1
|
Fan Q, Xie Z, Wei Y, Zhang Y, Xie Z, Xie L, Huang J, Zeng T, Wang S, Luo S, Li M. Development of a visual multiplex fluorescent LAMP assay for the detection of foot-and-mouth disease, vesicular stomatitis and bluetongue viruses. PLoS One 2022; 17:e0278451. [PMID: 36480573 PMCID: PMC9731490 DOI: 10.1371/journal.pone.0278451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Loop-mediated isothermal amplification (LAMP) is a nucleic acid amplification technique that can be used to amplify target genes at a constant temperature, and it has several advantages, including convenience, specificity and sensitivity. However, due to the special interpretation methods of this technology for reaction results, all the previously reported LAMP detection methods have been restricted to identifying a single target, which limits the application of this technology. In this study, we modified conventional LAMP to include a quencher-fluorophore composite probe complementary to the F1c segment of the inner primer FIP; upon strand separation, a gain in the visible fluorescent signal was observed. The probes could be labeled with different fluorophores, showing different colors at the corresponding wavelengths. Therefore, this multiplex LAMP (mLAMP) assay can simultaneously detect 1-3 target sequences in a single LAMP reaction tube, and the results are more accurate and intuitive. In this study, we comprehensively demonstrated a single-reaction mLAMP assay for the robust detection of three cattle viruses without nonspecific amplification of other related pathogenic cattle viruses. The detection limit of this mLAMP assay was as low as 526-2477 copies/reaction for the recombinant plasmids. It is expected that this mLAMP assay can be widely used in clinical diagnosis.
Collapse
Affiliation(s)
- Qing Fan
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China(Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China(Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- * E-mail:
| | - You Wei
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China(Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Yanfang Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China(Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Zhiqin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China(Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China(Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Jiaoling Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China(Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Tingting Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China(Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Sheng Wang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China(Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Sisi Luo
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China(Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Meng Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China(Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| |
Collapse
|
2
|
Li Z, Li Z, Yang Z, Li L, Gao L, Xie J, Liao D, Gao X, Hu Z, Niu B, Yao P, Zeng W, Li H, Yang H. Isolation and characterization of two novel serotypes of Tibet orbivirus from Culicoides and sentinel cattle in Yunnan Province of China. Transbound Emerg Dis 2022; 69:3371-3387. [PMID: 36047657 DOI: 10.1111/tbed.14691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 02/04/2023]
Abstract
Tibet orbivirus (TIBOV), a new candidate of Orbivirus genus, was initially isolated from mosquitoes in Tibet in 2009 and subsequently from both Culicoides and mosquitoes in several provinces of China and Japan. Little is known about the origin, genetic diversity, dissemination and pathogenicity of TIBOV, although its potential threat to animal health has been acknowledged. In this study, two viruses, V290/YNSZ and V298/YNJH, were isolated from the Culicoides and sentinel cattle in Yunnan Province. Their genome sequences, cell tropism in mammalian and insect cell lines along with pathogenicity in suckling mice were determined. Genome phylogenetic analyses confirmed their classification as TIBOV species; however, OC1 proteins of the V290/YNSZ and V298/YNJH shared maximum sequence identities of 31.5% and 33.9% with other recognized TIBOV serotypes (TIBOV-1 to TIBOV-4) and formed two monophyletic branches in phylogenetic tree, indicating they represented two novel TIBOV serotypes which were tentatively designated as TIBOV-5 and TIBOV-6. The viruses replicated robustly in BHK, Vero and C6/36 cells and triggered overt clinical symptoms in suckling mice after intracerebral inoculation, causing mortality of 100% and 25%. Cross-sectional epidemiology analysis revealed silent circulation of TIBOV in Yunnan Province with overall prevalence of 16.4% (18/110) in cattle, 10.8% (13/120) in goats and 5.5% (6/110) in swine. The prevalence patterns of four investigated TIBOV serotypes (TIBOV-1, -2, -5 and 6) differed from each one another, with their positive rates ranging from 8.2% (9/110) for TIBOV-2 in cattle to 0.9% (1/110) for TIBOV-1 and TIBOV-5 in cattle and swine. Our findings provided new insights for diversity, pathogenicity and epidemiology of TIBOV and formed a basis for future studies addressing the geographical distribution and the zoonotic potential of TIBOV.
Collapse
Affiliation(s)
- Zhanhong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Zhuoran Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Le Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Lin Gao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Jiarui Xie
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Defang Liao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Xiang Gao
- Animal Disease Control and Prevention Center of Jinghong County, Jinghong, China
| | - Zhongyan Hu
- Animal Disease Control and Prevention Center of Jinghong County, Jinghong, China
| | - Baosheng Niu
- Animal Disease Control and Prevention Center of Shizong County, Qujing, China
| | - Pingfen Yao
- Animal Disease Control and Prevention Center of Shizong County, Qujing, China
| | - Weikun Zeng
- School of Medicine, Kunming University, Kunming, China
| | - Huachun Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Heng Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China.,College of Agriculture and Life Sciences, Kunming University, Kunming, China
| |
Collapse
|
3
|
Establishment of an Immunological Method for Detection of Bluetongue Virus by Fluorescence-Linked Immunosorbent Assay. Microbiol Spectr 2022; 10:e0142922. [PMID: 36154153 PMCID: PMC9603108 DOI: 10.1128/spectrum.01429-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bluetongue (BT) is a severe noncontagious infectious disease that occurs in sheep and wild ruminants but occasionally also in cattle and camels. The worldwide BT pandemic has had a significant impact on global livestock production. Rapid detection helps prevent outbreaks of bluetongue disease. Fluorescence-linked immunosorbent assay (FLISA) labeled with quantum dots (QDs) is typically used for detection due to its high sensitivity. There has been no reported detection of BT virus (BTV) using QD-based fluorescence immunoassays. In this study, monoclonal antibodies (MAbs) against BT were prepared by immunizing BALB/c mice with recombinant VP7 protein. Two MAbs with high sensitivity and specificity were selected as the detection antibody (2F11) and capture antibody (11B7). Then, the detection antibody was coupled with QDs to prepare QD-MAb fluorescence probes. Fluorescence-linked immunosorbent assay is highly specific, detecting only VP7 protein/BTV, and did not show any nonspecific reactions with other reoviruses. The detection limit of VP7 protein was 3.91 ng/mL using fluorescence-linked immunosorbent assay, with a coefficient of variation (CV) of less than 15%. The establishment of rapid, sensitive direct FLISA has potential for bluetongue virus detection and control of BT vaccine quality. IMPORTANCE Bluetongue virus causes the severe infectious disease BT. BTV has many serotypes, and there is no cross-protection among different serotypes. BT is listed as a notifiable animal infectious disease by the World Organisation for Animal Health (OIE) and occurs throughout the world, causing significant economic losses. The establishment of a fast and effective detection method is the key to controlling and preventing this disease. Current methods for detecting BTV mainly include reverse transcription-PCR (RT-PCR), enzyme-linked immunosorbent assays (ELISA), and immunochromatographic strips that are based on antigen-antibody recognition. Immunoassays are most commonly used because of their low cost, high specificity, and fast analysis, making them particularly useful for routine monitoring. These conventional detection strategies for BTV have some drawbacks. Recently, FLISA has been drawing attention due to its sensitivity, which is higher than traditional immunoassays. Fluorescence-linked immunosorbent assays (FLISA) using fluorescent materials as labels overcome ELISA's disadvantage of being time-consuming.
Collapse
|
4
|
Causes of abortion in Iranian sheep flocks and associated risk factors. Vet Res Commun 2022; 46:1227-1238. [PMID: 36066737 DOI: 10.1007/s11259-022-09986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/12/2022] [Indexed: 10/14/2022]
Abstract
Abortion is a major issue in sheep husbandry. It can result in significant economic losses and a severe public health risk. This survey assessed the infectious and non-infectious causes of abortion in Iranian sheep flocks and determined the main risk factors. In this cross-sectional survey, causes of abortion were evaluated in 757 sheep flocks, and risk factors were analysed. A checklist containing general animal information for each abortion outbreak evaluated was filled in. Data were analysed using univariate tests and multivariable binary logistic regression analysis. In this sense, parity, gestational age of the aborted fetus, vaccination protocol, mineral supplementation and history of stillbirth showed significant associations with abortion. Infectious agents such as Coxiella burnetti (22.7%), Chlamydia abortus (12.3%) and Brucella melitensis (10.4%) were the most frequently isolated in the investigated flocks, with more than 2% of abortion rates. On the other hand, non-infectious agents such as trauma, pregnancy toxaemia and vitamin E/Se deficiency were involved in those flocks with low abortion rates (less than 10%). Results revealed multiple causes of abortion outbreaks among Iranian sheep flocks, which need careful investigation to identify possible aetiology and risk factors. Further studies are necessary to evaluate if these factors are similar to other countries in the same region.
Collapse
|
5
|
Bekker S, Huismans H, van Staden V. Generation of a Soluble African Horse Sickness Virus VP7 Protein Capable of Forming Core-like Particles. Viruses 2022; 14:1624. [PMID: 35893692 PMCID: PMC9331310 DOI: 10.3390/v14081624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 02/06/2023] Open
Abstract
A unique characteristic of the African horse sickness virus (AHSV) major core protein VP7 is that it is highly insoluble, and spontaneously forms crystalline particles in AHSV-infected cells and when expressed in vitro. The aggregation of AHSV VP7 into these crystals presents many problems in AHSV vaccine development, and it is unclear whether VP7 aggregation affects AHSV assembly or contributes to AHSV pathogenesis. Here, we set out to abolish VP7 self-assembly by targeting candidate amino acid regions on the surface of the VP7 trimer via site-directed mutagenesis. It was found that the substitution of seven amino acids resulted in the complete disruption of AHSV VP7 self-assembly, which abolished the formation of VP7 crystalline particles and converted VP7 to a fully soluble protein still capable of interacting with VP3 to form core-like particles. This work provides further insight into the formation of AHSV VP7 crystalline particles and the successful development of AHSV vaccines. It also paves the way for future research by drawing comparisons with similar viral phenomena observed in human virology.
Collapse
Affiliation(s)
| | | | - Vida van Staden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield 0083, South Africa; (S.B.); (H.H.)
| |
Collapse
|
6
|
Liu F, Gong QL, Zhang R, Chen ZY, Wang Q, Sun YH, Sheng CY, Ma BY, Li JM, Shi K, Zong Y, Leng X, Du R. Prevalence and risk factors of bluetongue virus infection in sheep and goats in China: A systematic review and meta-analysis. Microb Pathog 2021; 161:105170. [PMID: 34492305 DOI: 10.1016/j.micpath.2021.105170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Bluetongue is a viral disease transmitted by the bite of bloodsucking insects, which mainly occurs in sheep, goats, and cattle. Bluetongue is characterized by fever, leukopenia, and severe catarrhal inflammation of the oral and gastrointestinal mucosa. The present study aimed to evaluate and analyze the prevalence of bluetongue and its associated risk factors in sheep and goats in China. We collected 59 publications from 1988 to 2019 through searches at ScienceDirect, PubMed, the Chongqing VIP Chinese journal database, Wanfang database, and Chinese Web of knowledge. In these studies, a total of 123,982 sheep and goats across 7 regions of China were investigated, and the pooled prevalence of bluetongue in sheep and goats was 18.6%, as assessed using serological methods. The prevalence of bluetongue in Southern China was 30.3%, which was significantly higher than that in Northeastern China (4.7%). The prevalence of bluetongue between sheep (12.9%) and goats (28.1%) was significantly different (P < 0.05). Detection methods subgroup analysis showed that the prevalence of bluetongue was significantly higher (P < 0.05) in the others group (43.8%) than in the agar immunodiffusion (15.9%) and enzyme-linked immunosorbent assay groups (20.5%). In addition, different geographical factors (latitude range, longitude range, altitude range, average precipitation, and average temperature) could affect the prevalence. Our results suggested that bluetongue is widespread in sheep and goats, and sheep and goats in contact with insect media, such as Culicoides, or in a warm and humid environment, could have an increased prevalence of bluetongue disease. Animal disease prevention and control departments should focus on continuous monitoring of the bluetongue epidemic in sheep and goats to prevent and control outbreaks.
Collapse
Affiliation(s)
- Fei Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, People's Republic of China; College of Animal Medical, Jilin Agricultural University, Changchun, Jilin Province, 130118, People's Republic of China
| | - Qing-Long Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, People's Republic of China
| | - Rui Zhang
- College of Animal Medical, Jilin Agricultural University, Changchun, Jilin Province, 130118, People's Republic of China
| | - Zi-Yang Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, People's Republic of China
| | - Qi Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, People's Republic of China
| | - Yu-Han Sun
- College of Animal Medical, Jilin Agricultural University, Changchun, Jilin Province, 130118, People's Republic of China
| | - Chen-Yan Sheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, People's Republic of China
| | - Bao-Yi Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, People's Republic of China
| | - Jian-Ming Li
- College of Animal Medical, Jilin Agricultural University, Changchun, Jilin Province, 130118, People's Republic of China
| | - Kun Shi
- College of Animal Medical, Jilin Agricultural University, Changchun, Jilin Province, 130118, People's Republic of China
| | - Ying Zong
- College of Animal Medical, Jilin Agricultural University, Changchun, Jilin Province, 130118, People's Republic of China
| | - Xue Leng
- College of Animal Medical, Jilin Agricultural University, Changchun, Jilin Province, 130118, People's Republic of China
| | - Rui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, People's Republic of China; College of Animal Medical, Jilin Agricultural University, Changchun, Jilin Province, 130118, People's Republic of China.
| |
Collapse
|
7
|
Wang A, Yin J, Zhou J, Ma H, Chen Y, Liu H, Qi Y, Liang C, Liu Y, Li J, Zhang G. Soluble expression and purification of Bluetongue Virus Type 1 (BTV1) structure protein VP2 in Escherichia coli and its immunogenicity in mice. PeerJ 2021; 9:e10543. [PMID: 33505791 PMCID: PMC7789859 DOI: 10.7717/peerj.10543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/20/2020] [Indexed: 12/05/2022] Open
Abstract
Background The VP2 on the surface of the virus particle is the main structural protein of BTV, which can induce the host to produce neutralizing antibodies and play an important role in the antiviral immunity process. This study aimed to obtain the soluble VP2 and analyze its immunogenicity. Methods The gene encoding the full-length VP2 of BTV1 was amplified by PCR. The products from restriction enzyme digestion and ligase reaction between VP2 and vector pET-28a were transformed into E.coli DH5α. After PCR and sequencing detection, the positive plasmid PET28a-VP2 was transformed into E.coli BL21(DE3) and Rosetta(DE3) competent cells, expression induced by IPTG. The fusion protein was expressed in the optimized conditions with the induction of IPTG, purified by affinity chromatography and identified by SDS-PAGE and Western blotting. A total of 5 Balb/c mice aged 6–8 weeks were immunized with the fusion protein at a dose of 30 µg per mouse. Each mouse was immunized three times at an interval of 3 weeks. Results The recombinant plasmid PET28a-VP2 was successfully constructed. The expression strains were induced by 0.4 mmol/L IPTG at 16 °C for 10 h, and BTV1 VP2 was expressed in a soluble form. The purity of the recombinant VP2 protein (∼109 kDa) was about 90% in the concentration at 0.2 mg/ml afterpurification. The purified VP2 had good immunoreactivity with BTV1 positive serum. Taken together, thisstudy offered a route for producing soluble BTV VP2, which retains activity and immunogenicity, to bebeneficial to the research on developing BTV vaccine, and lay the foundation for further research on BTV.
Collapse
Affiliation(s)
- Aiping Wang
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Jiajia Yin
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Jingming Zhou
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Hongfang Ma
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Yumei Chen
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Hongliang Liu
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Yanhua Qi
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Chao Liang
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Yankai Liu
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Jinge Li
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| | - Gaiping Zhang
- Zhengzhou University, School of Life Sciences, Zhengzhou University, Henan, PR China
| |
Collapse
|
8
|
Gong QL, Wang Q, Yang XY, Li DL, Zhao B, Ge GY, Zong Y, Li JM, Leng X, Shi K, Liu F, Du R. Seroprevalence and Risk Factors of the Bluetongue Virus in Cattle in China From 1988 to 2019: A Comprehensive Literature Review and Meta-Analysis. Front Vet Sci 2021; 7:550381. [PMID: 33634178 PMCID: PMC7901971 DOI: 10.3389/fvets.2020.550381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Bluetongue caused by the bluetongue virus (BTV) is a non-contagious and an insect-borne disease mainly affecting domestic and wild ruminants. Bluetongue in cattle is associated with vesicular lesions, weight loss, low milk production, and low reproductive capacity. It should not be ignored as it is associated with large economic losses to the livestock breeding industry in China. Although many studies have investigated bluetongue virus infection in cattle, no nationwide study on the prevalence of bluetongue virus infection in cattle from China has yet been conducted. This meta-analysis aimed to evaluate the seroprevalence and risk factors for bluetongue in cattle. Results: We collected 50 publications from 1988 to 2019 through PubMed, ScienceDirect, Chinese Web of Knowledge (CNKI), VIP Chinese journal database, and Wanfang database. A total of the pooled bluetongue seroprevalence of 12.2% (5,332/87,472) in cattle was tested. The point estimate of bluetongue collected from 2001 to 2011 was 22.5% (95% CI: 1.2-58.9), which was higher than after 2012 (9.9%, 95% CI: 3.3-19.4). The analysis of the feeding model subgroup revealed that the seroprevalence of bluetongue was significantly higher (P < 0.05) among free-range cattle (22.5%; 95% CI: 7.7-42.3) than among cattle from intensive farming systems (1.8%; 95% CI: 0.0-6.7). The seroprevalence of bluetongue in different species showed significant variation (P < 0.05), with the highest seroprevalence of 39.8% (95% CI: 18.7-63.0) in buffalo and the lowest seroprevalence of 4.3% (95% CI: 1.2-9.0) in yak. In the zoogeographical division subgroup, the seroprevalence of bluetongue correlated positively within a certain range with the species distribution of Culicoides. Conclusion: Our findings suggested that bluetongue was prevalent in cattle in China. In addition, the contact with sheep, other ruminants, or transmission media such as Culicoides may increase the seroprevalence of bluetongue disease in cattle. It is necessary to carry out continuous monitoring of the bluetongue seroprevalence. Moreover, comprehensive and improved strategies and measures should be implemented to prevent and control the spread of bluetongue.
Collapse
Affiliation(s)
- Qing-Long Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qi Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xue-Yao Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dong-Li Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Bo Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Gui-Yang Ge
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ying Zong
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Jian-Ming Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Xue Leng
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Kun Shi
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Fei Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Rui Du
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
9
|
Dedkov VG, Dolgova AS, Safonova MV, Samoilov AE, Belova OA, Kholodilov IS, Matsvay AD, Speranskaya AS, Khafizov K, Karganova GG. Isolation and characterization of Wad Medani virus obtained in the tuva Republic of Russia. Ticks Tick Borne Dis 2020; 12:101612. [PMID: 33291056 DOI: 10.1016/j.ttbdis.2020.101612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
Wad Medani virus (WMV) belongs to the genus Orbivirus and is a poorly studied arbovirus with unclear medical significance. Presently, a limited number of WMV strains are characterized and available in NCBI GenBank, some isolated many years ago. A new WMV strain was isolated in 2012 from Dermacentor nuttalli ticks collected from sheep in the Tuva Republic, Russia, and sequenced using high-throughput methods. Complete coding sequences were obtained revealing signs of multiple intersegment reassortments. These point to a high variability potential in WMV that may lead to the formation of strains with novel properties. These new data on WMV can promote better understanding of: ecological features of its circulation; relationships within the genus Orbivirus; and the medical significance of the virus.
Collapse
Affiliation(s)
- Vladimir G Dedkov
- Saint-Petersburg Pasteur Institute, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Saint-Petersburg, Russia; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Anna S Dolgova
- Saint-Petersburg Pasteur Institute, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Saint-Petersburg, Russia
| | - Marina V Safonova
- Anti-Plague Center, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - Andrei E Samoilov
- Saint-Petersburg Pasteur Institute, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Saint-Petersburg, Russia; Central Research Institute for Epidemiology, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - Oxana A Belova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides FSBSI Chumakov FSC R&D IBP RAS, Moscow, Russia
| | - Ivan S Kholodilov
- Chumakov Institute of Poliomyelitis and Viral Encephalitides FSBSI Chumakov FSC R&D IBP RAS, Moscow, Russia
| | - Alina D Matsvay
- FSBI "Center of Strategic Planning" of the Ministry of Health, Moscow, Russia; Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | - Anna S Speranskaya
- Central Research Institute for Epidemiology, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - Kamil Khafizov
- Central Research Institute for Epidemiology, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Moscow, Russia; Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | - Galina G Karganova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides FSBSI Chumakov FSC R&D IBP RAS, Moscow, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
10
|
Serological Investigations of Bluetongue Virus (BTV) among Sheep and Goats in Kassala State, Eastern Sudan. Vet Med Int 2020; 2020:8863971. [PMID: 33062245 PMCID: PMC7547342 DOI: 10.1155/2020/8863971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 11/18/2022] Open
Abstract
Bluetongue (BT) is an infectious, noncontagious, vector-borne viral disease of wild and domestic ruminants. BTV is a member of the Orbivirus genus of the family Reoviridae. The present study aimed to investigate the seroprevalence of BTV in sheep and goats in Kassala State, Sudan. It also aimed to determine risk factors associated with BTV infection. The study was carried out by a structured questionnaire survey, and a total of 809 serum samples were collected from sheep (n = 459) and goats (n = 350) from 9 different localities in Kassala state. These samples were analyzed using a competitive enzyme-linked immunosorbent assay (cELISA) for the detection of BTV antibodies. The overall seroprevalence of BTV was 91.2% (738/809). In goats, the prevalence of BTV antibodies was comparatively higher (100%) than in sheep (84.5%). The prevalence differed between localities and was the highest in the center section of Kassala and Western Kassala (100%). Animals aged 6–11 months were highly infected (93.9%) compared to 1-year-old (85.5%). Caprine species was more likely to be infected (100%) than ovine (84.5%), and females were highly infected (92.8%) than males (85.5%). BTV infections were higher in the winter season (91.4%). Risk factors that showed significant associations with cELISA positivity included locality and sex (p ≤ 0.003) and species and age (p ≤ 0.000). Factors significantly associated with cELISA positivity in multivariate analysis were localities, species, age, and sex. BTV infection is prevalent in sheep and goat populations in Kassala state.
Collapse
|
11
|
Ries C, Beer M, Hoffmann B. BlueTYPE - A low density TaqMan-RT-qPCR array for the identification of all 24 classical Bluetongue virus serotypes. J Virol Methods 2020; 282:113881. [PMID: 32413478 DOI: 10.1016/j.jviromet.2020.113881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 01/21/2023]
Abstract
Bluetongue virus is a double-stranded RNA virus with 10 genome segments. VP2 is the primary target for neutralising antibodies and defines the serotype. Today, more than 27 serotypes are known, 24 are defined as "classical", and new serotypes are under investigation. Beside group-specific BTV-genome detection, additional serotype characterisation is important for disease control and epidemiological investigations. Therefore, a low-density RT-qPCR array representing a panel of group- and serotype-specific assays, was combined with an internal control system. For BTV serotype detection, both published and the newly developed in-house PCR systems were combined. The different primer-probe-mixes were placed in advance into a 96-well plate stored at -20 °C until use. At the time of analysis, the only template RNA was added to the prepared primer-probe-mixes and heat denatured at 95 °C for 3 min. After cooling, the master mix was added to each well and the PCR could run for around 90 min. The presented low-density TaqMan-RT-qPCR array enables fast and precise characterisation of the BTV serotype in clinical cases. Furthermore, mixed infections can be easily identified. In addition, the newly developed low-density RT-qPCR-array can easily be adapted to novel BTV strain variants or extended for relevant differential diagnosis.
Collapse
Affiliation(s)
- Christina Ries
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17943 Greifswald, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17943 Greifswald, Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17943 Greifswald, Insel Riems, Germany.
| |
Collapse
|
12
|
Yang JL, Yen LHC, Yen WCW, Wang FI. A SUBCLINICAL BLUETONGUE VIRUS INFECTION IN RUMINANTS WITH THREE UNIQUE AMINO ACID VARIATIONS ON VP7 CORE PROTEIN OF TAIWAN ISOLATES. ACTA ACUST UNITED AC 2019. [DOI: 10.1142/s168264851950001x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bluetongue is an arthropod-borne disease in domestic and wild ruminants caused by bluetongue virus (BTV), and it leads to great economic loss worldwide. Previous studies showed that BTV in ruminants in Taiwan was often subclinical infection. The aim of this study was to determine the current status (years 2016–2017) of BTV infection in ruminants in Taiwan, to compare it to the results of a large-scale study conducted in the year 2003, and to investigate whether new viral strains exist. Competitive ELISA tests of serum samples for anti-BTV-VP7 group-specific antibody revealed seropositive rates of 26.7% in cattle by head, similar to 32.7% in the year 2003, suggestive of a BTV-vector-host (cattle) dynamic balance. In goats, the seropositive rate was 18.6%, slightly increased from 8.2% in the year 2003, suggestive of a slow but active infection taking place. This notion was supported by the detection of VP1 gene nucleic acid from whole blood in six out of 29 seropositive goats by reverse transcription–polymerase chain reaction. However, no new virus strain was isolated from embryonating chicken embryos (ECEs) inoculation. Alignment of VP7 amino acid sequences revealed that Taiwan and Japan isolates possessed three specific amino acids on sites No. 82 (arginine), No. 328 (aspartate), and No. 336 (glutamine), which are different from many countries. In a three-dimensional model, these amino acids were located closely on the middle lateral surface of VP7 trimers. Since VP7 is a major outer protein engaged in entry into insect cells and a strong T cell response inducer, these differences likely indicate the result of positive selection of local vectors and hosts in Taiwan.
Collapse
Affiliation(s)
- Jia-Ling Yang
- School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, R. O. C
| | - Lenny Hao-Che Yen
- School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, R. O. C
| | - Well Chia-Wei Yen
- School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, R. O. C
| | - Fun-In Wang
- School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, R. O. C
| |
Collapse
|
13
|
White JR, Williams DT, Wang J, Chen H, Melville LF, Davis SS, Weir RP, Certoma A, Di Rubbo A, Harvey G, Lunt RA, Eagles D. Identification and genomic characterization of the first isolate of bluetongue virus serotype 5 detected in Australia. Vet Med Sci 2019; 5:129-145. [PMID: 30747479 PMCID: PMC6556758 DOI: 10.1002/vms3.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bluetongue virus (BTV), transmitted by midges (Culicoides sp), is distributed worldwide and causes disease in ruminants. In particular, BT can be a debilitating disease in sheep causing serious trade and socio-economic consequences at both local and global levels. Across Australia, a sentinel cattle herd surveillance program monitors the BTV activity. Prior to 2014, BTV-1, -2, -3, -7, -9, -15, -16, -20, -21 and -23 had been isolated in Australia, but no bluetongue disease has occurred in a commercial Australian flock. We routinely use a combination of serology, virus isolation, RT-PCR and next generation and conventional nucleotide sequencing technologies to detect and phylogenetically characterize incursions of novel BTV strains into Australia. Screening of Northern Territory virus isolates in 2015 revealed BTV-5, a serotype new to Australia. We derived the complete genome of this isolate and determined its phylogenetic relationship with exotic BTV-5 isolates. Gene segments 2, 6, 7 and 10 exhibited a close relationship with the South African prototype isolate RSArrrr/5. This was the first Australian isolation of a Western topotype of segment 10. Serological surveillance data highlighted the antigenic cross-reactivity between BTV-5 and BTV-9. Phylogenetic investigation of segments 2 and 6 of these serotypes confirmed their unconventional relationships within the BTV serogroup. Our results further highlighted a need for a revision of the current serologically based system for BTV strain differentiation and importantly, implied a potential for genome segments of pathogenic Western BTV strains to rapidly enter Southeast Asia. This emphasized a need for continued high-level surveillance of vectors and viruses at strategic locations in the north of Australia The expansion of routine characterization and classification of BTV to a whole genome approach is recommended, to better monitor the presence and level of establishment of novel Western topotype segments within the Australian episystem.
Collapse
Affiliation(s)
- John R. White
- CSIRO Australian Animal Health LaboratoryGeelongVictoriaAustralia
| | | | - Jianning Wang
- CSIRO Australian Animal Health LaboratoryGeelongVictoriaAustralia
| | - Honglei Chen
- CSIRO Australian Animal Health LaboratoryGeelongVictoriaAustralia
| | - Lorna F. Melville
- Department of Primary Industry and ResourcesBerrimah Veterinary LaboratoriesNorthern Territory GovernmentBerrimahNorthern TerritoryAustralia
| | - Steven S. Davis
- Department of Primary Industry and ResourcesBerrimah Veterinary LaboratoriesNorthern Territory GovernmentBerrimahNorthern TerritoryAustralia
| | - Richard P. Weir
- Department of Primary Industry and ResourcesBerrimah Veterinary LaboratoriesNorthern Territory GovernmentBerrimahNorthern TerritoryAustralia
| | - Andrea Certoma
- CSIRO Australian Animal Health LaboratoryGeelongVictoriaAustralia
| | - Antonio Di Rubbo
- CSIRO Australian Animal Health LaboratoryGeelongVictoriaAustralia
| | - Gemma Harvey
- CSIRO Australian Animal Health LaboratoryGeelongVictoriaAustralia
| | - Ross A. Lunt
- CSIRO Australian Animal Health LaboratoryGeelongVictoriaAustralia
| | - Debbie Eagles
- CSIRO Australian Animal Health LaboratoryGeelongVictoriaAustralia
| |
Collapse
|
14
|
Maan S, Belaganahalli MN, Maan NS, Potgieter AC, Mertens PPC. Quantitative RT-PCR assays for identification and typing of the Equine encephalosis virus. Braz J Microbiol 2019; 50:287-296. [PMID: 30637652 PMCID: PMC6863193 DOI: 10.1007/s42770-018-0034-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/17/2018] [Indexed: 10/27/2022] Open
Abstract
Equine encephalosis (EE) is an acute, arthropod-borne, noncontagious, febrile disease of equids. The clinical signs of EE are similar to milder forms of African horse sickness (AHS) and the two diseases can be easily confused. The Equine encephalosis virus (EEV) is a distinct virus species within the genus Orbivirus, family Reoviridae, with ten linear segments of dsRNA genome. Seven distinct serotypes of EEV have been recognised on the basis of sequence analyses of Seg-2. The need for differential diagnosis of similar forms of EE and AHS warranted the development of molecular diagnostic methods for specific detection and identification of EEV. We report the development of quantitative real-time RT-PCR assay for detection of any member of the EEV species targeting the highly conserved EEV Seg-9. Similar serotype-specific qRT-PCR assays were designed for each of the seven EEV serotypes targeting genome Seg-2, encoding the serotype determining VP2 protein. These assays were evaluated using different EEV serotypes and other closely related orbiviruses. They were shown to be EEV virus species-specific, or EEV type-specific capable of detecting 1 to 13 copies of viral RNA in clinical samples. The assays failed to detect RNA from closely related orbiviruses, including AHSV and Peruvian horse sickness virus (PHSV) isolates.
Collapse
Affiliation(s)
- Sushila Maan
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125 004, India.
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, 125 004, India.
| | - Manjunatha N Belaganahalli
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.
- One Health Institute, School of Veterinary medicine, University of California, Davis, California, 95616, USA.
| | - Narender Singh Maan
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125 004, India
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Abraham C Potgieter
- Deltamune (Pty) Ltd, 248 Jean Avenue, Lyttelton, Centurion, 0140, South Africa
| | - Peter P C Mertens
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- Chair of Virology, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK
| |
Collapse
|
15
|
Filho LFCDC, Sbizera MCR, Barreto JVP, Pituco EM, Lorenzetti E, Lunardi M, Patelli THC, Matias BF. Bluetongue disease in sheep: a review. ARQUIVOS DO INSTITUTO BIOLÓGICO 2019. [DOI: 10.1590/1808-1657001342018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT The present review aims to show the main aspects related to bluetongue virus (BTV) infection in sheep. The bluetongue (BT) is a viral, infectious, and non-contagious disease caused by a virus (BTV) of the Orbivirus genus, transmited by a hematophagous vector of the Culicoides genus, to domestic and wild ruminants, mainly to sheep, the most susceptible species. It is caused by the association of endemic with climate conditions, with high temperatures and humidity. Economic loss is directly linked to death, abortion, weight loss, loss of milk, and meat production, and, indirectly, to the restriction on the export of animals and their by-products. The study concludes that the BTV is worldwidely spread, and probably persists due to the warm and humid climate that leads to the proliferation of Culicoides sp., being necessary to adopt measures that reduce the risk factors associated to the BTV infection.
Collapse
|
16
|
Bréard E, Gorlier A, Viarouge C, Donnet F, Sailleau C, Schulz C, Hoffmann B, Comtet L, Beer M, Zientara S, Vitour D. Evaluation of an IGM-specific ELISA for early detection of bluetongue virus infections in domestic ruminants sera. Transbound Emerg Dis 2018; 66:537-545. [PMID: 30394662 DOI: 10.1111/tbed.13060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/10/2018] [Accepted: 10/15/2018] [Indexed: 12/01/2022]
Abstract
Competitive-ELISA (c-ELISA) is the most widely used serological test for the detection of Bluetongue virus (BTV) viral protein 7 (VP7) antibodies (Ab). However, these BTV c-ELISAs cannot to distinguish between IgG and IgM. IgM Ab are generated shortly after the primary immune response against an infectious agent, indicating a recent infection or exposure to antigens, such as after vaccination. Because the BTV genome or anti-VP7 Ab can be detected in ruminant blood months after infection, BTV diagnostic tools cannot discriminate between recent and old infections. In this study, we evaluated an IgM-capture ELISA prototype to detect ruminant anti-BTV VP7 IgM on 1,650 serum samples from cattle, sheep, or goats. Animals were BTV-naive, infected, or/and vaccinated with BTV-1, -2, -4, -8, -9, -16, or -27, and we also included 30 sera from cattle infected with the Epizootic haemorrhagic disease virus (EHDV) serotype 6. Results demonstrated that this ELISA kit is specific and can detect the presence of IgM with satisfactory diagnostic specificity and sensitivity from 1 to 5 weeks after BTV infection in domestic ruminants (for goats and cattle; for sheep, at least up to 24 days). The peak of anti-VP7 IgM was reached when the level of infectious viruses and BTV RNA in blood were the highest. The possibility of detecting BTV-RNA in IgM-positive sera allows the amplification and sequencing of the partial RNA segment 2 (encoding the serotype specific to VP2) to determine the causative BTV serotype/strain. Therefore, BTV IgM ELISA can detect the introduction of BTV (or EHDV) in an area with BTV-seropositive domestic animals regardless of their serological BTV status. This approach may also be of particular interest for retrospective epidemiological studies on frozen serum samples.
Collapse
Affiliation(s)
- Emmanuel Bréard
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - Axel Gorlier
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - Cyril Viarouge
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | | | - Corinne Sailleau
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - Claudia Schulz
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel, Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel, Riems, Germany
| | | | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel, Riems, Germany
| | - Stéphan Zientara
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - Damien Vitour
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| |
Collapse
|
17
|
Lakshmi IK, Putty K, Raut SS, Patil SR, Rao PP, Bhagyalakshmi B, Jyothi YK, Susmitha B, Reddy YV, Kasulanati S, Jyothi JS, Reddy YN. Standardization and application of real-time polymerase chain reaction for rapid detection of bluetongue virus. Vet World 2018; 11:452-458. [PMID: 29805209 PMCID: PMC5960783 DOI: 10.14202/vetworld.2018.452-458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/13/2018] [Indexed: 11/16/2022] Open
Abstract
Aim The present study was designed to standardize real-time polymerase chain reaction (PCR) for detecting the bluetongue virus from blood samples of sheep collected during outbreaks of bluetongue disease in the year 2014 in Andhra Pradesh and Telangana states of India. Materials and Methods A 10-fold serial dilution of Plasmid PUC59 with bluetongue virus (BTV) NS3 insert was used to plot the standard curve. BHK-21 and KC cells were used for in vitro propagation of virus BTV-9 at a TCID50/ml of 105 ml and RNA was isolated by the Trizol method. Both reverse transcription-PCR and real-time PCR using TaqMan probe were carried out with RNA extracted from virus-spiked culture medium and blood to compare the sensitivity by means of finding out the limit of detection (LoD). The results were verified by inoculating the detected and undetected dilutions onto cell cultures with further cytological (cytopathic effect) and molecular confirmation (by BTV-NS1 group-specific PCR). The standardized technique was then applied to field samples (blood) for detecting BTV. Results The slope of the standard curve obtained was −3.23, and the efficiency was 103%. The LoD with RT-PCR was 8.269E×103 number of copies of plasmid, whereas it was 13 with real-time PCR for plasmid dilutions. Similarly, LoD was determined for virus-spiked culture medium, and blood with both the types of PCR and the values were 103 TCID 50/ml and 104 TCID 50/ml with RT-PCR and 10° TCID 50/ml and 102 TCID 50/ml with real-time PCR, respectively. The standardized technique was applied to blood samples collected from BTV suspected animals; 10 among 20 samples were found positive with Cq values ranging from 27 to 39. The Cq value exhibiting samples were further processed in cell cultures and were confirmed to be BT positive. Likewise, Cq undetected samples on processing in cell cultures turned out to be BTV negative. Conclusion Real-time PCR was found to be a very sensitive as well as reliable method to detect BTV present in different types of samples, including blood samples collected from BTV-infected sheep, compared to RT-PCR. The LoD of BTV is likely influenced by sample type, possibly by the interference by the other components present in the sample.
Collapse
Affiliation(s)
- I Karthika Lakshmi
- Department of Bacteriology and Mycology, Veterinary Biological and Research Institute, Labbipeta, Vijayawada - 520 010, Andhra Pradesh, India
| | - Kalyani Putty
- Department of Veterinary Microbiology and Biotechnology, College of Veterinary Science, PVNRT Veterinary University, Hyderabad - 500 030, Telangana, India
| | - Satya Samparna Raut
- Department of Veterinary Microbiology and Biotechnology, College of Veterinary Science, PVNRT Veterinary University, Hyderabad - 500 030, Telangana, India
| | - Sunil R Patil
- Department of Veterinary Microbiology and Biotechnology, College of Veterinary Science, PVNRT Veterinary University, Hyderabad - 500 030, Telangana, India
| | - P P Rao
- Ella Foundation, Genome Valley, Turkapally, Shameerpet Mandal, Hyderabad - 500 078, Telangana, India
| | - B Bhagyalakshmi
- Department of Veterinary Microbiology and Biotechnology, College of Veterinary Science, PVNRT Veterinary University, Hyderabad - 500 030, Telangana, India
| | - Y Krishna Jyothi
- Department of Virology, Veterinary Biological and Research Institute, Labbipeta, Vijayawada - 520 010, Andhra Pradesh, India
| | - B Susmitha
- Ella Foundation, Genome Valley, Turkapally, Shameerpet Mandal, Hyderabad - 500 078, Telangana, India
| | - Y Vishnuvardhan Reddy
- Ella Foundation, Genome Valley, Turkapally, Shameerpet Mandal, Hyderabad - 500 078, Telangana, India
| | - Sowmya Kasulanati
- Department of Veterinary Microbiology and Biotechnology, College of Veterinary Science, PVNRT Veterinary University, Hyderabad - 500 030, Telangana, India
| | - J Shiva Jyothi
- Department of Veterinary Microbiology and Biotechnology, College of Veterinary Science, PVNRT Veterinary University, Hyderabad - 500 030, Telangana, India
| | - Y N Reddy
- Ella Foundation, Genome Valley, Turkapally, Shameerpet Mandal, Hyderabad - 500 078, Telangana, India
| |
Collapse
|
18
|
Orłowska A, Żmudziński JF, Smreczak M, Trębas P, Marzec A. Diagnostic Reliability of Different RT-PCR Protocols for the Detection of Bluetongue Virus Serotype 14 (BTV-14). J Vet Res 2017; 61:391-395. [PMID: 29978100 PMCID: PMC5937335 DOI: 10.1515/jvetres-2017-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/04/2017] [Indexed: 11/15/2022] Open
Abstract
Introduction The reverse transcription polymerase chain reaction (RT-PCR) is one of the most extensively used methods for identification of animals infected with bluetongue virus (BTV). There are several RT-PCR protocols published and several real-time RT-PCR (rtRT-PCR) commercial kits available on the market. Because Poland faced BTV-14 infection in 2012, different protocols were implemented in the country to confirm the RT-PCR results positive for this virus. The article presents a comparative study of several RT-PCR protocols and discusses their diagnostic reliability and applicability. Material and Methods Six rtRT-PCR/RT-PCR protocols were compared for the laboratory diagnostic of fourteen BTV-14 isolates circulating in Poland in 2012-2014. Results All 14 isolates were positive in the protocols of Shaw et al. (18), a commercial LSI NS3 kit, and Eschbaumer et al. (5). Four out of fourteen BTV-14 isolates gave positive results in Hoffmann's 2 and 6 protocols and none of the 14 isolates yielded positive results in Maan et al. (8) method. Phylogenetic study of a short fragment of 450 nt of BTV segment 2 (258-696 positions) revealed 100% identity within Polish variants and with Russian and Spanish isolates. Conclusion The paper points to the possible false negative results in the diagnosis of BTV infections depending on the protocol used.
Collapse
Affiliation(s)
- Anna Orłowska
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Jan F Żmudziński
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Marcin Smreczak
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Paweł Trębas
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Anna Marzec
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| |
Collapse
|
19
|
Analysis of the three-dimensional structure of the African horse sickness virus VP7 trimer by homology modelling. Virus Res 2017; 232:80-95. [DOI: 10.1016/j.virusres.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 01/21/2023]
|
20
|
Hemadri D, Maan S, Chanda MM, Rao PP, Putty K, Krishnajyothi Y, Reddy GH, Kumar V, Batra K, Reddy YV, Maan NS, Reddy YN, Singh KP, Shivachandra SB, Hegde NR, Rahman H, Mertens PPC. Dual Infection with Bluetongue Virus Serotypes and First-Time Isolation of Serotype 5 in India. Transbound Emerg Dis 2016; 64:1912-1917. [PMID: 28004522 DOI: 10.1111/tbed.12589] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Indexed: 11/28/2022]
Abstract
Bluetongue is endemic in India and has been reported from most Indian states. Of late, the clinical disease is most frequently seen in the states of Andhra Pradesh, Telangana (erstwhile Andhra Pradesh state), Tamil Nadu and Karnataka. Our analysis of diagnostic samples from bluetongue outbreaks during 2010-2011 from the state of Karnataka identified bluetongue virus (BTV) serotype 5 (BTV-5) for the first time in India. One of the diagnostic samples (CH1) and subsequent virus isolate (IND2010/02) contained both BTV-2 and BTV-5. Segment 2 (seg-2) sequence data (400 bp: nucleotides 2538-2921) for IND2010/02-BTV5, showed 94.3% nucleotide identity to BTV-5 from South Africa (Accession no. AJ585126), confirming the virus serotype and also indicating that Seg-2 was derived from a Western topotype, which is in contrast to serotype 2, that belongs to an Eastern topotype. BTV-5 has been recently reported from Africa, China, French islands and the Americas. Although the exact source of the Indian BTV-5 isolate is still to be confirmed, recent identification of additional exotic serotypes in India is of real concern and might add to the severity of the disease seen in these outbreaks.
Collapse
Affiliation(s)
- D Hemadri
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, India
| | - S Maan
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - M M Chanda
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, India
| | - P P Rao
- Ella Foundation, Genome Valley, Hyderabad, Telangana, India
| | - K Putty
- College of Veterinary Science, P.V. Narsimha Rao Telangana Veterinary University, Hyderabad, Telangana, India
| | - Y Krishnajyothi
- Telangana State Veterinary Biological & Research Institute, Goverment of Telangana, Hyderabad, Telangana, India
| | - G H Reddy
- Telangana State Veterinary Biological & Research Institute, Goverment of Telangana, Hyderabad, Telangana, India
| | - V Kumar
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - K Batra
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Y V Reddy
- Ella Foundation, Genome Valley, Hyderabad, Telangana, India
| | - N S Maan
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Y N Reddy
- College of Veterinary Science, P.V. Narsimha Rao Telangana Veterinary University, Hyderabad, Telangana, India
| | - K P Singh
- Pathology Laboratory, Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - S B Shivachandra
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, India
| | - N R Hegde
- Ella Foundation, Genome Valley, Hyderabad, Telangana, India
| | - H Rahman
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, India
| | - P P C Mertens
- The School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| |
Collapse
|
21
|
Development and Evaluation of Real Time RT-PCR Assays for Detection and Typing of Bluetongue Virus. PLoS One 2016; 11:e0163014. [PMID: 27661614 PMCID: PMC5035095 DOI: 10.1371/journal.pone.0163014] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
Bluetongue virus is the type species of the genus Orbivirus, family Reoviridae. Bluetongue viruses (BTV) are transmitted between their vertebrate hosts primarily by biting midges (Culicoides spp.) in which they also replicate. Consequently BTV distribution is dependent on the activity, geographic distribution, and seasonal abundance of Culicoides spp. The virus can also be transmitted vertically in vertebrate hosts, and some strains/serotypes can be transmitted horizontally in the absence of insect vectors. The BTV genome is composed of ten linear segments of double-stranded (ds) RNA, numbered in order of decreasing size (Seg-1 to Seg-10). Genome segment 2 (Seg-2) encodes outer-capsid protein VP2, the most variable BTV protein and the primary target for neutralising antibodies. Consequently VP2 (and Seg-2) determine the identity of the twenty seven serotypes and two additional putative BTV serotypes that have been recognised so far. Current BTV vaccines are serotype specific and typing of outbreak strains is required in order to deploy appropriate vaccines. We report development and evaluation of multiple 'TaqMan' fluorescence-probe based quantitative real-time type-specific RT-PCR assays targeting Seg-2 of the 27+1 BTV types. The assays were evaluated using orbivirus isolates from the 'Orbivirus Reference Collection' (ORC) held at The Pirbright Institute. The assays are BTV-type specific and can be used for rapid, sensitive and reliable detection / identification (typing) of BTV RNA from samples of infected blood, tissues, homogenised Culicoides, or tissue culture supernatants. None of the assays amplified cDNAs from closely related but heterologous orbiviruses, or from uninfected host animals or cell cultures.
Collapse
|
22
|
Maan S, Maan NS, Batra K, Kumar A, Gupta A, Rao PP, Hemadri D, Reddy YN, Guimera M, Belaganahalli MN, Mertens PPC. Reverse transcription loop-mediated isothermal amplification assays for rapid identification of eastern and western strains of bluetongue virus in India. J Virol Methods 2016; 234:65-74. [PMID: 27054888 DOI: 10.1016/j.jviromet.2016.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/18/2016] [Accepted: 04/01/2016] [Indexed: 12/30/2022]
Abstract
Bluetongue virus (BTV) infects all ruminants, including cattle, goats and camelids, causing bluetongue disease (BT) that is often severe in naïve deer and sheep. Reverse-transcription-loop-mediated-isothermal-amplification (RT-LAMP) assays were developed to detect eastern or western topotype of BTV strains circulating in India. Each assay uses four primers recognizing six distinct sequences of BTV genome-segment 1 (Seg-1). The eastern (e)RT-LAMP and western (w)RT-LAMP assay detected BTV RNA in all positive isolates that were tested (n=52, including Indian BTV-1, -2, -3, -5, -9, -10, -16, -21 -23, and -24 strains) with high specificity and efficiency. The analytical sensitivity of the RT-LAMP assays is comparable to real-time RT-PCR, but higher than conventional RT-PCR. The accelerated eRT-LAMP and wRT-LAMP assays generated detectable levels of amplified DNA, down to 0.216 fg of BTV RNA template or 108 fg of BTV RNA template within 60-90min respectively. The assays gave negative results with RNA from foot-and-mouth-disease virus (FMDV), peste des petits ruminants virus (PPRV), or DNA from Capripox viruses and Orf virus (n=10), all of which can cause clinical signs similar to BT. Both RT-LAMP assays did not show any cross-reaction among themselves. The assays are rapid, easy to perform, could be adapted as a 'penside' test making them suitable for 'front-line' diagnosis, helping to identify and contain field outbreaks of BTV.
Collapse
Affiliation(s)
- S Maan
- Department of Animal Biotechnology, College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India.
| | - N S Maan
- Department of Animal Biotechnology, College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India; Resource Faculty, Department of Animal Biotechnology, College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - K Batra
- Department of Animal Biotechnology, College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - A Kumar
- Department of Animal Biotechnology, College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - A Gupta
- Department of Animal Biotechnology, College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | | | - Divakar Hemadri
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Hebbal, Bengaluru 560024 K.A, India
| | - Yella Narasimha Reddy
- College of Veterinary Science, Acharya N.G. Ranga Agricultural University, Rajendra Nagar, Hyderabad 500 030, T.S, India
| | - M Guimera
- The Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking GU24 0NF Surrey, United Kingdom
| | - M N Belaganahalli
- The Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking GU24 0NF Surrey, United Kingdom
| | - P P C Mertens
- The Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking GU24 0NF Surrey, United Kingdom
| |
Collapse
|
23
|
Wu X, Liu Q, He J, Zang M, Wang H, Li Y, Tang L. Preparation and Characterization of a Monoclonal Antibody Against the Core Protein VP7 of the 25th Serotype of Bluetongue Virus. Monoclon Antib Immunodiagn Immunother 2016; 34:116-21. [PMID: 25897610 DOI: 10.1089/mab.2014.0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bluetongue virus (BTV) is a member of the genus Orbivirus, within the family Reoviridae. The VP7 protein of BTV is used for developing group-specific serological assays. To prepare monoclonal antibody (MAb) against VP7 of the 25th serotype BTV, the RNA S7 encoding VP7 was cloned into prokaryotic expression vectors pET-28a (+) and pGEX-6P-1 to generate recombinant plasmids. The recombinant protein VP7 was expressed in Escherichia coli BL21 (DE3), respectively. The results of SDS-PAGE revealed that the VP7 was expressed and the molecular mass of recombinant fusion protein pET-28a (+)/VP7 and pGEX-6P-1/VP7 was approximately 44 kDa and 64 kDa, respectively. The Western blot analysis indicated that the recombinant VP7 possessed good immunoreactivity. After purification, pET-28a (+)/VP7 was used to immunize BALB/c mice, while pGEX-6P-1/VP7 was used to screen for well-to-well MAb-secreting hybridomas. The hybridoma cell line 3H7 against recombinant VP7 that secreted MAbs was obtained. The isotype of 3H7 was identified as IgG1. The purification of recombinant VP7 protein and the monoclonal antibody will have potential applications on competitive ELISA format for BT-specific serum detection method.
Collapse
Affiliation(s)
- Xiao Wu
- 1 College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | | | | | | | | | | | | |
Collapse
|
24
|
Establishment of evanescent wave fiber-optic immunosensor method for detection bluetongue virus. Methods 2015; 90:65-7. [DOI: 10.1016/j.ymeth.2015.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 11/24/2022] Open
|
25
|
Maan S, Maan NS, Belaganahalli MN, Rao PP, Singh KP, Hemadri D, Putty K, Kumar A, Batra K, Krishnajyothi Y, Chandel BS, Reddy GH, Nomikou K, Reddy YN, Attoui H, Hegde NR, Mertens PPC. Full-Genome Sequencing as a Basis for Molecular Epidemiology Studies of Bluetongue Virus in India. PLoS One 2015; 10:e0131257. [PMID: 26121128 PMCID: PMC4488075 DOI: 10.1371/journal.pone.0131257] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/29/2015] [Indexed: 01/04/2023] Open
Abstract
Since 1998 there have been significant changes in the global distribution of bluetongue virus (BTV). Ten previously exotic BTV serotypes have been detected in Europe, causing severe disease outbreaks in naïve ruminant populations. Previously exotic BTV serotypes were also identified in the USA, Israel, Australia and India. BTV is transmitted by biting midges (Culicoides spp.) and changes in the distribution of vector species, climate change, increased international travel and trade are thought to have contributed to these events. Thirteen BTV serotypes have been isolated in India since first reports of the disease in the country during 1964. Efficient methods for preparation of viral dsRNA and cDNA synthesis, have facilitated full-genome sequencing of BTV strains from the region. These studies introduce a new approach for BTV characterization, based on full-genome sequencing and phylogenetic analyses, facilitating the identification of BTV serotype, topotype and reassortant strains. Phylogenetic analyses show that most of the equivalent genome-segments of Indian BTV strains are closely related, clustering within a major eastern BTV 'topotype'. However, genome-segment 5 (Seg-5) encoding NS1, from multiple post 1982 Indian isolates, originated from a western BTV topotype. All ten genome-segments of BTV-2 isolates (IND2003/01, IND2003/02 and IND2003/03) are closely related (>99% identity) to a South African BTV-2 vaccine-strain (western topotype). Similarly BTV-10 isolates (IND2003/06; IND2005/04) show >99% identity in all genome segments, to the prototype BTV-10 (CA-8) strain from the USA. These data suggest repeated introductions of western BTV field and/or vaccine-strains into India, potentially linked to animal or vector-insect movements, or unauthorised use of 'live' South African or American BTV-vaccines in the country. The data presented will help improve nucleic acid based diagnostics for Indian serotypes/topotypes, as part of control strategies.
Collapse
Affiliation(s)
- Sushila Maan
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, 125 004, Haryana, India
- * E-mail: (SM); (PPCM)
| | - Narender S. Maan
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, 125 004, Haryana, India
| | - Manjunatha N. Belaganahalli
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | | | - Karam Pal Singh
- Pathology Laboratory, Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, 243122, U.P, India
| | - Divakar Hemadri
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Hebbal, Bengaluru, 560024, K.A, India
| | - Kalyani Putty
- College of Veterinary Science, Acharya N.G. Ranga Agricultural University, Rajendra Nagar, Hyderabad, 500 030, T.S, India
| | - Aman Kumar
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, 125 004, Haryana, India
| | - Kanisht Batra
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, 125 004, Haryana, India
| | - Yadlapati Krishnajyothi
- Veterinary Biological & Research Institute, Govt. of Andhra Pradesh, Hyderabad, 500028, T.S, India
| | - Bharat S. Chandel
- College of Veterinary Science and AH, S.D. Agricultural University, Sardarkrushinagar-385 506, B.K., Gujarat, India
| | - G. Hanmanth Reddy
- Veterinary Biological & Research Institute, Govt. of Andhra Pradesh, Hyderabad, 500028, T.S, India
| | - Kyriaki Nomikou
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - Yella Narasimha Reddy
- College of Veterinary Science, Acharya N.G. Ranga Agricultural University, Rajendra Nagar, Hyderabad, 500 030, T.S, India
| | - Houssam Attoui
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | | | - Peter P. C. Mertens
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
- * E-mail: (SM); (PPCM)
| |
Collapse
|
26
|
Feng Y, Yang T, Xu Q, Sun E, Li J, Lv S, Wang H, Zhang Q, Zhang J, Wu D. Detection, discrimination and quantitation of 22 bluetongue virus serotypes using real-time RT-PCR with TaqMan MGB probes. Arch Virol 2015; 160:2249-58. [DOI: 10.1007/s00705-015-2499-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022]
|
27
|
Genetic characterization of the tick-borne orbiviruses. Viruses 2015; 7:2185-209. [PMID: 25928203 PMCID: PMC4452902 DOI: 10.3390/v7052185] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/18/2015] [Accepted: 04/21/2015] [Indexed: 12/24/2022] Open
Abstract
The International Committee for Taxonomy of Viruses (ICTV) recognizes four species of tick-borne orbiviruses (TBOs): Chenuda virus, Chobar Gorge virus, Wad Medani virus and Great Island virus (genus Orbivirus, family Reoviridae). Nucleotide (nt) and amino acid (aa) sequence comparisons provide a basis for orbivirus detection and classification, however full genome sequence data were only available for the Great Island virus species. We report representative genome-sequences for the three other TBO species (virus isolates: Chenuda virus (CNUV); Chobar Gorge virus (CGV) and Wad Medani virus (WMV)). Phylogenetic comparisons show that TBOs cluster separately from insect-borne orbiviruses (IBOs). CNUV, CGV, WMV and GIV share low level aa/nt identities with other orbiviruses, in ‘conserved’ Pol, T2 and T13 proteins/genes, identifying them as four distinct virus-species. The TBO genome segment encoding cell attachment, outer capsid protein 1 (OC1), is approximately half the size of the equivalent segment from insect-borne orbiviruses, helping to explain why tick-borne orbiviruses have a ~1 kb smaller genome.
Collapse
|
28
|
Maan NS, Maan S, Belaganahalli M, Pullinger G, Montes AJA, Gasparini MR, Guimera M, Nomikou K, Mertens PP. A quantitative real-time reverse transcription PCR (qRT-PCR) assay to detect genome segment 9 of all 26 bluetongue virus serotypes. J Virol Methods 2015; 213:118-26. [DOI: 10.1016/j.jviromet.2014.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/25/2014] [Accepted: 11/28/2014] [Indexed: 01/12/2023]
|
29
|
Rathogwa NM, Quan M, Smit JQ, Lourens C, Guthrie AJ, van Vuuren M. Development of a real time polymerase chain reaction assay for equine encephalosis virus. J Virol Methods 2013; 195:205-10. [PMID: 24161811 DOI: 10.1016/j.jviromet.2013.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/06/2013] [Accepted: 10/08/2013] [Indexed: 11/24/2022]
Abstract
Equine encephalosis virus (EEV) is the cause of equine encephalosis. The disease is similar to mild forms of African horse sickness (AHS) and the two diseases are easily confused. Laboratory identification and serotyping of EEV is based on viral isolation in BHK-21 cells and a viral plaque inhibition neutralisation test. These procedures are time-consuming and therefore a more rapid diagnostic assay for EEV that can distinguish EEV from African horse sickness virus (AHSV) infections was developed. The S7 (VP7) gene from 38 EEV isolates representing all seven serotypes was amplified and sequenced. A conserved region at the 5' end of the gene was identified and used to design group-specific EEV primers and a TaqMan(®) MGB™ hydrolysis probe. The efficiency of the EEV real-time RT-PCR assay was 81%. The assay was specific, as it did not detect any of the nine serotypes of AHSV, nor 24 serotypes of bluetongue virus (BTV) and sensitive, with a 95% limit of detection of 10(2.9) TCID50/ml blood (95% confidence interval: 10(2.7) to 10(3.3)). The real-time format was selected because of its convenience, sensitivity and ability to produce results rapidly.
Collapse
Affiliation(s)
- N M Rathogwa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
| | | | | | | | | | | |
Collapse
|
30
|
Schroeder ME, Johnson DJ, Ostlund EN, Meier J, Bounpheng MA, Clavijo A. Development and performance evaluation of a streamlined method for nucleic acid purification, denaturation, and multiplex detection of Bluetongue virus and Epizootic hemorrhagic disease virus. J Vet Diagn Invest 2013; 25:709-19. [PMID: 24091683 DOI: 10.1177/1040638713503654] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bluetongue virus (BTV) and Epizootic hemorrhagic disease virus (EHDV) possess similar structural and molecular features, are transmitted by biting midges (genus Culicoides), and cause similar diseases in some susceptible ruminants. Generally, BTV causes subclinical disease in cattle, characterized by a prolonged viremia. EHDV-associated disease in cattle is less prominent; however, it has emerged as a major economic threat to the white-tailed deer (Odocoileus virginianus) industry in many areas of the United States. The recent emergence of multiple BTV and EHDV serotypes previously undetected in the United States demonstrates the need for robust detection of all known serotypes and differential diagnosis. For this purpose, a streamlined workflow consisting of an automated nucleic acid purification and denaturation method and a multiplex one-step reverse transcription quantitative polymerase chain reaction for the simultaneous detection of BTV serotypes 1-24 and EHDV serotypes 1-7 was developed using previously published BTV and EHDV assays. The denaturation of double-stranded (ds) BTV and EHDV RNA was incorporated into the automated nucleic acid purification process thus eliminating the commonly used separate step of dsRNA denaturation. The performance of this workflow was compared with the World Organization of Animal Health BTV reference laboratory (National Veterinary Services Laboratory, Ames, Iowa) workflow for BTV and EHDV detection, and high agreement was observed. Implementation of the workflow in routine diagnostic testing enables the detection of, and differentiation between, BTV and EHDV, and coinfections in bovine blood and cervine tissues, offering significant benefits in terms of differential disease diagnosis, herd health monitoring, and regulated testing.
Collapse
Affiliation(s)
- Megan E Schroeder
- 1Mangkey A. Bounpheng, Texas A&M Veterinary Medical Diagnostic Laboratory, 1 Sippel Road, College Station, TX 77843.
| | | | | | | | | | | |
Collapse
|
31
|
Jabbar TK, Calvo-Pinilla E, Mateos F, Gubbins S, Bin-Tarif A, Bachanek-Bankowska K, Alpar O, Ortego J, Takamatsu HH, Mertens PPC, Castillo-Olivares J. Protection of IFNAR (-/-) mice against bluetongue virus serotype 8, by heterologous (DNA/rMVA) and homologous (rMVA/rMVA) vaccination, expressing outer-capsid protein VP2. PLoS One 2013; 8:e60574. [PMID: 23593251 PMCID: PMC3625202 DOI: 10.1371/journal.pone.0060574] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/28/2013] [Indexed: 01/21/2023] Open
Abstract
The protective efficacy of recombinant vaccines expressing serotype 8 bluetongue virus (BTV-8) capsid proteins was tested in a mouse model. The recombinant vaccines comprised plasmid DNA or Modified Vaccinia Ankara viruses encoding BTV VP2, VP5 or VP7 proteins. These constructs were administered alone or in combination using either a homologous prime boost vaccination regime (rMVA/rMVA) or a heterologous vaccination regime (DNA/rMVA). The DNA/rMVA or rMVA/rMVA prime-boost were administered at a three week interval and all of the animals that received VP2 generated neutralising antibodies. The vaccinated and non-vaccinated-control mice were subsequently challenged with a lethal dose of BTV-8. Mice vaccinated with VP7 alone were not protected. However, mice vaccinated with DNA/rMVA or rMVA/rMVA expressing VP2, VP5 and VP7 or VP2 alone were all protected.
Collapse
Affiliation(s)
| | | | - Francisco Mateos
- Centro en Investigación y Sanidad Animal, Valdeolmos, Madrid, Spain
| | - Simon Gubbins
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | | | | | - Oya Alpar
- Centre for Drug Delivery Research, London School of Pharmacy, London, United Kingdom
| | - Javier Ortego
- Centro en Investigación y Sanidad Animal, Valdeolmos, Madrid, Spain
| | | | | | | |
Collapse
|
32
|
van Rijn PA, Heutink RG, Boonstra J, Kramps HA, van Gennip RGP. Sustained high-throughput polymerase chain reaction diagnostics during the European epidemic of Bluetongue virus serotype 8. J Vet Diagn Invest 2012; 24:469-78. [PMID: 22529113 DOI: 10.1177/1040638712440986] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A real-time reverse transcription polymerase chain reaction assay (PCR test) based on genome segment 10 of Bluetongue virus (BTV) was developed. The PCR test consists of robotized viral RNA isolation from blood samples and an all-in-one method including initial denaturation of genomic double-stranded RNA, reverse transcription polymerase chain reaction (RT-PCR), and real-time detection and analysis. Reference strains of the 24 recognized BTV serotypes, isolates from different years, and geographic origins were detected. Other orbiviruses such as African horse sickness virus, Epizootic hemorrhagic disease virus, and Equine encephalosis virus were not detected. Experimentally infected animals were PCR positive from 2 days postinoculation, which was earlier than fever, other clinical signs, or seroconversion. The diagnostic sensitivity and specificity were very close to or even 100%. The PCR test played a key role in the detection of BTV serotype 8 in August 2006 in The Netherlands. The outbreak in a completely naive ruminant population allowed for further evaluation of the PCR test with field samples. In 2006, the correlation between enzyme-linked immunosorbent assay and PCR results was estimated to be 95%. In the following years, the PCR test was used for diagnosis of diseased animals, for testing of healthy animals for trade purposes, and for detection of BTV RNA in different species of the insect vector, Culicoides. In the autumn of 2008, BTV serotype 6 unexpectedly emerged in northwest Europe and was also detected with the PCR test developed in the current study. The performance in routine use over 5 years has been recorded and evaluated.
Collapse
Affiliation(s)
- Piet A van Rijn
- Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
Yin HQ, Jia MX, Yang S, Jing PP, Wang R, Zhang JG. Development of a highly sensitive gold nanoparticle probe-based assay for bluetongue virus detection. J Virol Methods 2012; 183:45-8. [DOI: 10.1016/j.jviromet.2012.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 03/14/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
|
34
|
Belaganahalli MN, Maan S, Maan NS, Nomikou K, Pritchard I, Lunt R, Kirkland PD, Attoui H, Brownlie J, Mertens PPC. Full genome sequencing and genetic characterization of Eubenangee viruses identify Pata virus as a distinct species within the genus Orbivirus. PLoS One 2012; 7:e31911. [PMID: 22438872 PMCID: PMC3305294 DOI: 10.1371/journal.pone.0031911] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/16/2012] [Indexed: 12/31/2022] Open
Abstract
Eubenangee virus has previously been identified as the cause of Tammar sudden death syndrome (TSDS). Eubenangee virus (EUBV), Tilligery virus (TILV), Pata virus (PATAV) and Ngoupe virus (NGOV) are currently all classified within the Eubenangee virus species of the genus Orbivirus, family Reoviridae. Full genome sequencing confirmed that EUBV and TILV (both of which are from Australia) show high levels of aa sequence identity (>92%) in the conserved polymerase VP1(Pol), sub-core VP3(T2) and outer core VP7(T13) proteins, and are therefore appropriately classified within the same virus species. However, they show much lower amino acid (aa) identity levels in their larger outer-capsid protein VP2 (<53%), consistent with membership of two different serotypes - EUBV-1 and EUBV-2 (respectively). In contrast PATAV showed significantly lower levels of aa sequence identity with either EUBV or TILV (with <71% in VP1(Pol) and VP3(T2), and <57% aa identity in VP7(T13)) consistent with membership of a distinct virus species. A proposal has therefore been sent to the Reoviridae Study Group of ICTV to recognise 'Pata virus' as a new Orbivirus species, with the PATAV isolate as serotype 1 (PATAV-1). Amongst the other orbiviruses, PATAV shows closest relationships to Epizootic Haemorrhagic Disease virus (EHDV), with 80.7%, 72.4% and 66.9% aa identity in VP3(T2), VP1(Pol), and VP7(T13) respectively. Although Ngoupe virus was not available for these studies, like PATAV it was isolated in Central Africa, and therefore seems likely to also belong to the new species, possibly as a distinct 'type'. The data presented will facilitate diagnostic assay design and the identification of additional isolates of these viruses.
Collapse
Affiliation(s)
| | - Sushila Maan
- Vector-borne Viral Diseases Programme, Institute for Animal Health, Woking, Surrey, United Kingdom
| | - Narender S. Maan
- Vector-borne Viral Diseases Programme, Institute for Animal Health, Woking, Surrey, United Kingdom
| | - Kyriaki Nomikou
- Vector-borne Viral Diseases Programme, Institute for Animal Health, Woking, Surrey, United Kingdom
| | - Ian Pritchard
- Australian Animal Health Laboratory, CSIRO, Geelong, Victoria, Australia
| | - Ross Lunt
- Australian Animal Health Laboratory, CSIRO, Geelong, Victoria, Australia
| | - Peter D. Kirkland
- Elizabeth Macarthur Agricultural Institute, Camden, New South Wales, Australia
| | - Houssam Attoui
- Vector-borne Viral Diseases Programme, Institute for Animal Health, Woking, Surrey, United Kingdom
| | - Joe Brownlie
- Department of Pathology and Infectious Diseases, Royal Veterinary College, North Mymms, Hatfield, Herts, United Kingdom
| | - Peter P. C. Mertens
- Vector-borne Viral Diseases Programme, Institute for Animal Health, Woking, Surrey, United Kingdom
| |
Collapse
|
35
|
Khezri M, Azimi S. Seroprevalence and S7 gene characterization of bluetongue virus in the West of Iran. Vet World 2012. [DOI: 10.5455/vetworld.2012.549-555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
36
|
Rapid molecular detection methods for arboviruses of livestock of importance to northern Europe. J Biomed Biotechnol 2011; 2012:719402. [PMID: 22219660 PMCID: PMC3246798 DOI: 10.1155/2012/719402] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/14/2011] [Accepted: 10/25/2011] [Indexed: 11/18/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) have been responsible for some of the most explosive epidemics of emerging infectious diseases over the past decade. Their impact on both human and livestock populations has been dramatic. The early detection either through surveillance or diagnosis of virus will be a critical feature in responding and resolving the emergence of such epidemics in the future. Although some of the most important emerging arboviruses are human pathogens, this paper aims to highlight those diseases that primarily affect livestock, although many are zoonotic and some occasionally cause human mortality. This paper also highlights the molecular detection methods specific to each virus and identifies those emerging diseases for which a rapid detection methods are not yet developed.
Collapse
|
37
|
Yin HQ, Jia MX, Shi LJ, Yang S, Zhang LY, Zhang QM, Wang SQ, Li G, Zhang JG. Nanoparticle-based bio-barcode assay for the detection of bluetongue virus. J Virol Methods 2011; 178:225-8. [DOI: 10.1016/j.jviromet.2011.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 05/04/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
|
38
|
Maan S, Maan NS, Nomikou K, Veronesi E, Bachanek-Bankowska K, Belaganahalli MN, Attoui H, Mertens PPC. Complete genome characterisation of a novel 26th bluetongue virus serotype from Kuwait. PLoS One 2011; 6:e26147. [PMID: 22031822 PMCID: PMC3198726 DOI: 10.1371/journal.pone.0026147] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/20/2011] [Indexed: 11/18/2022] Open
Abstract
Bluetongue virus is the "type" species of the genus Orbivirus, family Reoviridae. Twenty four distinct bluetongue virus (BTV) serotypes have been recognized for decades, any of which is thought to be capable of causing "bluetongue" (BT), an insect-borne disease of ruminants. However, two further BTV serotypes, BTV-25 (Toggenburg orbivirus, from Switzerland) and BTV-26 (from Kuwait) have recently been identified in goats and sheep, respectively. The BTV genome is composed of ten segments of linear dsRNA, encoding 7 virus-structural proteins (VP1 to VP7) and four distinct non-structural (NS) proteins (NS1 to NS4). We report the entire BTV-26 genome sequence (isolate KUW2010/02) and comparisons to other orbiviruses. Highest identity levels were consistently detected with other BTV strains, identifying KUW2010/02 as BTV. The outer-core protein and major BTV serogroup-specific antigen "VP7" showed 98% aa sequence identity with BTV-25, indicating a common ancestry. However, higher level of variation in the nucleotide sequence of Seg-7 (81.2% identity) suggests strong conservation pressures on the protein of these two strains, and that they diverged a long time ago. Comparisons of Seg-2, encoding major outer-capsid component and cell-attachment protein "VP2" identified KUW2010/02 as 26th BTV, within a 12th Seg-2 nucleotype [nucleotype L]. Comparisons of Seg-6, encoding the smaller outer capsid protein VP5, also showed levels of nt/aa variation consistent with identification of KUW2010/02 as BTV-26 (within a 9th Seg-6 nucleotype - nucleotype I). Sequence data for Seg-2 of KUW2010/02 were used to design four sets of oligonucleotide primers for use in BTV-26, type-specific RT-PCR assays. Analyses of other more conserved genome segments placed KUW2010/02 and BTV-25/SWI2008/01 closer to each other than to other "eastern" or "western" BTV strains, but as representatives of two novel and distinct geographic groups (topotypes). Our analyses indicate that all of the BTV genome segments have evolved under strong purifying selection.
Collapse
Affiliation(s)
- Sushila Maan
- Vector-Borne Diseases Programme, Institute for Animal Health, Pirbright, Woking Surrey, United Kingdom
| | - Narender S. Maan
- Vector-Borne Diseases Programme, Institute for Animal Health, Pirbright, Woking Surrey, United Kingdom
| | - Kyriaki Nomikou
- Vector-Borne Diseases Programme, Institute for Animal Health, Pirbright, Woking Surrey, United Kingdom
| | - Eva Veronesi
- Vector-Borne Diseases Programme, Institute for Animal Health, Pirbright, Woking Surrey, United Kingdom
| | | | | | - Houssam Attoui
- Vector-Borne Diseases Programme, Institute for Animal Health, Pirbright, Woking Surrey, United Kingdom
| | - Peter P. C. Mertens
- Vector-Borne Diseases Programme, Institute for Animal Health, Pirbright, Woking Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Belaganahalli MN, Maan S, Maan NS, Tesh R, Attoui H, Mertens PPC. Umatilla virus genome sequencing and phylogenetic analysis: identification of stretch lagoon orbivirus as a new member of the Umatilla virus species. PLoS One 2011; 6:e23605. [PMID: 21897849 PMCID: PMC3163642 DOI: 10.1371/journal.pone.0023605] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/20/2011] [Indexed: 11/19/2022] Open
Abstract
The genus Orbivirus, family Reoviridae, includes 22 species of viruses with genomes composed of ten segments of linear dsRNA that are transmitted between their vertebrate hosts by insects or ticks, or with no identified vectors. Full-genome sequence data are available for representative isolates of the insect borne mammalian orbiviruses (including bluetongue virus), as well as a tick borne avian orbivirus (Great Island virus). However, no sequence data are as yet available for the mosquito borne avian orbiviruses.We report full-length, whole-genome sequence data for Umatilla virus (UMAV), a mosquito borne avian orbivirus from the USA, which belongs to the species Umatilla virus. Comparisons of conserved genome segments 1, 2 and 8 (Seg-1, Seg-2 and Seg-8) - encoding the polymerase-VP1, sub-core 'T2' protein and core-surface 'T13' protein, respectively, show that UMAV groups with the mosquito transmitted mammalian orbiviruses. The highest levels of sequence identity were detected between UMAV and Stretch Lagoon orbivirus (SLOV) from Australia, showing that they belong to the same virus species (with nt/aa identity of 76.04%/88.07% and 77.96%/95.36% in the polymerase and T2 genes and protein, respectively). The data presented here has assisted in identifying the SLOV as a member of the Umatilla serogroup. This sequence data reported here will also facilitate identification of new isolates, and epidemiological studies of viruses belonging to the species Umatilla virus.
Collapse
Affiliation(s)
| | - Sushila Maan
- Vector-borne Diseases Programme, Institute for Animal Health, Surrey, United Kingdom
| | - Narender S. Maan
- Vector-borne Diseases Programme, Institute for Animal Health, Surrey, United Kingdom
| | - Robert Tesh
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Houssam Attoui
- Vector-borne Diseases Programme, Institute for Animal Health, Surrey, United Kingdom
| | - Peter P. C. Mertens
- Vector-borne Diseases Programme, Institute for Animal Health, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Ali H, Ali AA, Atta MS, Cepica A. Common, Emerging, Vector-Borne and Infrequent Abortogenic Virus Infections of Cattle. Transbound Emerg Dis 2011; 59:11-25. [DOI: 10.1111/j.1865-1682.2011.01240.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Antoniassi NA, Pavarini SP, Ribeiro LA, Silva MS, Flores EF, Driemeier D. Alterações clínicas e patológicas em ovinos infectados naturalmente pelo vírus da língua azul no Rio Grande do Sul. PESQUISA VETERINARIA BRASILEIRA 2010. [DOI: 10.1590/s0100-736x2010001200002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Língua azul (LA) é uma doença causada pelo vírus da língua azul (VLA) e transmitida por vetores do gênero Culicoides. Estudos sorológicos têm demonstrado a ampla presença do vírus no Brasil; entretanto, informações clínicas da LA na América do Sul são limitadas. Esse trabalho descreve alterações clínico-patológicas em ovinos acometidos pela LA no Sul do Brasil. Em dois surtos, em propriedades distintas, 15 ovinos apresentaram como principais sinais clínicos hipertermia, apatia, aumento de volume da face e região submandibular, dificuldade de deglutição com regurgitação, secreção nasal mucopurulenta esverdeada, alterações respiratórias, além de acentuada perda de peso e erosões na mucosa oral. Os achados de necropsia em seis ovinos afetados incluíram edema subcutâneo na face e região ventral do tórax, secreção nasal esverdeada, esôfago dilatado preenchido por grande quantidade de conteúdo alimentar, pulmões não colabados com áreas consolidadas anteroventrais, bem como luz da traquéia e brônquios preenchida por espuma misturada com conteúdo alimentar. No coração e base da artéria pulmonar, havia focos de hemorragia. Histologicamente, as principais alterações observadas ocorriam no tecido muscular cardíaco e esquelético, especialmente no esôfago e consistiam de lesões bifásicas caracterizadas por degeneração/necrose hialina e flocular de miofibras associadas com micro-calcificação e infiltrado inflamatório mononuclear. Pneumonia aspirativa associada à presença de material vegetal e bactérias na luz de brônquios também foi observada. O diagnóstico de LA foi confirmado pela detecção do genoma viral por duplex RT-PCR em amostras de sangue de animais afetados, seguido da identificação do VLA, sorotipo 12 por sequenciamento.
Collapse
|
42
|
Cêtre-Sossah C, Madani H, Sailleau C, Nomikou K, Sadaoui H, Zientara S, Maan S, Maan N, Mertens P, Albina E. Molecular epidemiology of bluetongue virus serotype 1 isolated in 2006 from Algeria. Res Vet Sci 2010; 91:486-97. [PMID: 21074232 DOI: 10.1016/j.rvsc.2010.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 07/11/2010] [Accepted: 10/05/2010] [Indexed: 11/26/2022]
Abstract
This study reports on an outbreak of disease that occurred in central Algeria during July 2006. Sheep in the affected area presented clinical signs typical of bluetongue (BT) disease. A total of 5245 sheep in the affected region were considered to be susceptible, with 263 cases and thirty-six deaths. Bluetongue virus (BTV) serotype 1 was isolated and identified as the causative agent. Segments 2, 7 and 10 of this virus were sequenced and compared with other isolates from Morocco, Italy, Portugal and France showing that they all belong to a 'western' BTV group/topotype and collectively represent a western Mediterranean lineage of BTV-1.
Collapse
Affiliation(s)
- C Cêtre-Sossah
- CIRAD, UMR Contrôle des Maladies, F-34398 Montpellier, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chatzinasiou E, Dovas C, Papanastassopoulou M, Georgiadis M, Psychas V, Bouzalas I, Koumbati M, Koptopoulos G, Papadopoulos O. Assessment of bluetongue viraemia in sheep by real-time PCR and correlation with viral infectivity. J Virol Methods 2010; 169:305-15. [DOI: 10.1016/j.jviromet.2010.07.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 07/09/2010] [Accepted: 07/29/2010] [Indexed: 01/10/2023]
|
44
|
van Gennip RGP, Veldman D, van de Water SGP, van Rijn PA. Genetic modification of Bluetongue virus by uptake of "synthetic" genome segments. Virol J 2010; 7:261. [PMID: 20929545 PMCID: PMC2958914 DOI: 10.1186/1743-422x-7-261] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/07/2010] [Indexed: 01/04/2023] Open
Abstract
Since 1998, several serotypes of Bluetongue virus (BTV) have invaded several southern European countries. In 2006, the unknown BTV serotype 8 (BTV8/net06) unexpectedly invaded North-West Europe and has resulted in the largest BT-outbreak ever recorded. More recently, in 2008 BTV serotype 6 was reported in the Netherlands and Germany. This virus, BTV6/net08, is closely related to modified-live vaccine virus serotype 6, except for genome segment S10. This genome segment is closer related to that of vaccine virus serotype 2, and therefore BTV6/net08 is considered as a result of reassortment. Research on orbiviruses has been hampered by the lack of a genetic modification method. Recently, reverse genetics has been developed for BTV based on ten in vitro synthesized genomic RNAs. Here, we describe a targeted single-gene modification system for BTV based on the uptake of a single in vitro synthesized viral positive-stranded RNA. cDNAs corresponding to BTV8/net06 genome segments S7 and S10 were obtained by gene synthesis and cloned downstream of the T7 RNA-polymerase promoter and upstream of a unique site for a restriction enzyme at the 3'-terminus for run-off transcription. Monolayers of BSR cells were infected by BTV6/net08, and subsequently transfected with purified in vitro synthesized, capped positive-stranded S7 or S10 RNA from BTV8/net06 origin. "Synthetic" reassortants were rescued by endpoint dilutions, and identified by serotype-specific PCR-assays for segment 2, and serogroup-specific PCRs followed by restriction enzyme analysis or sequencing for S7 and S10 segments. The targeted single-gene modification system can also be used to study functions of viral proteins by uptake of mutated genome segments. This method is also useful to generate mutant orbiviruses for other serogroups of the genus Orbivirus for which reverse genetics has not been developed yet.
Collapse
Affiliation(s)
- René G P van Gennip
- Central Veterinary Institute of Wageningen UR, Department of Virology, P,O, Box 65, 8200 AB Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
45
|
Immunohistochemical Detection of Bluetongue Virus in Fixed Tissue. J Comp Pathol 2010; 143:20-8. [DOI: 10.1016/j.jcpa.2009.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/21/2009] [Accepted: 12/30/2009] [Indexed: 11/23/2022]
|
46
|
Detection and quantitation of bluetongue virus serotypes by a TaqMan probe-based real-time RT-PCR and differentiation from epizootic hemorrhagic disease virus. J Virol Methods 2010; 168:237-41. [PMID: 20435069 DOI: 10.1016/j.jviromet.2010.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 04/18/2010] [Accepted: 04/22/2010] [Indexed: 11/22/2022]
Abstract
Twenty-four serotypes of bluetongue virus (BTV) have been recognized world wide. Reliable and quantitative assays of virus universal detection are essential for fighting against BT. A real-time reverse transcription-polymerase chain reaction (RT-PCR) with a TaqMan fluorescence probe has been developed for detection of the NS1 gene of different BTV serotypes. In BHK-21 cells, in the assay detected BTV1-22 specifically, and had no cross-reactivity with the closely related epizootic hemorrhagic disease virus (EHDV) serotypes 1-5. The limit of sensitivity of the assay was 0.1 TCID(50)/ml for BTV-1 and 10(2) copies for the control R121/pGEM. Accurate quantitation can be achieved with samples containing between 10(2) and 10(6) copies. The coefficient of variation (CV) of intra-assay and inter-assay ranged from 2.17% to 5.60%. The developed real-time RT-PCR assay showed good coincident rate (99.2%) with duplex RT-PCR in 122 whole blood clinical samples from sheep. Therefore, the real-time RT-PCR can be a reliable method for detection of various serotypes of BTV.
Collapse
|
47
|
Wilson WC, Hindson BJ, O'Hearn ES, Hall S, Tellgren-Roth C, Torres C, Naraghi-Arani P, Mecham JO, Lenhoff RJ. A multiplex real-time reverse transcription polymerase chain reaction assay for detection and differentiation of Bluetongue virus and Epizootic hemorrhagic disease virus serogroups. J Vet Diagn Invest 2010; 21:760-70. [PMID: 19901276 DOI: 10.1177/104063870902100602] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bluetongue virus (BTV) causes disease in domestic and wild ruminants and results in significant economic loss. The closely related Epizootic hemorrhagic disease virus (EHDV) has been associated with bluetongue-like disease in cattle. Although U.S. EHDV strains have not been experimentally proven to cause disease in cattle, there is serologic evidence of infection in cattle. Therefore, rapid diagnosis and differentiation of BTV and EHDV is required. The genetic sequence information and bioinformatic analysis necessary to design a real-time reverse transcription polymerase chain reaction (RT-PCR) assay for the early detection of indigenous and exotic BTV and EHDV is described. This sequence data foundation focused on 2 conserved target genes: one that is highly expressed in infected mammalian cells, and the other is highly expressed in infected insect cells. The analysis of all BTV and EHDV prototype strains indicated that a complex primer design was necessary for both a virus group-comprehensive and virus group-specific gene amplification diagnostic test. This information has been used as the basis for the development of a rapid multiplex BTV-EHDV real-time RT-PCR that detects all known serotypes of both viruses and distinguishes between BTV and EHDV serogroups. The sensitivity of this rapid, single-tube, real-time RT-PCR assay is sufficient for diagnostic application, without the contamination problems associated with standard gel-based RT-PCR, especially nested RT-PCR tests.
Collapse
Affiliation(s)
- William C Wilson
- USDA, ARS, Arthropod-Borne Animal Diseases Research Laboratory, Department 3354, Laramie, WY 82071, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Jor E, Myrmel M, Jonassen CM. SYBR Green based real-time RT-PCR assay for detection and genotype prediction of bovine noroviruses and assessment of clinical significance in Norway. J Virol Methods 2010; 169:1-7. [PMID: 20381534 PMCID: PMC7112832 DOI: 10.1016/j.jviromet.2010.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 03/17/2010] [Accepted: 03/30/2010] [Indexed: 11/25/2022]
Abstract
A novel SYBR Green based real-time RT-PCR assay for detection of genogroup III bovine noroviruses (BoNoV) was developed and the assay applied to 419 faecal samples from calves with and without diarrhoea. The samples were obtained from 190 Norwegian dairy and beef herds. BoNoV was detected in 49.6% of the samples from 61.1% of the herds indicating that BoNoV is ubiquitous in Norway. The overall prevalence was not significantly different in diarrhoea and non-diarrhoea samples. Analyses of polymerase gene sequences revealed both genotype III/1 and III/2 with genotype III/2 (Newbury2-like) being the most prevalent. Detected capsid sequences were restricted to Newbury2-like and the chimeric Bo/Thirsk10/00/UK strain. The RNA polymerase genotypes of the circulating BoNoVs in Norway were predicted by melting temperature analysis. Additional data from a challenge experiment suggest that a high proportion of young calves are shedding low levels of BoNoV for a prolonged time after recovering from the associated diarrhoea. The findings may explain some of the discrepancies in detection rates from previous studies and explain why some studies have failed to detect significant prevalence differences between calves with and without diarrhoea. It may also shed new light on some epidemiological aspects of norovirus infections.
Collapse
Affiliation(s)
- Evert Jor
- Department of Animal Health, National Veterinary Institute, PO Box 750, Sentrum, NO-0106 Oslo, Norway.
| | | | | |
Collapse
|
49
|
Leblanc N, Rasmussen TB, Fernández J, Sailleau C, Rasmussen LD, Uttenthal A, Zientara S, Belák S, Hakhverdyan M. Development of a real-time RT-PCR assay based on primer-probe energy transfer for the detection of all serotypes of bluetongue virus. J Virol Methods 2010; 167:165-71. [PMID: 20380853 DOI: 10.1016/j.jviromet.2010.03.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 03/25/2010] [Accepted: 03/29/2010] [Indexed: 11/24/2022]
Abstract
A real-time RT-PCR assay based on the primer-probe energy transfer (PriProET) was developed to detect all 24 serotypes of bluetongue virus (BTV). BTV causes serious disease, primarily in sheep, but in other ruminants as well. A distinguishing characteristic of the assay is its tolerance toward mutations in the probe region. Furthermore, melting curve analysis following immediately PCR confirms specific probe hybridization and can reveal mutations in the probe region by showing a difference in the melting point. The assay sensitivity was in the range of 10-100 target copies and the specificity tests showed no positive results for heterologous pathogens. The assay was tested on clinical samples from BTV 8 outbreaks in Sweden and Denmark in 2008. The lowest detection limit for that serotype, determined with PCR standards, was 57 genome copies. The assay sensitivity for some other serotypes that circulate currently in Europe was also determined. BTV 2, 4, 9 and 16 were tested on available cell culture samples and the detection limits were 109, 12, 13 and 24 copies, respectively. This assay provides an important tool for early and rapid detection of a wide range of BTV strains, including emerging strains.
Collapse
Affiliation(s)
- N Leblanc
- Joint Research and Development Division, Department of Virology, the National Veterinary Institute, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Antoniassi NAB, Pavarini SP, Henzel A, Flores EF, Driemeier D. Aspiration pneumonia associated with oesophageal myonecrosis in sheep due to BTV infection in Brazil. Vet Rec 2010; 166:52-3. [PMID: 20064980 DOI: 10.1136/vr.b4775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- N A B Antoniassi
- Department of Veterinary Clinical Pathology, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves 9090, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|