1
|
Schlosser-Perrin L, Holzmuller P, Fernandez B, Miotello G, Dahmani N, Neyret A, Bertagnoli S, Armengaud J, Caufour P. Constitutive proteins of lumpy skin disease virion assessed by next-generation proteomics. J Virol 2023; 97:e0072323. [PMID: 37737587 PMCID: PMC10617387 DOI: 10.1128/jvi.00723-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Lumpy skin disease virus (LSDV) is the causative agent of an economically important cattle disease which is notifiable to the World Organisation for Animal Health. Over the past decades, the disease has spread at an alarming rate throughout the African continent, the Middle East, Eastern Europe, the Russian Federation, and many Asian countries. While multiple LDSV whole genomes have made further genetic comparative analyses possible, knowledge on the protein composition of the LSDV particle remains lacking. This study provides for the first time a comprehensive proteomic analysis of an infectious LSDV particle, prompting new efforts toward further proteomic LSDV strain characterization. Furthermore, this first incursion within the capripoxvirus proteome represents one of very few proteomic studies beyond the sole Orthopoxvirus genus, for which most of the proteomics studies have been performed. Providing new information about other chordopoxviruses may contribute to shedding new light on protein composition within the Poxviridae family.
Collapse
Affiliation(s)
- Léo Schlosser-Perrin
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Philippe Holzmuller
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Bernard Fernandez
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Guylaine Miotello
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Noureddine Dahmani
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Aymeric Neyret
- CEMIPAI, University of Montpellier, UAR3725 CNRS, Montpellier, France
| | | | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Philippe Caufour
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| |
Collapse
|
2
|
Diagnostic Techniques for COVID-19: A Mini-review of Early Diagnostic Methods. JOURNAL OF ANALYSIS AND TESTING 2021; 5:314-326. [PMID: 34631199 PMCID: PMC8488931 DOI: 10.1007/s41664-021-00198-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022]
Abstract
The outbreak of severe pneumonia at the end of 2019 was proved to be caused by the SARS-CoV-2 virus spreading out the world. And COVID-19 spread rapidly through a terrible transmission way by human-to-human, which led to many suspected cases waiting to be diagnosed and huge daily samples needed to be tested by an effective and rapid detection method. With an increasing number of COVID-19 infections, medical pressure is severe. Therefore, more efficient and accurate diagnosis methods were keen urgently established. In this review, we summarized several methods that can rapidly and sensitively identify COVID-19; some of them are widely used as the diagnostic techniques for SARS-CoV-2 in various countries, some diagnostic technologies refer to SARS (Severe Acute Respiratory Syndrome) or/and MERS (Middle East Respiratory Syndrome) detection, which may provide potential diagnosis ideas.
Collapse
|
3
|
Reduced cellular binding affinity has profoundly different impacts on the spread of distinct poxviruses. PLoS One 2020; 15:e0231977. [PMID: 32352982 PMCID: PMC7192435 DOI: 10.1371/journal.pone.0231977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/03/2020] [Indexed: 01/11/2023] Open
Abstract
Poxviruses are large enveloped viruses that replicate exclusively in the cytoplasm. Like all viruses, their replication cycle begins with virion adsorption to the cell surface. Unlike most other viral families, however, no unique poxviral receptor has ever been identified. In the absence of a unique receptor, poxviruses are instead thought to adhere to the cell surface primarily through electrostatic interactions between the positively charged viral envelope proteins and the negatively charged sulfate groups on cellular glycosaminoglycans (GAGs). While these negatively charged GAGs are an integral part of all eukaryotic membranes, their specific expression and sulfation patterns differ between cell types. Critically, while poxviral binding has been extensively studied using virally centered genetic strategies, the impact of cell-intrinsic changes to GAG charge has never been examined. Here we show that loss of heparin sulfation, accomplished by deleting the enzyme N-Deacetylase and N-Sulfotransferase-1 (NDST1) which is essential for GAG sulfation, significantly reduces the binding affinity of both vaccinia and myxoma viruses to the cell surface. Strikingly, however, while this lowered binding affinity inhibits the subsequent spread of myxoma virus, it actually enhances the overall spread of vaccinia by generating more diffuse regions of infection. These data indicate that cell-intrinsic GAG sulfation plays a major role in poxviral infection, however, this role varies significantly between different members of the poxviridae.
Collapse
|
4
|
O’Connell CM, Jasperse B, Hagen CJ, Titong A, Verardi PH. Replication-inducible vaccinia virus vectors with enhanced safety in vivo. PLoS One 2020; 15:e0230711. [PMID: 32240193 PMCID: PMC7117657 DOI: 10.1371/journal.pone.0230711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/06/2020] [Indexed: 11/18/2022] Open
Abstract
Vaccinia virus (VACV) has been used extensively as the vaccine against smallpox and as a viral vector for the development of recombinant vaccines and cancer therapies. Replication-competent, non-attenuated VACVs induce strong, long-lived humoral and cell-mediated immune responses and can be effective oncolytic vectors. However, complications from uncontrolled VACV replication in vaccinees and their close contacts can be severe, particularly in individuals with predisposing conditions. In an effort to develop replication-competent VACV vectors with improved safety, we placed VACV late genes encoding core or virion morphogenesis proteins under the control of tet operon elements to regulate their expression with tetracycline antibiotics. These replication-inducible VACVs would only express the selected genes in the presence of tetracyclines. VACVs inducibly expressing the A3L or A6L genes replicated indistinguishably from wild-type VACV in the presence of tetracyclines, whereas there was no evidence of replication in the absence of antibiotics. These outcomes were reflected in mice, where the VACV inducibly expressing the A6L gene caused weight loss and mortality equivalent to wild-type VACV in the presence of tetracyclines. In the absence of tetracyclines, mice were protected from weight loss and mortality, and viral replication was not detected. These findings indicate that replication-inducible VACVs based on the conditional expression of the A3L or A6L genes can be used for the development of safer, next-generation live VACV vectors and vaccines. The design allows for administration of replication-inducible VACV in the absence of tetracyclines (as a replication-defective vector) or in the presence of tetracyclines (as a replication-competent vector) with enhanced safety.
Collapse
Affiliation(s)
- Caitlin M. O’Connell
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Brittany Jasperse
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Caitlin J. Hagen
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Allison Titong
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Paulo H. Verardi
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
5
|
Myxoma Virus M083 Is a Virulence Factor Which Mediates Systemic Dissemination. J Virol 2018; 92:JVI.02186-17. [PMID: 29343569 DOI: 10.1128/jvi.02186-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/09/2018] [Indexed: 11/20/2022] Open
Abstract
Poxviruses are large, DNA viruses whose protein capsid is surrounded by one or more lipid envelopes. Embedded into these lipid envelopes are three conserved viral proteins which are thought to mediate binding of virions to target cells. While the function of these proteins has been studied in vitro, their specific roles during the pathogenesis of poxviral disease remain largely unclear. Here we present data demonstrating that the putative chondroitin binding protein M083 from the leporipoxvirus myxoma virus is a significant virulence factor during infection of susceptible Oryctolagus rabbits. Removal of M083 results in a reduced capacity of virus to spread beyond the regional lymph nodes and completely eliminates infection-mediated mortality. In vitro, removal of M083 results in only minor intracellular replication defects but causes a significant reduction in the ability of myxoma virus to spread from infected epithelial cells onto primary lymphocytes. We hypothesize that the physiological role of M083 is therefore to mediate the spread of myxoma virus onto rabbit lymphocytes, allowing these cells to disseminate virus throughout infected rabbits.IMPORTANCE Poxviruses represent both a class of human pathogens and potential therapeutic agents for the treatment of human malignancy. Understanding the basic biology of these agents is therefore significant to human health in a variety of ways. While the mechanisms mediating poxviral binding have been well studied in vitro, how these mechanisms impact poxviral pathogenesis in vivo remains unclear. The current study advances our understanding of how poxviral binding impacts viral pathogenesis by demonstrating that the putative chondroitin binding protein M083 plays a critical role during the pathogenesis of myxoma virus in susceptible Oryctolagus rabbits by impacting viral dissemination through changes in the transfer of virions onto primary splenocytes.
Collapse
|
6
|
Reverse Engineering Field Isolates of Myxoma Virus Demonstrates that Some Gene Disruptions or Losses of Function Do Not Explain Virulence Changes Observed in the Field. J Virol 2017; 91:JVI.01289-17. [PMID: 28768866 DOI: 10.1128/jvi.01289-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 01/16/2023] Open
Abstract
The coevolution of myxoma virus (MYXV) and wild European rabbits in Australia and Europe is a paradigm for the evolution of a pathogen in a new host species. Genomic analyses have identified the mutations that have characterized this evolutionary process, but defining causal mutations in the pathways from virulence to attenuation and back to virulence has not been possible. Using reverse genetics, we examined the roles of six selected mutations found in Australian field isolates of MYXV that fall in known or potential virulence genes. Several of these mutations occurred in genes previously identified as virulence genes in whole-gene knockout studies. Strikingly, no single or double mutation among the mutations tested had an appreciable impact on virulence. This suggests either that virulence evolution was defined by amino acid changes other than those analyzed here or that combinations of multiple mutations, possibly involving epistatic interactions or noncoding sequences, have been critical in the ongoing evolution of MYXV virulence. In sum, our results show that single-gene knockout studies of a progenitor virus can have little power to predict the impact of individual mutations seen in the field. The genetic determinants responsible for this canonical case of virulence evolution remain to be determined.IMPORTANCE The species jump of myxoma virus (MYXV) from the South American tapeti to the European rabbit populations of Australia and Europe is a canonical example of host-pathogen coevolution. Detailed molecular studies have identified multiple genes in MYXV that are critical for virulence, and genome sequencing has revealed the evolutionary history of MYXV in Australia and Europe. However, it has not been possible to categorically identify the key mutations responsible for the attenuation of or reversion to virulence during this evolutionary process. Here we use reverse genetics to examine the role of mutations in viruses isolated early and late in the Australian radiation of MYXV. Surprisingly, none of the candidate mutations that we identified as likely having roles in attenuation proved to be important for virulence. This indicates that considerable caution is warranted when interpreting the possible role of individual mutations during virulence evolution.
Collapse
|
7
|
Rahman MM, Liu J, Chan WM, Rothenburg S, McFadden G. Myxoma virus protein M029 is a dual function immunomodulator that inhibits PKR and also conscripts RHA/DHX9 to promote expanded host tropism and viral replication. PLoS Pathog 2013; 9:e1003465. [PMID: 23853588 PMCID: PMC3701710 DOI: 10.1371/journal.ppat.1003465] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 05/14/2013] [Indexed: 11/18/2022] Open
Abstract
Myxoma virus (MYXV)-encoded protein M029 is a member of the poxvirus E3 family of dsRNA-binding proteins that antagonize the cellular interferon signaling pathways. In order to investigate additional functions of M029, we have constructed a series of targeted M029-minus (vMyx-M029KO and vMyx-M029ID) and V5-tagged M029 MYXV. We found that M029 plays a pivotal role in determining the cellular tropism of MYXV in all mammalian cells tested. The M029-minus viruses were able to replicate only in engineered cell lines that stably express a complementing protein, such as vaccinia E3, but underwent abortive or abated infection in all other tested mammalian cell lines. The M029-minus viruses were dramatically attenuated in susceptible host European rabbits and caused no observable signs of myxomatosis. Using V5-tagged M029 virus, we observed that M029 expressed as an early viral protein is localized in both the nuclear and cytosolic compartments in virus-infected cells, and is also incorporated into virions. Using proteomic approaches, we have identified Protein Kinase R (PKR) and RNA helicase A (RHA)/DHX9 as two cellular binding partners of M029 protein. In virus-infected cells, M029 interacts with PKR in a dsRNA-dependent manner, while binding with DHX9 was not dependent on dsRNA. Significantly, PKR knockdown in human cells rescued the replication defect of the M029-knockout viruses. Unexpectedly, this rescue of M029-minus virus replication by PKR depletion could then be reversed by RHA/DHX9 knockdown in human monocytic THP1 cells. This indicates that M029 not only inhibits generic PKR anti-viral pathways, but also binds and conscripts RHA/DHX9 as a pro-viral effector to promote virus replication in THP1 cells. Thus, M029 is a critical host range and virulence factor for MYXV that is required for replication in all mammalian cells by antagonizing PKR-mediated anti-viral functions, and also conscripts pro-viral RHA/DHX9 to promote viral replication specifically in myeloid cells. Poxviruses exploit diverse strategies to modulate host anti-viral responses in order to achieve broad cellular tropism and replication. Here we report the findings that Myxoma virus (MYXV), a rabbit-specific poxvirus, expresses a viral protein M029 that possesses dual immunomodulatory functions. M029 binds and inhibits the anti-viral functions of protein kinase R (PKR) and also binds and conscripts the pro-viral activities of another cellular protein, RNA helicase A (RHA/DHX9), a member of the DEXD/H box family of proteins. Engineered M029-minus MYXVs did not cause lethal disease myxomatosis in the European rabbits. M029-minus MYXVs were also unable to replicate in diverse mammalian cell types, but can be rescued by knocking down the expression of PKR. However, this rescue of M029-minus virus replication could then be reversed by RHA/DHX9 knockdown in human myeloid cells. These findings reveal a novel strategy used by a single viral immunomodulatory protein that both inhibits a host anti-viral factor and additionally conscripting a host pro-viral factor to expand viral tropism in a wider range of target mammalian cells.
Collapse
Affiliation(s)
- Masmudur M. Rahman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Jia Liu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Winnie M. Chan
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Stefan Rothenburg
- Laboratory for Host-Specific Virology, Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
8
|
Vaccinia virus A6 is essential for virion membrane biogenesis and localization of virion membrane proteins to sites of virion assembly. J Virol 2012; 86:5603-13. [PMID: 22398288 DOI: 10.1128/jvi.00330-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poxvirus acquires its primary envelope through a process that is distinct from those of other enveloped viruses. The molecular mechanism of this process is poorly understood, but several poxvirus proteins essential for the process have been identified in studies of vaccinia virus (VACV), the prototypical poxvirus. Previously, we identified VACV A6 as an essential factor for virion morphogenesis by studying a temperature-sensitive mutant with a lesion in A6. Here, we further studied A6 by constructing and characterizing an inducible virus (iA6) that could more stringently repress A6 expression. When A6 expression was induced by the inducer isopropyl-β-D-thiogalactoside (IPTG), iA6 replicated normally, and membrane proteins of mature virions (MVs) predominantly localized in viral factories where virions were assembled. However, when A6 expression was repressed, electron microscopy of infected cells showed the accumulation of large viroplasm inclusions containing virion core proteins but no viral membranes. Immunofluorescence and cell fractionation studies showed that the major MV membrane proteins A13, A14, D8, and H3 did not localize to viral factories but instead accumulated in the secretory compartments, including the endoplasmic reticulum. Overall, our results show that A6 is an additional VACV protein that participates in an early step of virion membrane biogenesis. Furthermore, A6 is required for MV membrane protein localization to sites of virion assembly, suggesting that MV membrane proteins or precursors of MV membranes are trafficked to sites of virion assembly through an active, virus-mediated process that requires A6.
Collapse
|
9
|
Kerr PJ. Myxomatosis in Australia and Europe: a model for emerging infectious diseases. Antiviral Res 2012; 93:387-415. [PMID: 22333483 DOI: 10.1016/j.antiviral.2012.01.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/20/2012] [Accepted: 01/26/2012] [Indexed: 11/18/2022]
Abstract
Myxoma virus is a poxvirus naturally found in two American leporid (rabbit) species (Sylvilagus brasiliensis and Sylvilagus bachmani) in which it causes an innocuous localised cutaneous fibroma. However, in European rabbits (Oryctolagus cuniculus) the same virus causes the lethal disseminated disease myxomatosis. The introduction of myxoma virus into the European rabbit population in Australia in 1950 initiated the best known example of what happens when a novel pathogen jumps into a completely naïve new mammalian host species. The short generation time of the rabbit and their vast numbers in Australia meant evolution could be studied in real time. The carefully documented emergence of attenuated strains of virus that were more effectively transmitted by the mosquito vector and the subsequent selection of rabbits with genetic resistance to myxomatosis is the paradigm for pathogen virulence and host-pathogen coevolution. This natural experiment was repeated with the release of a separate strain of myxoma virus in France in 1952. The subsequent spread of the virus throughout Europe and its coevolution with the rabbit essentially paralleled what occurred in Australia. Detailed molecular studies on myxoma virus have dissected the role of virulence genes in the pathogenesis of myxomatosis and when combined with genomic data and reverse genetics should in future enable the understanding of the molecular evolution of the virus as it adapted to its new host. This review describes the natural history and evolution of myxoma virus together with the molecular biology and experimental pathogenesis studies that are informing our understanding of evolution of emerging diseases.
Collapse
Affiliation(s)
- Peter J Kerr
- CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2601, Australia.
| |
Collapse
|
10
|
Abstract
Studies of the functional proteins encoded by the poxvirus genome provide information about the composition of the virus as well as individual virus-virus protein and virus-host protein interactions, which provides insight into viral pathogenesis and drug discovery. Widely used proteomic techniques to identify and characterize specific protein-protein interactions include yeast two-hybrid studies and coimmunoprecipitations. Recently, various mass spectrometry techniques have been employed to identify viral protein components of larger complexes. These methods, combined with structural studies, can provide new information about the putative functions of viral proteins as well as insights into virus-host interaction dynamics. For viral proteins of unknown function, identification of either viral or host binding partners provides clues about their putative function. In this review, we discuss poxvirus proteomics, including the use of proteomic methodologies to identify viral components and virus-host protein interactions. High-throughput global protein expression studies using protein chip technology as well as new methods for validating putative protein-protein interactions are also discussed.
Collapse
|
11
|
|
12
|
Barrett JW, Werden SJ, Wang F, McKillop WM, Jimenez J, Villeneuve D, McFadden G, Dekaban GA. Myxoma virus M130R is a novel virulence factor required for lethal myxomatosis in rabbits. Virus Res 2009; 144:258-65. [PMID: 19477207 DOI: 10.1016/j.virusres.2009.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 05/14/2009] [Accepted: 05/14/2009] [Indexed: 11/18/2022]
Abstract
Myxoma virus (MV) is a highly lethal, rabbit-specific poxvirus that induces a disease called myxomatosis in European rabbits. In an effort to understand the function of predicted immunomodulatory genes we have deleted various viral genes from MV and tested the ability of these knockout viruses to induce lethal myxomatosis. MV encodes a unique 15 kD cytoplasmic protein (M130R) that is expressed late (12h post infection) during infection. M130R is a non-essential gene for MV replication in rabbit, monkey or human cell lines. Construction of a targeted gene knockout virus (vMyx130KO) and infection of susceptible rabbits demonstrate that the M130R knockout virus is attenuated and that loss of M130R expression allows the rabbit host immune system to effectively respond to and control the lethal effects of MV. M130R expression is a bona fide poxviral virulence factor necessary for full and lethal development of myxomatosis.
Collapse
Affiliation(s)
- John W Barrett
- Biotherapeutics Research Group, Robarts Research Institute and Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Complete genome of the broad-host-range Erwinia amylovora phage phiEa21-4 and its relationship to Salmonella phage felix O1. Appl Environ Microbiol 2009; 75:2139-47. [PMID: 19181832 DOI: 10.1128/aem.02352-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first complete genome sequence for a myoviridal bacteriophage, PhiEa21-4, infecting Erwinia amylovora, Erwinia pyrifoliae, and Pantoea agglomerans strains has been determined. The unique sequence of this terminally redundant, circularly permuted genome is 84,576 bp. The PhiEa21-4 genome has a GC content of 43.8% and contains 117 putative protein-coding genes and 26 tRNA genes. PhiEa21-4 is the first phage in which a precisely conserved rho-independent terminator has been found dispersed throughout the genome, with 24 copies in all. Also notable in the PhiEa21-4 genome are the presence of tRNAs with six- and nine-base anticodon loops, the absence of a small packaging terminase subunit, and the presence of nadV, a principle component of the NAD(+) salvage pathway, which has been found in only a few phage genomes to date. PhiEa21-4 is the first reported Felix O1-like phage genome; 56% of the predicted PhiEa21-4 proteins share homology with those of the Salmonella phage. Apart from this similarity to Felix O1, the PhiEa21-4 genome appears to be substantially different, both globally and locally, from previously reported sequences. A total of 43 of the 117 genes are unique to PhiEa21-4, and 32 of the Felix O1-like genes do not appear in any phage genome sequences other than PhiEa21-4 and Felix O1. N-terminal sequencing and matrix-assisted laser desorption ionization-time of flight analysis resulted in the identification of five PhiEa21-4 genes coding for virion structural proteins, including the major capsid protein.
Collapse
|
14
|
Abstract
Viruses have long been studied not only for their pathology and associated disease but also as model systems for molecular processes and as tools for identifying important cellular regulatory proteins and pathways. Recent advances in mass spectrometry methods coupled with the development of proteomic approaches have greatly facilitated the detection of virion components, protein interactions in infected cells, and virally induced changes in the cellular proteome, resulting in a more comprehensive understanding of viral infection. In addition, a rapidly increasing number of high-resolution structures for viral proteins have provided valuable information on the mechanism of action of these proteins as well as aided in the design and understanding of specific inhibitors that could be used in antiviral therapies. In this paper, we discuss proteomic studies conducted on all eukaryotic viruses and bacteriophages, covering virion composition, viral protein structures, virus-virus and virus-host protein interactions, and changes in the cellular proteome upon viral infection.
Collapse
Affiliation(s)
- Karen L Maxwell
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
15
|
Smith MN, Kwok SC, Hodges RS, Wood JM. Structural and functional analysis of ProQ: an osmoregulatory protein of Escherichia coli. Biochemistry 2007; 46:3084-95. [PMID: 17319698 DOI: 10.1021/bi6023786] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transporter ProP of Escherichia coli senses extracellular osmolality and responds by mediating cytoplasmic accumulation of organic solutes such as proline. Lesions at the proQ locus reduce ProP activity in vivo. ProQ was previously purified and characterized. Homology modeling predicted that ProQ possesses an alpha-helical N-terminal domain (residues 1-130) and a beta-sheet C-terminal domain (residues 181-232) connected by an unstructured linker. In this work, we tested the structural model for ProQ, explored the solubility and folding of full length ProQ and its domains in diverse buffers, and tested the impacts of the putative ProQ domains on ProP activity in vivo. Limited tryptic proteolysis of ProQ revealed protease resistant fragments corresponding to the predicted N-terminal and C-terminal domains. Polypeptides corresponding to the predicted N- and C-terminal domains could be overexpressed and purified to near homogeneity using nickel affinity, size exclusion and reversed phase chromatographies. Circular dichroism spectroscopy of the purified proteins revealed that the N-terminal domain was predominantly alpha-helical, whereas the C-terminal domain was predominantly beta-sheet, as predicted. The domains were soluble and folded in neutral buffers containing 0.6 M NaCl. The N-terminal domain was soluble and folded in 0.1 M MES (2-[N-morpholino]-ethane sulfonic acid) at pH 5.6. Despite high solubilities, the proteins were not well folded in Na citrate (0.1 M, pH 2.3). The ProQ domains and the linker were expressed at physiological levels, singly and in combination, in bacteria lacking the chromosomal proQ locus. Among these proteins, the N-terminal domain could partially complement the proQ deletion. The full length protein and a variant lacking only the linker restored full activity of the ProP protein.
Collapse
Affiliation(s)
- Michelle N Smith
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
16
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:1654-1665. [PMID: 17136768 DOI: 10.1002/jms.959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
17
|
Meng X, Embry A, Sochia D, Xiang Y. Vaccinia virus A6L encodes a virion core protein required for formation of mature virion. J Virol 2006; 81:1433-43. [PMID: 17108027 PMCID: PMC1797496 DOI: 10.1128/jvi.02206-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus A6L is a previously uncharacterized gene that is conserved in all sequenced vertebrate poxviruses. Here, we constructed a recombinant vaccinia virus encoding A6 with an epitope tag and showed that A6 was expressed in infected cells after viral DNA replication and packaged in the core of the mature virion. Furthermore, we showed that A6 was essential for vaccinia virus replication by performing clustered charge-to-alanine mutagenesis on A6, which resulted in two vaccinia virus mutants (vA6L-mut1 and vA6L-mut2) that displayed a temperature-sensitive phenotype. At 31 degrees C, both mutants replicated efficiently; however, at 40 degrees C, vA6L-mut1 grew to a low titer, while vA6L-mut2 failed to replicate. The A6 protein expressed by vA6L-mut2 exhibited temperature-dependent instability. At the nonpermissive temperature, vA6L-mut2 was normal at viral gene expression and viral factory formation, but it was defective for proteolytic processing of the precursors of several major virion proteins, a defect that is characteristic of a block in virion morphogenesis. Electron microscopy further showed that the morphogenesis of vA6L-mut2 was arrested before the formation of immature virion with nucleoid and mature virion. Taken together, our data show that A6 is a virion core protein that plays an essential role in virion morphogenesis.
Collapse
Affiliation(s)
- Xiangzhi Meng
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
18
|
Renesto P, Abergel C, Decloquement P, Moinier D, Azza S, Ogata H, Fourquet P, Gorvel JP, Claverie JM. Mimivirus giant particles incorporate a large fraction of anonymous and unique gene products. J Virol 2006; 80:11678-85. [PMID: 16971431 PMCID: PMC1642625 DOI: 10.1128/jvi.00940-06] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Acanthamoeba polyphaga mimivirus is the largest known virus in both particle size and genome complexity. Its 1.2-Mb genome encodes 911 proteins, among which only 298 have predicted functions. The composition of purified isolated virions was analyzed by using a combined electrophoresis/mass spectrometry approach allowing the identification of 114 proteins. Besides the expected major structural components, the viral particle packages 12 proteins unambiguously associated with transcriptional machinery, 3 proteins associated with DNA repair, and 2 topoisomerases. Other main functional categories represented in the virion include oxidative pathways and protein modification. More than half of the identified virion-associated proteins correspond to anonymous genes of unknown function, including 45 "ORFans." As demonstrated by both Western blotting and immunogold staining, some of these "ORFans," which lack any convincing similarity in the sequence databases, are endowed with antigenic properties. Thus, anonymous and unique genes constituting the majority of the mimivirus gene complement encode bona fide proteins that are likely to participate in well-integrated processes.
Collapse
Affiliation(s)
- Patricia Renesto
- Unité des Rickettsies, CNRS UMR 6020, IFR-48, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yoder JD, Chen TS, Gagnier CR, Vemulapalli S, Maier CS, Hruby DE. Pox proteomics: mass spectrometry analysis and identification of Vaccinia virion proteins. Virol J 2006; 3:10. [PMID: 16509968 PMCID: PMC1540416 DOI: 10.1186/1743-422x-3-10] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 03/01/2006] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Although many vaccinia virus proteins have been identified and studied in detail, only a few studies have attempted a comprehensive survey of the protein composition of the vaccinia virion. These projects have identified the major proteins of the vaccinia virion, but little has been accomplished to identify the unknown or less abundant proteins. Obtaining a detailed knowledge of the viral proteome of vaccinia virus will be important for advancing our understanding of orthopoxvirus biology, and should facilitate the development of effective antiviral drugs and formulation of vaccines. RESULTS In order to accomplish this task, purified vaccinia virions were fractionated into a soluble protein enriched fraction (membrane proteins and lateral bodies) and an insoluble protein enriched fraction (virion cores). Each of these fractions was subjected to further fractionation by either sodium dodecyl sulfate-polyacrylamide gel electophoresis, or by reverse phase high performance liquid chromatography. The soluble and insoluble fractions were also analyzed directly with no further separation. The samples were prepared for mass spectrometry analysis by digestion with trypsin. Tryptic digests were analyzed by using either a matrix assisted laser desorption ionization time of flight tandem mass spectrometer, a quadrupole ion trap mass spectrometer, or a quadrupole-time of flight mass spectrometer (the latter two instruments were equipped with electrospray ionization sources). Proteins were identified by searching uninterpreted tandem mass spectra against a vaccinia virus protein database created by our lab and a non-redundant protein database. CONCLUSION Sixty three vaccinia proteins were identified in the virion particle. The total number of peptides found for each protein ranged from 1 to 62, and the sequence coverage of the proteins ranged from 8.2% to 94.9%. Interestingly, two vaccinia open reading frames were confirmed as being expressed as novel proteins: E6R and L3L.
Collapse
Affiliation(s)
- Jennifer D Yoder
- Oregon State University, Department of Microbiology, 220 Nash Hall, Corvallis, OR 97331-3804, USA
| | - Tsefang S Chen
- Oregon State University, Department of Microbiology, 220 Nash Hall, Corvallis, OR 97331-3804, USA
| | - Cliff R Gagnier
- Oregon State University, Department of Microbiology, 220 Nash Hall, Corvallis, OR 97331-3804, USA
| | - Srilakshmi Vemulapalli
- Oregon State University, Applied Biotechnology Program, 2082 Cordley Hall, Corvallis, OR 97331-8530, USA
| | - Claudia S Maier
- Oregon State University, Department of Chemistry, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA
| | - Dennis E Hruby
- Oregon State University, Department of Microbiology, 220 Nash Hall, Corvallis, OR 97331-3804, USA
| |
Collapse
|