, Hao J. Eggmanone Effectively Overcomes Prostate Cancer Cell Chemoresistance. Biomedicines 2021; 9:biomedicines9050538. [PMID: 34066000 PMCID: PMC8151738 DOI: 10.3390/biomedicines9050538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer chemoresistance is a major therapeutic problem, and the underlying mechanism is not well understood and effective therapies to overcome this problem are not available. Phosphodiesterase-4 (PDE4), a main intracellular enzyme for cAMP hydrolysis, has been previously shown to involve in the early chemo-sensitive prostate cancer cell proliferation and progression, but its role in the more-advanced chemo-resistant prostate cancer is completely unknown. Here we found that the expression of PDE4 subtype, PDE4D, is highly elevated in the chemo-resistant prostate cancer cells (DU145-TxR and PC3-TxR) in comparison to the chemo-sensitive prostate cancer cells (DU145 and PC3). Inhibition of PDE4D with a potent and selective PDED4 inhibitor, Eggmanone, effectively decreases the invasion and proliferation as well as induces cell death of the chemo-resistant prostate cancer cells (DU145-TxR and PC3-TxR). These results were confirmed by siRNA knockdown of PDE4D. We and colleagues previously reported that Eggmanone can effectively blocked sonic Hedgehog signaling via PDE4D inhibition, and here our study suggests that that Eggmanone downregulated proliferation of the chemo-resistant prostate cancer cells via sonic Hedgehog signaling. In addition, Eggmanone treatment dose-dependently increases docetaxel cytotoxicity to DU145-TxR and PC3-TxR. As cancer stem cells (CSCs) are known to be implicated in cancer chemoresistance, we further examined Eggmanone impacts on CSC-like properties in the chemo-resistant prostate cancer cells. Our study shows that Eggmanone effectively down-regulates the expression of CSCs’ marker genes Nanog and ABC sub-family G member 2 (ABCG2) and attenuates sphere formation in DU145-TxR and PC3-TxR cells. In summary, our work shows that Eggmanone effectively overcomes the chemoresistance of prostate cancer cells presumably through sonic Hedgehog signaling and targeting CSCs, suggesting that Eggmanone may serve as a novel agent for chemo-resistant prostate cancer.
Collapse
Affiliation(s)
- Chen Xie
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Pen-Jen Lin
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Jijun Hao
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA;
- Correspondence: ; Tel.: +1-(909)-469-8686; Fax: +1-909-469-5635
| |
Collapse
|
13
|
Harris KS, Shi L, Foster BM, Mobley ME, Elliott PL, Song CJ, Watabe K, Langefeld CD, Kerr BA. CD117/c-kit defines a prostate CSC-like subpopulation driving progression and TKI resistance. Sci Rep 2021; 11:1465. [PMID: 33446896 PMCID: PMC7809150 DOI: 10.1038/s41598-021-81126-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem-like cells (CSCs) are associated with cancer progression, metastasis, and recurrence, and may also represent a subset of circulating tumor cells (CTCs). In our prior study, CTCs in advanced prostate cancer patients were found to express CD117/c-kit in a liquid biopsy. Whether CD117 expression played an active or passive role in the aggressiveness and migration of these CTCs remained an open question. In this study, we show that CD117 expression in prostate cancer patients is associated with decreased overall and progression-free survival and that activation and phosphorylation of CD117 increases in prostate cancer patients with higher Gleason grades. To determine how CD117 expression and activation by its ligand stem cell factor (SCF, kit ligand, steel factor) alter prostate cancer aggressiveness, we used C4-2 and PC3-mm human prostate cancer cells, which contain a CD117+ subpopulation. We demonstrate that CD117+ cells display increased proliferation and migration. In prostaspheres, CD117 expression enhances sphere formation. In both 2D and 3D cultures, stemness marker gene expression is higher in CD117+ cells. Using xenograft limiting dilution assays and serial tumor initiation assays, we show that CD117+ cells represent a CSC population. Combined, these data indicate that CD117 expression potentially promotes tumor initiation and metastasis. Further, in cell lines, CD117 activation by SCF promotes faster proliferation and invasiveness, while blocking CD117 activation with tyrosine kinase inhibitors (TKIs) decreased progression in a context-dependent manner. We demonstrate that CD117 expression and activation drives prostate cancer aggressiveness through the CSC phenotype and TKI resistance.
Collapse
Affiliation(s)
- Koran S Harris
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Lihong Shi
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Brittni M Foster
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Mary E Mobley
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Phyllis L Elliott
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Conner J Song
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.,Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA
| | - Carl D Langefeld
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA.,Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Bethany A Kerr
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA. .,Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA. .,Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
14
|
Ko J, Meyer AN, Haas M, Donoghue DJ. Characterization of FGFR signaling in prostate cancer stem cells and inhibition via TKI treatment. Oncotarget 2021; 12:22-36. [PMID: 33456711 PMCID: PMC7800776 DOI: 10.18632/oncotarget.27859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
Metastatic castrate-resistant prostate cancer (CRPC) remains uncurable and novel therapies are needed to better treat patients. Aberrant Fibroblast Growth Factor Receptor (FGFR) signaling has been implicated in advanced prostate cancer (PCa), and FGFR1 is suggested to be a promising therapeutic target along with current androgen deprivation therapy. We established a novel in vitro 3D culture system to study endogenous FGFR signaling in a rare subpopulation of prostate cancer stem cells (CSCs) in the cell lines PC3, DU145, LNCaP, and the induced pluripotent iPS87 cell line. 3D-propagation of PCa cells generated spheroids with increased stemness markers ALDH7A1 and OCT4, while inhibition of FGFR signaling by BGJ398 or Dovitinib decreased cell survival and proliferation of 3D spheroids. The 3D spheroids exhibited altered expression of EMT markers associated with metastasis such as E-cadherin, vimentin and Snail, compared to 2D monolayer cells. TKI treatment did not result in significant changes of EMT markers, however, specific inhibition of FGFR signaling by BGJ398 showed more favorable molecular-level changes than treatment with the multi-RTK inhibitor Dovitinib. This study provides evidence for the first time that FGFR1 plays an essential role in the proliferation of PCa CSCs at a molecular and cellular level, and suggests that TKI targeting of FGFR signaling may be a promising strategy for AR-independent CRPC.
Collapse
Affiliation(s)
- Juyeon Ko
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Martin Haas
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.,Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
Qin C, Sheng Z, Huang X, Tang J, Liu Y, Xu T, Qiu X. Cancer-driven IgG promotes the development of prostate cancer though the SOX2-CIgG pathway. Prostate 2020; 80:1134-1144. [PMID: 32628304 DOI: 10.1002/pros.24042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Although androgen deprivation therapy (ADT) is the initial treatment strategy for prostate cancer (PCa), recurrent castration-resistant prostate cancer (CRPC) eventually ensues. In this study, cancer-derived immunoglobulin G (CIgG) is found to be induced after ADT, identifying CIgG as a potential CRPC driver gene. METHODS The expression of CIgG and its clinical significance in PCa tissue was analyzed by The Cancer Genome Atlas database and immunohistochemistry. Subsequently, the sequence features of prostate cell line VHDJH rearrangements were analyzed. We also assessed the effect of CIgG on the migratory, invasive and proliferative abilities of PCa cells in vitro and vivo. Suspended microsphere, colony formation and drug-resistant assays were performed using PC3 cells with high CIgG expression (CIgGhigh ) and low CIgG expression (CIgG-/low ), and A nonobese diabetic/severe combined immunodeficiency mouse tumor xenograft model was developed for the study of the tumorigenic effects of the different cell populations. The SOX2-CIgG signaling pathway was validated by immunohistochemistry, immunofluorescence, quantitative reverse transcription-polymerase chain reaction, Western blot, luciferase, and chromatin immunoprecipitation assays and bioinformatics analyses. Finally, we investigated the effect of RP215 inhibition on the progression of PCa in vivo using a Babl/c nude mouse xenograft model. RESULTS CIgG is frequently expressed in PCa and associated with clinicopathological characteristics, moreover, CIgG transcripts with unique patterns of VHDJH rearrangements are found in PCa cells. Functional analyses identified that CIgG was induced by ADT and upregulated by SOX2 (SRY (sex determining region Y)-box 2) in PCa, promoting the development of PCa. In addition, our findings underscore a novel role of CIgG signaling in the maintenance of stemness and the progression of cancer through mitogen activated protein kinase/extracellular-signal-regulated kinase and AKT in PCa. In vivo experiments further demonstrated that depleting CIgG significantly suppressed the growth of PCa cell xenografts. Furthermore, a CIgG monoclonal antibody named RP215 exhibits tumor inhibitory effect as well. CONCLUSION Our data suggests that CIgG could be a driver of PCa development, and that targeting the SOX2-CIgG axis may therefore inhibit PCa development after ADT.
Collapse
Affiliation(s)
- Caipeng Qin
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Zhengzuo Sheng
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Xinmei Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jingshu Tang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yang Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
16
|
Wuputra K, Ku CC, Wu DC, Lin YC, Saito S, Yokoyama KK. Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells. J Exp Clin Cancer Res 2020; 39:100. [PMID: 32493501 PMCID: PMC7268627 DOI: 10.1186/s13046-020-01584-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Human pluripotent embryonic stem cells have two special features: self-renewal and pluripotency. It is important to understand the properties of pluripotent stem cells and reprogrammed stem cells. One of the major problems is the risk of reprogrammed stem cells developing into tumors. To understand the process of differentiation through which stem cells develop into cancer cells, investigators have attempted to identify the key factors that generate tumors in humans. The most effective method for the prevention of tumorigenesis is the exclusion of cancer cells during cell reprogramming. The risk of cancer formation is dependent on mutations of oncogenes and tumor suppressor genes during the conversion of stem cells to cancer cells and on the environmental effects of pluripotent stem cells. Dissecting the processes of epigenetic regulation and chromatin regulation may be helpful for achieving correct cell reprogramming without inducing tumor formation and for developing new drugs for cancer treatment. This review focuses on the risk of tumor formation by human pluripotent stem cells, and on the possible treatment options if it occurs. Potential new techniques that target epigenetic processes and chromatin regulation provide opportunities for human cancer modeling and clinical applications of regenerative medicine.
Collapse
Affiliation(s)
- Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shigeo Saito
- Waseda University Research Institute for Science and Engineering, Shinjuku, Tokyo, 162-8480, Japan.
- Saito Laboratory of Cell Technology Institute, Yaita, Tochigi, 329-1571, Japan.
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Waseda University Research Institute for Science and Engineering, Shinjuku, Tokyo, 162-8480, Japan.
| |
Collapse
|
17
|
Transcriptional profiling identifies an androgen receptor activity-low, stemness program associated with enzalutamide resistance. Proc Natl Acad Sci U S A 2020; 117:12315-12323. [PMID: 32424106 PMCID: PMC7275746 DOI: 10.1073/pnas.1922207117] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The androgen receptor (AR) antagonist enzalutamide is one of the principal treatments for men with castration-resistant prostate cancer (CRPC). However, not all patients respond, and resistance mechanisms are largely unknown. We hypothesized that genomic and transcriptional features from metastatic CRPC biopsies prior to treatment would be predictive of de novo treatment resistance. To this end, we conducted a phase II trial of enzalutamide treatment (160 mg/d) in 36 men with metastatic CRPC. Thirty-four patients were evaluable for the primary end point of a prostate-specific antigen (PSA)50 response (PSA decline ≥50% at 12 wk vs. baseline). Nine patients were classified as nonresponders (PSA decline <50%), and 25 patients were classified as responders (PSA decline ≥50%). Failure to achieve a PSA50 was associated with shorter progression-free survival, time on treatment, and overall survival, demonstrating PSA50's utility. Targeted DNA-sequencing was performed on 26 of 36 biopsies, and RNA-sequencing was performed on 25 of 36 biopsies that contained sufficient material. Using computational methods, we measured AR transcriptional function and performed gene set enrichment analysis (GSEA) to identify pathways whose activity state correlated with de novo resistance. TP53 gene alterations were more common in nonresponders, although this did not reach statistical significance (P = 0.055). AR gene alterations and AR expression were similar between groups. Importantly, however, transcriptional measurements demonstrated that specific gene sets-including those linked to low AR transcriptional activity and a stemness program-were activated in nonresponders. Our results suggest that patients whose tumors harbor this program should be considered for clinical trials testing rational agents to overcome de novo enzalutamide resistance.
Collapse
|
18
|
Carceles-Cordon M, Kelly WK, Gomella L, Knudsen KE, Rodriguez-Bravo V, Domingo-Domenech J. Cellular rewiring in lethal prostate cancer: the architect of drug resistance. Nat Rev Urol 2020; 17:292-307. [PMID: 32203305 PMCID: PMC7218925 DOI: 10.1038/s41585-020-0298-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Over the past 5 years, the advent of combination therapeutic strategies has substantially reshaped the clinical management of patients with advanced prostate cancer. However, most of these combination regimens were developed empirically and, despite offering survival benefits, are not enough to halt disease progression. Thus, the development of effective therapeutic strategies that target the mechanisms involved in the acquisition of drug resistance and improve clinical trial design are an unmet clinical need. In this context, we hypothesize that the tumour engineers a dynamic response through the process of cellular rewiring, in which it adapts to the therapy used and develops mechanisms of drug resistance via downstream signalling of key regulatory cascades such as the androgen receptor, PI3K-AKT or GATA2-dependent pathways, as well as initiation of biological processes to revert tumour cells to undifferentiated aggressive states via phenotype switching towards a neuroendocrine phenotype or acquisition of stem-like properties. These dynamic responses are specific for each patient and could be responsible for treatment failure despite multi-target approaches. Understanding the common stages of these cellular rewiring mechanisms to gain a new perspective on the molecular underpinnings of drug resistance might help formulate novel combination therapeutic regimens.
Collapse
Affiliation(s)
- Marc Carceles-Cordon
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - W Kevin Kelly
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leonard Gomella
- Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karen E Knudsen
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Veronica Rodriguez-Bravo
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Josep Domingo-Domenech
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Cui F, Hao ZX, Li J, Zhang YL, Li XK, He JX. SOX2 mediates cisplatin resistance in small-cell lung cancer with downregulated expression of hsa-miR-340-5p. Mol Genet Genomic Med 2020; 8:e1195. [PMID: 32130794 PMCID: PMC7216814 DOI: 10.1002/mgg3.1195] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/19/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Background This study is aimed to unravel the genetic factors associated with microRNA (miRNA) expression in regulating sex‐determining region Y‐box 2 (SOX2)‐mediated cisplatin resistance in small‐cell lung cancer (SCLC). Methods The relevance of SOX2 expression in SCLC was analyzed in a panel of SCLC cells by quantitative real‐time PCR (qPCR) and western blot (WB). We selected DMS114 cell line, in which SOX2 was amplified via lentiviral vector‐mediated transfection of the SOX2 genes and tested for the half‐maximal inhibitory concentration (IC50) by MTS assay. High‐throughput sequencing and screening of differentially expressed miRNAs between SOX2‐overexpressing and normal control cells were performed. Finally, miRanda software was used to verify the miRNAs bound with SOX2 and qPCR was used to identify the expression of miRNAs which were binding with SOX2. Results Cisplatin‐resistant SOX2‐overexpressing DMS114 cell lines were successfully developed, showing a statistically significant increase in SOX2 expression by qPCR and WB. Our results showed a typically higher IC50 value in SOX2‐overexpressing cells compared with the negative controls. The high‐throughput sequencing analysis revealed that 68 miRNAs were upregulated and 24 miRNAs were downregulated in the SOX2‐overexpressing cells. The 24 downregulated miRNAs were further verified. Of them, a cancer‐related miRNA, hsa‐miR‐340‐5p, showed a higher binding affinity with SOX2 in network regulation mapping, which was also found to be markedly downregulated under qPCR analysis. Conclusion We demonstrated that downregulated expression of hsa‐miR‐340‐5p may affect cisplatin resistance by mediating SOX2 expression in SCLC cells, which may provide a potential target for the therapy of chemoresistant SCLCs.
Collapse
Affiliation(s)
- Fei Cui
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhe-Xue Hao
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Li
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ya-Lei Zhang
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu-Kai Li
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian-Xing He
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Hong P, Guo RQ, Song G, Yang KW, Zhang L, Li XS, Zhang K, Zhou LQ. Prognostic role of chromogranin A in castration-resistant prostate cancer: A meta-analysis. Asian J Androl 2019; 20:561-566. [PMID: 30084431 PMCID: PMC6219310 DOI: 10.4103/aja.aja_57_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We aimed to investigate the prognostic value of chromogranin A (CgA) in castration-resistant prostate cancer (CRPC). We conducted a systematic literature search of PubMed, Web of Science, and EMBASE for citations published prior to September 2017 that described CgA and CRPC and performed a standard meta-analysis on survival outcomes. Our meta-analysis included eight eligible studies with 686 patients. The results were as follows: progression-free survival (PFS) was associated with CgA level (hazard ratio [HR] = 2.47, 95% confidence interval [CI]: 1.47-4.14, P = 0.0006); PFS was relative to CgA change (HR = 9.22, 95% CI: 3.03-28.05, P < 0.0001); and overall survival (OS) was relative to CgA level (HR = 1.47, 95% CI: 1.15-1.87, P = 0.002). When we divided the patients into two groups according to therapy status, the result for OS relative to CgA level was an HR of 1.26 (95% CI: 1.09-1.45, P = 0.001) in the first-line hormonal therapy group, and an HR of 2.33 (95% CI: 1.40-3.89, P = 0.001) in the second-line hormonal therapy or chemotherapy group. This meta-analysis indicated that a high CgA level had a negative influence on OS and PFS in CRPC patients. In addition, CRPC patients with a rising CgA had a shorter PFS. Further studies are needed to verify the prognostic value of CgA in CRPC.
Collapse
Affiliation(s)
- Peng Hong
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Centre for Genitourinary Oncology, Beijing 100034, China
| | - Run-Qi Guo
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Centre for Genitourinary Oncology, Beijing 100034, China
| | - Gang Song
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Centre for Genitourinary Oncology, Beijing 100034, China
| | - Kai-Wei Yang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Centre for Genitourinary Oncology, Beijing 100034, China
| | - Lei Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Centre for Genitourinary Oncology, Beijing 100034, China
| | - Xue-Song Li
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Centre for Genitourinary Oncology, Beijing 100034, China
| | - Kai Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Centre for Genitourinary Oncology, Beijing 100034, China
| | - Li-Qun Zhou
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Centre for Genitourinary Oncology, Beijing 100034, China
| |
Collapse
|
21
|
Lee SI, Roney MSI, Park JH, Baek JY, Park J, Kim SK, Park SK. Dopamine receptor antagonists induce differentiation of PC-3 human prostate cancer cell-derived cancer stem cell-like cells. Prostate 2019; 79:720-731. [PMID: 30816566 DOI: 10.1002/pros.23779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/31/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The objective of this study was to determine whether PC-3 human prostate cancer cell-derived cancer stem cells (CSC)-like cells grown in a regular cell culture plate not coated with a matrix molecule might be useful for finding differentiation-inducing agents that could alter properties of prostate CSC. METHODS Monolayer cells prepared from sphere culture of PC-3 cells were characterized for the presence of pluripotency and tumorigenicity. They were then applied to screen a compound library to find compounds that could induce morphology changes of cells. Mechanisms of action of compounds selected from the chemical library that induced the loss of pluripotency of cells were also investigated. RESULTS C5A cells prepared from PC-3 cell-derived sphere culture expressed pluripotency markers such as Oct4, Sox2, and Klf4. C5A cells were highly proliferative. They were invasive in vitro and tumorigenic in vivo. Some dopamine receptor antagonists such as thioridazine caused reduction of pluripotency markers and tumorigenicity. Thioridazine, unlike promazine, inhibited phosphorylation of AMPK in a dose dependent manner. BML-275, an AMPK inhibitor, also induced differentiation of C5A cells as seen with thioridazine whereas A769663, an AMPK activator, blocked its differentiation-inducing ability. Transfection of C5A cells with siRNAs of dopamine receptor subtypes revealed that knockdown of DRD2 or DRD4 induced morphology changes of C5A cells. CONCLUSIONS Some dopamine receptor antagonists such as thioridazine can induce differentiation of CSC-like cells by inhibiting phosphorylation of AMPK. Binding to DRD2 or DRD4 might have mediated the action of thioridazine involved in the differentiation of CSC-like cells.
Collapse
Affiliation(s)
- Su In Lee
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | | | - Jong Hyeok Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Ji-Young Baek
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Jooyeon Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Song-Kyu Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
- Research Driven Hospital, Korea University Guro Hospital, Biomedical Research Center, Seoul, Republic of Korea
| |
Collapse
|
22
|
Guo Z, Wang Y, Xiang S, Wang S, Chan FL. Chromogranin A is a predictor of prognosis in patients with prostate cancer: a systematic review and meta-analysis. Cancer Manag Res 2019; 11:2747-2758. [PMID: 31114331 PMCID: PMC6497897 DOI: 10.2147/cmar.s190678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/15/2019] [Indexed: 12/30/2022] Open
Abstract
Background: The prognostic value of chromogranin-A (CHGA) as a biomarker of prostate cancer (PCa) has been evaluated extensively. However, to date the results still remain controversial. This study aims to perform a meta-analysis on previous studies in order to determine whether CHGA would be a biomarker for survival in PCa patients. Methods: MEDLINE, Embase, Web of Science, and Cochrane Library databases were searched to identify eligible studies published before September 2018, regarding the association of CHGA gene expression with survival outcomes in patients with PCa. Multivariate adjusted HRs and associated 95% CIs were calculated using random effects models. Results: Ten cohort studies involving 3,172 patients were finally included. According to the included studies, circulating CHGA levels were tested in serum, plasma, and tissues. The results showed an association between high CHGA expression and worse overall survival (OS) (HR=1.24, 95% CI: 1.07-1.44; P=0.004; I 2=77.6%) in PCa patients. However, no significant association was observed between increasing CHGA expression and shorter progression-free survival (HR=1.73, 95% CI: 0.92-3.28; P=0.090; I 2=73.9%). The results of sensitivity analysis validated the rationality and reliability of our analysis. Conclusion: Current evidence indicates that high CHGA expression is a potential marker for poor OS in PCa. Future studies are needed to explore tailored treatments that directly target CHGA for the improvement of survival in men with PCa.
Collapse
Affiliation(s)
- Zhenlang Guo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Yuliang Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China
| | - Songtao Xiang
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Shusheng Wang
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Franky Leung Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China
| |
Collapse
|
23
|
Aboushousha T, Lashen R, Abdelnaser K, Helal N, Moussa M, Omran Z, Eldahshan S, El Ganzoury H. Comparative Expression of RAGE and SOX2 in Benign and Malignant Prostatic Lesions. Asian Pac J Cancer Prev 2019; 20:615-620. [PMID: 30806068 PMCID: PMC6897005 DOI: 10.31557/apjcp.2019.20.2.615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Prostate cancer (PCa) is a common health problem in elderly. RAGE (Receptor for advanced glycation
end products) is overexpressed in multiple human cancers. SOX2 (Sex-determining region Y box 2) also functions as an
oncoprotein and promotes cancer progression but the mechanisms involved remain largely unknown. Aim: The current
study investigated the expression patterns of RAGE and SOX2 in benign and malignant prostate samples in correlation
with the histopathological findings in order to evaluate their role as prognostic markers or therapeutic targets. Methods:
Immunohistochemical staining for RAGE and SOX2 antibodies was applied on 87 prostatic biopsies [16 of prostatitis, 20
of benign prostatic hyperplasia (BPH) and 51 of PCa]. Results: Expression of RAGE and SOX2 (percentage of positive
cells) was significantly higher in PCa lesions compared with prostatitis (p<0.01) and BPH (p<0.0001) and was also
significantly higher in prostatitis compared with BPH lesions (p<0.01). Also, percentage of positive RAGE and SOX2
cells showed a significant stepwise increase from Gleason Grade 3 to Grade 5 and were significantly higher in high
Gleason Scores (≥8) compared to lower Scores (≤7) with statistical significance (p=0.001). Conclusion: RAGE and
SOX2 were up-regulated in prostate cancer lesions, mainly in advanced grades, suggesting an active role of both antigens
in the development and progression of prostate cancer and expecting the possibility of their use as therapeutic targets.
Collapse
Affiliation(s)
- Tarek Aboushousha
- Department of Pathology, Theodor Bilharz Research Institute, Cairo, Egypt.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Neural Transcription Factors in Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:437-462. [PMID: 31900920 DOI: 10.1007/978-3-030-32656-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progression to the malignant state is fundamentally dependent on transcriptional regulation in cancer cells. Optimum abundance of cell cycle proteins, angiogenesis factors, immune evasion markers, etc. is needed for proliferation, metastasis or resistance to treatment. Therefore, dysregulation of transcription factors can compromise the normal prostate transcriptional network and contribute to malignant disease progression.The androgen receptor (AR) is considered to be a key transcription factor in prostate cancer (PCa) development and progression. Consequently, androgen pathway inhibitors (APIs) are currently the mainstay in PCa treatment, especially in castration-resistant prostate cancer (CRPC). However, emerging evidence suggests that with increased administration of potent APIs, prostate cancer can progress to a highly aggressive disease that morphologically resembles small cell carcinoma, which is referred to as neuroendocrine prostate cancer (NEPC), treatment-induced or treatment-emergent small cell prostate cancer. This chapter will review how neuronal transcription factors play a part in inducing a plastic stage in prostate cancer cells that eventually progresses to a more aggressive state such as NEPC.
Collapse
|
25
|
Ren S, Klump W. Gynecologic Serous Carcinoma: An Immunohistochemical Analysis of Malignant Body Fluid Specimens. Arch Pathol Lab Med 2018; 143:677-682. [PMID: 29688031 DOI: 10.5858/arpa.2017-0260-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Evaluation of fluid specimens involved by serous carcinoma might potentially include PAX8, GATA3, Uroplakin II, SOX2, and SALL4 antibodies. Those markers are commonly employed for diagnosing carcinomas of various types, including urothelial malignancies and germ cell tumors. There have been no comprehensive immunohistochemical studies, to our knowledge, for those markers on fluid specimens involved by serous carcinoma. OBJECTIVE.— To evaluate immunohistochemical markers PAX8, GATA3, SOX2, uroplakin II, and SALL4 in the diagnosis of high-grade serous carcinoma in fluid specimens. DESIGN.— We examined 113 fluids (96 ascites specimens and 17 pleural fluid specimens) that were positive for carcinoma. Most (94 cases; 83.2%) consisted of high-grade serous carcinoma of Müllerian origin. Nineteen cases of non-high-grade serous carcinoma (including one case of low-grade serous carcinoma) of gynecologic origin were also included as anecdotal data. RESULTS.— In 113 fluid specimens with positive results for carcinoma, including nonserous types, 99 (87.6%) had positive results for PAX8, 19 (16.8%) for GATA3; 19 (16.8%) for SOX2, 23 (20.4%) for uroplakin II, and 8 (7.1%) for SALL4. Of 94 fluids (83.2%) involved with high-grade serous carcinoma, 84 (89.4%) had positive results for PAX8, 18 (19.1%) for GATA3, 17 (18.1%) for SOX2, 22 (23.4%) for uroplakin II, and 8 (8.5%) for SALL4. Some of these specimens showed reactivity for more than one immunohistochemical marker. CONCLUSIONS.— Most fluids involving high-grade serous carcinoma showed positive results for PAX8, and some cases expressed GATA3, SOX2, uroplakin II, and SALL4. Serous carcinoma in fluids may be positive for immunohistochemical markers not thought of traditionally as associated with gynecologic malignancy, an important consideration in avoiding misdiagnosis.
Collapse
Affiliation(s)
| | - William Klump
- From the Department of Pathology and Laboratory Medicine, Cooper Medical School of Rowan University, Camden, New Jersey
| |
Collapse
|
26
|
Roato I, Ferracini R. Cancer Stem Cells, Bone and Tumor Microenvironment: Key Players in Bone Metastases. Cancers (Basel) 2018; 10:cancers10020056. [PMID: 29461491 PMCID: PMC5836088 DOI: 10.3390/cancers10020056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/12/2018] [Accepted: 02/17/2018] [Indexed: 12/21/2022] Open
Abstract
Tumor mass is constituted by a heterogeneous group of cells, among which a key role is played by the cancer stem cells (CSCs), possessing high regenerative properties. CSCs directly metastasize to bone, since bone microenvironment represents a fertile environment that protects CSCs against the immune system, and maintains their properties and plasticity. CSCs can migrate from the primary tumor to the bone marrow (BM), due to their capacity to perform the epithelial-to-mesenchymal transition. Once in BM, they can also perform the mesenchymal-to-epithelial transition, allowing them to proliferate and initiate bone lesions. Another factor explaining the osteotropism of CSCs is their ability to recognize chemokine gradients toward BM, through the CXCL12–CXCR4 axis, also known to be involved in tumor metastasis to other organs. Moreover, the expression of CXCR4 is associated with the maintenance of CSCs’ stemness, and CXCL12 expression by osteoblasts attracts CSCs to the BM niches. CSCs localize in the pre-metastatic niches, which are anatomically distinct regions within the tumor microenvironment and govern the metastatic progression. According to the stimuli received in the niches, CSCs can remain dormant for long time or outgrow from dormancy and create bone lesions. This review resumes different aspects of the CSCs’ bone metastastic process and discusses available treatments to target CSCs.
Collapse
Affiliation(s)
- Ilaria Roato
- Center for Research and Medical Studies (CeRMS), A.O.U. Città della Salute e della Scienza, Turin 10126, Italy.
| | - Riccardo Ferracini
- Department of Surgical Sciences (DISC), Orthopaedic Clinic-IRCCS A.O.U. San Martino, Genoa 16132, Italy.
| |
Collapse
|
27
|
Davies AH, Beltran H, Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol 2018; 15:271-286. [PMID: 29460922 DOI: 10.1038/nrurol.2018.22] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The success of next-generation androgen receptor (AR) pathway inhibitors, such as abiraterone acetate and enzalutamide, in treating prostate cancer has been hampered by the emergence of drug resistance. This acquired drug resistance is driven, in part, by the ability of prostate cancer cells to change their phenotype to adopt AR-independent pathways for growth and survival. Around one-quarter of resistant prostate tumours comprise cells that have undergone cellular reprogramming to become AR-independent and to acquire a continuum of neuroendocrine characteristics. These highly aggressive and lethal tumours, termed neuroendocrine prostate cancer (NEPC), exhibit reactivation of developmental programmes that are associated with epithelial-mesenchymal plasticity and acquisition of stem-like cell properties. In the past few years, our understanding of the link between lineage plasticity and an emergent NEPC phenotype has considerably increased. This new knowledge can contribute to novel therapeutic modalities that are likely to improve the treatment and clinical management of aggressive prostate cancer.
Collapse
Affiliation(s)
- Alastair H Davies
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada
| | - Himisha Beltran
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, 413 East 69th Street, New York, NY, USA
| | - Amina Zoubeidi
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada
| |
Collapse
|
28
|
Han JW, Gurunathan S, Choi YJ, Kim JH. Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy. Int J Nanomedicine 2017; 12:7529-7549. [PMID: 29066898 PMCID: PMC5644540 DOI: 10.2147/ijn.s145147] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background Silver nanoparticles (AgNPs) exhibit strong antibacterial and anticancer activity owing to their large surface-to-volume ratios and crystallographic surface structure. Owing to their various applications, understanding the mechanisms of action, biological interactions, potential toxicity, and beneficial effects of AgNPs is important. Here, we investigated the toxicity and differentiation-inducing effects of AgNPs in teratocarcinoma stem cells. Materials and methods AgNPs were synthesized and characterized using various analytical techniques such as UV–visible spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. The cellular responses of AgNPs were analyzed by a series of cellular and biochemical assays. Gene and protein expressions were analyzed by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. Results The AgNPs showed typical crystalline structures and spherical shapes (average size =20 nm). High concentration of AgNPs induced cytotoxicity in a dose-dependent manner by increasing lactate dehydrogenase leakage and reactive oxygen species. Furthermore, AgNPs caused mitochondrial dysfunction, DNA fragmentation, increased expression of apoptotic genes, and decreased expression of antiapoptotic genes. Lower concentrations of AgNPs induced neuronal differentiation by increasing the expression of differentiation markers and decreasing the expression of stem cell markers. Cisplatin reduced the viability of F9 cells that underwent AgNPs-induced differentiation. Conclusion The results showed that AgNPs caused differentially regulated cytotoxicity and induced neuronal differentiation of F9 cells in a concentration-dependent manner. Therefore, AgNPs can be used for differentiation therapy, along with chemotherapeutic agents, for improving cancer treatment by targeting specific chemotherapy-resistant cells within a tumor. Furthermore, understanding the molecular mechanisms of apoptosis and differentiation in stem cells could also help in developing new strategies for cancer stem cell (CSC) therapies. The findings of this study could significantly contribute to the nanomedicine because this study is the first of its kind, and our results will lead to new strategies for cancer and CSC therapies.
Collapse
Affiliation(s)
- Jae Woong Han
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Zhong Y, Li X, Ji Y, Li X, Li Y, Yu D, Yuan Y, Liu J, Li H, Zhang M, Ji Z, Fan D, Wen J, Goscinski MA, Yuan L, Hao B, Nesland JM, Suo Z. Pyruvate dehydrogenase expression is negatively associated with cell stemness and worse clinical outcome in prostate cancers. Oncotarget 2017; 8:13344-13356. [PMID: 28076853 PMCID: PMC5355102 DOI: 10.18632/oncotarget.14527] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022] Open
Abstract
Cells generate adenosine-5′-triphosphate (ATP), the major currency for energy-consuming reactions, through mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis. One of the remarkable features of cancer cells is aerobic glycolysis, also known as the “Warburg Effect”, in which cancer cells rely preferentially on glycolysis instead of mitochondrial OXPHOS as the main energy source even in the presence of high oxygen tension. One of the main players in controlling OXPHOS is the mitochondrial gatekeeperpyruvate dehydrogenase complex (PDHc) and its major subunit is E1α (PDHA1). To further analyze the function of PDHA1 in cancer cells, it was knock out (KO) in the human prostate cancer cell line LnCap and a stable KO cell line was established. We demonstrated that PDHA1 gene KO significantly decreased mitochondrial OXPHOS and promoted anaerobic glycolysis, accompanied with higher stemness phenotype including resistance to chemotherapy, enhanced migration ability and increased expression of cancer stem cell markers. We also examined PDHA1 protein expression in prostate cancer tissues by immunohistochemistry and observed that reduced PDHA1 protein expression in clinical prostate carcinomas was significantly correlated with poor prognosis. Collectively, our results show that negative PDHA1 gene expressionis associated with significantly higher cell stemness in prostate cancer cells and reduced protein expression of this gene is associated with shorter clinical outcome in prostate cancers.
Collapse
Affiliation(s)
- Yali Zhong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Montebello, Oslo, Norway.,Department of Pathology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xiaoli Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yasai Ji
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoran Li
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Montebello, Oslo, Norway.,Department of Pathology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Yaqing Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Dandan Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuan Yuan
- Department of Pathology, Capital Medical University, Beijing, China
| | - Jian Liu
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhenyu Ji
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou
| | - Dandan Fan
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou
| | - Jianguo Wen
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, China
| | - Mariusz Adam Goscinski
- Department of Surgery, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Long Yuan
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Hao
- Department of Urology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jahn M Nesland
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Montebello, Oslo, Norway.,Department of Pathology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Zhenhe Suo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Montebello, Oslo, Norway.,Department of Pathology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Abstract
Good health while aging depends upon optimal cellular and organ functioning that contribute to the regenerative ability of the body during the lifespan, especially when injuries and diseases occur. Although diet may help in the maintenance of cellular fitness during periods of stability or modest decline in the regenerative function of an organ, this approach is inadequate in an aged system, in which the ability to maintain homeostasis is further challenged by aging and the ensuing suboptimal functioning of the regenerative unit, tissue-specific stem cells. Focused nutritional approaches can be used as an intervention to reduce decline in the body's regenerative capacity. This article brings together nutrition-associated therapeutic approaches with the fields of aging, immunology, neurodegenerative disease, and cancer to propose ways in which diet and nutrition can work with standard-of-care and integrated medicine to help improve the brain's function as it ages. The field of regenerative medicine has exploded during the past 2 decades as a result of the discovery of stem cells in nearly every organ system of the body, including the brain, where neural stem cells persist in discrete areas throughout life. This fact, and the uncovering of the genetic basis of plasticity in somatic cells and cancer stem cells, open a door to a world where maintenance and regeneration of organ systems maintain health and extend life expectancy beyond its present limits. An area that has received little attention in regenerative medicine is the influence on regulatory mechanisms and therapeutic potential of nutrition. We propose that a strong relation exists between brain regenerative medicine and nutrition and that nutritional intervention at key times of life could be used to not only maintain optimal functioning of regenerative units as humans age but also play a primary role in therapeutic treatments to combat injury and diseases (in particular, those that occur in the latter one-third of the lifespan).
Collapse
Affiliation(s)
- Dennis A Steindler
- Neuroscience and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, and
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA; and
| | - Brent A Reynolds
- Department of Neurosurgery, University of Florida, Gainesville, FL
| |
Collapse
|
31
|
Zhao J, Li J, Fan TWM, Hou SX. Glycolytic reprogramming through PCK2 regulates tumor initiation of prostate cancer cells. Oncotarget 2017; 8:83602-83618. [PMID: 29137367 PMCID: PMC5663539 DOI: 10.18632/oncotarget.18787] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/21/2017] [Indexed: 12/20/2022] Open
Abstract
Tumor-initiating cells (TICs) play important roles in tumor progression and metastasis. Identifying the factors regulating TICs may open new avenues in cancer therapy. Here, we show that TIC-enriched prostate cancer cell clones use more glucose and secrete more lactate than TIC-low clones. We determined that elevated levels of phosphoenolpyruvate carboxykinase isoform 2 (PCK2) are critical for the metabolic switch and the maintenance of TICs in prostate cancer. Information from prostate cancer patient databases revealed that higher PCK2 levels correlated with more aggressive tumors and lower survival rates. PCK2 knockdown resulted in low TIC numbers, increased cytosolic acetyl-CoA and cellular protein acetylation. Our data suggest PCK2 promotes tumor initiation by lowering acetyl-CoA level through reducing the mitochondrial tricarboxylic acid (TCA) cycle. Thus, PCK2 is a potential therapeutic target for aggressive prostate tumors.
Collapse
Affiliation(s)
- Jiangsha Zhao
- The Basic Research Laboratory, National Cancer Institute, National Institutes of Health Frederick, Frederick, MD 21702, USA
| | - Jieran Li
- Graduate Center of Toxicology and Cancer Biology, Center for Environmental and Systems Biochemistry, and Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Teresa W M Fan
- Graduate Center of Toxicology and Cancer Biology, Center for Environmental and Systems Biochemistry, and Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Steven X Hou
- The Basic Research Laboratory, National Cancer Institute, National Institutes of Health Frederick, Frederick, MD 21702, USA
| |
Collapse
|
32
|
Prostate Cancer Stem Cell Markers Drive Progression, Therapeutic Resistance, and Bone Metastasis. Stem Cells Int 2017; 2017:8629234. [PMID: 28690641 PMCID: PMC5485361 DOI: 10.1155/2017/8629234] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/29/2017] [Accepted: 05/03/2017] [Indexed: 02/07/2023] Open
Abstract
Metastatic or recurrent tumors are the primary cause of cancer-related death. For prostate cancer, patients diagnosed with local disease have a 99% 5-year survival rate; however, this 5-year survival rate drops to 28% in patients with metastatic disease. This dramatic decline in survival has driven interest in discovering new markers able to identify tumors likely to recur and in developing new methods to prevent metastases from occurring. Biomarker discovery for aggressive tumor cells includes attempts to identify cancer stem cells (CSCs). CSCs are defined as tumor cells capable of self-renewal and regenerating the entire tumor heterogeneity. Thus, it is hypothesized that CSCs may drive primary tumor aggressiveness, metastatic colonization, and therapeutic relapse. The ability to identify these cells in the primary tumor or circulation would provide prognostic information capable of driving prostate cancer treatment decisions. Further, the ability to target these CSCs could prevent tumor metastasis and relapse after therapy allowing for prostate cancer to finally be cured. Here, we will review potential CSC markers and highlight evidence that describes how cells expressing each marker may drive prostate cancer progression, metastatic colonization and growth, tumor recurrence, and resistance to treatment.
Collapse
|
33
|
Farmakovskaya M, Khromova N, Rybko V, Dugina V, Kopnin B, Kopnin P. E-Cadherin repression increases amount of cancer stem cells in human A549 lung adenocarcinoma and stimulates tumor growth. Cell Cycle 2017; 15:1084-92. [PMID: 26940223 DOI: 10.1080/15384101.2016.1156268] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Here we show that cancer stem cells amount in human lung adenocarcinoma cell line A549 depends on E-cadherin expression. In fact, downregulation of E-cadherin expression enhanced expression of pluripotent genes (c-MYC, NESTIN, OCT3/4 and SOX2) and enriched cell population with the cells possessing the properties of so-called 'cancer stem cells' via activation of Wnt/β-catenin signaling. Repression of E-cadherin also stimulated cell proliferation and migration in vitro, decreased cell amount essential for xenografts formation in nude mice, increased tumors vascularization and growth. On the other hand, E-cadherin upregulation caused opposite effects i.e. diminished the number of cancer stem cells, decreased xenograft vascularization and decelerated tumor growth. Therefore, agents restoring E-cadherin expression may be useful in anticancer therapy.
Collapse
Affiliation(s)
| | - N Khromova
- a Blokhin Russian Cancer Research Center , Moscow , Russia
| | - V Rybko
- a Blokhin Russian Cancer Research Center , Moscow , Russia
| | - V Dugina
- b Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russia
| | - B Kopnin
- a Blokhin Russian Cancer Research Center , Moscow , Russia
| | - P Kopnin
- a Blokhin Russian Cancer Research Center , Moscow , Russia
| |
Collapse
|
34
|
The Master Neural Transcription Factor BRN2 Is an Androgen Receptor–Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer. Cancer Discov 2016; 7:54-71. [DOI: 10.1158/2159-8290.cd-15-1263] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 11/16/2022]
|
35
|
Farmakovskaya MD, Khromova NV, Kopnin BP, Kopnin PB. E-CADHERIN EXPRESSION DOWNREGULATION ELEVATES TUMOROGENIC POTENTIAL OF HUMAN COLON CANCER CELL LINE HCT116 VIA INCREASE IN CANCER STEM CELLS AMOUNT. ACTA ACUST UNITED AC 2016. [DOI: 10.17650/1726-9784-2016-15-3-06-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Introduction. E-cadherin aberrant expression or complete loss is common for a number of human malignant neoplasms, and can be a launching mechanism of an epithelial-mesenchymal transition. Passing through epithelial-mesenchymal transition could in turn promote to the acquisition of so called cancer stem cell phenotype by the transformed cells. The objective of the present study is to reveal the influence of E-cadherin expression level on the amount of cancer stem cells in human colon cancer cell line HCT116. Materials and methods. We have created cell sublines with E-cadherin up- and downregulation and assessed the percentage of cancer stem cells using tumor formation assay, clonogenic assay; we also evaluated profile of cell pluripotency markers. Results and conclusion. We have shown that the proportion of cancer stem cells in human colon adenocarcinoma cell line HCT116 depends on the E-cadherin expression level. E-cadherin expression downregulation results in elevated expression of pluripotency genes and in the increase of proportion of cancer stem cells via activation of Wnt/ß-signalling pathway. E-cadherin upregulation has a reverse effect and decreases the amount of HCT116 cancer stem cells. Thus, E-cadherin expression restoration seems prospective in colorectal anticancer therapy.
Collapse
|
36
|
Moreira D, Zhang Q, Hossain DMS, Nechaev S, Li H, Kowolik CM, D'Apuzzo M, Forman S, Jones J, Pal SK, Kortylewski M. TLR9 signaling through NF-κB/RELA and STAT3 promotes tumor-propagating potential of prostate cancer cells. Oncotarget 2016; 6:17302-13. [PMID: 26046794 PMCID: PMC4627309 DOI: 10.18632/oncotarget.4029] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/09/2015] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer progression was associated with tumorigenic signaling activated by proinflammatory mediators. However, the etiology of these events remains elusive. Here, we demonstrate that triggering of the innate immune receptor, Toll-like Receptor 9 (TLR9), in androgen-independent prostate cancer cells initiates signaling cascade leading to increased tumor growth and progression. Using limited dilution/serial transplantation experiments, we show that TLR9 is essential for prostate cancer cells' potential to propagate and self-renew in vivo. Furthermore, low expression or silencing of TLR9 limits the clonogenic potential and mesenchymal stem cell-like properties of LNCaP- and PC3-derived prostate cancer cell variants. Genome-wide transcriptional analysis of prostate cancer cells isolated from xenotransplanted TLR9-positive and -negative tumors revealed a unique gene expression signature, with prominent upregulation of inflammation- and stem cell-related markers. TLR9 signaling orchestrated expression of critical stem cell-related genes such as NKX3.1, KLF-4, BMI-1 and COL1A1, at both mRNA and protein levels. Our further analysis identified that TLR9-induced NF-κB/RELA and STAT3 transcription factors co-regulated NKX3.1 and KLF4 gene expression by directly binding to both promoters. Finally, we demonstrated the feasibility of using TLR9-targeted siRNA delivery to block RELA- and STAT3-dependent prostate cancer cell self-renewal in vivo. The intratumoral administration of CpG-RELAsiRNA or CpG-STAT3siRNA but not control conjugates inhibited growth of established prostate tumors and reduced clonogenic potential of cancer cells. Overcoming cancer cell self-renewal and tumor-propagating potential by targeted inhibition of TLR9 signaling can provide therapeutic strategy for late-stage prostate cancer patients.
Collapse
Affiliation(s)
- Dayson Moreira
- Department of Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Qifang Zhang
- Department of Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Dewan Md S Hossain
- Department of Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Sergey Nechaev
- Department of Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Haiqing Li
- Bioinformatics Core Facility, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Claudia M Kowolik
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Massimo D'Apuzzo
- Department of Pathology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Stephen Forman
- Department of Hematologic Malignancies, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Jeremy Jones
- Department of Cell Biology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Sumanta K Pal
- Department of Medical Oncology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Marcin Kortylewski
- Department of Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
37
|
Bae KM, Dai Y, Vieweg J, Siemann DW. Hypoxia regulates SOX2 expression to promote prostate cancer cell invasion and sphere formation. Am J Cancer Res 2016; 6:1078-1088. [PMID: 27294000 PMCID: PMC4889721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/08/2016] [Indexed: 06/06/2023] Open
Abstract
SOX2 is an embryonic stem cell marker that in prostate cancer has been associated not only with tumorigenesis but also metastasis. Furthermore hypoxia in primary tumors has been linked to poor prognosis and outcomes in this disease. The goal of the present study was to investigate the impact of hypoxia on SOX2 expression and metastasis-associated functions in prostate cancer cells. A tissue microarray of 80 samples from prostate cancer patients or healthy controls was employed to examine the expression of HIF-1α and its correlation with SOX2. The role of SOX2 and HIF-1/2α in the regulation of cell invasion and sphere formation capacity under hypoxic conditions was investigated in vitro using short hairpin RNA (shRNA)-mediated knockdown in three human prostate cancer cell lines. HIF-1α expression was significantly elevated in malignant prostate tissue compared to benign or normal tissue, and in tumor samples its expression was highly correlated with SOX2. In prostate cancer cells, acute and chronic exposures to hypoxia that resulted in elevated expression levels of HIF-1α and HIF-2α, respectively, also induced SOX2. Genetic depletion of SOX2 attenuated hypoxia-induced cell functions. Knockdown of HIF-1α, but not HIF-2α, decreased acute hypoxia-mediated cell invasion and SOX2 up-regulation, whereas only HIF-2α gene silencing reduced sphere formation capacity and chronic hypoxia-mediated SOX2 up-regulation. Enhanced SOX2 expression and HIF-1α or HIF-2α associated phenotypes are dependent on the time duration of exposure to hypoxia. The present results indicate that SOX2 may be a key mediator of hypoxia-induced metastasis-associated functions and hence may serve as a potential target for therapeutic interventions for metastatic prostate cancer.
Collapse
Affiliation(s)
- Kyung-Mi Bae
- Department of Urology, College of Medicine, University of FloridaGainesville, Florida, 32610, U.S.A.
| | - Yao Dai
- Department of Radiation Oncology, College of Medicine, University of FloridaGainesville, Florida, 32610, U.S.A.
| | - Johannes Vieweg
- Department of Urology, College of Medicine, University of FloridaGainesville, Florida, 32610, U.S.A.
| | - Dietmar W Siemann
- Department of Radiation Oncology, College of Medicine, University of FloridaGainesville, Florida, 32610, U.S.A.
| |
Collapse
|
38
|
JI PING, ZHANG YONG, WANG SHUJUN, GE HAILIANG, ZHAO GUOPING, XU YINGCHUN, WANG YING. CD44hiCD24lo mammosphere-forming cells from primary breast cancer display resistance to multiple chemotherapeutic drugs. Oncol Rep 2016; 35:3293-302. [DOI: 10.3892/or.2016.4739] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/31/2015] [Indexed: 11/06/2022] Open
|
39
|
Kim SY, Hong SH, Basse PH, Wu C, Bartlett DL, Kwon YT, Lee YJ. Cancer Stem Cells Protect Non-Stem Cells From Anoikis: Bystander Effects. J Cell Biochem 2016; 117:2289-301. [PMID: 26918647 DOI: 10.1002/jcb.25527] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 02/24/2016] [Indexed: 01/26/2023]
Abstract
Cancer stem cells (CSCs) are capable of initiation and metastasis of tumors. Therefore, understanding the biology of CSCs and the interaction between CSCs and their counterpart non-stem cells is crucial for developing a novel cancer therapy. We used CSC-like and non-stem breast cancer MDA-MB-231 and MDA-MB-453 cells to investigate mammosphere formation. We investigated the role of the epithelial cadherin (E-cadherin)-extracellular signal-regulated kinase (Erk) axis in anoikis. Data from E-cadherin small hairpin RNA assay and mitogen-activated protein kinase kinase (MEK) inhibitor study show that activation of Erk, but not modulation of E-cadherin level, may play an important role in anoikis resistance. Next, the two cell subtypes were mixed and the interaction between them during mammosphere culture and xenograft tumor formation was investigated. Unlike CSC-like cells, increased secretion of interleukin-6 (IL-6) and growth-related oncogene (Gro) chemokines was detected during mammosphere culture in non-stem cells. Similar results were observed in mixed cells. Interestingly, CSC-like cells protected non-stem cells from anoikis and promoted tumor growth. Our results suggest bystander effects between CSC-like cells and non-stem cells. J. Cell. Biochem. 117: 2289-2301, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Seog-Young Kim
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Se-Hoon Hong
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Per H Basse
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - David L Bartlett
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, 110-799, Korea
| | - Yong J Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| |
Collapse
|
40
|
Shibata M, Shen MM. Stem cells in genetically-engineered mouse models of prostate cancer. Endocr Relat Cancer 2015; 22:T199-208. [PMID: 26341780 PMCID: PMC4618022 DOI: 10.1530/erc-15-0367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2015] [Indexed: 12/24/2022]
Abstract
The cancer stem cell model proposes that tumors have a hierarchical organization in which tumorigenic cells give rise to non-tumorigenic cells, with only a subset of stem-like cells able to propagate the tumor. In the case of prostate cancer, recent analyses of genetically engineered mouse (GEM) models have provided evidence supporting the existence of cancer stem cells in vivo. These studies suggest that cancer stem cells capable of tumor propagation exist at various stages of tumor progression from prostatic intraepithelial neoplasia (PIN) to advanced metastatic and castration-resistant disease. However, studies of stem cells in prostate cancer have been limited by available approaches for evaluating their functional properties in cell culture and transplantation assays. Given the role of the tumor microenvironment and the putative cancer stem cell niche, future studies using GEM models to analyze cancer stem cells in their native tissue microenvironment are likely to be highly informative.
Collapse
Affiliation(s)
- Maho Shibata
- Departments of MedicineGenetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032, USA
| | - Michael M Shen
- Departments of MedicineGenetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
41
|
Polymeric Micelles of PEG-PLA Copolymer as a Carrier for Salinomycin Against Gemcitabine-Resistant Pancreatic Cancer. Pharm Res 2015; 32:3756-67. [DOI: 10.1007/s11095-015-1737-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 06/08/2015] [Indexed: 12/15/2022]
|
42
|
Finicelli M, Benedetti G, Squillaro T, Pistilli B, Marcellusi A, Mariani P, Santinelli A, Latini L, Galderisi U, Giordano A. Expression of stemness genes in primary breast cancer tissues: the role of SOX2 as a prognostic marker for detection of early recurrence. Oncotarget 2015; 5:9678-88. [PMID: 25127259 PMCID: PMC4259429 DOI: 10.18632/oncotarget.1936] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 04/30/2014] [Indexed: 12/17/2022] Open
Abstract
The events leading to breast cancer (BC) progression or recurrence are not completely understood and new prognostic markers aiming at identifying high risk-patients and to develop suitable therapy are highly demanded. Experimental evidences found in cancer cells a deregulated expression of some genes involved in governance of stem cell properties and demonstrated a relationship between stemness genes overexpression and poorly differentiated BC subtypes. In the present study 140 primary invasive BC specimens were collected. The expression profiles of 13 genes belonging to the OCT3/SOX2/NANOG/KLF4 core circuitry by RT-PCR were analyzed and any correlation between their expression and the BC clinic-pathological features (CPfs) and prognosis was investigated. In our cohort (117 samples), NANOG, GDF3 and SOX2 significantly correlated with grade 2, Nodes negative status and higher KI67 proliferation index, respectively (p=0.019, p=0.029, p= 0.035). According to multivariate analysis, SOX2 expression resulted independently associated with increased risk of recurrence (HR= 2,99; p= p=0,004) as well as Nodes status (HR=2,44; p=0,009) and T-size >1 (HR=1,77; p=0,035). Our study provides further proof of the suitable use of stemness genes in BC management. Interestingly, a prognostic role of SOX2, which seems to be a suitable marker of early recurrence irrespective of other clinicopathological features.
Collapse
Affiliation(s)
| | | | | | - Barbara Pistilli
- Department of Medical Oncology, Macerata Hospital, Macerata, Italy
| | | | - Paola Mariani
- Department of Pathology, Macerata Hospital, Macerata, Italy
| | - Alfredo Santinelli
- Department of Pathology Università Politecnica delle Marche, Ancona, Italy
| | - Luciano Latini
- Department of Medical Oncology, Macerata Hospital, Macerata, Italy
| | - Umberto Galderisi
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, USA. Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Antonio Giordano
- Human Health Foundation, Spoleto, Italy. Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
43
|
Yao CJ, Han TY, Shih PH, Yi TY, Lai IC, Chang KH, Lai TY, Chang CL, Lai GM. Elimination of cancer stem-like side population in human glioblastoma cells accompanied with stemness gene suppression by Korean herbal recipe MSC500. Integr Cancer Ther 2015; 13:541-54. [PMID: 25359730 DOI: 10.1177/1534735414549623] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND High-grade gliomas are the most common and invasive malignant brain tumors in adults, and they are almost universally fatal because of drug resistance and recurrence. In spite of the progress in adjuvant therapy (like temozolomide) and irradiation after surgery, no effective salvage therapy is currently available for relapsed patients. A Korean herbal recipe MSC500 has been reported to have beneficial therapeutic effects in patients with high-grade gliomas who are relapsed or refractory to conventional treatments. But the underlying molecular mechanisms remain unclear. METHODS As Cancer stem cell (CSC) plays a pivotal role in the resistance to conventional cancer therapy, we explored the effects of MSC500 on the CSC-like side population (SP) in GBM8401 human glioblastoma multiforme cells. RESULTS Compared with the parental cells, the SP cells were more resistant to temozolomide but sensitive to MSC500. The mRNA levels of stemness genes such as Nanog, CD133, and ABCG2 were much higher in the SP cells, and so was E-cadherin, which was reported to correlate with the aggressiveness of glioblastoma multiforme. Treatment with MSC500 decreased the proportion of SP cells and high ALDH activity cells from 1.6% to 0.3% and from 0.9% to 0.1%, respectively, accompanied with suppression of the aforementioned stemness genes and E-cadherin, as well as other CSC markers such as ABCB5, Oct-4, Sox-2, β-catenin, Gli-1, and Notch-1. CONCLUSION Our results suggest the potential role of MSC500 as an integrative and complementary therapeutic for advanced or refractory high-grade glioma patients.
Collapse
Affiliation(s)
- Chih-Jung Yao
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | | | - Ping-Hsiao Shih
- Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tsu-Yi Yi
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - I-Chun Lai
- Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ken-Hu Chang
- Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tung-Yuan Lai
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chia-Lun Chang
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Gi-Ming Lai
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
44
|
Karatas OF, Yuceturk B, Suer I, Yilmaz M, Cansiz H, Solak M, Ittmann M, Ozen M. Role of miR-145 in human laryngeal squamous cell carcinoma. Head Neck 2015; 38:260-6. [PMID: 26083661 DOI: 10.1002/hed.23890] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (SCC), being an aggressive malignancy, is one of the most commonly diagnosed malignant types of head and neck SCC worldwide. Incidences of laryngeal SCC have been reported to increase recently. In this study, we aimed to explore the biological effects of miR-145 on laryngeal cancer cells. METHODS The relative miR-145 level in laryngeal SCC tumor tissues and normal samples was investigated. Then, Hep-2 cells were utilized for functional analysis of miR-145. The proliferation abilities of transfected cells were measured using MTS assay. Scratch assay and single colony migration assay were performed to observe the alterations in migration behavior of transfected cells. Caspase assay and cell cycle analysis were used to investigate the underlying reasons of proliferative inhibition in cells in which miR-145 is overexpressed. Moreover, expression of SOX2 was analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot analysis in Hep-2 cells upon miR-145 transfection and its expression was evaluated in tumor and normal tissue sample of the larynx. RESULTS The miR-145 expression in laryngeal SCC tumor samples has been shown to be downregulated. The miR-145 overexpression caused inhibition of proliferation and migration in Hep-2 cells through induction of apoptosis and cell cycle arrest. The SOX2 level was demonstrated to be overexpressed in tumor samples and its expression was significantly decreased in miR-145 overexpressed Hep-2 cells. CONCLUSION We have demonstrated the deregulation of miR-145 and SOX2 in laryngeal SCC. Based on these results, we propose that miR-145, as an important regulator of SOX2, carries crucial roles in laryngeal SCC tumorigenesis.
Collapse
Affiliation(s)
- Omer Faruk Karatas
- Department of Medical Genetics, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey.,Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
| | - Betul Yuceturk
- Department of Medical Genetics, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey.,Advanced Genomics and Bioinformatics Research Center, The Scientific and Technological Research Council of Turkey (TUBITAK), Gebze, Kocaeli, Turkey
| | - Ilknur Suer
- Department of Medical Genetics, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
| | - Mehmet Yilmaz
- Department of Otorhinolaryngology, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
| | - Harun Cansiz
- Department of Otorhinolaryngology, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
| | - Mustafa Solak
- Department of Medical Genetics, Afyon Kocatepe University, Afyon, Turkey
| | - Michael Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Mustafa Ozen
- Department of Medical Genetics, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas.,Department of Molecular Biology and Genetics, Biruni University, Topkapi, Istanbul, Turkey
| |
Collapse
|
45
|
Siemann DW, Horsman MR. Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacol Ther 2015; 153:107-24. [PMID: 26073310 DOI: 10.1016/j.pharmthera.2015.06.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment is increasingly recognized as a major factor influencing the success of therapeutic treatments and has become a key focus for cancer research. The progressive growth of a tumor results in an inability of normal tissue blood vessels to oxygenate and provide sufficient nutritional support to tumor cells. As a consequence the expanding neoplastic cell population initiates its own vascular network which is both structurally and functionally abnormal. This aberrant vasculature impacts all aspects of the tumor microenvironment including the cells, extracellular matrix, and extracellular molecules which together are essential for the initiation, progression and spread of tumor cells. The physical conditions that arise are imposing and manifold, and include elevated interstitial pressure, localized extracellular acidity, and regions of oxygen and nutrient deprivation. No less important are the functional consequences experienced by the tumor cells residing in such environments: adaptation to hypoxia, cell quiescence, modulation of transporters and critical signaling molecules, immune escape, and enhanced metastatic potential. Together these factors lead to therapeutic barriers that create a significant hindrance to the control of cancers by conventional anticancer therapies. However, the aberrant nature of the tumor microenvironments also offers unique therapeutic opportunities. Particularly interventions that seek to improve tumor physiology and alleviate tumor hypoxia will selectively impair the neoplastic cell populations residing in these environments. Ultimately, by combining such therapeutic strategies with conventional anticancer treatments it may be possible to bring cancer growth, invasion, and metastasis to a halt.
Collapse
Affiliation(s)
- Dietmar W Siemann
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, FL, USA.
| | - Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital-NBG, Aarhus, Denmark
| |
Collapse
|
46
|
Cellular Plasticity in Prostate Cancer Bone Metastasis. Prostate Cancer 2015; 2015:651580. [PMID: 26146569 PMCID: PMC4469842 DOI: 10.1155/2015/651580] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/12/2015] [Indexed: 12/13/2022] Open
Abstract
Purpose. Experimental data suggest that tumour cells can reversibly transition between epithelial and mesenchymal states (EMT and MET), a phenomenon known as cellular plasticity. The aim of this review was to appraise the clinical evidence for the role of cellular plasticity in prostate cancer (PC) bone metastasis. Methods. An electronic search was performed using PubMed for studies that have examined the differential expression of epithelial, mesenchymal, and stem cell markers in human PC bone metastasis tissues. Results. The review included nineteen studies. More than 60% of the studies used ≤20 bone metastasis samples, and there were several sources of heterogeneity between studies. Overall, most stem cell markers analysed, except for CXCR4, were positively expressed in bone metastasis tissues, while the expression of EMT and MET markers was heterogeneous between and within samples. Several EMT and stemness markers that are involved in osteomimicry, such as Notch, Met receptor, and Wnt/β pathway, were highly expressed in bone metastases. Conclusions. Clinical findings support the role of cellular plasticity in PC bone metastasis and suggest that epithelial and mesenchymal states cannot be taken in isolation when targeting PC bone metastasis. The paper also highlights several challenges in the clinical detection of cellular plasticity.
Collapse
|
47
|
Ozen M, Karatas OF, Gulluoglu S, Bayrak OF, Sevli S, Guzel E, Ekici ID, Caskurlu T, Solak M, Creighton CJ, Ittmann M. Overexpression of miR-145-5p inhibits proliferation of prostate cancer cells and reduces SOX2 expression. Cancer Invest 2015; 33:251-8. [PMID: 25951106 DOI: 10.3109/07357907.2015.1025407] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We aimed to perform functional analysis of miR-145-5p in prostate cancer (PCa) cells and to identify targets of miR-145-5p for understanding its role in PCa pathogenesis. PC3, DU145, LNCaP PCa, and PNT1a nontumorigenic prostate cell lines were utilized for functional analysis of miR-145-5p. Its overexpression caused inhibition of proliferation through apoptosis and reduced migration in PCa cells. SOX2 expression was significantly decreased in both mRNA and protein level in miR-145-5p-overexpressed PCa cells. We proposed that miR-145-5p, being an important regulator of SOX2, carries a crucial role in PCa tumorigenesis.
Collapse
Affiliation(s)
- Mustafa Ozen
- 1Department of Medical Genetics, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Karachaliou N, Rosell R, Viteri S. The role of SOX2 in small cell lung cancer, lung adenocarcinoma and squamous cell carcinoma of the lung. Transl Lung Cancer Res 2015; 2:172-9. [PMID: 25806230 DOI: 10.3978/j.issn.2218-6751.2013.01.01] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/04/2013] [Indexed: 12/21/2022]
Abstract
SOX2 is a stem cell transcription factor that plays a crucial role in the regulation of embryonic development. It is one of the genes in a set of factors (Oct4, SOX2, Nanog) that are able to reprogram human somatic cells to pluripotent stem cells. Overexpression of SOX2 has been described in all types of lung cancer tissues, including small cell and squamous cell carcinoma but also adenocarcinoma. An in-depth view of the spectrum of genomic alterations in small cell lung cancer (SCLC) has identified SOX2 as a potential target for therapeutic intervention. Amplification of 3q, the most common genomic aberration in squamous lung cancer, has been demonstrated in the evolution of preinvasive squamous lung cancer and implicates SOX2 as a key target of this dynamic process, making SOX2 and its downstream effector components potential targets for biological therapeutics of squamous carcinomas. SOX2 is expressed in nearly 20% of lung adenocarcinoma and is associated with poor prognosis. SOX2 activity was found to promote squamous identity instead of a loss of cellular differentiation consistent with the role of SOX2 as a "lineage-survival oncogene." Interestingly, SOX2 transcription factor is the predominant downstream target of EGFR signaling and plays a major role in self-renewal growth and expansion of side population cells. In light of the complex actions of SOX2 in regulating normal and tumor development, the elucidation of SOX2-dependent pathways may identify new therapeutic vulnerabilities in lung cancer and uncover additional common pathways between cancer, normal development, and the maintenance of pluripotency.
Collapse
Affiliation(s)
| | - Rafael Rosell
- Pangaea Biotech, Dexeus University Institute, Barcelona, Spain ; ; Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Santiago Viteri
- Pangaea Biotech, Dexeus University Institute, Barcelona, Spain
| |
Collapse
|
49
|
DRAKULIC DANIJELA, VICENTIC JELENAMARJANOVIC, SCHWIRTLICH MARIJA, TOSIC JELENA, KRSTIC ALEKSANDAR, KLAJN ANDRIJANA, STEVANOVIC MILENA. The overexpression of SOX2 affects the migration of human teratocarcinoma cell line NT2/D1. ACTA ACUST UNITED AC 2015; 87:389-404. [DOI: 10.1590/0001-3765201520140352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/14/2014] [Indexed: 12/15/2022]
Abstract
The altered expression of the SOX2 transcription factor is associated with oncogenic or tumor suppressor functions in human cancers. This factor regulates the migration and invasion of different cancer cells. In this study we investigated the effect of constitutive SOX2 overexpression on the migration and adhesion capacity of embryonal teratocarcinoma NT2/D1 cells derived from a metastasis of a human testicular germ cell tumor. We detected that increased SOX2 expression changed the speed, mode and path of cell migration, but not the adhesion ability of NT2/D1 cells. Additionally, we demonstrated that SOX2 overexpression increased the expression of the tumor suppressor protein p53 and the HDM2 oncogene. Our results contribute to the better understanding of the effect of SOX2 on the behavior of tumor cells originating from a human testicular germ cell tumor. Considering that NT2/D1 cells resemble cancer stem cells in many features, our results could contribute to the elucidation of the role of SOX2 in cancer stem cells behavior and the process of metastasis.
Collapse
Affiliation(s)
| | | | | | - JELENA TOSIC
- University of Belgrade, Serbia; University of Lausanne, Switzerland
| | | | | | | |
Collapse
|
50
|
Santos Franco S, Raveh-Amit H, Kobolák J, Alqahtani MH, Mobasheri A, Dinnyes A. The crossroads between cancer stem cells and aging. BMC Cancer 2015; 15 Suppl 1:S1. [PMID: 25708542 PMCID: PMC4331724 DOI: 10.1186/1471-2407-15-s1-s1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cancer stem cell (CSC) hypothesis suggests that only a subpopulation of cells within a tumour is responsible for the initiation and progression of neoplasia. The original and best evidence for the existence of CSCs came from advances in the field of haematological malignancies. Thus far, putative CSCs have been isolated from various solid and non-solid tumours and shown to possess self-renewal, differentiation, and cancer regeneration properties. Although research in the field is progressing extremely fast, proof of concept for the CSC hypothesis is still lacking and key questions remain unanswered, e.g. the cell of origin for these cells. Nevertheless, it is undisputed that neoplastic transformation is associated with genetic and epigenetic alterations of normal cells, and a better understanding of these complex processes is of utmost importance for developing new anti-cancer therapies. In the present review, we discuss the CSC hypothesis with special emphasis on age-associated alterations that govern carcinogenesis, at least in some types of tumours. We present evidence from the scientific literature for age-related genetic and epigenetic alterations leading to cancer and discuss the main challenges in the field.
Collapse
|